151
|
Faggiano A, Mazzilli R, Natalicchio A, Adinolfi V, Argentiero A, Danesi R, D'Oronzo S, Fogli S, Gallo M, Giuffrida D, Gori S, Montagnani M, Ragni A, Renzelli V, Russo A, Silvestris N, Franchina T, Tuveri E, Cinieri S, Colao A, Giorgino F, Zatelli MC. Corticosteroids in oncology: use, overuse, indications, contraindications. An Italian Association of Medical Oncology (AIOM)/ Italian Association of Medical Diabetologists (AMD)/ Italian Society of Endocrinology (SIE)/ Italian Society of Pharmacology (SIF) multidisciplinary consensus position paper. Crit Rev Oncol Hematol 2022; 180:103826. [PMID: 36191821 DOI: 10.1016/j.critrevonc.2022.103826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 10/14/2022] Open
Abstract
Corticosteroids (CSs) are widely used in oncology, presenting several different indications. They are useful for induction of apoptosis in hematological neoplasms, for management of anaphylaxis and cytokine release/hypersensitivity reaction and for the symptomatic treatment of many tumour- and treatment-related complications. If the employment of CSs in the oncological setting results in several benefits for patients and satisfaction for clinicians, on the other hand, many potential adverse events (AEs), both during treatment and after withdrawal of CSs, as well as the duality of the effects of these compounds in oncology, recommend being cautious in clinical practice. To date, several gray zones remain about indications, contraindications, dose, and duration of treatment. In this article, a panel of experts provides a critical review on CSs therapy in oncology, focusing on mechanisms of action and pharmacological characteristics, current and emerging therapeutic indications/contraindications, AEs related to CSs treatment, and the impact on patient outcome.
Collapse
Affiliation(s)
- Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy.
| | - Rossella Mazzilli
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - Annalisa Natalicchio
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Valerio Adinolfi
- Endocrinology and Diabetology Unit, ASL Verbano Cusio Ossola, Domodossola, Italy
| | | | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stella D'Oronzo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - Dario Giuffrida
- Department of Oncology, Istituto Oncologico del Mediterraneo, Viagrande, Catania, Italy
| | - Stefania Gori
- Oncologia Medica, IRCCS Ospedale Don Calabria-Sacro Cuore di Negrar, Verona, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology - Section of Pharmacology, Medical School - University of Bari Aldo Moro, Bari, Italy
| | - Alberto Ragni
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - Valerio Renzelli
- Diabetologist and Endocrinologist, Italian Association of Clinical Diabetologists
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Tindara Franchina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Enzo Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ASL-Sulcis, Italy
| | - Saverio Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| | - Annamaria Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy; UNESCO Chair, Education for Health and Sustainable Development, Federico II University, Naples, Italy
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara
| | | |
Collapse
|
152
|
Yaping W, Zhe W, Zhuling C, Ruolei L, Pengyu F, Lili G, Cheng J, Bo Z, Liuyin L, Guangdong H, Yaoling W, Niuniu H, Rui L. The soldiers needed to be awakened: Tumor-infiltrating immune cells. Front Genet 2022; 13:988703. [PMID: 36246629 PMCID: PMC9558824 DOI: 10.3389/fgene.2022.988703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
In the tumor microenvironment, tumor-infiltrating immune cells (TIICs) are a key component. Different types of TIICs play distinct roles. CD8+ T cells and natural killer (NK) cells could secrete soluble factors to hinder tumor cell growth, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) release inhibitory factors to promote tumor growth and progression. In the meantime, a growing body of evidence illustrates that the balance between pro- and anti-tumor responses of TIICs is associated with the prognosis in the tumor microenvironment. Therefore, in order to boost anti-tumor response and improve the clinical outcome of tumor patients, a variety of anti-tumor strategies for targeting TIICs based on their respective functions have been developed and obtained good treatment benefits, including mainly immune checkpoint blockade (ICB), adoptive cell therapies (ACT), chimeric antigen receptor (CAR) T cells, and various monoclonal antibodies. In recent years, the tumor-specific features of immune cells are further investigated by various methods, such as using single-cell RNA sequencing (scRNA-seq), and the results indicate that these cells have diverse phenotypes in different types of tumors and emerge inconsistent therapeutic responses. Hence, we concluded the recent advances in tumor-infiltrating immune cells, including functions, prognostic values, and various immunotherapy strategies for each immune cell in different tumors.
Collapse
Affiliation(s)
- Wang Yaping
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Zhe
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chu Zhuling
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
| | - Li Ruolei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fan Pengyu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guo Lili
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ji Cheng
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhang Bo
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liu Liuyin
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hou Guangdong
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Yaoling
- Department of Geriatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou Niuniu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| | - Ling Rui
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| |
Collapse
|
153
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Kosyreva A, Fatkhudinov T. Immune Cells in Head-and-Neck Tumor Microenvironments. J Pers Med 2022; 12:jpm12091521. [PMID: 36143308 PMCID: PMC9506052 DOI: 10.3390/jpm12091521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Head-and-neck cancers constitute a heterogeneous group of aggressive tumors with high incidence and low survival rates, collectively being the sixth most prevalent cancer type globally. About 90% of head-and-neck cancers are classified as squamous cell carcinomas (HNSCC). The innate and adaptive immune systems, indispensable for anti-cancer immune surveillance, largely define the rates of HNSCC emergence and progression. HNSCC microenvironments harbor multiple cell types that infiltrate the tumors and interact both with tumor cells and among themselves. Gradually, tumor cells learn to manipulate the immune system, either by adapting their own immunogenicity or through the release of immunosuppressive molecules. These interactions continuously evolve and shape the tumor microenvironment, both structurally and functionally, facilitating angiogenesis, proliferation and metastasis. Our understanding of this evolution is directly related to success in the development of advanced therapies. This review focuses on the key mechanisms that rule HNSCC infiltration, featuring particular immune cell types and their roles in the pathogenesis. A close focus on the tumor-immunity interactions will help identify new immunotherapeutic targets in patients with HNSCC.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Correspondence: ; Tel.: +7-9254258360
| | - Anastasiya Lokhonina
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
154
|
Wang Q, Shen X, An R, Bai J, Dong J, Cai H, Zhu H, Zhong W, Chen W, Liu A, Du J. Peritumoral tertiary lymphoid structure and tumor stroma percentage predict the prognosis of patients with non-metastatic colorectal cancer. Front Immunol 2022; 13:962056. [PMID: 36189233 PMCID: PMC9524924 DOI: 10.3389/fimmu.2022.962056] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTertiary lymphoid structures (TLSs) are crucial in promoting and maintaining positive anti-tumor immune responses. The tumor stroma has a powerful immunosuppressive function that could exclude tumor-infiltrating lymphocytes from the tumor beds and lead to a “cold” phenotype. TLSs and tumor stroma percentage (TSP) are significantly associated with the prognosis of patients with certain cancers. However, the exact roles of TLSs and TSP and their intrinsic relationship are still largely unknown in colorectal cancer (CRC).MethodsTLSs and TSP were assessed using hematoxylin-eosin (H&E) and/or immunohistochemistry (IHC) staining from 114 CRC patients in the training set and 60 CRC patients in the external validation set. The correlation between TILs, TLS and clinicopathological characteristics and their prognostic values were assessed. Finally, we plotted a Nomogram including the TLS, TSP and tumor-node-metastasis (TNM) stage to predict the probability of recurrence-free survival (RFS) at 2- and 5-years in non-metastatic colorectal cancer (nmCRC) patients.ResultsPeritumoral TLS (P-TLS), intratumoral TLS (In-TLS) and high TSP (H-TSP, >50%) were present in 99.1%, 26.3% and 41.2% patients, respectively. H-TSP tumor tends to be associated with lower P-TLS density (P =0.0205). The low P-TLS density (< 0.098/mm2) was significantly associated with reduced RFS (HR=6.597 95% CI: 2.882-15.103, P <0.001) and reduced overall survival (OS) (HR=6.628 95% CI: 2.893-15.183, P < 0.001) of nmCRC patients. In-TLS was not of significance in evaluating the clinical outcomes of nmCRC patients. H-TSP was significantly associated with reduced RFS (HR=0.126 95% CI: 0.048-0.333, P <0.001) and reduced OS (HR=0.125 95% CI: 0.047-0.332, P <0.001) of nmCRC patients. The 5-year RFS of the high P-TLS, low-TLS, H-TSP, and L-TSP groups were 89.7%, 47.2%, 53.2%, and 92.5%, respectively. The P-TLS density, TSP and TNM stage were independent prognosis factors of nmCRC patients. The Nomogram, including the P-TLS density, TSP and TNM stage, outperformed the TNM stage.ConclusionsHigh P-TLS density and low TSP (L-TSP) were independent and favorable prognostic factors of nmCRC patients, which might provide new directions for targeted therapy in the CRC tumor microenvironment, especially the tumor immune microenvironment.
Collapse
Affiliation(s)
- Qianyu Wang
- The 2nd School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ran An
- Department of Pathology, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junchao Bai
- Department of General Surgery, The 7th Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Junhua Dong
- Department of General Surgery, The 7th Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huiyun Cai
- Department of General Surgery, The 7th Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Hongyan Zhu
- Department of Pathology, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wentao Zhong
- Department of General Surgery, The 7th Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- The 2nd School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenliang Chen
- The 2nd School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
- Department of General Surgery, The 2nd Affiliated Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Junfeng Du, ; Aijun Liu, ; Wenliang Chen,
| | - Aijun Liu
- Department of Pathology, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Junfeng Du, ; Aijun Liu, ; Wenliang Chen,
| | - Junfeng Du
- Department of General Surgery, The 7th Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- The 2nd School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Medical Department of General Surgery, The 1st Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Junfeng Du, ; Aijun Liu, ; Wenliang Chen,
| |
Collapse
|
155
|
Wang B, Wang M, Ao D, Wei X. CXCL13-CXCR5 axis: Regulation in inflammatory diseases and cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188799. [PMID: 36103908 DOI: 10.1016/j.bbcan.2022.188799] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/10/2023]
Abstract
Chemokine C-X-C motif ligand 13 (CXCL13), originally identified as a B-cell chemokine, plays an important role in the immune system. The interaction between CXCL13 and its receptor, the G-protein coupled receptor (GPCR) CXCR5, builds a signaling network that regulates not only normal organisms but also the development of many diseases. However, the precise action mechanism remains unclear. In this review, we discussed the functional mechanisms of the CXCL13-CXCR5 axis under normal conditions, with special focus on its association with diseases. For certain refractory diseases, we emphasize the diagnostic and therapeutic role of CXCL13-CXCR5 axis.
Collapse
Affiliation(s)
- Binhan Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Danyi Ao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
156
|
Intratumoral Niches of B Cells and Follicular Helper T Cells, and the Absence of Regulatory T Cells, Associate with Longer Survival in Early-Stage Oral Tongue Cancer Patients. Cancers (Basel) 2022; 14:cancers14174298. [PMID: 36077836 PMCID: PMC9454508 DOI: 10.3390/cancers14174298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
In early oral squamous cell carcinoma (OSCC), the occurrence of clusters between CD20 B cells and CD4 T cells in the invasive margin (IM) can be captured by using the CD20 cluster score, and is positively associated with patient survival. However, the exact contribution of different CD4 T cell subsets, as well as B cell subsets toward patient prognosis is largely unknown. To this end, we studied regulatory T cells ((Treg cells) FOXP3 and CD4), T helper-type 1 cells ((Th1 cells) Tbet and CD4), follicular helper T cells ((Tfh cells) Bcl6 and CD4), B cells (CD20), germinal center B cells ((GC B cells) BCL6 and CD20), and follicular dendritic cells ((fDCs) CD21) for their density, location, and interspacing using multiplex in situ immunofluorescence of 75 treatment-naïve, primary OSCC patients. We observed that Treg, Th1-, Tfh-, and GC B cells, but not fDCs, were abundantly present in the stroma as compared with the tumor, and in the IM as compared with in the center of the tumor. Patients with high CD20 cluster scores had a high density of all three CD4 T cell subsets and GC B cells in the stromal IM as compared with patients with low CD20 cluster scores. Notably, enriched abundance of Tfh cells (HR 0.20, p = 0.04), and diminished abundance of Treg cells (HR 0.10, p = 0.03), together with an overall short distance between Tfh and B cells (HR:0.08, p < 0.01), but not between Treg and B cells (HR 0.43, p = 0.28), were significantly associated with overall survival of patients with OSCC. Our study identified the prognostic value of clusters between CD20 B cells and Tfh cells in the stromal IM of OSCC patients, and enabled an improved understanding of the clinical value of a high CD20 cluster score, which requires validation in larger clinical cohorts.
Collapse
|
157
|
Abstract
PURPOSE OF REVIEW Here, we reviewed the recent breakthroughs in the understanding of predictive biomarkers for immune checkpoint inhibitors (ICI) treatment. RECENT FINDINGS ICI have revolutionized cancer therapy enabling novel therapeutic indications in multiple tumor types and increasing the probability of survival in patients with metastatic disease. However, in every considered tumor types only a minority of patients exhibits clear and lasting benefice from ICI treatment, and due to their unique mechanism of action treatment with ICI is also associated with acute clinical toxicities called immune related adverse events (irAEs) that can be life threatening. The approval of the first ICI drug has prompted many exploratory strategies for a variety of biomarkers and have shown that several factors might affect the response to ICI treatment, including tumors intrinsic factors, tumor microenvironment and tumor extrinsic or systemic factor. Currently, only three biomarkers programmed death-ligand 1 (PD-L1), tumor microenvironment and microsatellite instability had the US Food and Drug Administration-approbation with some limitations. SUMMARY The establishment of valid predictive biomarkers of ICI sensitivity has become a priority to guide patient treatment to maximize the chance of benefit and prevent unnecessary toxicity.
Collapse
|
158
|
Aramini B, Masciale V, Samarelli AV, Dubini A, Gaudio M, Stella F, Morandi U, Dominici M, De Biasi S, Gibellini L, Cossarizza A. Phenotypic, functional, and metabolic heterogeneity of immune cells infiltrating non–small cell lung cancer. Front Immunol 2022; 13:959114. [PMID: 36032082 PMCID: PMC9399732 DOI: 10.3389/fimmu.2022.959114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is the leading cancer in the world, accounting for 1.2 million of new cases annually, being responsible for 17.8% of all cancer deaths. In particular, non–small cell lung cancer (NSCLC) is involved in approximately 85% of all lung cancers with a high lethality probably due to the asymptomatic evolution, leading patients to be diagnosed when the tumor has already spread to other organs. Despite the introduction of new therapies, which have improved the long-term survival of these patients, this disease is still not well cured and under controlled. Over the past two decades, single-cell technologies allowed to deeply profile both the phenotypic and metabolic aspects of the immune cells infiltrating the TME, thus fostering the identification of predictive biomarkers of prognosis and supporting the development of new therapeutic strategies. In this review, we discuss phenotypic and functional characteristics of the main subsets of tumor-infiltrating lymphocytes (TILs) and tumor-infiltrating myeloid cells (TIMs) that contribute to promote or suppress NSCLC development and progression. We also address two emerging aspects of TIL and TIM biology, i.e., their metabolism, which affects their effector functions, proliferation, and differentiation, and their capacity to interact with cancer stem cells.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Valentina Masciale
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Valeria Samarelli
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Dubini
- Division of Pathology, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Michele Gaudio
- Division of Pathology, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
- National Institute for Cardiovascular Research, Bologna, Italy
- *Correspondence: Andrea Cossarizza,
| |
Collapse
|
159
|
Prognostic value, DNA variation and immunologic features of a tertiary lymphoid structure-related chemokine signature in clear cell renal cell carcinoma. Cancer Immunol Immunother 2022; 71:1923-1935. [PMID: 35043231 DOI: 10.1007/s00262-021-03123-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The tumor microenvironment (TME) and tertiary lymphoid structures (TLS) affect the occurrence and development of cancers. How the immune contexture interacts with the phenotype of clear cell renal cell carcinoma (ccRCC) remains unclear. METHODS We identified and evaluated TLS clusters in ccRCC using machine learning algorithms and the 12-chemokine gene signature for TLS. Analyses for functional enrichment, DNA variation, immune cell distribution, association with independent clinicopathological features and predictive value of CXCL13 in ccRCC were performed. RESULTS We found a prominently enrichment of the 12-chemokine gene signature for TLS in patients with ccRCC compared with other types of renal cell carcinoma. We identified a prognostic value of CCL4, CCL5, CCL8, CCL19 and CXCL13 expression in ccRCC. DNA deletion of the TLS gene signature significantly predicted poor outcome in ccRCC compared with amplification and wild-type gene signature. We established TLS clusters (C1-4) and observed distinct differences in survival, stem cell-like characteristics, immune cell distribution, response to immunotherapies and VEGF-targeted therapies among the clusters. We found that elevated CXCL13 expression significantly predicted aggressive progression and poor prognosis in 232 patients with ccRCC in a real-world validation cohort. CONCLUSION This study described a 12-chemokine gene signature for TLS in ccRCC and established TLS clusters that reflected different TME immune status and corresponded to prognosis of ccRCC. We confirmed the dense presence of TILs aggregation and TLS in ccRCC and demonstrated an oncogenic role of CXCL13 expression of ccRCC, which help develop immunotherapies and provide novel insights on the long-term management of ccRCC.
Collapse
|
160
|
Hui Z, Zhang J, Ren Y, Li X, Yan C, Yu W, Wang T, Xiao S, Chen Y, Zhang R, Wei F, You J, Ren X. Single-cell profiling of immune cells after neoadjuvant pembrolizumab and chemotherapy in IIIA non-small cell lung cancer (NSCLC). Cell Death Dis 2022; 13:607. [PMID: 35831283 PMCID: PMC9279493 DOI: 10.1038/s41419-022-05057-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/21/2023]
Abstract
The combination of immune checkpoint inhibitors (ICIs) with chemotherapy (chemoimmunotherapy) in the neoadjuvant setting have achieved favorable clinical benefits in non-small cell lung cancer (NSCLC), but the mechanism of clinical responses remain unclear. We provide a rich resource of 186,477 individual immune cells from 48 samples of four treatment-naive and eight neoadjuvant chemoimmunotherapy treated IIIA NSCLC patients (responders versus non-responders) by single-cell RNA-seq and TCR-seq. We observed the synergistic increase of B cells and CD4+ T cells were associated with a positive therapeutic response of neoadjuvant chemoimmunotherapy. B cell IgG subclasses IgG1 and IgG3 played a critical role in anti-tumor immune response in tumor lesions, and this process was driven by increased IL-21 secreted by infiltrated T follicular helper (Tfh) cells after neoadjuvant chemoimmunotherapy. Furthermore, we uncovered several critical events for positive clinical outcomes, including the diminished activated TNFRSF4+ regulatory T cells (Tregs), increased LAMP3+ dendritic cells (DCs), and the expansion of intratumoral CD4+ T clones and peripheral C3-Cytotoxic CD8+ T clones. A validation cohort of 26 treatment-naive and 30 neoadjuvant chemoimmunotherapy treated IIIA/ IIIB NSCLC patients verified these findings. In total, our comprehensive study of the single-cell profile of immune cells provides insights into mechanisms underlying anti-PD-1-based therapies and identified potential predictive factors and therapeutic targets for improving the efficiency of neoadjuvant chemoimmunotherapy in NSCLC.
Collapse
Affiliation(s)
- Zhenzhen Hui
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Jiali Zhang
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Yulin Ren
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Xiaoling Li
- grid.411918.40000 0004 1798 6427International Personalized Cancer Center, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300308 China
| | - Cihui Yan
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Wenwen Yu
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Tao Wang
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, 311100 China
| | - Shanshan Xiao
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, 311100 China
| | - Yulong Chen
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Ran Zhang
- grid.411918.40000 0004 1798 6427Department of Thoracic Oncology Surgery, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300308 China
| | - Feng Wei
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Jian You
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Xiubao Ren
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| |
Collapse
|
161
|
Rossi A, Belmonte B, Carnevale S, Liotti A, De Rosa V, Jaillon S, Piconese S, Tripodo C. Stromal and Immune Cell Dynamics in Tumor Associated Tertiary Lymphoid Structures and Anti-Tumor Immune Responses. Front Cell Dev Biol 2022; 10:933113. [PMID: 35874810 PMCID: PMC9304551 DOI: 10.3389/fcell.2022.933113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid organs that have been observed in chronic inflammatory conditions including cancer, where they are thought to exert a positive effect on prognosis. Both immune and non-immune cells participate in the genesis of TLS by establishing complex cross-talks requiring both soluble factors and cell-to-cell contact. Several immune cell types, including T follicular helper cells (Tfh), regulatory T cells (Tregs), and myeloid cells, may accumulate in TLS, possibly promoting or inhibiting their development. In this manuscript, we propose to review the available evidence regarding specific aspects of the TLS formation in solid cancers, including 1) the role of stromal cell composition and architecture in the recruitment of specific immune subpopulations and the formation of immune cell aggregates; 2) the contribution of the myeloid compartment (macrophages and neutrophils) to the development of antibody responses and the TLS formation; 3) the immunological and metabolic mechanisms dictating recruitment, expansion and plasticity of Tregs into T follicular regulatory cells, which are potentially sensitive to immunotherapeutic strategies directed to costimulatory receptors or checkpoint molecules.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | | | - Antonietta Liotti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Veronica De Rosa
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Sebastien Jaillon
- RCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Unità di Neuroimmunologia, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Rome, Italy
- *Correspondence: Silvia Piconese,
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
- Histopathology Unit, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
162
|
Laumont CM, Banville AC, Gilardi M, Hollern DP, Nelson BH. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. Nat Rev Cancer 2022; 22:414-430. [PMID: 35393541 PMCID: PMC9678336 DOI: 10.1038/s41568-022-00466-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 01/03/2023]
Abstract
Although immunotherapy research to date has focused largely on T cells, there is mounting evidence that tumour-infiltrating B cells and plasma cells (collectively referred to as tumour-infiltrating B lymphocytes (TIL-Bs)) have a crucial, synergistic role in tumour control. In many cancers, TIL-Bs have demonstrated strong predictive and prognostic significance in the context of both standard treatments and immune checkpoint blockade, offering the prospect of new therapeutic opportunities that leverage their unique immunological properties. Drawing insights from autoimmunity, we review the molecular phenotypes, architectural contexts, antigen specificities, effector mechanisms and regulatory pathways relevant to TIL-Bs in human cancer. Although the field is young, the emerging picture is that TIL-Bs promote antitumour immunity through their unique mode of antigen presentation to T cells; their role in assembling and perpetuating immunologically 'hot' tumour microenvironments involving T cells, myeloid cells and natural killer cells; and their potential to combat immune editing and tumour heterogeneity through the easing of self-tolerance mechanisms. We end by discussing the most promising approaches to enhance TIL-B responses in concert with other immune cell subsets to extend the reach, potency and durability of cancer immunotherapy.
Collapse
Affiliation(s)
- Céline M Laumont
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Allyson C Banville
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mara Gilardi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, San Diego, CA, USA
| | - Daniel P Hollern
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, San Diego, CA, USA
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
163
|
Deguchi S, Tanaka H, Suzuki S, Natsuki S, Mori T, Miki Y, Yoshii M, Tamura T, Toyokawa T, Lee S, Muguruma K, Wanibuchi H, Ohira M. Clinical relevance of tertiary lymphoid structures in esophageal squamous cell carcinoma. BMC Cancer 2022; 22:699. [PMID: 35751038 PMCID: PMC9233387 DOI: 10.1186/s12885-022-09777-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) have been reported to be involved in immune responses in many carcinomas. This study investigated the significance of TLSs in esophageal squamous cell carcinoma, focusing on TLS maturation. METHODS: The relationships of TLSs with clinicopathological features of 236 patients who underwent curative surgery for stage 0-IV esophageal squamous cell carcinoma were investigated. Mature TLSs, in which the germinal center formation was rich in CD23+ cells, were classified as TLSs containing a germinal center (GC-TLSs). GC-TLS densities were measured, and CD8+ cells were counted. The prognostic impact of GC-TLSs was assessed by Kaplan-Meier plots using the log-rank test for the relapse-free survival. A comparative study of GC-TLSs was performed using the Wilcoxon rank sum test. The relationship between GC-TLSs and CD8+ cells was examined by Spearman's rank correlation coefficient test. RESULTS TLSs were located mainly at the invasive margin of the tumor in cases with esophageal squamous cell carcinoma. Among the patients treated with neoadjuvant chemotherapy, those with advanced disease had a better prognosis in the GC-TLS high-density group than did those in the GC-TLS low-density group. Patients in whom neoadjuvant chemotherapy was effective had more GC-TLSs than those in whom it was less effective. The density of GC-TLSs and the number of tumor-infiltrating CD8+ cells were higher in patients treated with neoadjuvant chemotherapy than in those without chemotherapy, and a weak correlation between the density of GC-TLSs and the number of tumor-infiltrating CD8+ cells was observed. Moreover, co-culturing of PBMCs with an anticancer drug-treated esophageal squamous cell carcinoma cell line increased the CD20 and CD23 expression in PBMCs in vitro. CONCLUSION TLS maturation may be important for evaluating the local tumor immune response in patients treated with neoadjuvant chemotherapy for esophageal squamous cell carcinoma. The present results suggest that TLS maturation may be a useful target for predicting the efficacy of immunotherapy, including immune checkpoint inhibitor treatment for esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Sota Deguchi
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abenoku, Osaka, 545-8585, Japan.
| | - Shugo Suzuki
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Seji Natsuki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Takuya Mori
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Yuichiro Miki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Mami Yoshii
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Tatsuro Tamura
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Shigeru Lee
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Kazuya Muguruma
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abenoku, Osaka, 545-8585, Japan
| |
Collapse
|
164
|
Li R, Huang X, Yang W, Wang J, Liang Y, Zhang T, Mao Q, Xia W, Xu L, Xu X, Dong G, Jiang F. Tertiary lymphoid structures favor outcome in resected esophageal squamous cell carcinoma. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2022; 8:422-435. [PMID: 35711130 PMCID: PMC9353661 DOI: 10.1002/cjp2.281] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022]
Abstract
Tertiary lymphoid structures (TLSs) are considered to have a good prognosis in multiple solid tumors. However, the prognostic value of TLS in esophageal squamous cell carcinoma (ESCC) is unknown. In this study, we retrospectively enrolled 185 ESCC patients who underwent surgical resection. Hematoxylin and eosin staining was performed to investigate the presence, the abundance, the maturation, and the location of TLSs. We explored the cellular composition of TLSs using traditional immunohistochemistry in serial sections. The prognostic value of TLSs was investigated by univariate and multivariate analyses. A nomogram was constructed to predict the prognosis. TLS‐positive tumors were infiltrated with more CD45+ leukocytes, CD20+ B cells, CD4+ and CD8+ T cells, and CD11c+ dendritic cells(DCs) compared with negative tumors. Kaplan–Meier curves showed that the presence and the abundance of TLSs were associated with longer disease‐free survival (DFS) (p = 0.0130) and overall survival (OS) (p = 0.0164). In addition, patients with tumors containing more CD20+ B cell infiltration had longer DFS (p = 0.0105) and OS (p = 0.0341). Multivariate analyses demonstrated that the presence of TLSs was an independent prognostic factor for DFS (hazard ratio [HR] = 0.384, p < 0.001) and OS (HR = 0.293, p < 0.001). The nomogram that integrated the tumor stage, histologic grade, and TLS presence had higher prognostic accuracy. Our study suggests that ESCC‐related TLSs can be used as a new biomarker for the prognosis of ESCC patients, and further understanding of their formation and mechanism of induction can provide a possible direction and target for immunotherapy of ESCC.
Collapse
Affiliation(s)
- Rutao Li
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, PR China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, PR China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Xing Huang
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wenmin Yang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, PR China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, PR China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Jifan Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, PR China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, PR China
| | - Yingkuan Liang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, PR China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, PR China
| | - Te Zhang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, PR China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, PR China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Qixing Mao
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, PR China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, PR China
| | - Wenjie Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, PR China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, PR China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, PR China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, PR China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, PR China
| | - Xinyu Xu
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, PR China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, PR China
| | - Feng Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, PR China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, PR China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
165
|
Wang B, Liu J, Han Y, Deng Y, Li J, Jiang Y. The Presence of Tertiary Lymphoid Structures Provides New Insight Into the Clinicopathological Features and Prognosis of Patients With Breast Cancer. Front Immunol 2022; 13:868155. [PMID: 35664009 PMCID: PMC9161084 DOI: 10.3389/fimmu.2022.868155] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Background Tertiary lymphoid structures (TLSs) have been proven to be predictive biomarkers of favorable clinical outcomes and response to immunotherapies in several solid malignancies. Nevertheless, the effect of TLSs in patients with breast cancer (BC) remains controversial. The objective of the current study is to investigate the clinicopathological and prognostic significance of TLSs in BC. Given the unique difficulties for detecting and quantifying TLSs, a TLS-associated gene signature based on The Cancer Genome Atlas (TCGA) BC cohort was used to validate and supplement our results. Methods Electronic platforms (PubMed, Web of Science, EMBASE, the Cochrane Library, CNKI, and Wanfang) were searched systematically to identify relevant studies as of January 11, 2022. We calculated combined odds ratios (ORs) with 95% confidence intervals (CIs) to determine the relationship between clinicopathological parameters and TLSs. The pooled hazard ratios (HRs) and 95% CIs were also calculated to evaluate the prognostic significance of TLSs. The TLS signature based on the TCGA BC cohort was applied to validate and supplement our results. Results Fifteen studies with 3,898 patients were eligible for enrollment in our study. The combined analysis indicated that the presence of TLSs was related to improved disease-free survival (DFS) (HR = 0.61, 95% CI: 0.41-0.90, p < 0.05) and overall survival (OS) (HR = 1.66, 95% CI: 1.26-2.20, p < 0.001). Additionally, the presence of TLSs was positively correlated with early tumor TNM stage and high tumor-infiltrating lymphocytes. TLS presence was positively related to human epidermal growth factor receptor 2 (HER-2) and Ki-67 but inversely correlated with the status of estrogen and progesterone receptor. Simultaneously, our study found that tumor immune microenvironment was more favorable in the high-TLS signature group than in the low-TLS signature group. Consistently, BC patients in the high-TLS signature group exhibited better survival outcomes compared to those in the low-TLS signature group, suggesting that TLSs might be favorable prognostic biomarkers. Conclusions TLS presence provides new insight into the clinicopathological features and prognosis of patients with BC, whereas the factors discussed limited the evidence quality of this study. We look forward to consistent methods to define and characterize TLSs, and more high-quality prospective clinical trials designed to validate the value of TLSs alone or in combination with other markers.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Han
- Department of Pathology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Yaotiao Deng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Jiang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
166
|
Wu Z, Zhou J, Xiao Y, Ming J, Zhou J, Dong F, Zhou X, Xu Z, Zhao X, Lei P, Huang T. CD20 +CD22 +ADAM28 + B Cells in Tertiary Lymphoid Structures Promote Immunotherapy Response. Front Immunol 2022; 13:865596. [PMID: 35634306 PMCID: PMC9130862 DOI: 10.3389/fimmu.2022.865596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/12/2022] [Indexed: 01/22/2023] Open
Abstract
Background As the indication for immunotherapy is rapidly expanding, it is crucial to accurately identify patients who are likely to respond. Infiltration of B cells into many tumor types correlates with a good response to immune checkpoint inhibitor (ICI) therapy. However, B cells' roles in the anti-tumor response are far from clear. Methods Based on single-cell transcriptomic data for ICI-treated patients, we identified a B-cell cluster [BIR (ICI-Responsive B) cells] and described the phenotype, cell-cell communication, biological processes, gene signature, and prognosis value of BIR cells through bioinformatic analysis, tissue immunofluorescence, and animal experiments. Surgery samples from 12 non-small cell lung carcinoma (NSCLC) patients with adjuvant checkpoint blockade were evaluated as external validation. Results BIR cells were identified as a subset of CD20+CD22+ADAM28+ B cells with a memory phenotype. Bioinformatic analysis revealed that BIR cells had enhanced cell viability and epigenetic regulation, and that ALOX5AP, MIF, and PTPRC/CD45 expressed by myeloid cells may be critical coordinators of diverse biological processes of BIR cells. Immunofluorescence confirmed the presence of BIR cells in tertiary lymphoid structures (TLSs) in skin SCC, RCC, CRC, and breast cancer. BIR-associated gene signatures correlate with positive outcomes in patients with melanoma, glioblastoma, NSCLC, HNSCC, or RCC treated with ICI therapy, and BIR-cell density predicted NSCLC patients' response to checkpoint immunotherapy. In line with this, melanoma-bearing mice depleted of BIR cells were resistant to ICIs. Conclusions CD20+CD22+ADAM28+ BIR cells were present in cancer-associated TLS and promoted the response to ICI therapy.
Collapse
Affiliation(s)
- Zhenghao Wu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunxiao Xiao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Dong
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoshuo Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangwang Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
167
|
Mature tertiary lymphoid structure is a specific biomarker of cancer immunotherapy and does not predict outcome to chemotherapy in non-small cell lung cancer. Ann Oncol 2022; 33:1084-1085. [DOI: 10.1016/j.annonc.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
|
168
|
Li H, Wu M, Zhao X. Role of chemokine systems in cancer and inflammatory diseases. MedComm (Beijing) 2022; 3:e147. [PMID: 35702353 PMCID: PMC9175564 DOI: 10.1002/mco2.147] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a large family of small secreted proteins that have fundamental roles in organ development, normal physiology, and immune responses upon binding to their corresponding receptors. The primary functions of chemokines are to coordinate and recruit immune cells to and from tissues and to participate in regulating interactions between immune cells. In addition to the generally recognized antimicrobial immunity, the chemokine/chemokine receptor axis also exerts a tumorigenic function in many different cancer models and is involved in the formation of immunosuppressive and protective tumor microenvironment (TME), making them potential prognostic markers for various hematologic and solid tumors. In fact, apart from its vital role in tumors, almost all inflammatory diseases involve chemokines and their receptors in one way or another. Modulating the expression of chemokines and/or their corresponding receptors on tumor cells or immune cells provides the basis for the exploitation of new drugs for clinical evaluation in the treatment of related diseases. Here, we summarize recent advances of chemokine systems in protumor and antitumor immune responses and discuss the prevailing understanding of how the chemokine system operates in inflammatory diseases. In this review, we also emphatically highlight the complexity of the chemokine system and explore its potential to guide the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| |
Collapse
|
169
|
Zhao H, Wang H, Zhao Y, Sun Q, Ren X. Tumor-Resident T Cells, Associated With Tertiary Lymphoid Structure Maturity, Improve Survival in Patients With Stage III Lung Adenocarcinoma. Front Immunol 2022; 13:877689. [PMID: 35663939 PMCID: PMC9161276 DOI: 10.3389/fimmu.2022.877689] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Tertiary lymphoid structure (TLS) and tumor-resident memory T cells (TRM) play crucial roles in the anti-tumor immune response, facilitating a good prognosis in patients with cancer. However, there have been no reports on the relationship between TRM and TLS maturity. In this study, we detected TRM and the maturity of TLS by immunofluorescence staining and analyzed the relationship between their distribution and proportion in patients with lung adenocarcinoma (LUAD). The proportion of TRM within TLSs was significantly higher than that outside and was positively correlated with the survival of patients. In addition, the proportions of CD4+CD103+ TRM and CD8+CD103+ TRM were significantly increased with the gradually maturation of TLSs. We divided the patients into three levels (grade 1, grade 2, and grade 3) according to the presence of increasing maturation of TLSs. The proportion of CD103+ TRM in grade 3 patients was significantly higher than that in grade 1 and grade 2 patients, suggesting a close relationship between CD103+ TRM and TLS maturity. Furthermore, positive prognosis was associated with grade 3 patients that exhibited CD103+T RM High phenotype.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Hao Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yu Zhao
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
170
|
Ukita M, Hamanishi J, Yoshitomi H, Yamanoi K, Takamatsu S, Ueda A, Suzuki H, Hosoe Y, Furutake Y, Taki M, Abiko K, Yamaguchi K, Nakai H, Baba T, Matsumura N, Yoshizawa A, Ueno H, Mandai M. CXCL13-producing CD4+ T cells accumulate in early phase of tertiary lymphoid structures in ovarian cancer. JCI Insight 2022; 7:157215. [PMID: 35552285 PMCID: PMC9309049 DOI: 10.1172/jci.insight.157215] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are transient ectopic lymphoid aggregates whose formation might be caused by chronic inflammation states, such as cancer. However, how TLS are induced in the tumor microenvironment (TME) and how they affect patient survival are not well understood. We investigated TLS distribution in relation to tumor infiltrating lymphocytes (TILs) and related gene expression in high-grade serous ovarian cancer (HGSC) specimens. CXCL13 gene expression correlated with TLS presence and the infiltration of T cells and B cells, and it was a favorable prognostic factor for patients with HGSC. Coexistence of CD8+ T cells and B cell lineages in the TME significantly improved the prognosis of HGSC and was correlated with the presence of TLS. CXCL13 expression was predominantly coincident with CD4+ T cells in TLS and CD8+ T cells in TILs, and it shifted from CD4+ T cells to CD21+ follicular DCs as TLS matured. In a mouse ovarian cancer model, recombinant CXCL13 induced TLS and enhanced survival by the infiltration of CD8+ T cells. These results suggest that TLS formation was associated with CXCL13-producing CD4+ T cells and that TLS facilitated the coordinated antitumor response of cellular and humoral immunity in ovarian cancer.
Collapse
Affiliation(s)
- Masayo Ukita
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Yoshitomi
- Department of immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shiro Takamatsu
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiko Ueda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haruka Suzuki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuko Hosoe
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoko Furutake
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaoru Abiko
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidekatsu Nakai
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University, Morioka, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideki Ueno
- Department of immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medinine, Kyoto, Japan
| |
Collapse
|
171
|
Abstract
The tumor microenvironment (TME) is a heterogeneous, complex organization composed of tumor, stroma, and endothelial cells that is characterized by cross talk between tumor and innate and adaptive immune cells. Over the last decade, it has become increasingly clear that the immune cells in the TME play a critical role in controlling or promoting tumor growth. The function of T lymphocytes in this process has been well characterized. On the other hand, the function of B lymphocytes is less clear, although recent data from our group and others have strongly indicated a critical role for B cells in antitumor immunity. There are, however, a multitude of populations of B cells found within the TME, ranging from naive B cells all the way to terminally differentiated plasma cells and memory B cells. Here, we characterize the role of B cells in the TME in both animal models and patients, with an emphasis on dissecting how B cell heterogeneity contributes to the immune response to cancer.
Collapse
Affiliation(s)
- Stephanie M Downs-Canner
- Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jeremy Meier
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA;
| | - Benjamin G Vincent
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; .,Bioinformatics and Computational Biology Program, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jonathan S Serody
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; .,Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
172
|
Fridman WH, Meylan M, Petitprez F, Sun CM, Italiano A, Sautès-Fridman C. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat Rev Clin Oncol 2022; 19:441-457. [PMID: 35365796 DOI: 10.1038/s41571-022-00619-z] [Citation(s) in RCA: 301] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 02/08/2023]
Abstract
B cells are a major component of the tumour microenvironment, where they are predominantly associated with tertiary lymphoid structures (TLS). In germinal centres within mature TLS, B cell clones are selectively activated and amplified, and undergo antibody class switching and somatic hypermutation. Subsequently, these B cell clones differentiate into plasma cells that can produce IgG or IgA antibodies targeting tumour-associated antigens. In tumours without mature TLS, B cells are either scarce or differentiate into regulatory cells that produce immunosuppressive cytokines. Indeed, different tumours vary considerably in their TLS and B cell content. Notably, tumours with mature TLS, a high density of B cells and plasma cells, as well as the presence of antibodies to tumour-associated antigens are typically associated with favourable clinical outcomes and responses to immunotherapy compared with those lacking these characteristics. However, polyclonal B cell activation can also result in the formation of immune complexes that trigger the production of pro-inflammatory cytokines by macrophages and neutrophils. In complement-rich tumours, IgG antibodies can also activate the complement cascade, resulting in the production of anaphylatoxins that sustain tumour-promoting inflammation and angiogenesis. Herein, we review the phenotypic heterogeneity of intratumoural B cells and the importance of TLS in their generation as well as the potential of B cells and TLS as prognostic and predictive biomarkers. We also discuss novel therapeutic approaches that are being explored with the aim of increasing mature TLS formation, B cell differentiation and anti-tumour antibody production within tumours.
Collapse
Affiliation(s)
- Wolf H Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France. .,Equipe labellisée Ligue contre le Cancer, Paris, France.
| | - Maxime Meylan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Florent Petitprez
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Cheng-Ming Sun
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Antoine Italiano
- Faculty of Medicine, University of Bordeaux, Bordeaux, France.,Department of Medicine, Institute Bergonié, Bordeaux, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| |
Collapse
|
173
|
Masuda T, Tanaka N, Takamatsu K, Hakozaki K, Takahashi R, Anno T, Kufukihara R, Shojo K, Mikami S, Shinojima T, Kakimi K, Tsunoda T, Aimono E, Nishihara H, Mizuno R, Oya M. Unique characteristics of tertiary lymphoid structures in kidney clear cell carcinoma: prognostic outcome and comparison with bladder cancer. J Immunother Cancer 2022; 10:jitc-2021-003883. [PMID: 35314433 PMCID: PMC8938705 DOI: 10.1136/jitc-2021-003883] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The aims of this study were (1) to clarify the impact of tertiary lymphoid structure (TLS) status on the outcome and immunogenomic profile of human clear cell renal cell carcinoma (ccRCC) and (2) to determine phenotypic differences in TLSs between different types of genitourinary cancer, that is, urinary ccRCC and bladder cancer. METHODS We performed a quantitative immunohistological analysis of ccRCC tissue microarrays and conducted integrated genome mutation analysis by next-generation sequencing and methylation array analysis. Since the tumor immune microenvironment of ccRCC often differs from that of other cancer types, we analyzed the phenotypic differences in TLSs between ccRCC and in-house bladder cancer specimens. RESULTS Varying distribution patterns of TLSs were observed throughout ccRCC tumors, revealing that the presence of TLSs was related to poor prognosis. An analysis of genomic alterations based on TLS status in ccRCC revealed that alterations in the PI3K-mTOR pathway were highly prevalent in TLS-positive tumors. DNA methylation profiling also revealed distinct differences in methylation signatures among ccRCC samples with different TLS statuses. However, the TLS characteristics of ccRCC and bladder cancer markedly differed: TLSs had the exact opposite prognostic impact on bladder cancer as on ccRCC. The maturity and spatial distribution of TLSs were significantly different between the two cancer types; TLSs were more mature with follicle-like germinal center organization and likely to be observed inside the tumor in bladder cancer. Labeling for CD8, FOXP3, PD-1, and PD-L1 showed marked differences in the diversity of the immune microenvironment surrounding TLSs. The proportions of CD8-, FOXP3-, and PD-L1-positive cells were significantly higher in TLSs in bladder cancer than in TLSs in ccRCC; rather the proportion of PD-1-positive cells was significantly higher in TLSs in ccRCC than in TLSs in bladder cancer. CONCLUSION The immunobiology of ccRCC is unique, and various cancerous phenomena conflict with that seen in other cancer types; therefore, comparing the TLS characteristics between ccRCC and bladder cancer may help reveal differences in the prognostic impact, maturity and spatial distribution of TLSs and in the immune environment surrounding TLSs between the two cancers.
Collapse
Affiliation(s)
- Tsukasa Masuda
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Nobuyuki Tanaka
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kimiharu Takamatsu
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kyohei Hakozaki
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ryohei Takahashi
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tadatsugu Anno
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ryohei Kufukihara
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kazunori Shojo
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shuji Mikami
- Department of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Toshiaki Shinojima
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Urology, Saitama Medical University, Moroyama, Saitama
| | - Kazuhiro Kakimi
- Department of Immuno-therapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, Department of Biological Sciences, TheGraduate School of Science, The University of Tokyo, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Eriko Aimono
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Ryuichi Mizuno
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
174
|
van Dijk N, Gil-Jimenez A, Silina K, van Montfoort ML, Einerhand S, Jonkman L, Voskuilen CS, Peters D, Sanders J, Lubeck Y, Broeks A, Hooijberg E, Vis DJ, van den Broek M, Wessels LFA, van Rhijn BWG, van der Heijden MS. The Tumor Immune Landscape and Architecture of Tertiary Lymphoid Structures in Urothelial Cancer. Front Immunol 2022; 12:793964. [PMID: 34987518 PMCID: PMC8721669 DOI: 10.3389/fimmu.2021.793964] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
Candidate immune biomarkers have been proposed for predicting response to immunotherapy in urothelial cancer (UC). Yet, these biomarkers are imperfect and lack predictive power. A comprehensive overview of the tumor immune contexture, including Tertiary Lymphoid structures (TLS), is needed to better understand the immunotherapy response in UC. We analyzed tumor sections by quantitative multiplex immunofluorescence to characterize immune cell subsets in various tumor compartments in tumors without pretreatment and tumors exposed to preoperative anti-PD1/CTLA-4 checkpoint inhibitors (NABUCCO trial). Pronounced immune cell presence was found in UC invasive margins compared to tumor and stroma regions. CD8+PD1+ T-cells were present in UC, particularly following immunotherapy. The cellular composition of TLS was assessed by multiplex immunofluorescence (CD3, CD8, FoxP3, CD68, CD20, PanCK, DAPI) to explore specific TLS clusters based on varying immune subset densities. Using a k-means clustering algorithm, we found five distinct cellular composition clusters. Tumors unresponsive to anti-PD-1/CTLA-4 immunotherapy showed enrichment of a FoxP3+ T-cell-low TLS cluster after treatment. Additionally, cluster 5 (macrophage low) TLS were significantly higher after pre-operative immunotherapy, compared to untreated tumors. We also compared the immune cell composition and maturation stages between superficial (submucosal) and deeper TLS, revealing that superficial TLS had more pronounced T-helper cells and enrichment of early TLS than TLS located in deeper tissue. Furthermore, superficial TLS displayed a lower fraction of secondary follicle like TLS than deeper TLS. Taken together, our results provide a detailed quantitative overview of the tumor immune landscape in UC, which can provide a basis for further studies.
Collapse
Affiliation(s)
- Nick van Dijk
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Alberto Gil-Jimenez
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Karina Silina
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Sarah Einerhand
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Lars Jonkman
- Department of Medical Oncology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Charlotte S Voskuilen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dennis Peters
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Yoni Lubeck
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Erik Hooijberg
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Daniel J Vis
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | | | - Lodewyk F A Wessels
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Oncode Institute, Utrecht, Netherlands.,Department of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, Netherlands
| | - Bas W G van Rhijn
- Department of Urology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Urology, Caritas St. Josef Medical Center, University of Regensburg, Regensburg, Germany
| | - Michiel S van der Heijden
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
175
|
Wen S, Chen Y, Hu C, Du X, Xia J, Wang X, Zhu W, Wang Q, Zhu M, Chen Y, Shen B. Combination of Tertiary Lymphoid Structure and Neutrophil-to-Lymphocyte Ratio Predicts Survival in Patients With Hepatocellular Carcinoma. Front Immunol 2022; 12:788640. [PMID: 35095864 PMCID: PMC8793028 DOI: 10.3389/fimmu.2021.788640] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common pathological type of primary liver cancer. The lack of prognosis indicators is one of the challenges in HCC. In this study, we investigated the combination of tertiary lymphoid structure (TLS) and several systemic inflammation parameters as a prognosis indicator for HCC. Materials and Methods We retrospectively recruited 126 postoperative patients with primary HCC. The paraffin section was collected for TLS density assessment. In addition, we collected the systemic inflammation parameters from peripheral blood samples. We evaluated the prognostic values of those parameters on overall survival (OS) using Kaplan-Meier curves, univariate and multivariate Cox regression. Last, we plotted a nomogram to predict the survival of HCC patients. Results We first found TLS density was positively correlated with HCC patients’ survival (HR=0.16, 95% CI: 0.06 − 0.39, p < 0.0001), but the power of TLS density for survival prediction was found to be limited (AUC=0.776, 95% CI:0.772 − 0.806). Thus, we further introduced several systemic inflammation parameters for survival analysis, we found neutrophil-to-lymphocyte ratio (NLR) was positively associated with OS in univariate Cox regression analysis. However, the combination of TLS density and NLR better predicts patient’s survival (AUC=0.800, 95% CI: 0.698-0.902, p < 0.001) compared with using any single indicator alone. Last, we incorporated TLS density, NLR, and other parameters into the nomogram to provide a reproducible approach for survival prediction in HCC clinical practice. Conclusion The combination of TLS density and NLR was shown to be a good predictor of HCC patient survival. It also provides a novel direction for the evaluation of immunotherapies in HCC.
Collapse
Affiliation(s)
- Shaodi Wen
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yuzhong Chen
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Chupeng Hu
- Key Laboratory of Microenvironment and Major Diseases, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xiaoyue Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jingwei Xia
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xin Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qingbo Wang
- Department of Chemotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Miaolin Zhu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yun Chen
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Key Laboratory of Microenvironment and Major Diseases, Department of Immunology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Bo Shen
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
176
|
Meylan M, Petitprez F, Becht E, Bougoüin A, Pupier G, Calvez A, Giglioli I, Verkarre V, Lacroix G, Verneau J, Sun CM, Laurent-Puig P, Vano YA, Elaïdi R, Méjean A, Sanchez-Salas R, Barret E, Cathelineau X, Oudard S, Reynaud CA, de Reyniès A, Sautès-Fridman C, Fridman WH. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 2022; 55:527-541.e5. [PMID: 35231421 DOI: 10.1016/j.immuni.2022.02.001] [Citation(s) in RCA: 322] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/09/2021] [Accepted: 02/02/2022] [Indexed: 12/30/2022]
Abstract
The presence of intratumoral tertiary lymphoid structures (TLS) is associated with positive clinical outcomes and responses to immunotherapy in cancer. Here, we used spatial transcriptomics to examine the nature of B cell responses within TLS in renal cell carcinoma (RCC). B cells were enriched in TLS, and therein, we could identify all B cell maturation stages toward plasma cell (PC) formation. B cell repertoire analysis revealed clonal diversification, selection, expansion in TLS, and the presence of fully mature clonotypes at distance. In TLS+ tumors, IgG- and IgA-producing PCs disseminated into the tumor beds along fibroblastic tracks. TLS+ tumors exhibited high frequencies of IgG-producing PCs and IgG-stained and apoptotic malignant cells, suggestive of anti-tumor effector activity. Therapeutic responses and progression-free survival correlated with IgG-stained tumor cells in RCC patients treated with immune checkpoint inhibitors. Thus, intratumoral TLS sustains B cell maturation and antibody production that is associated with response to immunotherapy, potentially via direct anti-tumor effects.
Collapse
Affiliation(s)
- Maxime Meylan
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Florent Petitprez
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France; MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Etienne Becht
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France
| | - Antoine Bougoüin
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Guilhem Pupier
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Anne Calvez
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Ilenia Giglioli
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Virginie Verkarre
- Département de pathologie, Hôpital européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris - Paris Centre, 75015 Paris, France; Université de Paris, 75006 Paris, France; PARCC, INSERM, Equipe Labellisée Ligue contre le Cancer, 75015 Paris, France
| | - Guillaume Lacroix
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Johanna Verneau
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Chen-Ming Sun
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, EPIGENETEC, 75006 Paris, France
| | - Yann-Alexandre Vano
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France; Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France; MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK; Département d'oncologie médicale, Hôpital européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris - Paris Centre, F-75015 Paris, France; Université de Paris, 75006 Paris, France; PARCC, INSERM, Equipe Labellisée Ligue contre le Cancer, 75015 Paris, France
| | - Reza Elaïdi
- Association pour la Recherche de Thérapeutiques Innovantes en Cancérologie, 75015 Paris, France
| | - Arnaud Méjean
- Département d'urologie, Hôpital européen Georges Pompidou, Université de Paris, 75015 Paris, France
| | - Rafaël Sanchez-Salas
- Département d'urologie, Institut Mutualiste Montsouris, Université de Paris, 75014 Paris, France
| | - Eric Barret
- Département d'urologie, Institut Mutualiste Montsouris, Université de Paris, 75014 Paris, France
| | - Xavier Cathelineau
- Département d'urologie, Institut Mutualiste Montsouris, Université de Paris, 75014 Paris, France
| | - Stephane Oudard
- Département d'oncologie médicale, Hôpital européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris - Paris Centre, F-75015 Paris, France; Université de Paris, 75006 Paris, France
| | - Claude-Agnès Reynaud
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMRS8253, Université de Paris, 75015 Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France; MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK; Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, EPIGENETEC, 75006 Paris, France; Université de Paris, 75006 Paris, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Wolf Herman Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France.
| |
Collapse
|
177
|
Zhao X, Yue D, Qian J, Zhang L, Song J, Zhang B, Zhang C, Sun L, Ma Y, Zhang H, Wang C. Case Report: Sarcoid-Like Reactions and Tertiary Lymphoid Structures Following Dual Checkpoint Inhibition in a Patient with Early-Stage Lung Adenocarcinoma. Front Immunol 2022; 13:794217. [PMID: 35173719 PMCID: PMC8841621 DOI: 10.3389/fimmu.2022.794217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/11/2022] [Indexed: 01/15/2023] Open
Abstract
Immune checkpoint inhibitor-induced sarcoid-like reactions and tertiary lymphoid structures (TLSs) are increasingly recognized but rarely reported in the same patient. We report a patient with lung adenocarcinoma who displayed sarcoid-like reactions in intrathoracic lymph nodes and tertiary lymphoid structures in surgical tumor after neoadjuvant therapy with nivolumab plus ipilimumab. Pathological examination revealed 50% residual tumor cells after treatment, and the CT evaluation of the primary tumor showed a stable disease. The patient experienced a recurrence eight months after surgery. To identify immune correlates of the limited response to immunotherapy, we conducted genomic and transcriptional assays, multiplex immunoassay, and multiplex immunohistochemistry on the pre- and post-immunotherapy tumor, lymph node, and plasma samples. TP53 R181C, KRAS G12C and SMAD4 R361H were identified as driver mutations of the tumor. In addition to abundant infiltrated lymphocytes, immunotherapy induced high levels of inhibitory components in post-treatment tissue samples, especially the FOXP3+ regulatory T cells in tumor and PD-L1 expression in the lymph node. Despite abundant TLSs in the post-treatment tumor, most TLSs were immature. Moreover, increasing levels of circulating checkpoint proteins BTLA, TIM-3, LAG-3, PD-1, PD-L1, and CTLA4 were observed during immunotherapy. Collectively, our observations revealed that high levels of immunosuppressive molecules in tumor, lymph nodes and/or in peripheral blood might indicate poor outcomes after immunotherapy, even in the setting of a patient with concurrent sarcoid-like reactions and tertiary lymphoid structures.
Collapse
Affiliation(s)
- Xiaoliang Zhao
- Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Dongsheng Yue
- Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Juanjuan Qian
- Department of Medicine, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Lei Zhang
- Department of Medicine, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Jin Song
- Department of Medicine, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Bin Zhang
- Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Chunmei Zhang
- Department of Medicine, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Leina Sun
- Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Yuchen Ma
- Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Henghui Zhang
- Beijing Shijitan Hospital, and School of Oncology, Capital Medical University, Beijing, China
- *Correspondence: Changli Wang, ; Henghui Zhang,
| | - Changli Wang
- Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Changli Wang, ; Henghui Zhang,
| |
Collapse
|
178
|
Pagliarulo F, Cheng PF, Brugger L, van Dijk N, van den Heijden M, Levesque MP, Silina K, van den Broek M. Molecular, Immunological, and Clinical Features Associated With Lymphoid Neogenesis in Muscle Invasive Bladder Cancer. Front Immunol 2022; 12:793992. [PMID: 35145509 PMCID: PMC8821902 DOI: 10.3389/fimmu.2021.793992] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Lymphoid neogenesis gives rise to tertiary lymphoid structures (TLS) in the periphery of multiple cancer types including muscle invasive bladder cancer (MIBC) where it has positive prognostic and predictive associations. Here, we explored molecular, clinical, and histological data of The Cancer Genome Atlas, as well as the IMvigor210 dataset to study factors associated with TLS development and function in the tumor microenvironment (TME) of MIBC. We also analyzed tumor immune composition including TLS in an independent, retrospective MIBC cohort. We found that the combination of TLS density and tumor mutational burden provides a novel independent prognostic biomarker in MIBC. Gene expression profiles obtained from intratumoral regions that rarely contain TLS in MIBC showed poor correlation with the prognostic TLS density measured in tumor periphery. Tumors with high TLS density showed increased gene signatures as well as infiltration of activated lymphocytes. Intratumoral B-cell and CD8+ T-cell co-infiltration was frequent in TLS-high samples, and such regions harbored the highest proportion of PD-1+TCF1+ progenitor-like T cells, naïve T cells, and activated B cells when compared to regions predominantly infiltrated by either B cells or CD8+ T cells alone. We found four TLS maturation subtypes; however, differences in TLS composition appeared to be dictated by the TME and not by the TLS maturation status. Finally, we identified one downregulated and three upregulated non-immune cell-related genes in TME with high TLS density, which may represent candidates for tumor-intrinsic regulation of lymphoid neogenesis. Our study provides novel insights into TLS-associated gene expression and immune contexture of MIBC and indicates towards the relevance of B-cell and CD8+ T-cell interactions in anti-tumor immunity within and outside TLS.
Collapse
Affiliation(s)
- Fabio Pagliarulo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Phil F. Cheng
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Laurin Brugger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Nick van Dijk
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Mitchell P. Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Karina Silina
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
179
|
van Duijvenvoorde M, Derks S, Bahce I, Leemans CR, van de Ven R, Fransen MF. Comparison of the tumor microenvironments of squamous cell carcinoma at different anatomical locations within the upper aerodigestive tract in relation to response to ICI therapy. Clin Transl Immunology 2022; 11:e1363. [PMID: 35035956 PMCID: PMC8747970 DOI: 10.1002/cti2.1363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy with immune checkpoint inhibitors (ICI) has improved treatment outcomes in many cancer types and has focused attention on cancer immunity and the role of the tumor microenvironment (TME). Studies into efficacy of immunotherapy and TME are generally restricted to tumors in one anatomical location, while the histological type may have substantial influence on the contexture of the TME, perhaps more so than anatomical location, and subsequently to the response to immunotherapy. This review aims to focus on the TME in ICI‐treated tumors of the same histological type, namely carcinogen‐induced squamous cell carcinoma developing within the aerodigestive tract, at three locations, i.e. head and neck (HNSCC), esophagus (ESCC) and lung (LUSC).
Collapse
Affiliation(s)
- Maurice van Duijvenvoorde
- Department of Pulmonary Diseases Amsterdam UMC, location VUmc Cancer Center Amsterdam and Amsterdam Institute for Infection and Immunity Amsterdam The Netherlands.,Department of Otolaryngology Head and Neck Surgery Amsterdam UMC, location VUmc Cancer Center Amsterdam and Amsterdam Institute for Infection and Immunity Amsterdam The Netherlands
| | - Sarah Derks
- Department of Medical Oncology Amsterdam UMC, location VUmc Cancer Center Amsterdam and Amsterdam Institute for Infection and Immunity Amsterdam The Netherlands.,Oncode Institute Utrecht The Netherlands
| | - Idris Bahce
- Department of Pulmonary Diseases Amsterdam UMC, location VUmc Cancer Center Amsterdam and Amsterdam Institute for Infection and Immunity Amsterdam The Netherlands
| | - C René Leemans
- Department of Otolaryngology Head and Neck Surgery Amsterdam UMC, location VUmc Cancer Center Amsterdam and Amsterdam Institute for Infection and Immunity Amsterdam The Netherlands
| | - Rieneke van de Ven
- Department of Otolaryngology Head and Neck Surgery Amsterdam UMC, location VUmc Cancer Center Amsterdam and Amsterdam Institute for Infection and Immunity Amsterdam The Netherlands
| | - Marieke F Fransen
- Department of Pulmonary Diseases Amsterdam UMC, location VUmc Cancer Center Amsterdam and Amsterdam Institute for Infection and Immunity Amsterdam The Netherlands
| |
Collapse
|
180
|
Chaurio RA, Anadon CM, Costich TL, Payne KK, Biswas S, Harro CM, Moran C, Ortiz AC, Cortina C, Rigolizzo KE, Sprenger KB, Mine JA, Innamarato PP, Mandal G, Powers JJ, Martin A, Wang Z, Mehta S, Perez BA, Li R, Robinson J, Kroeger JL, Curiel TJ, Yu X, Rodriguez PC, Conejo-Garcia JR. TGF-β-mediated silencing of genomic organizer SATB1 promotes Tfh cell differentiation and formation of intra-tumoral tertiary lymphoid structures. Immunity 2022; 55:115-128.e9. [PMID: 35021053 PMCID: PMC8852221 DOI: 10.1016/j.immuni.2021.12.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/17/2021] [Accepted: 12/08/2021] [Indexed: 01/13/2023]
Abstract
The immune checkpoint receptor PD-1 on T follicular helper (Tfh) cells promotes Tfh:B cell interactions and appropriate positioning within tissues. Here, we examined the impact of regulation of PD-1 expression by the genomic organizer SATB1 on Tfh cell differentiation. Vaccination of CD4CreSatb1f/f mice enriched for antigen-specific Tfh cells, and TGF-β-mediated repression of SATB1 enhanced Tfh differentiation of human T cells. Mechanistically, high Icos expression in Satb1-/- CD4+ T cells promoted Tfh cell differentiation by preventing T follicular regulatory cell skewing and resulted in increased isotype-switched B cell responses in vivo. Ovarian tumors in CD4CreSatb1f/f mice accumulated tumor antigen-specific, LIGHT+CXCL13+IL-21+ Tfh cells and tertiary lymphoid structures (TLS). TLS formation decreased tumor growth in a CD4+ T cell and CXCL13-dependent manner. The transfer of Tfh cells, but not naive CD4+ T cells, induced TLS at tumor beds and decreased tumor growth. Thus, TGF-β-mediated silencing of Satb1 licenses Tfh cell differentiation, providing insight into the genesis of TLS within tumors.
Collapse
Affiliation(s)
- Ricardo A Chaurio
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Carmen M Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Tara Lee Costich
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kyle K Payne
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Subir Biswas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Carly M Harro
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Carlos Moran
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Antonio C Ortiz
- Department of Analytic Microscopy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Carla Cortina
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kristen E Rigolizzo
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kimberly B Sprenger
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jessica A Mine
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Pasquale P Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Gunjan Mandal
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John J Powers
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Alexandra Martin
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Zhitao Wang
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Sumit Mehta
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bradford A. Perez
- Department of Radiation Therapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John Robinson
- Department of Flow Cytometry Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jodi L Kroeger
- Department of Flow Cytometry Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Tyler J Curiel
- Mays Cancer Center, University of Texas Health, San Antonio, TX 78229
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paulo C. Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.,Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.,CORRESPONDENCE: Jose R Conejo-Garcia, MD, PhD (LEAD CONTACT), H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, , Phone: (813) 745-8282, Fax: (813) 745-5580
| |
Collapse
|
181
|
Abstract
Ectopic lymphoid aggregates, termed tertiary lymphoid structures (TLSs), are formed in numerous cancer types, and, with few exceptions, their presence is associated with superior prognosis and response to immunotherapy. In spite of their presumed importance, the triggers that lead to TLS formation in cancer tissue and the contribution of these structures to intratumoral immune responses remain incompletely understood. Here, we discuss the present knowledge on TLSs in cancer, focusing on (i) the drivers of TLS formation, (ii) the function and contribution of TLSs to the antitumor immune response, and (iii) the potential of TLSs as therapeutic targets in human cancers.
Collapse
Affiliation(s)
- Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Daniela S Thommen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| |
Collapse
|
182
|
Clinical efficacy of nivolumab is associated with tertiary lymphoid structures in surgically resected primary tumors of recurrent gastric cancer. PLoS One 2022; 17:e0262455. [PMID: 34995329 PMCID: PMC8741034 DOI: 10.1371/journal.pone.0262455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022] Open
Abstract
Nivolumab, an immune checkpoint blocker, has been approved for advanced gastric cancer (GC), but predictive factors of nivolumab’s efficacy in patients with GC, especially immune cells such as tissue-resident memory T cells or those forming tertiary lymphoid structures (TLS), remain unclear. Tissue samples were obtained from surgically resected specimens of patients with GC who were treated with nivolumab as third-line or later treatment. Immunohistochemical staining was performed to detect the presence of TLS and CD103+ T cells and assess the association between TLSs and response to nivolumab treatment. A total of 19 patients were analyzed. In patients with partial response (PR) to nivolumab, numerous TLS were observed, and CD103+ T cells were found in and around TLS. Patients with many TLS experienced immune-related adverse events more often than those with few TLS (p = 0.018). The prognosis of patients with TLS high was better than those with TLS low. Patients with a combination of TLS high and CD103 high tended to have a better prognosis than other groups. Our results suggested that TLS status might be a predictor of nivolumab effectiveness.
Collapse
|
183
|
Lue JK, Downs-Canner S, Chaudhuri J. The role of B cells in the development, progression, and treatment of lymphomas and solid tumors. Adv Immunol 2022; 154:71-117. [PMID: 36038195 DOI: 10.1016/bs.ai.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
B cells are integral components of the mammalian immune response as they have the ability to generate antibodies against an almost infinite array of antigens. Over the past several decades, significant scientific progress has been made in understanding that this enormous B cell diversity contributes to pathogen clearance. However, our understanding of the humoral response to solid tumors and to tumor-specific antigens is unclear. In this review, we first discuss how B cells interact with other cells in the tumor microenvironment and influence the development and progression of various solid tumors. The ability of B lymphocytes to generate antibodies against a diverse repertoire of antigens and subsequently tailor the humoral immune response to specific pathogens relies on their ability to undergo genomic alterations during their development and differentiation. We will discuss key transforming events that lead to the development of B cell lymphomas. Overall, this review provides a foundation for innovative therapeutic interventions for both lymphoma and solid tumor malignancies.
Collapse
Affiliation(s)
- Jennifer K Lue
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Stephanie Downs-Canner
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
184
|
Zens P, Bello C, Scherz A, von Gunten M, Ochsenbein A, Schmid RA, Berezowska S. The effect of neoadjuvant therapy on PD-L1 expression and CD8+lymphocyte density in non-small cell lung cancer. Mod Pathol 2022; 35:1848-1859. [PMID: 35915139 PMCID: PMC9708547 DOI: 10.1038/s41379-022-01139-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022]
Abstract
PD-L1 expression is the routine clinical biomarker for the selection of patients to receive immunotherapy in non-small cell lung cancer (NSCLC). However, the application and best timing of immunotherapy in the resectable setting is still under investigation. We aimed to study the effect of chemotherapy on PD-L1 expression and tumor infiltrating lymphocytes (TILs), which is to date still poorly understood. Our retrospective, single-centre neoadjuvant cohort comprised 96 consecutive patients with NSCLC resected 2000-2016 after neoadjuvant therapy, including paired diagnostic chemo-naïve specimens in 53 cases. A biologically matched surgical cohort of 114 primary resected cases was included. PD-L1 expression, CD8 + TILs density and tertiary lymphoid structures were assessed on whole slides and correlated with clinico-pathological characteristics and survival. Seven/53 and 12/53 cases had lower respectively higher PD-L1 expressions after neoadjuvant therapy. Most cases (n = 34) showed no changes in PD-L1 expression, the majority of these harboring PD-L1 < 1% in both samples (21/34 [61.8%]). Although CD8 + TILs density was significantly higher after chemotherapy (p = 0.031) in resections compared to diagnostic biopsies, this might be due to sampling and statistical bias. No difference in PD-L1 expression or CD8 + TILs density was detected when comparing the neoadjuvant and surgical cohort. In univariable analyses, higher CD8 + TILs density, higher numbers of tertiary lymphoid structures but not PD-L1 expression were significantly associated with longer survival. Increased PD-L1 expression after neoadjuvant chemotherapy was not significantly associated with shorter 5-year survival, but the number of cases was very low. In multivariable analysis, only pT category and age remained independent prognostic factors. In summary, PD-L1 expression was mostly unchanged after neoadjuvant chemotherapy compared to diagnostic biopsies. The sample size of cases with changed PD-L1 expression was too small to draw conclusions on any prognostic value.
Collapse
Affiliation(s)
- Philipp Zens
- grid.5734.50000 0001 0726 5157Institute of Pathology, University of Bern, Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Health Science, University of Bern, Bern, Switzerland
| | - Corina Bello
- grid.5734.50000 0001 0726 5157Institute of Pathology, University of Bern, Bern, Switzerland ,Present Address: Department of Anesthesiology, Hospital Grabs, Spitalstrasse 44, CH-9472 Grabs, Switzerland
| | - Amina Scherz
- grid.411656.10000 0004 0479 0855Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | | | - Adrian Ochsenbein
- grid.411656.10000 0004 0479 0855Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ralph A. Schmid
- grid.411656.10000 0004 0479 0855Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Sabina Berezowska
- Institute of Pathology, University of Bern, Bern, Switzerland. .,Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
185
|
Zhou X, Li W, Yang J, Qi X, Chen Y, Yang H, Chu L. Tertiary lymphoid structure stratifies glioma into three distinct tumor subtypes. Aging (Albany NY) 2021; 13:26063-26094. [PMID: 34954691 PMCID: PMC8751592 DOI: 10.18632/aging.203798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Tertiary lymphoid structure (TLS), also known as ectopic lymphoid organs, are found in cancer, chronic inflammation, and autoimmune diseases. However, the heterogeneity of TLS in gliomas is unclear. Therefore, it is necessary to identify TLS differences and define TLS subtypes. METHODS The TLS gene profile of 697 gliomas from The Cancer Genome Atlas (TCGA) was used for consensus clustering to identify robust clusters, and the reproducibility of the stratification method was assessed in Chinese Glioma Genome Atlas (CGGA) cohort1, CGGA_cohort2, and GSE16011. Analyses of clinical characteristics, immune infiltration, and potential biological functions were performed for each subtype. RESULTS Three resulting clusters (A, B, and C) were identified based on consensus clustering on the gene expression profile of TLS genes. There was a significant prognostic difference among the clusters, with a shorter survival for C than B and A. In comparison with the A and B subtypes, the C subtype was significantly enriched in primary immunodeficiency, intestinal immune network for lgG production, antigen processing and presentation, natural killer cell-mediated cytotoxicity, complement and coagulation cascades, cytokine-cytokine receptor interaction, leukocyte transendothelial migration, and some immune-related diseases. The levels of 23 immune cell types were higher in the C subtype than in the A and B subtypes. Finally, we developed and validated a riskscore based on TLS subtypes with better performance of prognosis prediction. CONCLUSIONS This study presents a new stratification method according to the TLS gene profile and highlights TLS heterogeneity in gliomas.
Collapse
Affiliation(s)
- Xingwang Zhou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Wenyan Li
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Jie Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Yimin Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| |
Collapse
|
186
|
Cui C, Wang J, Fagerberg E, Chen PM, Connolly KA, Damo M, Cheung JF, Mao T, Askari AS, Chen S, Fitzgerald B, Foster GG, Eisenbarth SC, Zhao H, Craft J, Joshi NS. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 2021; 184:6101-6118.e13. [PMID: 34852236 PMCID: PMC8671355 DOI: 10.1016/j.cell.2021.11.007] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/21/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022]
Abstract
CD4 T follicular helper (TFH) cells support B cells, which are critical for germinal center (GC) formation, but the importance of TFH-B cell interactions in cancer is unclear. We found enrichment of TFH cell transcriptional signature correlates with GC B cell signature and with prolonged survival in individuals with lung adenocarcinoma (LUAD). We further developed a murine LUAD model in which tumor cells express B cell- and T cell-recognized neoantigens. Interactions between tumor-specific TFH and GC B cells, as well as interleukin (IL)-21 primarily produced by TFH cells, are necessary for tumor control and effector CD8 T cell function. Development of TFH cells requires B cells and B cell-recognized neoantigens. Thus, tumor neoantigens can regulate the fate of tumor-specific CD4 T cells by facilitating their interactions with tumor-specific B cells, which in turn promote anti-tumor immunity by enhancing CD8 T cell effector functions.
Collapse
Affiliation(s)
- Can Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jiawei Wang
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06510, USA
| | - Eric Fagerberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ping-Min Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kelli A Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Martina Damo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie F Cheung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adnan S Askari
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shuting Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brittany Fitzgerald
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gena G Foster
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine (Rheumatology, Allergy and Immunology), Yale University School of Medicine, New Haven, CT 06520, USA; Department of Lab Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Joseph Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine (Rheumatology, Allergy and Immunology), Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
187
|
CXCL13 in Cancer and Other Diseases: Biological Functions, Clinical Significance, and Therapeutic Opportunities. Life (Basel) 2021; 11:life11121282. [PMID: 34947813 PMCID: PMC8708574 DOI: 10.3390/life11121282] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/31/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
The development of cancer is a multistep and complex process involving interactions between tumor cells and the tumor microenvironment (TME). C-X-C chemokine ligand 13 (CXCL13) and its receptor, CXCR5, make crucial contributions to this process by triggering intracellular signaling cascades in malignant cells and modulating the sophisticated TME in an autocrine or paracrine fashion. The CXCL13/CXCR5 axis has a dominant role in B cell recruitment and tertiary lymphoid structure formation, which activate immune responses against some tumors. In most cancer types, the CXCL13/CXCR5 axis mediates pro-neoplastic immune reactions by recruiting suppressive immune cells into tumor tissues. Tobacco smoke and haze (smohaze) and the carcinogen benzo(a)pyrene induce the secretion of CXCL13 by lung epithelial cells, which contributes to environmental lung carcinogenesis. Interestingly, the knockout of CXCL13 inhibits benzo(a)pyrene-induced lung cancer and azoxymethane/dextran sodium sulfate-induced colorectal cancer in mice. Thus, a better understanding of the context-dependent functions of the CXCL13/CXCR5 axis in tumor tissue and the TME is required to design an efficient immune-based therapy. In this review, we summarize the molecular events and TME alterations caused by CXCL13/CXCR5 and briefly discuss the potentials of agents targeting this axis in different malignant tumors.
Collapse
|
188
|
Qin M, Jin Y, Pan LY. Tertiary lymphoid structure and B-cell-related pathways: A potential target in tumor immunotherapy. Oncol Lett 2021; 22:836. [PMID: 34712360 PMCID: PMC8548801 DOI: 10.3892/ol.2021.13097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 01/11/2023] Open
Abstract
The tertiary lymphoid structure (TLS), also referred to as the ectopic lymphoid structure, has recently become a focus of attention. The TLS consists of T-cell and B-cell-rich regions, as well as plasma cells, follicular helper T cells, follicular dendritic cells (FDCs), germinal centers (GCs) and high endothelial venules. TLSs can be divided into different subtypes and mature stages according to the density of FDCs and GCs. The TLS serves as an effective site in which an antitumor inflammatory response is generated through infiltrating immune cells. B-cell-related pathways, known as the CXC chemokine ligand 13/CXC chemokine receptor type 5 axis and the CC chemokine ligand (CCL)19/CCL21/CC-chemokine receptor 7 axis, play a key role in the generation and formation of TLSs. The aim of the present review was to systematically summarize updated research progress on the formation, subtypes, evaluation and B-cell-related pathways of TLSs. Furthermore, researchers have previously reported that TLSs are present in several types of solid cancers and that they are associated with survival outcomes. Therefore, studies on TLS in breast, lung, colorectal and ovarian cancers and melanoma were summarized and compared. The TLS and B-cell-related pathways require further investigation as important immune signals and promising new immunotherapy targets in the era of T-cell therapy revolution.
Collapse
Affiliation(s)
- Meng Qin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China.,Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing 100730, P.R. China
| | - Ying Jin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China.,Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing 100730, P.R. China
| | - Ling-Ya Pan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China.,Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing 100730, P.R. China
| |
Collapse
|
189
|
Tertiary lymphoid structures are associated with favorable survival outcomes in patients with endometrial cancer. Cancer Immunol Immunother 2021; 71:1431-1442. [PMID: 34689225 PMCID: PMC9123039 DOI: 10.1007/s00262-021-03093-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022]
Abstract
Immunotherapy has experienced remarkable growth recently. Tertiary lymphoid structures (TLSs) and B cells may play a key role in the immune response and have a survival benefit in some solid tumors, but there have been no reports about their role in endometrial cancer (EC). We investigated the clinicopathological and pathobiological characteristics of the tumor microenvironment (TME) in EC. Patients with EC at Kyoto University Hospital during 2006–2011 were retrospectively included. In 104 patients with EC who met study inclusion criteria, 81 (77.9%) had TLSs, which consisted of areas rich in CD20+ B cells, CD8+ T cells, CD4+ T cells, and CD38+ plasma cells. The absence of TLS was independently associated with tumor progression (HR, 0.154; 95% CI, 0.044–0.536; P = 0.003). Patients with TLSs that included CD23+ germinal centers had better PFS. All tumor infiltrating lymphocytes were counted in the intratumor site. The number of CD20+ B cells was significantly larger in patients with TLSs than in those without TLS (P < 0.001). CD20+ B cells numbers were positively correlated with other TLSs. The larger number of CD20+ B cell was associated with better PFS (P = 0.015). TLSs and B cell infiltration into tumors are associated with favorable survival outcomes in patients with EC. They may represent an active immune reaction of the TME in endometrial cancer.
Collapse
|
190
|
Zhang Y, Yin X, Wang Q, Song X, Xia W, Mao Q, Chen B, Liang Y, Zhang T, Xu L, Jiang F, Xu X, Dong G. A novel gene expression signature-based on B-cell proportion to predict prognosis of patients with lung adenocarcinoma. BMC Cancer 2021; 21:1098. [PMID: 34641822 PMCID: PMC8513350 DOI: 10.1186/s12885-021-08805-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/16/2021] [Indexed: 12/31/2022] Open
Abstract
Background This study aimed to develop a reliable immune signature based on B-cell proportion to predict the prognosis and benefit of immunotherapy in LUAD. Methods The proportion of immune cells in the TCGA-LUAD dataset was estimated using MCP-counter. The Least Absolute Shrinkage and Selector Operation was used to identify a prognostic signature and validated in an independent cohort. We used quantitative reverse transcription-polymerase chain reaction (qRT-PCR) data and formalin-fixed paraffin-embedded (FFPE) specimens immunohistochemistry to illustrate the correlation between prognostic signature and leukocyte migration. Results We found that the relative abundance of B lineage positively correlated with overall survival. Then, we identified a 13-gene risk-score prognostic signature based on B lineage abundance in the testing cohort and validated it in a cohort from the GEO dataset. This model remained strongly predictive of prognoses across clinical subgroups. Further analysis revealed that patients with a low-risk score were characterized by B-cell activation and leukocyte migration, which was also confirmed in FFPE specimens by qRT-PCR and immunohistochemistry. Finally, this immune signature was an independent prognostic factor in the composite nomogram of clinical characteristics. Conclusions In conclusion, the 13-gene immune signature based on B-cell proportion may serve as a powerful prognostic tool in LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08805-5.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 210000, Nanjing, P. R. China.,Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 210000, Nanjing, P. R. China
| | - Xuewen Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, P. R. China
| | - Qi Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 210000, Nanjing, P. R. China
| | - Xuming Song
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 210000, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Wenjie Xia
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 210000, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
| | - Qixing Mao
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 210000, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
| | - Bing Chen
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 210000, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Yingkuan Liang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 210000, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
| | - Te Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 210000, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 210000, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 210000, Nanjing, P. R. China. .,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China. .,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China.
| | - Xinyu Xu
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 210000, Nanjing, P. R. China.
| | - Gaochao Dong
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 210000, Nanjing, P. R. China. .,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.
| |
Collapse
|
191
|
Boisson A, Noël G, Saiselet M, Rodrigues-Vitória J, Thomas N, Fontsa ML, Sofronii D, Naveaux C, Duvillier H, Craciun L, Larsimont D, Awada A, Detours V, Willard-Gallo K, Garaud S. Fluorescent Multiplex Immunohistochemistry Coupled With Other State-Of-The-Art Techniques to Systematically Characterize the Tumor Immune Microenvironment. Front Mol Biosci 2021; 8:673042. [PMID: 34621785 PMCID: PMC8490683 DOI: 10.3389/fmolb.2021.673042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Our expanding knowledge of the interactions between tumor cells and their microenvironment has helped to revolutionize cancer treatments, including the more recent development of immunotherapies. Immune cells are an important component of the tumor microenvironment that influence progression and treatment responses, particularly to the new immunotherapies. Technological advances that help to decipher the complexity and diversity of the tumor immune microenvironment (TIME) are increasingly used in translational research and biomarker studies. Current techniques that facilitate TIME evaluation include flow cytometry, multiplex bead-based immunoassays, chromogenic immunohistochemistry (IHC), fluorescent multiplex IHC, immunofluorescence, and spatial transcriptomics. This article offers an overview of our representative data, discusses the application of each approach to studies of the TIME, including their advantages and challenges, and reviews the potential clinical applications. Flow cytometry and chromogenic and fluorescent multiplex IHC were used to immune profile a HER2+ breast cancer, illustrating some points. Spatial transcriptomic analysis of a luminal B breast tumor demonstrated that important additional insight can be gained from this new technique. Finally, the development of a multiplex panel to identify proliferating B cells, Tfh, and Tfr cells on the same tissue section demonstrates their co-localization in tertiary lymphoid structures.
Collapse
Affiliation(s)
- Anaïs Boisson
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Grégory Noël
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | - Noémie Thomas
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mireille Langouo Fontsa
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Doïna Sofronii
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Céline Naveaux
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Hugues Duvillier
- Flow Cytometry Facility, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ligia Craciun
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ahmad Awada
- Oncology Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Soizic Garaud
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
192
|
Noël G, Fontsa ML, Garaud S, De Silva P, de Wind A, Van den Eynden GG, Salgado R, Boisson A, Locy H, Thomas N, Solinas C, Migliori E, Naveaux C, Duvillier H, Lucas S, Craciun L, Thielemans K, Larsimont D, Willard-Gallo K. Functional Th1-oriented T follicular helper cells that infiltrate human breast cancer promote effective adaptive immunity. J Clin Invest 2021; 131:e139905. [PMID: 34411002 DOI: 10.1172/jci139905] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
We previously demonstrated that tumor-infiltrating lymphocytes (TIL) in human breast cancer sometimes form organized tertiary lymphoid structures (TLS) characterized by CXCL13-producing T follicular helper (Tfh) cells. The present study found that CD4+ Tfh TIL, CD8+ TIL, and TIL-B, colocalizing in TLS, all express the CXCL13 receptor CXCR5. An ex vivo functional assay determined that only activated, functional Th1-oriented Tfh TIL (PD-1hiICOSint phenotype) provide help for immunoglobulin and IFN-γ production. A functional Tfh TIL presence signals an active TLS, characterized by humoral (immunoglobulins, Ki-67+ TIL-B in active germinal centers) and cytotoxic (GZMB+CD8+ and GZMB+CD68+ TIL plus Th1 gene expression) immune responses. Analysis of active versus inactive TLS in untreated patients revealed that the former are associated with positive clinical outcomes. TLS also contain functional T follicular regulatory (Tfr) TIL, which are characterized by a CD25+CXCR5+GARP+FOXP3+ phenotype and a demethylated FOXP3 gene. Functional Tfr inhibited functional Tfh activities via a glycoprotein A repetitions predominant (GARP)-associated TGF-β-dependent mechanism. The activity of tumor-associated TLS was dictated by the relative balance between functional Tfh TIL and functional Tfr TIL. These data provide mechanistic insight into TLS processes orchestrated by functional Th1-oriented Tfh TIL, including TIL-B and CD8+ TIL activation and immunological memory generation. Tfh TIL, regulated by functional Tfr TIL, are an expected key target of PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre de Wind
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Gert G Van den Eynden
- Molecular Immunology Unit, and.,Department of Pathology, GZA Ziekenhuizen, Sint-Augustinus Campus, Wilrijk, Belgium
| | - Roberto Salgado
- Department of Pathology, GZA Ziekenhuizen, Sint-Augustinus Campus, Wilrijk, Belgium
| | | | - Hanne Locy
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | - Hugues Duvillier
- Molecular Immunology Unit, and.,Flow Cytometry Facility, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Sophie Lucas
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ligia Craciun
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
193
|
Zhu S, Zhang T, Zheng L, Liu H, Song W, Liu D, Li Z, Pan CX. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol 2021; 14:156. [PMID: 34579759 PMCID: PMC8475356 DOI: 10.1186/s13045-021-01164-5] [Citation(s) in RCA: 316] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Immunotherapies such as immune checkpoint blockade (ICB) and adoptive cell therapy (ACT) have revolutionized cancer treatment, especially in patients whose disease was otherwise considered incurable. However, primary and secondary resistance to single agent immunotherapy often results in treatment failure, and only a minority of patients experience long-term benefits. This review article will discuss the relationship between cancer immune response and mechanisms of resistance to immunotherapy. It will also provide a comprehensive review on the latest clinical status of combination therapies (e.g., immunotherapy with chemotherapy, radiation therapy and targeted therapy), and discuss combination therapies approved by the US Food and Drug Administration. It will provide an overview of therapies targeting cytokines and other soluble immunoregulatory factors, ACT, virotherapy, innate immune modifiers and cancer vaccines, as well as combination therapies that exploit alternative immune targets and other therapeutic modalities. Finally, this review will include the stimulating insights from the 2020 China Immuno-Oncology Workshop co-organized by the Chinese American Hematologist and Oncologist Network (CAHON), the China National Medical Product Administration (NMPA) and Tsinghua University School of Medicine.
Collapse
Affiliation(s)
- Shaoming Zhu
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Tian Zhang
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University, DUMC 103861, Durham, NC, 27710, USA
| | - Lei Zheng
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Hongtao Liu
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,University of Chicago, Chicago, IL, USA
| | - Wenru Song
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Kira Pharmaceuticals, Cambridge, MA, USA
| | - Delong Liu
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,New York Medical College, Valhalla, NY, USA
| | - Zihai Li
- Chinese American Hematologist and Oncologist Network, New York, NY, USA. .,Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA.
| | - Chong-Xian Pan
- Chinese American Hematologist and Oncologist Network, New York, NY, USA. .,Harvard Medical School, West Roxbury, MA, 02132, USA.
| |
Collapse
|
194
|
Tertiary lymphoid structures (TLS) identification and density assessment on H&E-stained digital slides of lung cancer. PLoS One 2021; 16:e0256907. [PMID: 34555057 PMCID: PMC8460026 DOI: 10.1371/journal.pone.0256907] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic aggregates of lymphoid cells in inflamed, infected, or tumoral tissues that are easily recognized on an H&E histology slide as discrete entities, distinct from lymphocytes. TLS are associated with improved cancer prognosis but there is no standardised method available to quantify their presence. Previous studies have used immunohistochemistry to determine the presence of specific cells as a marker of the TLS. This has now been proven to be an underestimate of the true number of TLS. Thus, we propose a methodology for the automated identification and quantification of TLS, based on H&E slides. We subsequently determined the mathematical criteria defining a TLS. TLS regions were identified through a deep convolutional neural network and segmentation of lymphocytes was performed through an ellipsoidal model. This methodology had a 92.87% specificity at 95% sensitivity, 88.79% specificity at 98% sensitivity and 84.32% specificity at 99% sensitivity level based on 144 TLS annotated H&E slides implying that the automated approach was able to reproduce the histopathologists’ assessment with great accuracy. We showed that the minimum number of lymphocytes within TLS is 45 and the minimum TLS area is 6,245μm2. Furthermore, we have shown that the density of the lymphocytes is more than 3 times those outside of the TLS. The mean density and standard deviation of lymphocytes within a TLS area are 0.0128/μm2 and 0.0026/μm2 respectively compared to 0.004/μm2 and 0.001/μm2 in non-TLS regions. The proposed methodology shows great potential for automated identification and quantification of the TLS density on digital H&E slides.
Collapse
|
195
|
van de Walle T, Vaccaro A, Ramachandran M, Pietilä I, Essand M, Dimberg A. Tertiary Lymphoid Structures in the Central Nervous System: Implications for Glioblastoma. Front Immunol 2021; 12:724739. [PMID: 34539661 PMCID: PMC8442660 DOI: 10.3389/fimmu.2021.724739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma is the most common and aggressive brain tumor, which is uniformly lethal due to its extreme invasiveness and the absence of curative therapies. Immune checkpoint inhibitors have not yet proven efficacious for glioblastoma patients, due in part to the low prevalence of tumor-reactive T cells within the tumor microenvironment. The priming of tumor antigen-directed T cells in the cervical lymph nodes is complicated by the shortage of dendritic cells and lack of appropriate lymphatic vessels within the brain parenchyma. However, recent data suggest that naive T cells may also be primed within brain tumor-associated tertiary lymphoid structures. Here, we review the current understanding of the formation of these structures within the central nervous system, and hypothesize that promotion of tertiary lymphoid structures could enhance priming of tumor antigen-targeted T cells and sensitize glioblastomas to cancer immunotherapy.
Collapse
Affiliation(s)
- Tiarne van de Walle
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ilkka Pietilä
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
196
|
Fridman WH, Petitprez F, Meylan M, Chen TWW, Sun CM, Roumenina LT, Sautès-Fridman C. B cells and cancer: To B or not to B? J Exp Med 2021; 218:211614. [PMID: 33601413 PMCID: PMC7754675 DOI: 10.1084/jem.20200851] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Whereas T cells have been considered the major immune cells of the tumor microenvironment able to induce tumor regression and control cancer clinical outcome, a burst of recent publications pointed to the fact that B cells may also play a prominent role. Activated in germinal centers of tertiary lymphoid structures, B cells can directly present tumor-associated antigens to T cells or produce antibodies that increase antigen presentation to T cells or kill tumor cells, resulting in a beneficial clinical impact. Immune complexes can also increase inflammation, angiogenesis, and immunosuppression via macrophage and complement activation, resulting in deleterious impact.
Collapse
Affiliation(s)
- Wolf Herman Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, Institut national de la santé et de la recherche médicale, Université de Paris, Paris, France
| | - Florent Petitprez
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale contre le Cancer, Paris, France
| | - Maxime Meylan
- Centre de Recherche des Cordeliers, Sorbonne Université, Institut national de la santé et de la recherche médicale, Université de Paris, Paris, France
| | - Tom Wei-Wu Chen
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Ming Sun
- Centre de Recherche des Cordeliers, Sorbonne Université, Institut national de la santé et de la recherche médicale, Université de Paris, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, Sorbonne Université, Institut national de la santé et de la recherche médicale, Université de Paris, Paris, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, Institut national de la santé et de la recherche médicale, Université de Paris, Paris, France
| |
Collapse
|
197
|
Kwak M, Erdag G, Leick KM, Bekiranov S, Engelhard VH, Slingluff CL. Associations of immune cell homing gene signatures and infiltrates of lymphocyte subsets in human melanomas: discordance with CD163 + myeloid cell infiltrates. J Transl Med 2021; 19:371. [PMID: 34454518 PMCID: PMC8403429 DOI: 10.1186/s12967-021-03044-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Immune cells in the tumor microenvironment have prognostic value. In preclinical models, recruitment and infiltration of these cells depends on immune cell homing (ICH) genes such as chemokines, cell adhesion molecules, and integrins. We hypothesized ICH ligands CXCL9-11 and CCL2-5 would be associated with intratumoral T-cells, while CXCL13 would be more associated with B-cell infiltrates. METHODS Samples of human melanoma were submitted for gene expression analysis and immune cells identified by immunohistochemistry. Associations between the two were evaluated with unsupervised hierarchical clustering using correlation matrices from Spearman rank tests. Univariate analysis performed Mann-Whitney tests. RESULTS For 119 melanoma specimens, analysis of 78 ICH genes revealed association among genes with nonspecific increase of multiple immune cell subsets: CD45+, CD8+ and CD4+ T-cells, CD20+ B-cells, CD138+ plasma cells, and CD56+ NK-cells. ICH genes most associated with these infiltrates included ITGB2, ITGAL, CCL19, CXCL13, plus receptor/ligand pairs CXCL9 and CXCL10 with CXCR3; CCL4 and CCL5 with CCR5. This top ICH gene expression signature was also associated with genes representing immune-activation and effector function. In contrast, CD163+ M2-macrophages was weakly associated with a different ICH gene signature. CONCLUSION These data do not support our hypothesis that each immune cell subset is uniquely associated with specific ICH genes. Instead, a larger set of ICH genes identifies melanomas with concordant infiltration of B-cell and T-cell lineages, while CD163+ M2-macrophage infiltration suggesting alternate mechanisms for their recruitment. Future studies should explore the extent ICH gene signature contributes to tertiary lymphoid structures or cross-talk between homing pathways.
Collapse
Affiliation(s)
- Minyoung Kwak
- Department of Surgery, University of Virginia, P.O. Box 800709, Charlottesville, VA, 22908-0709, USA.,Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Gulsun Erdag
- Department of Surgery, University of Virginia, P.O. Box 800709, Charlottesville, VA, 22908-0709, USA
| | - Katie M Leick
- Department of Surgery, University of Virginia, P.O. Box 800709, Charlottesville, VA, 22908-0709, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Victor H Engelhard
- Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Craig L Slingluff
- Department of Surgery, University of Virginia, P.O. Box 800709, Charlottesville, VA, 22908-0709, USA. .,Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
198
|
Kang W, Feng Z, Luo J, He Z, Liu J, Wu J, Rong P. Tertiary Lymphoid Structures in Cancer: The Double-Edged Sword Role in Antitumor Immunity and Potential Therapeutic Induction Strategies. Front Immunol 2021; 12:689270. [PMID: 34394083 PMCID: PMC8358404 DOI: 10.3389/fimmu.2021.689270] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
The complex tumor microenvironment (TME) plays a vital role in cancer development and dramatically determines the efficacy of immunotherapy. Tertiary lymphoid structures (TLSs) within the TME are well recognized and consist of T cell-rich areas containing dendritic cells (DCs) and B cell-rich areas containing germinal centers (GCs). Accumulating research has indicated that there is a close association between tumor-associated TLSs and favorable clinical outcomes in most types of cancers, though a minority of studies have reported an association between TLSs and a poor prognosis. Overall, the double-edged sword role of TLSs in the TME and potential mechanisms need to be further investigated, which will provide novel therapeutic perspectives for antitumor immunoregulation. In this review, we focus on discussing the main functions of TLSs in the TME and recent advances in the therapeutic manipulation of TLSs through multiple strategies to enhance local antitumor immunity.
Collapse
Affiliation(s)
- Wendi Kang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhichao Feng
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Jianwei Luo
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhenhu He
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianzhen Wu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| |
Collapse
|
199
|
CXCL13 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:71-90. [PMID: 34286442 DOI: 10.1007/978-3-030-62658-7_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemokines have emerged as important players in tumorigenic process. An extensive body of literature generated over the last two or three decades strongly implicate abnormally activated or functionally disrupted chemokine signaling in liaising most-if not all-hallmark processes of cancer. It is well-known that chemokine signaling networks within the tumor microenvironment are highly versatile and context-dependent: exert both pro-tumoral and antitumoral activities. The C-X-C motif chemokine ligand 13 (CXCL13), and its cognate receptor CXCR5, represents an emerging example of chemokine signaling axes, which express the ability to modulate tumor growth and progression in either way. Collateral evidence indicate that CXCL13-CXCR5 axis may directly modulate tumor growth by inducing proliferation of cancer cells, as well as promoting invasive phenotypes and preventing their apoptosis. In addition, CXCL13-CXCR5 axis may also indirectly modulate tumor growth by regulating noncancerous cells, particularly the immune cells, within the tumor microenvironment. Here, we review the role of CXCL13, together with CXCR5, in the human tumor microenvironment. We first elaborate their patterns of expression, regulation, and biological functions in normal physiology. We then consider how their aberrant activity, as a result of differential overexpression or co-expression, may directly or indirectly modulate the growth of tumors through effects on both cancerous and noncancerous cells.
Collapse
|
200
|
Wang S, Xie K, Liu T. Cancer Immunotherapies: From Efficacy to Resistance Mechanisms - Not Only Checkpoint Matters. Front Immunol 2021; 12:690112. [PMID: 34367148 PMCID: PMC8335396 DOI: 10.3389/fimmu.2021.690112] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/05/2021] [Indexed: 01/05/2023] Open
Abstract
The immunotherapeutic treatment of various cancers with an increasing number of immune checkpoint inhibitors (ICIs) has profoundly improved the clinical management of advanced diseases. However, just a fraction of patients clinically responds to and benefits from the mentioned therapies; a large proportion of patients do not respond or quickly become resistant, and hyper- and pseudoprogression occur in certain patient populations. Furthermore, no effective predictive factors have been clearly screened or defined. In this review, we discuss factors underlying the elucidation of potential immunotherapeutic resistance mechanisms and the identification of predictive factors for immunotherapeutic responses. Considering the heterogeneity of tumours and the complex immune microenvironment (composition of various immune cell subtypes, disease processes, and lines of treatment), checkpoint expression levels may not be the only factors underlying immunotherapy difficulty and resistance. Researchers should consider the tumour microenvironment (TME) landscape in greater depth from the aspect of not only immune cells but also the tumour histology, molecular subtype, clonal heterogeneity and evolution as well as micro-changes in the fine structural features of the tumour area, such as myeloid cell polarization, fibroblast clusters and tertiary lymphoid structure formation. A comprehensive analysis of the immune and molecular profiles of tumour lesions is needed to determine the potential predictive value of the immune landscape on immunotherapeutic responses, and precision medicine has become more important.
Collapse
Affiliation(s)
- Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Kun Xie
- German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| | - Tengfei Liu
- Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|