151
|
Inhibition of epidermal growth factor receptor and vascular endothelial growth factor receptor phosphorylation on tumor-associated endothelial cells leads to treatment of orthotopic human colon cancer in nude mice. Neoplasia 2008; 9:1066-77. [PMID: 18084614 DOI: 10.1593/neo.07667] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/27/2007] [Accepted: 09/30/2007] [Indexed: 11/18/2022]
Abstract
The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-alpha) and vascular endothelial growth factor (VEGF) but were negative for EGFR, human epidermal growth factor receptor 2 (HER2), and VEGFR. Double immunofluorescence staining revealed that tumor-associated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR), and phosphorylated VEGFR (pVEGFR). Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase) or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01); this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001). AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, and increased the level of apoptosis in both tumor-associated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer.
Collapse
|
152
|
Affiliation(s)
- Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
153
|
Spannuth WA, Sood AK, Coleman RL. Angiogenesis as a strategic target for ovarian cancer therapy. ACTA ACUST UNITED AC 2008; 5:194-204. [PMID: 18268546 DOI: 10.1038/ncponc1051] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 10/22/2007] [Indexed: 01/07/2023]
Abstract
Angiogenesis is a complex and highly regulated process that is crucial for tumor growth and metastasis. Insights into the molecular mechanisms of tumor angiogenesis have led to the identification of potential angiogenic targets and the development of novel antivascular agents. Many of these agents are being evaluated in clinical trials and have shown promising antitumor activity. This Review highlights the results of the latest clinical studies of antivascular agents in ovarian cancer and discusses the challenges and opportunities for future clinical trials.
Collapse
Affiliation(s)
- Whitney A Spannuth
- Departments of Gynecologic Oncology and Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77230-1439, USA
| | | | | |
Collapse
|
154
|
Abstract
Physiological angiogenesis is essential for development, homeostasis and tissue repair but pathological neovascularization is a major feature of tumours, rheumatoid arthritis and ocular complications. Studies over the last decade have identified γ-secretase, a presenilin-dependent protease, as a key regulator of angiogenesis through: (i) regulated intramembrane proteolysis and transmembrane cleavage of receptors (e.g. VEGFR-1, Notch, ErbB-4, IGFI-R) followed by translocation of the intracellular domain to the nucleus, (ii) translocation of full length membrane-bound receptors to the nucleus (VEGFR-1), (iii) phosphorylation of membrane bound proteins (VEGFR-1 and ErbB-4), (iv) modulation of adherens junctions (cadherin) and regulation of permeability and (v) cleavage of amyloid precursor protein to amyloid-β which is able to regulate the angiogenic process. The γ-secretase-induced translocation of receptors to the nucleus provides an alternative intracellular signalling pathway, which acts as a potent regulator of transcription. γ-secretase is a complex composed of four different integral proteins (presenilin, nicastrin, Aph-1 and Pen-2), which determine the stability, substrate binding, substrate specificity and proteolytic activity of γ-secretase. This seeming complexity allows numerous possibilities for the development of targeted γ-secretase agonists/antagonists, which can specifically regulate the angiogenic process. This review will consider the structure and function of γ-secretase, the growing evidence for its role in angiogenesis and the substrates involved, γ-secretase as a therapeutic target and future challenges in this area.
Collapse
Affiliation(s)
- Michael E Boulton
- Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | |
Collapse
|
155
|
Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis 2008; 11:53-62. [PMID: 18219583 DOI: 10.1007/s10456-008-9089-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 01/07/2008] [Indexed: 01/07/2023]
Abstract
Angiogenesis relies on endothelial cells properly processing signals from growth factors provided in both an autocrine and a paracrine manner. These mitogens bind to their cognate receptor tyrosine kinases (RTKs) on the cell surface, thereby activating a myriad of complex intracellular signaling pathways whose outputs include cell growth, migration, and morphogenesis. Understanding how these cascades are precisely controlled will provide insight into physiological and pathological angiogenesis. The Sprouty (Spry) family of proteins is a highly conserved group of negative feedback loop modulators of growth factor-mediated mitogen-activated protein kinase (MAPK) activation originally described in Drosophila. There are four mammalian orthologs (Spry1-4) whose modulation of RTK-induced signaling pathways is growth factor- and cell context-dependent. Endothelial cells are a group of highly differentiated cell types necessary for defining the mammalian vasculature. These cells respond to a plethora of growth factors and express all four Spry isoforms, thus highlighting the complexity that is required to form and maintain vessels in mammals. This review describes Spry functions in the context of endothelial biology and angiogenesis, and provides an update on Spry-interacting proteins and Spry mechanisms of action.
Collapse
|
156
|
De Luca A, Carotenuto A, Rachiglio A, Gallo M, Maiello MR, Aldinucci D, Pinto A, Normanno N. The role of the EGFR signaling in tumor microenvironment. J Cell Physiol 2008; 214:559-67. [PMID: 17894407 DOI: 10.1002/jcp.21260] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The epidermal growth factor receptor (EGFR) family comprehends four different tyrosine kinases (EGFR, ErbB-2, ErbB-3, and ErbB-4) that are activated following binding to epidermal growth factor (EGF)-like growth factors. It has been long established that the EGFR system is involved in tumorigenesis. These proteins are frequently expressed in human carcinomas and support proliferation and survival of cancer cells. However, activation of the EGFR in non-malignant cell populations of the neoplastic microenvironment might also play an important role in cancer progression. EGFR signaling regulates in tumor cells the synthesis and secretion of several different angiogenic growth factors, including vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), and basic fibroblast growth factor (bFGF). Overexpression of ErbB-2 also leads to increased expression of angiogenic growth factors, whereas treatment with anti-EGFR or anti-ErbB-2 agents produces a significant reduction of the synthesis of these proteins by cancer cells. EGFR expression and function in tumor-associated endothelial cells has also been described. Therefore, EGFR signaling might regulate angiogenesis both directly and indirectly. In addition, activation of EGFR is involved in the pathogenesis of bone metastases. Within the bone marrow microenvironment, cancer cells stimulate the synthesis of osteoclastogenic factors by residing stromal cells, a phenomenon that leads to bone destruction. It has been shown that EGFR signaling regulates the ability of bone marrow stromal cells to produce osteoclastogenic factors and to sustain osteoclast activation. Taken together, these findings suggest that the EGFR system is an important mediator, within the tumor microenvironment, of autocrine and paracrine circuits that result in enhanced tumor growth.
Collapse
Affiliation(s)
- Antonella De Luca
- Cell Biology and Preclinical Models Unit, INT-Fondazione Pascale, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
157
|
|
158
|
Abstract
Heme oxygenase-1 (HO-1) catalyzes the oxidation of heme to biologically active products: carbon monoxide (CO), biliverdin, and ferrous iron. It participates in maintaining cellular homeostasis and plays an important protective role in the tissues by reducing oxidative injury, attenuating the inflammatory response, inhibiting cell apoptosis, and regulating cell proliferation. HO-1 is also an important proangiogenic mediator. Most studies have focused on the role of HO-1 in cardiovascular diseases, in which its significant, beneficial activity is well recognized. A growing body of evidence indicates, however, that HO-1 activation may play a role in carcinogenesis and can potently influence the growth and metastasis of tumors. HO-1 is very often upregulated in tumor tissues, and its expression is further increased in response to therapies. Although the exact effect can be tissue specific, HO-1 can be regarded as an enzyme facilitating tumor progression. Accordingly, inhibition of HO-1 can be suggested as a potential therapeutic approach sensitizing tumors to radiation, chemotherapy, or photodynamic therapy.
Collapse
Affiliation(s)
- Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | | | |
Collapse
|
159
|
Liu Y, Sainz IM, Wu Y, Pixley R, Espinola RG, Hassan S, Khan MM, Colman RW. The inhibition of tube formation in a collagen-fibrinogen, three-dimensional gel by cleaved kininogen (HKa) and HK domain 5 (D5) is dependent on Src family kinases. Exp Cell Res 2007; 314:774-88. [PMID: 18062965 DOI: 10.1016/j.yexcr.2007.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 10/10/2007] [Accepted: 10/12/2007] [Indexed: 01/21/2023]
Abstract
Cleaved high molecular weight kininogen (HKa), as well as its domain 5 (D5), inhibits migration and proliferation induced by angiogenic factors and induces apoptosis in vitro. To study its effect on tube formation we utilized a collagen-fibrinogen, three-dimensional gel, an in vitro model of angiogenesis. HKa, GST-D5 and D5 had a similar inhibitory effect of tube length by 90+/-4.5%, 86+/-5.5% and 77+/-12.9%, respectively. D5-derived synthetic peptides: G440-H455 H475-H485 and G486-K502 inhibited tube length by 51+/-3.7%, 54+/-3.8% and 77+/-1.7%, respectively. By a comparison of its inhibitory potency and its sequences, a functional sequence of HKa was defined to G486-G496. PP2, a Src family kinase inhibitor, prevented tube formation in a dose-dependent manner (100-400 nM), but PP3 at 5 microM, an inactive analogue of PP2, did not. HKa and D5 inhibited Src 416 phosphorylation by 62+/-12.3% and 83+/-6.1%, respectively. The C-terminal Src kinase (Csk) inhibits Src kinase activity. Using a siRNA to Csk, expression of Csk was down-regulated by 86+/-7.0%, which significantly increased tube length by 27+/-5.8%. The addition of HKa and D5 completely blocked this effect. We further showed that HKa inhibited Src family kinase activity by disrupting the complex of uPAR, alphavbeta3 integrin and Src. Our results indicate that the anti-angiogenic effect of HKa and D5 is mediated at least in part through Src family kinases and identify a potential novel target for therapeutic inhibition of neovascularization in cancer and inflammatory arthritis.
Collapse
Affiliation(s)
- Yuchuan Liu
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Eng C. Combining Targeted Therapies to Enhance the Effectiveness of Chemotherapy in Patients with Treatment-Refractory Colorectal Cancer. Clin Colorectal Cancer 2007; 6 Suppl 2:S53-9. [DOI: 10.3816/ccc.2007.s.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
161
|
Abstract
Angiogenesis is an important mediator of tumor progression. As tumors expand, diffusion distances from the existing vascular supply increases resulting in hypoxia. Sustained expansion of a tumor mass requires new blood vessel formation to provide rapidly proliferating tumor cells with an adequate supply of oxygen and metabolites. The key regulator of hypoxia-induced angiogenesis is the transcription factor hypoxia inducible factor (HIF)-1. Multiple HIF-1 target genes have been shown to modulate angiogenesis by promoting the mitogenic and migratory activities of endothelial cells. Because of this, hypoxia-induced angiogenesis has become an attractive target for cancer therapy, however the mechanisms involved during this process and how best to target it for cancer therapy are still under investigation. This review will cover the current understanding of hypoxia-induced tumor angiogenesis and discuss the caveats of hypoxia-targeted antiangiogenic therapy for the treatment of cancer.
Collapse
Affiliation(s)
- Debbie Liao
- Department of Molecular Pathology, University of California San Diego, San Diego, CA, USA.
| | | |
Collapse
|
162
|
Iivanainen E, Paatero I, Heikkinen SM, Junttila TT, Cao R, Klint P, Jaakkola PM, Cao Y, Elenius K. Intra- and extracellular signaling by endothelial neuregulin-1. Exp Cell Res 2007; 313:2896-909. [PMID: 17499242 DOI: 10.1016/j.yexcr.2007.03.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/27/2007] [Accepted: 03/27/2007] [Indexed: 12/28/2022]
Abstract
Suppression of tumor growth by inhibition of ErbB receptor signaling is well documented. However, relatively little is known about the ErbB signaling system in the regulation of angiogenesis, a process necessary for tumor growth. We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) is expressed by vascular endothelial cells (EC) and promotes endothelial recruitment of vascular smooth muscle cells (SMC). To assess whether other members of the EGF-family regulate angiogenesis, the expression of 10 EGF-like growth factors in primary ECs and SMCs was analyzed. In addition to HB-EGF, neuregulin-1 (NRG-1) was expressed in ECs in vitro and in vivo. Endothelial NRG-1 was constitutively processed to soluble extracellular and intracellular signaling fragments, and its expression was induced by hypoxia. NRG-1 was angiogenic in vivo in mouse corneal pocket and chicken chorioallantoic membrane (CAM) assays. However, consistent with the lack of NRG-1 receptors in several primary EC lines, NRG-1 did not directly stimulate cellular responses in cultured ECs. In contrast, NRG-1 promoted EC responses in vitro and angiogenesis in CAM in vivo by mechanisms dependent on VEGF-A and VEGFR-2. These results indicate that NRG-1 is expressed by ECs and regulates angiogenesis by mechanisms involving paracrine up-regulation of VEGF-A.
Collapse
Affiliation(s)
- Erika Iivanainen
- Department of Medical Biochemistry and Molecular Biology, and Medicity Research Laboratories, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Karl E, Zhang Z, Dong Z, Neiva KG, Soengas MS, Koch AE, Polverini PJ, Núñez G, Nör JE. Unidirectional crosstalk between Bcl-xL and Bcl-2 enhances the angiogenic phenotype of endothelial cells. Cell Death Differ 2007; 14:1657-66. [PMID: 17572663 DOI: 10.1038/sj.cdd.4402174] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Expression of Bcl-x(L) correlates with the clinical outcomes of patients with cancer. While the role of Bcl-2 in angiogenesis is becoming increasingly evident, the function of Bcl-x(L) in angiogenesis is unclear. Here, we showed that epidermal growth factor (EGF) induces in vitro capillary sprouting and Bcl-x(L) expression in primary endothelial cells. Bcl-x(L)-transduced human dermal microvascular endothelial cells (HDMEC-Bcl-x(L)), but not empty vector control cells, spontaneously organize into capillary-like sprouts. Searching for a mechanism to explain these responses, we observed that Bcl-x(L) induced expression of the pro-angiogenic chemokines CXC ligand-1 (CXCL1) and CXC ligand-8 (CXCL8), and that blockade of CXC receptor-2 (CXCR2) signaling inhibited spontaneous sprouting of HDMEC-Bcl-x(L). Bcl-x(L) led to Bcl-2 upregulation, but Bcl-2 did not upregulate Bcl-x(L), suggesting the existence of a unidirectional crosstalk from Bcl-x(L) to Bcl-2. EGF and Bcl-x(L) activate the mitogen-activated protein kinase/ERK pathway resulting in upregulation of vascular endothelial growth factor (VEGF), a known inducer of Bcl-2 in endothelial cells. Inhibition of VEGF receptor signaling in HDMEC-Bcl-x(L) prevented Bcl-2 upregulation and demonstrated the function of a VEGF-mediated autocrine loop. Bcl-2 downregulation by RNAi blocked CXCL1 and CXCL8 expression downstream of Bcl-x(L), and markedly decreased angiogenesis in vivo. We conclude that Bcl-x(L) functions as a pro-angiogenic signaling molecule controlling Bcl-2 and VEGF expression. These results emphasize a complex interplay between Bcl-2 family members beyond their classical roles in apoptosis.
Collapse
Affiliation(s)
- E Karl
- Angiogenesis Research Laboratory, Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Langlois S, Nyalendo C, Di Tomasso G, Labrecque L, Roghi C, Murphy G, Gingras D, Béliveau R. Membrane-type 1 matrix metalloproteinase stimulates cell migration through epidermal growth factor receptor transactivation. Mol Cancer Res 2007; 5:569-83. [PMID: 17541067 DOI: 10.1158/1541-7786.mcr-06-0267] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proteolysis of extracellular matrix proteins by membrane-type 1 matrix metalloproteinase (MT1-MMP) plays a pivotal role in tumor and endothelial cell migration. In addition to its proteolytic activity, several studies indicate that the proinvasive properties of MT1-MMP also involve its short cytoplasmic domain, but the specific mechanisms mediating this function have yet to be fully elucidated. Having previously shown that the serum factor sphingosine 1-phosphate stimulates MT1-MMP promigratory function through a process that involves its cytoplasmic domain, we now extend these findings to show that this cooperative interaction is permissive to cellular migration through MT1-MMP-dependent transactivation of the epidermal growth factor receptor (EGFR). In the presence of sphingosine 1-phosphate, MT1-MMP stimulates EGFR transactivation through a process that is dependent upon the cytoplasmic domain of the enzyme but not its catalytic activity. The MT1-MMP-induced EGFR transactivation also involves G(i) protein signaling and Src activities and leads to enhanced cellular migration through downstream extracellular signal-regulated kinase activation. The present study, thus, elucidates a novel role of MT1-MMP in signaling events mediating EGFR transactivation and provides the first evidence of a crucial role of this receptor activity in MT1-MMP promigratory function. Taken together, our results suggest that the inhibition of EGFR may represent a novel target to inhibit MT1-MMP-dependent processes associated with tumor cell invasion and angiogenesis.
Collapse
Affiliation(s)
- Stéphanie Langlois
- Laboratoire de Médecine Moléculaire, Hôpital Ste-Justine-Université du Québec à Montréal, Centre de Cancérologie Charles-Bruneau, 3175 Chemin Côte-Ste-Catherine, Montreal, Quebec, Canada H3T 1C5
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
The process of cancer metastasis is sequential and selective and contains stochastic elements. The growth of metastases represents the endpoint of many lethal events that few tumor cells can survive. Primary tumors consist of multiple subpopulations of cells with heterogeneous metastatic properties, and the outcome of metastasis depends on the interplay of tumor cells with various host factors. The findings that different metastases can originate from different progenitor cells account for the biological diversity that exists among various metastases. Even within a solitary metastasis of proven clonal origin, however, heterogeneity of biological characteristics can develop rapidly. The pathogenesis of metastasis depends on multiple interactions of metastatic cells with favorable host homeostatic mechanisms. Interruption of one or more of these interactions can lead to the inhibition or eradication of cancer metastasis. For many years, all of our efforts to treat cancer have concentrated on the inhibition or destruction of tumor cells. Strategies both to treat tumor cells (such as chemotherapy and immunotherapy) and to modulate the host microenvironment (including the tumor vasculature) should offer additional approaches for cancer treatment. The recent advances in our understanding of the biological basis of cancer metastasis present unprecedented possibilities for translating basic research to the clinical reality of cancer treatment.
Collapse
Affiliation(s)
- Robert R Langley
- Department of Cancer Biology, Unit 173, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.
| | | |
Collapse
|
166
|
Byers LA, Heymach JV. Dual Targeting of the Vascular Endothelial Growth Factor and Epidermal Growth Factor Receptor Pathways: Rationale and Clinical Applications for Non-Small-Cell Lung Cancer. Clin Lung Cancer 2007; 8 Suppl 2:S79-85. [PMID: 17382029 DOI: 10.3816/clc.2007.s.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) pathways represent 2 clinically validated targets for non-small-cell lung cancer (NSCLC), and there is strong biologic rationale for therapeutic approaches targeting both pathways in NSCLC and other diseases. These 2 pathways are interrelated, as VEGF is known to be downregulated by EGFR inhibition through hypoxia-inducible factor 1alpha-dependent and hypoxia-inducible factor 1alpha-independent mechanisms. Furthermore, acquired resistance to EGFR inhibitors is associated with increased levels of VEGF, and dual VEGF/EGFR inhibition has demonstrated activity in the presence of EGFR tyrosine kinase inhibitor-resistant disease. This approach is being investigated clinically using combinations of drugs that target the pathways separately, such as erlotinib and bevacizumab, or individual drugs that target both pathways, such as vandetanib. Randomized phase II studies in previously treated patients with NSCLC suggest that dual VEGF/EGFR inhibition might be more active than targeting either pathway alone and that the combination could also enhance the efficacy of chemotherapy. Phase III clinical trials are currently in progress to determine whether dual VEGF/EGFR inhibition, alone or in combination with chemotherapy, should become a standard therapeutic option for patients with NSCLC.
Collapse
Affiliation(s)
- Lauren A Byers
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | |
Collapse
|
167
|
Abstract
Angiogenesis, the generation of new blood vessels from pre-existing vessels, is an integral component of wound healing, responses to inflammation and other physiologic processes. It is also an essential part of tumor growth; in the absence of new vessel formation, tumors cannot expand beyond a small volume. Although much is known about angiogenesis and its regulation, there is no overall theory that describes or explains this process. It is here suggested that the intracrine hypothesis, which ascribes to certain extracellular signaling peptides (whether hormones, growth factors, DNA-binding proteins or enzymes) a role in both intracellular biology and extracellular signaling, can contribute to a more general understanding of angiogenesis. Intracrine factors participate in angiogenesis in the following ways: (1) they can act within the cells that synthesized them (type I intracrine action), (2) they can be secreted and then taken up by their cell of synthesis to act intracellularly (type II intracrine action ), or (3) they can be secreted and internalized by a distant target cell (type III intracrine action). The parallels between the intracrine growth factor mechanisms cancer cells employ in stimulating their own growth and the mechanisms operative in endothelial cell proliferation during angiogenesis ("intracrine reciprocity") are discussed. Collectively, these explorations lead to testable hypotheses regarding the regulation of normal and pathological angiogenesis, and point to similarities between tumor-induced angiogenesis and tissue differentiation.
Collapse
Affiliation(s)
- Richard N Re
- Research Division, Ochsner Clinic Foundation, New Orleans, LA 70121, USA.
| | | |
Collapse
|