151
|
Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B, Li X, Zhou W, Li J, Li Z, Bai C, Zhao L, Han Q, Zhao RC, Wang X. Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Am J Cancer Res 2022; 12:620-638. [PMID: 34976204 PMCID: PMC8692898 DOI: 10.7150/thno.60540] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The protumor activities of cancer-associated fibroblasts (CAFs) suggest that they are potential therapeutic targets for the treatment of cancer. The mechanism of CAF heterogeneity in gastric cancer (GC) remains unclear and has slowed translational advances in targeting CAFs. Therefore, a comprehensive understanding of the classification, function, activation stage, and spatial distribution of the CAF subsets in GC is urgently needed. Methods: In this study, the characteristics of the CAF subsets and the dynamic communication among the tumor microenvironment (TME) components regulated by the CAF subsets were analyzed by performing single-cell RNA sequencing of eight pairs of GC and adjacent mucosal (AM) samples. The spatial distribution of the CAF subsets in different Lauren subtypes of GC, as well as the neighborhood relations between these CAF subsets and the protumor immune cell subsets were evaluated by performing multistaining registration. Results: Tumor epithelial cells exhibited significant intratumor and intertumor variabilities, while CAFs mainly exhibited intratumor variability. Moreover, we identified four CAF subsets with different properties in GC. These four CAF subsets shared similar properties with their resident fibroblast counterparts in the adjacent mucosa but also exhibited enhanced protumor activities. Additionally, two CAF subsets, inflammatory CAFs (iCAFs) and extracellular matrix CAFs (eCAFs), communicated with adjacent immune cell subsets in the GC TME. iCAFs interacted with T cells by secreting interleukin (IL)-6 and C-X-C motif chemokine ligand 12 (CXCL12), while eCAFs correlated with M2 macrophages via the expression of periostin (POSTN). eCAFs, which function as a pro-invasive CAF subset, decreased the overall survival time of patients with GC. Conclusions: iCAFs and eCAFs not only exhibited enhanced pro-invasive activities but also mobilized the surrounding immune cells to construct a tumor-favorable microenvironment. Therefore, inhibiting their activation restrains the GC 'seed' and simultaneously improves the 'GC' soil, suggesting that it represents a promising therapeutic strategy for the treatment of GC.
Collapse
|
152
|
DA Silva ACC, Pereira MA, Ramos MFKP, Cardili L, Ribeiro U, Zilberstein B, Mello ESD, Castria TBD. GASTRIC CANCER WITH POSITIVE EXPRESSION OF ESTROGEN RECEPTOR ALPHA: A CASE SERIES FROM A SINGLE WESTERN CENTER. ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2022; 34:e1635. [PMID: 35107497 PMCID: PMC8846422 DOI: 10.1590/0102-672020210002e1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023]
Abstract
AIM Despite advances in therapies, the prognosis of patients with advanced gastric cancer (GC) remains poor. Several studies have demonstrated the expression of estrogen receptor alpha (ERa); however, its significance in GC remains controversial. The present study aims to report a case series of GC with ERa-positive expression and describe their clinicopathological characteristics and prognosis. METHODS We retrospectively evaluated patients with GC who underwent gastrectomy with curative intent between 2009 and 2019. ERa expression was assessed by immunohistochemistry through tissue microarray construction. Patients with ERa-negative gastric adenocarcinoma served as a comparison group. RESULTS During the selected period, 6 (1.8%) ERa-positive GC were identified among the 345 GC patients analyzed. All ERa-positive patients were men, aged 34-78 years, and had Lauren diffuse GC and pN+ status. Compared with ERa-negative patients, ERa-positive patients had larger tumor size (p=0.031), total gastrectomy (p=0.012), diffuse/mixed Lauren type (p=0.012), presence of perineural invasion (p=0.030), and lymph node metastasis (p=0.215). The final stage was IIA in one case, IIIA in three cases, and IIIB in two cases. Among the six ERa-positive patients, three had disease recurrence (peritoneal) and died. There was no significant difference in survival between ERa-positive and ERa-negative groups. CONCLUSIONS ERa expression is less common in GC, is associated with diffuse histology and presence of lymph node metastasis, and may be a marker related to tumor progression and worse prognosis. Also, a high rate of peritoneal recurrence was observed in ERa-positive patients.
Collapse
Affiliation(s)
| | - Marina Alessandra Pereira
- Instituto do Câncer, Hospital de Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo - SP - Brasil
| | | | - Leonardo Cardili
- Instituto do Câncer, Hospital de Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo - SP - Brasil
| | - Ulysses Ribeiro
- Instituto do Câncer, Hospital de Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo - SP - Brasil
| | - Bruno Zilberstein
- Instituto do Câncer, Hospital de Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo - SP - Brasil
| | - Evandro Sobroza de Mello
- Instituto do Câncer, Hospital de Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo - SP - Brasil
| | - Tiago Biachi de Castria
- Instituto do Câncer, Hospital de Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo - SP - Brasil
| |
Collapse
|
153
|
Furukawa K, Hatakeyama K, Terashima M, Nagashima T, Urakami K, Ohshima K, Notsu A, Sugino T, Yagi T, Fujiya K, Kamiya S, Hikage M, Tanizawa Y, Bando E, Kanai Y, Akiyama Y, Yamaguchi K. Molecular classification of gastric cancer predicts survival in patients undergoing radical gastrectomy based on project HOPE. Gastric Cancer 2022; 25:138-148. [PMID: 34476642 DOI: 10.1007/s10120-021-01242-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) has been classified based on molecular profiling like The Cancer Genome Atlas (TCGA) and Asian Cancer Research Group (ACRG), and attempts have been made to establish therapeutic strategies based on these classifications. However, it is difficult to predict the survival according to these classifications especially in radically resected patients. We aimed to establish a new molecular classification of GC which predicts the survival in patients undergoing radical gastrectomy. METHODS The present study included 499 Japanese patients with advanced GC undergoing radical (R0/R1) gastrectomy. Whole-exome sequencing, panel sequencing, and gene expression profiling were conducted (High-tech Omics-based Patient Evaluation [Project HOPE]). We classified patients according to TCGA and ACRG subtypes, and evaluated the clinicopathologic features and survival. Then, we attempted to classify patients according to their molecular profiles associated with biological features and survival (HOPE classification). RESULTS TCGA and ACRG classifications failed to predict the survival. In HOPE classification, hypermutated (HMT) tumors were selected first as a distinctive feature, and T-cell-inflamed expression signature-high (TCI) tumors were then extracted. Finally, the remaining tumors were divided by the epithelial-mesenchymal transition (EMT) expression signature. HOPE classification significantly predicted the disease-specific and overall survival (p < 0.001 and 0.020, respectively). HMT + TCI showed the best survival, while EMT-high showed the worst survival. The HOPE classification was successfully validated in the TCGA cohort. CONCLUSIONS We established a new molecular classification of gastric cancer that predicts the survival in patients undergoing radical surgery.
Collapse
Affiliation(s)
- Kenichiro Furukawa
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan.,Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Keiichi Hatakeyama
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Masanori Terashima
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan.,SRL Inc., Shinjuku Mitsui Building, 2-1-1 Nishishinjuku, Shinjuku, Tokyo, 163-0403, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Akifumi Notsu
- Clinical Research Center, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo,Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Taisuke Yagi
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Keiichi Fujiya
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Satoshi Kamiya
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Makoto Hikage
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yutaka Tanizawa
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Etsuro Bando
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yasuto Akiyama
- Immunotheraphy Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| |
Collapse
|
154
|
Danilova NV, Sotnikova TN, Kalinin DV, Oleynikova NA, Chayka AV, Khomyakov VM, Kakotkin VV, Vychuzhanin DV, Andreeva YY, Malkov PG. [PD-L1 expression in EBV-associated gastric carcinomas]. Arkh Patol 2022; 84:5-12. [PMID: 35880594 DOI: 10.17116/patol2022840415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Assessment of the incidence of PD-L1 expression in EBV-associated gastric adenocarcinomas, as well as clarification of the clinical and morphological characteristics and median survival of patients with PD-L1-positive EBV-associated gastric cancer. MATERIAL AND METHODS Samples of surgical material from 127 patients with stomach cancer were studied. Each sample was stained by in situ hybridization using primers for the Epstein-Barr virus-encoded small RNAs (EBER). Expression of PD-L1 was assessed immunohistochemically (PD-L1 SP263, PD-L1 SP142). The results obtained were compared with the main clinical and morphological characteristics of gastric cancer and median survival of patients. RESULTS The detection rate of PD-L1 SP263 and PD-L1 SP142 in EBV-associated gastric adenocarcinoma in our sample was 100% and 76.9% respectively, thus, PD-L1 expression (SP263, SP142) is significantly more frequently detected in EBV-associated gastric carcinomas. It was found that patients with positive expression of PD-L1 in EBV-associated gastric carcinomas are younger (mean age 56.3 years for SP263 and 55.6 years for SP142), belonging to male gender. In addition, this group is dominated by proximal localization of tumors, ulcerative form of growth, tubular histological type, intermediate subtype according to P. Lauren. These characteristics do not depend on the antibody clone: positive expression of SP142 and SP 263 was detected in the same patients with a few exceptions. The overall median survival of patients with positive PD-L1 status SP263 in EBV-associated gastric carcinomas was 35 months, for patients with positive PD-L1 status SP142 - 25 months. Median survival of SP142 PD-L1 positive patients is higher than overall median survival of PD-L1 negative patients in EBV-associated gastric carcinomas. It was found that PD-L1 status in EBV-associated gastric cancer is not a significant prognostic factor. CONCLUSION A single PD-L1 status does not significantly affect the prognosis in patients with gastric cancer, including those in the group of EBV-associated carcinomas, and can only be considered in conjunction with 'classic' clinical and morphological characteristics, primarily with the stage of the tumor process, since they determine the prognostic properties of the tumor.
Collapse
Affiliation(s)
- N V Danilova
- Lomonosov Moscow State University - Medical Scientific and Educational Center, Moscow, Russia
| | | | - D V Kalinin
- Vishnevsky National Medical Research Center of Surgery, Moscow, Russia
| | - N A Oleynikova
- Lomonosov Moscow State University - Medical Scientific and Educational Center, Moscow, Russia
| | - A V Chayka
- Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Center, Moscow, Russia
| | - V M Khomyakov
- Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Center, Moscow, Russia
| | - V V Kakotkin
- Lomonosov Moscow State University - Medical Scientific and Educational Center, Moscow, Russia
| | - D V Vychuzhanin
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yu Yu Andreeva
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| | - P G Malkov
- Lomonosov Moscow State University - Medical Scientific and Educational Center, Moscow, Russia
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| |
Collapse
|
155
|
Pandian J, Ganesan K. Delineation of gastric tumors with activated ERK/MAPK signaling cascades for the development of targeted therapeutics. Exp Cell Res 2022; 410:112956. [PMID: 34864005 DOI: 10.1016/j.yexcr.2021.112956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 11/04/2022]
Abstract
The ERK/MAPK signaling pathway is activated in various cancers including gastric cancer. Targeting the ERK/MAPK/MEK pathway has been considered as a promising strategy for cancer therapy. However, MEK inhibition leads to a series of resistance mechanisms due to mutations in MEK, elevated expression of RAS or RAF proteins and activation of the associated signaling pathways. In the present study, ERK/MAPK pathway specific gene signatures were identified to be highly activated in intestinal subtype gastric tumors. Inhibition of ERK/MAPK pathway with the inhibitor PD98059 in gastric cancer cell lines by in vitro signaling pathway and genome-wide expression profiling revealed the associated signaling pathways. Functional genomic investigation of the ERK/MAPK regulated genes reveals the association of ERK/MAPK pathway with E2F, Myc, SOX-2, TGF-β, OCT4 and Notch pathways in gastric cancer cells. Of these, E2F, Myc and SOX-2 pathways are activated in intestinal subtype gastric tumors and TGF-β, OCT4, Notch pathways are activated in diffuse subtype gastric tumors. Further, the mutational load of gastric tumors was found to have association and correlation with the activation pattern of ERK/MAPK pathways across gastric tumors. ERK/MAPK activation was also found to represent the EBV and MSI activated subtypes of gastric tumors. Identification of potent drug candidates inhibiting the ERK/MAPK and associated pathways would pave a way for developing the targeted therapeutics for a subset of gastric tumors with activated ERK/MAPK signaling cascade.
Collapse
Affiliation(s)
- Jaishree Pandian
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.
| | - Kumaresan Ganesan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.
| |
Collapse
|
156
|
Manuel Lopes de Sousa H, Patrícia Costa Ribeiro J, Basílio Timóteo M. Epstein-Barr Virus-Associated Gastric Cancer: Old Entity with New Relevance. Infect Dis (Lond) 2021. [DOI: 10.5772/intechopen.93649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gastric cancer (GC) represents a major public health issue worldwide, being the fifth most common cancer and one of the leading causes of death by cancer. In 2014, The Cancer Genome Atlas (TCGA) established that tumors positive for Epstein-Barr virus (EBV) are considered a specific subtype of GC (EBVaGC). Several meta-analyses have shown that EBVaGC represents almost 10% of all gastric cancer worldwide, with small differences in the geographic distribution. This tumor subtype has a high potential of being clinically relevant and studies have shown that it has specific features, a better prognosis, and increased overall survival. In this review, we summarize some of the most frequent aspects of EBVaGC, including the specific features of this GC subtype, data regarding the potential steps of EBVaGC carcinogenesis, and perspectives on treatment opportunities.
Collapse
|
157
|
Abstract
Peritoneal surface malignancies comprise a heterogeneous group of primary tumours, including peritoneal mesothelioma, and peritoneal metastases of other tumours, including ovarian, gastric, colorectal, appendicular or pancreatic cancers. The pathophysiology of peritoneal malignancy is complex and not fully understood. The two main hypotheses are the transformation of mesothelial cells (peritoneal primary tumour) and shedding of cells from a primary tumour with implantation of cells in the peritoneal cavity (peritoneal metastasis). Diagnosis is challenging and often requires modern imaging and interventional techniques, including surgical exploration. In the past decade, new treatments and multimodal strategies helped to improve patient survival and quality of life and the premise that peritoneal malignancies are fatal diseases has been dismissed as management strategies, including complete cytoreductive surgery embedded in perioperative systemic chemotherapy, can provide cure in selected patients. Furthermore, intraperitoneal chemotherapy has become an important part of combination treatments. Improving locoregional treatment delivery to enhance penetration to tumour nodules and reduce systemic uptake is one of the most active research areas. The current main challenges involve not only offering the best treatment option and developing intraperitoneal therapies that are equivalent to current systemic therapies but also defining the optimal treatment sequence according to primary tumour, disease extent and patient preferences. New imaging modalities, less invasive surgery, nanomedicines and targeted therapies are the basis for a new era of intraperitoneal therapy and are beginning to show encouraging outcomes.
Collapse
|
158
|
Hu J, Yang Y, Ma Y, Ning Y, Chen G, Liu Y. Proliferation Cycle Transcriptomic Signatures are Strongly associated With Gastric Cancer Patient Survival. Front Cell Dev Biol 2021; 9:770994. [PMID: 34926458 PMCID: PMC8672820 DOI: 10.3389/fcell.2021.770994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer is one of the most heterogeneous tumors with multi-level molecular disturbances. Sustaining proliferative signaling and evading growth suppressors are two important hallmarks that enable the cancer cells to become tumorigenic and ultimately malignant, which enable tumor growth. Discovering and understanding the difference in tumor proliferation cycle phenotypes can be used to better classify tumors, and provide classification schemes for disease diagnosis and treatment options, which are more in line with the requirements of today's precision medicine. We collected 691 eligible samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, combined with transcriptome data, to explore different heterogeneous proliferation cycle phenotypes, and further study the potential genomic changes that may lead to these different phenotypes in this study. Interestingly, two subtypes with different clinical and biological characteristics were identified through cluster analysis of gastric cancer transcriptome data. The repeatability of the classification was confirmed in an independent Gene Expression Omnibus validation cohort, and consistent phenotypes were observed. These two phenotypes showed different clinical outcomes, and tumor mutation burden. This classification helped us to better classify gastric cancer patients and provide targeted treatment based on specific transcriptome data.
Collapse
Affiliation(s)
- Jianwen Hu
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yanpeng Yang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yongchen Ma
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Yingze Ning
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Guowei Chen
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yucun Liu
- Department of General Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
159
|
Rhode P, Mehdorn M, Lyros O, Kahlert C, Kurth T, Venus T, Schierle K, Estrela-Lopis I, Jansen-Winkeln B, Lordick F, Gockel I, Thieme R. Characterization of Total RNA, CD44, FASN, and PTEN mRNAs from Extracellular Vesicles as Biomarkers in Gastric Cancer Patients. Cancers (Basel) 2021; 13:cancers13235975. [PMID: 34885085 PMCID: PMC8656496 DOI: 10.3390/cancers13235975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Liquid biopsy is an easily accessible and non-invasive method to gain information about tumor diseases. The purpose of our study was to determine the value of extracellular vesicle-derived mRNAs as biomarkers for the diagnosis of gastric cancer and the response to its treatment. In a cohort of 87 gastric cancer patients and a control group of 14 individuals, we analyzed the absolute RNA concentration from extracellular vesicles (EV) and the relative levels of FASN, PTEN, and CD44 mRNA, and their correlation with clinico-pathological features. These correlated with treatment, tumor grading, and the pathological subtype according to Laurén’s classification. This might reflect their potential as both diagnostic and therapeutic predictors. Abstract In-depth characterization has introduced new molecular subtypes of gastric cancer (GC). To identify these, new approaches and techniques are required. Liquid biopsies are trendsetting and provide an easy and feasible method to identify and to monitor GC patients. In a prospective cohort of 87 GC patients, extracellular vesicles (EVs) were isolated from 250 µL of plasma. The total RNA was isolated with TRIZOL. The total RNA amount and the relative mRNA levels of CD44, PTEN, and FASN were measured by qRT-PCR. The isolation of EVs and their contained mRNA was possible in all 87 samples investigated. The relative mRNA levels of PTEN were higher in patients already treated by chemotherapy than in chemo-naïve patients. In patients who had undergone neoadjuvant chemotherapy followed by gastrectomy, a decrease in the total RNA amount was observed after neoadjuvant chemotherapy and gastrectomy, while FASN and CD44 mRNA levels decreased only after gastrectomy. The amount of RNA and the relative mRNA levels of FASN and CD44 in EVs were affected more significantly by chemotherapy and gastrectomy than by chemotherapy alone. Therefore, they are a potential biomarker for monitoring treatment response. Future analyses are needed to identify GC-specific key RNAs in EVs, which could be used for the diagnosis of gastric cancer patients in order to determine their molecular subtype and to accompany the therapeutic response.
Collapse
Affiliation(s)
- Philipp Rhode
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
| | - Matthias Mehdorn
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
| | - Orestis Lyros
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
| | - Christoph Kahlert
- Department for Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, D-01307 Dresden, Germany;
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Technische Universität Dresden, D-01307 Dresden, Germany;
| | - Tom Venus
- Institute of Medical Physics and Biophysics, University of Leipzig, D-0407 Leipzig, Germany; (T.V.); (I.E.-L.)
| | - Katrin Schierle
- Institute of Pathology, University Hospital Leipzig, D-04103 Leipzig, Germany;
| | - Irina Estrela-Lopis
- Institute of Medical Physics and Biophysics, University of Leipzig, D-0407 Leipzig, Germany; (T.V.); (I.E.-L.)
| | - Boris Jansen-Winkeln
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
| | - Florian Lordick
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology and Infectious Diseases, University Hospital Leipzig, D-04103 Leipzig, Germany;
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
- Correspondence:
| |
Collapse
|
160
|
Alsina M, Diez M, Tabernero J. Emerging biological drugs for the treatment of gastroesophageal adenocarcinoma. Expert Opin Emerg Drugs 2021; 26:385-400. [PMID: 34814781 DOI: 10.1080/14728214.2021.2010705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Gastric cancer (GC) and gastroesophageal junction cancer (GOJC) patients have a poor prognosis with a 5-year relative survival rate of 6% in the metastatic setting. Despite the well-characterized molecular features, patients have been historically considered for treatment with universal and undistinguishing chemotherapies and targeted agents, except for the HER2-positive population and some immunological approaches. AREAS COVERED In this review, we discuss the intrinsic characteristics of GC/GOJC from an epidemiological, molecular, and clinical perspective with an exhaustive evaluation of the reported and ongoing phase II/III clinical trials with targeted therapies. EXPERT OPINION The absence of robust biomarkers, the difficulties in measuring it due to the well-recognized molecular heterogeneity, and in part nonoptimistic clinical trial designs have been a major cause of frequent failure. Current efforts should focus on proper recognition of the distinctive molecular and clinical features of each GC/GOJC patient. Sequencing both tumor tissue DNA and ctDNA could identify targetable alterations, including rare alterations, thus allowing GC/GOJC patients for a precision medicine benefit.
Collapse
Affiliation(s)
- Maria Alsina
- Gastrointestinal and Endocrine Tumors Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Medical Oncology Department, Hospital Universitario de Navarra (HUN), Pamplona, Spain
| | - Marc Diez
- Gastrointestinal and Endocrine Tumors Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Josep Tabernero
- Gastrointestinal and Endocrine Tumors Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
161
|
Nie RC, Chen GM, Yuan SQ, Kim JW, Zhou J, Nie M, Feng CY, Chen YB, Chen S, Zhou ZW, Wang Y, Li YF. Adjuvant Chemotherapy for Gastric Cancer Patients with Mismatch Repair Deficiency or Microsatellite Instability: Systematic Review and Meta-Analysis. Ann Surg Oncol 2021; 29:2324-2331. [PMID: 34796431 DOI: 10.1245/s10434-021-11050-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/05/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Mismatch repair-deficient (dMMR) or microsatellite instability-high (MSI-H) status serves as a predictor of a poor response to adjuvant chemotherapy among stage 2 colon cancer patients. This study aimed to investigate the efficacy of adjuvant chemotherapy in dMMR/MSI-H gastric cancer (GC). METHODS Clinical studies comparing adjuvant chemotherapy and surgery alone in dMMR/MSI-H GCs through June 2021 were retrieved to assess the survival of patients managed with both treatments. Two approaches were used to pool the hazard ratio (HR) of survival: (1) if Kaplan-Meier curves and number of patients at risk were provided, individual patient data were extracted. Cox models were used to calculate the HR with its 95% confidence interval (CI); (2) for study-level data, pooled HR was estimated using fixed/random-effects models. RESULTS Seven clinical studies were assessed. For dMMR/MSI-H versus mismatch repair-proficient (pMMR)/microsatellite stable (MSS)/microsatellite instability-low (MSI-L) status, the estimated 5-year disease-free survival (DFS) rate was 74.2% versus 51.5% (HR, 0.44; 95% CI, 0.32-0.62; P < 0.001) and the estimated 5-year OS rate was 60.5% versus 49.1% (HR, 0.71; 95% CI, 0.60-0.85; P < 0.001). The study-level data showed pooled HRs of 0.42 for DFS (95% CI, 0.31-0.57; P < 0.001) and 0.65 for OS (95% CI, 0.38-1.11; P = 0.114). For adjuvant chemotherapy versus observation of dMMR/MSI-H, the estimated 5-year DFS rate was 76.1% versus 73.3% (HR, 0.72; 95% CI, 0.45-1.15; P = 0.171) and the estimated 5-year OS rate was 73.5% versus 59.7% (HR, 0.62; 95% CI, 0.46-0.83; P = 0.001). Significant survival differences also were observed at study level. CONCLUSIONS The study findings confirm the benefit of adjuvant chemotherapy for dMMR/MSI-H GC patients.
Collapse
Affiliation(s)
- Run Cong Nie
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Guo Ming Chen
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Shu Qiang Yuan
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jin Won Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jie Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Man Nie
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Chen Yang Feng
- Department of Information, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ying Bo Chen
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Shi Chen
- Department of Gastrointestinal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhi Wei Zhou
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.
| | - Yun Wang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.
| | - Yuan Fang Li
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.
| |
Collapse
|
162
|
Li Z, Jia Y, Zhu H, Xing X, Pang F, Shan F, Li S, Wang D, Zhao F, Ma T, Wang S, Ji J. Tumor mutation burden is correlated with response and prognosis in microsatellite-stable (MSS) gastric cancer patients undergoing neoadjuvant chemotherapy. Gastric Cancer 2021; 24:1342-1354. [PMID: 34406546 DOI: 10.1007/s10120-021-01207-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neoadjuvant chemotherapy (NACT) before radical gastrectomy is preferred for locally advanced gastric cancer (GC). However, clinical practices demonstrate that a considerable proportion of GC patients do not benefit from NACT, largely due to the lack of biomarkers for patient selection and prognosis prediction. A recent study revealed that patients with microsatellite instability-high (MSI-H) may be resistant to NACT, however, most tumors in Chinese GC patients (~ 95%) are characterized by microsatellite stability (MSS). Here, we aimed to discover new molecular biomarkers for this larger population. METHODS We performed whole-exome sequencing on 46 clinical samples (pre- and post-treatment) from 30 stage II/III MSS GC patients whose response to NACT was rigorously defined. Serum tumor markers (TMs), including AFP, CEA, CA199, CA724 and CA242 were measured during the course. RESULTS High tumor mutation burden (TMB-H) and 19q12 amplification (19q12 +) were positively associated with the NACT response. When TMB and 19q12 amplification were jointly analyzed, those with TMB-H or 19q12 + showed favorable response to NACT (p = 0.035). Further, TMB-H was negatively correlated with ypN stage, lymph node metastasis, and macrophage infiltration. Patients with TMB-H showed better disease-free survival (DFS) than those with TMB-L (P = 0.025, HR = 0.1331), and this was further validated using two larger GC datasets: TCGA-STAD (p = 0.004) and ICGC-CN (p = 0.045). CONCLUSION The combination of TMB-H and 19q12 + can serve as an early indicator of response to NACT. Superior to traditional clinical indicators, TMB-H is a robust and easily accessible candidate biomarker associated with better DFS, and can be evaluated at the time of diagnosis.
Collapse
Affiliation(s)
- Ziyu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yongning Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Honglin Zhu
- Genetron Health (Beijing) Technology, Co. Ltd, Beijing, 102206, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Center for Molecular Diagnostics, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Fei Pang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Fei Shan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Shuangxi Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Danhua Wang
- Genetron Health (Beijing) Technology, Co. Ltd, Beijing, 102206, China
| | - Fangping Zhao
- Genetron Health (Beijing) Technology, Co. Ltd, Beijing, 102206, China
| | - Tonghui Ma
- Genetron Health (Beijing) Technology, Co. Ltd, Beijing, 102206, China
| | - Sizhen Wang
- Genetron Health (Beijing) Technology, Co. Ltd, Beijing, 102206, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
163
|
Garcia‐Pelaez J, Barbosa‐Matos R, Gullo I, Carneiro F, Oliveira C. Histological and mutational profile of diffuse gastric cancer: current knowledge and future challenges. Mol Oncol 2021; 15:2841-2867. [PMID: 33724653 PMCID: PMC8564639 DOI: 10.1002/1878-0261.12948] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) pathogenesis is complex and heterogeneous, reflecting morphological, molecular and genetic diversity. Diffuse gastric cancer (DGC) and intestinal gastric cancer (IGC) are the major histological types. GC may be sporadic or hereditary; sporadic GC is related to environmental and genetic low-risk factors and hereditary GC is caused by inherited high-risk mutations, so far identified only for the diffuse histotype. DGC phenotypic heterogeneity challenges the current understanding of molecular mechanisms underlying carcinogenesis. The definition of a DGC-specific mutational profile remains controversial, possibly reflecting the heterogeneity of DGC-related histological subtypes [signet-ring cell carcinoma (SRCC) and poorly cohesive carcinoma not otherwise specified (PCC-NOS)]. Indeed, DGC and DGC-related subtypes may present specific mutational profiles underlying the particularly aggressive behaviour and dismal prognosis of DGC vs IGC and PCC-NOS vs SRCC. In this systematic review, we revised the histological presentations, molecular classifications and approved therapies for gastric cancer, with a focus on DGC. We then analysed results from the most relevant studies, reporting mutational analysis data specifying mutational frequencies, and their relationship with DGC and IGC histological types, and with specific DGC subtypes (SRCC and PCC-NOS). We aimed at identifying histology-associated mutational profiles with an emphasis in DGC and its subtypes (DGC vs IGC; sporadic vs hereditary DGC; and SRCC vs PCC-NOS). We further used these mutational profiles to identify the most commonly affected molecular pathways and biological functions, and explored the clinical trials directed specifically to patients with DGC. This systematic analysis is expected to expose a DGC-specific molecular profile and shed light into potential targets for therapeutic intervention, which are currently missing.
Collapse
Affiliation(s)
- José Garcia‐Pelaez
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do PortoPortugal
- IPATIMUP – Institute of Molecular Pathology and ImmunologyUniversity of PortoPortugal
- Doctoral Programme on BiomedicineFaculty of MedicineUniversity of PortoPortugal
| | - Rita Barbosa‐Matos
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do PortoPortugal
- IPATIMUP – Institute of Molecular Pathology and ImmunologyUniversity of PortoPortugal
- Doctoral Programme on Cellular and Molecular Biotechnology Applied to Health Sciences (BiotechHealth)ICBAS – Institute of Biomedical Sciences Abel SalazarUniversity of PortoPortugal
| | - Irene Gullo
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do PortoPortugal
- IPATIMUP – Institute of Molecular Pathology and ImmunologyUniversity of PortoPortugal
- Department of PathologyFMUP ‐ Faculty of Medicine of the University of PortoPortugal
- Department of PathologyCHUSJ – Centro Hospitalar Universitário São JoãoPortoPortugal
| | - Fátima Carneiro
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do PortoPortugal
- IPATIMUP – Institute of Molecular Pathology and ImmunologyUniversity of PortoPortugal
- Department of PathologyFMUP ‐ Faculty of Medicine of the University of PortoPortugal
- Department of PathologyCHUSJ – Centro Hospitalar Universitário São JoãoPortoPortugal
| | - Carla Oliveira
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do PortoPortugal
- IPATIMUP – Institute of Molecular Pathology and ImmunologyUniversity of PortoPortugal
- Department of PathologyFMUP ‐ Faculty of Medicine of the University of PortoPortugal
| |
Collapse
|
164
|
Huang T, Liang Y, Zhang H, Chen X, Wei H, Sun W, Wang Y. CSMD1 Mutations Are Associated with Increased Mutational Burden, Favorable Prognosis, and Anti-Tumor Immunity in Gastric Cancer. Genes (Basel) 2021; 12:genes12111715. [PMID: 34828321 PMCID: PMC8623648 DOI: 10.3390/genes12111715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor mutational burden (TMB) is considered a potential biomarker for predicting the response and effect of immune checkpoint inhibitors (ICIs). To find specific gene mutations related to TMB and the prognosis of patients, the frequently mutated genes in gastric cancer patients from TCGA and ICGC were obtained and the correlation between gene mutation, TMB, and prognosis was analyzed. Furthermore, to clarify whether specific gene mutations can be used as predictive biomarkers of ICIs, a gene set enrichment analysis (GSEA) for immune pathways and an immune infiltration analysis were conducted. The results showed that CUB and Sushi multiple domains 1 (CSMD1) mutation (CSMD1-mut) were associated with higher TMB and better prognosis in patients. The genetic map showed that, compared with wild-type samples, the loss of chromosomes 4q, 5q, 8p, and 9p decreased and the status of microsatellite instability increased in the CSMD1-mut samples. The GSEA analysis showed that immune-related pathways were enriched in the CSMD1-mut samples. The immune infiltration analysis showed that the anti-tumor immune cells were upregulated and that the tumor-promoting immune cells were downregulated in the CSMD1-mut samples. The gene co-expression analysis showed that PD-L1 expression was higher in the CSMD1-mut samples. In summary, CSMD1-mut in gastric cancer was associated with increased TMB and favorable survival and may have potential significance in predicting the efficacy of anti-PD-L1.
Collapse
Affiliation(s)
- Taobi Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (T.H.); (Y.L.); (H.Z.); (X.C.); (H.W.)
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuan Liang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (T.H.); (Y.L.); (H.Z.); (X.C.); (H.W.)
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Huiyun Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (T.H.); (Y.L.); (H.Z.); (X.C.); (H.W.)
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xia Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (T.H.); (Y.L.); (H.Z.); (X.C.); (H.W.)
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Hui Wei
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (T.H.); (Y.L.); (H.Z.); (X.C.); (H.W.)
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Weiming Sun
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou 730000, China;
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Correspondence: ; Tel.: +86-931-8356012
| |
Collapse
|
165
|
Baxter MA, Middleton F, Cagney HP, Petty RD. Resistance to immune checkpoint inhibitors in advanced gastro-oesophageal cancers. Br J Cancer 2021; 125:1068-1079. [PMID: 34230609 PMCID: PMC8505606 DOI: 10.1038/s41416-021-01425-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/17/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have altered the treatment paradigm across a range of tumour types, including gastro-oesophageal cancers. For patients with any cancer type who respond, ICIs can confer long-term disease control and significantly improve survival and quality of life, but for patients with gastro-oesophageal cancer, ICIs can be transformative, as durable responses in advanced disease have hitherto been rare, especially in those patients who are resistant to first-line cytotoxic therapies. Results from trials in patients with advanced-stage gastro-oesophageal cancer have raised hopes that ICIs will be successful as adjuvant and neoadjuvant treatments in early-stage disease, when the majority of patients relapse after potential curative treatments, and several trials are ongoing. Unfortunately, however, ICI-responding patients appear to constitute a minority subgroup within gastro-oesophageal cancer, and resistance to ICI therapy (whether primary or acquired) is common. Understanding the biological mechanisms of ICI resistance is a current major research challenge and involves investigation of both tumour and patient-specific factors. In this review, we discuss the mechanisms underlying ICI resistance and their potential specific applications of this knowledge towards precision medicine strategies in the management of gastro-oesophageal cancers in clinical practice.
Collapse
Affiliation(s)
- Mark A Baxter
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
- Tayside Cancer Centre, Ninewells Hospital and Medical School, NHS Tayside, Dundee, UK.
| | - Fearghas Middleton
- Tayside Cancer Centre, Ninewells Hospital and Medical School, NHS Tayside, Dundee, UK
| | - Hannah P Cagney
- School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Russell D Petty
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
- Tayside Cancer Centre, Ninewells Hospital and Medical School, NHS Tayside, Dundee, UK.
| |
Collapse
|
166
|
Shi D, Zhang Y, Mao T, Liu D, Liu W, Luo B. MiR-BART2-3p targets Unc-51-like kinase 1 and inhibits cell autophagy and migration in Epstein-Barr virus-associated gastric cancer. Virus Res 2021; 305:198567. [PMID: 34555439 DOI: 10.1016/j.virusres.2021.198567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022]
Abstract
ULK1 (Unc-51-like kinase 1) is an evolutionarily conserved serine/threonine kinase that plays a central role in the regulation of autophagy. ULK1 is associated with prognosis for metastasis and survival in several tumors. However, its relationship with Epstein-Barr virus (EBV) has not been studied. We found that the expression of ULK1 in EBV-associated gastric cancer cells was lower than that in EBV-negative gastric cancer cells. Further, a luciferase reporter gene assay showed that miR-BART2-3p directly targets ULK1. EBV-miR-BART2-3p attenuated endogenous protein expression levels of some autophagy-related genes. MiR-BART2-3p could thus be involved in the regulation of autophagy. Most important, our research indicates that miR-BART2-3p targets ULK1, resulting in downregulation of epithelial-mesenchymal transformation (EMT) -associated marker proteins and reducing EMT and cell migration. Our study shows that modulation of ULK1 is the likely mechanism by which miR-BART2-3p participates in the regulation of autophagy and cancer cell migration.
Collapse
Affiliation(s)
- Duo Shi
- Department of Pathogeny Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yan Zhang
- Department of Pathogeny Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Department of Clinical Laboratory, Zibo Central Hospital, ZiBo, 255000, China
| | - Tao Mao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Dandan Liu
- Department of Pathogeny Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wen Liu
- Department of Pathogeny Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bing Luo
- Department of Pathogeny Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
167
|
Gervaso L, Pellicori S, Cella CA, Bagnardi V, Lordick F, Fazio N. Biomarker evaluation in radically resectable locally advanced gastric cancer treated with neoadjuvant chemotherapy: an evidence reappraisal. Ther Adv Med Oncol 2021; 13:17588359211029559. [PMID: 34484429 PMCID: PMC8414610 DOI: 10.1177/17588359211029559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
Neoadjuvant chemotherapy (NAC) significantly improved the prognosis of patients
with locally advanced resectable gastric cancer but, despite important
progresses, relapse-related death remains a major challenge. Therefore, it
appears crucial to understand which patients will benefit from peri-operative
treatment. Biomarkers such as human epidermal growth factor receptor-2 (HER2),
microsatellite instability (MSI), and Epstein-Barr Virus (EBV) have been widely
studied; however, they do not yet guide the choice of perioperative treatment in
clinical practice. We performed a narrative review, including 23 studies,
addressing the value of tissue- or blood-based biomarkers in the neoadjuvant
setting. Ten studies (43.5%) were prospective, and more than half were conducted
in East-Asia. Biomarkers were evaluated only post-NAC (on surgical samples or
blood) in seven studies (30.4%), only pre-NAC (on endoscopic specimens or blood)
in 10 studies (43.5%), and both pre- and post-NAC (26.1%) in six studies. Among
the high variety of investigated biomarkers, some of these including MSI-H or
enzymatic profile (as TS, UGT1A1, MTHFR, ERCC or XRCC) showed promising results
and deserve to be assessed in methodologically sound clinical trials. The
identification of molecular biomarkers in patients treated with NAC for locally
advanced resectable gastric or EGJ cancer remains crucial.
Collapse
Affiliation(s)
- Lorenzo Gervaso
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO, European Institute of Oncology IRCCS, Milan, Lombardia, Italy
| | - Stefania Pellicori
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO, European Institute of Oncology IRCCS, Milan, Lombardia, Italy
| | - Chiara A Cella
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO, European Institute of Oncology IRCCS, Milan, Lombardia, Italy
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milano, Lombardia Italy
| | - Florian Lordick
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology, and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Leipzig, Germany
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, via Ripamonti 435, Milan, Lombardia 20141, Italy
| |
Collapse
|
168
|
Rüschoff J, Baretton G, Bläker H, Dietmaier W, Dietel M, Hartmann A, Horn LC, Jöhrens K, Kirchner T, Knüchel R, Mayr D, Merkelbach-Bruse S, Schildhaus HU, Schirmacher P, Tiemann M, Tiemann K, Weichert W, Büttner R. MSI testing : What's new? What should be considered? DER PATHOLOGE 2021; 42:110-118. [PMID: 34477921 DOI: 10.1007/s00292-021-00948-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Based on new trial data regarding immune checkpoint inhibitors (ICIs), the detection of high-grade microsatellite instability (MSI-H) or underlying deficient mismatch repair protein (dMMR) is now becoming increasingly important for predicting treatment response. For the first time, a PD‑1 ICI (pembrolizumab) has been approved by the European Medicines Agency (EMA) for first-line treatment of advanced (stage IV) dMMR/MSI‑H colorectal cancer (CRC). Further indications, such as dMMR/MSI‑H endometrial carcinoma (EC), have already succeeded (Dostarlimab, 2nd line treatment) and others are expected to follow before the end of 2021. The question of optimal testing in routine diagnostics should therefore be re-evaluated. Based on a consideration of the strengths and weaknesses of the widely available methods (immunohistochemistry and PCR), a test algorithm is proposed that allows quality assured, reliable, and cost-effective dMMR/MSI‑H testing. For CRC and EC, testing is therefore already possible at the primary diagnosis stage, in line with international recommendations (NICE, NCCN). The clinician is therefore enabled from the outset to consider not only the predictive but also the prognostic and predispositional implications of such a test when counseling patients and formulating treatment recommendations. As a basis for quality assurance, participation in interlaboratory comparisons and continuous documentation of results (e.g., QuIP Monitor) are strongly recommended.
Collapse
Affiliation(s)
- Josef Rüschoff
- Institute of Pathology, Nordhessen und Targos Molecular Pathology GmbH, Germaniastr. 7, 34119, Kassel, Germany.
| | - Gustavo Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Germany
| | - Hendrik Bläker
- Institute of Pathology, University Hospital Leipzig, Liebigstr. 26, Gebäude G, 04103, Leipzig, Germany
| | - Wolfgang Dietmaier
- Institute of Pathology, Center of Molecular Pathological Diagnostics, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Manfred Dietel
- Institute of Pathology, University Hospital Charité, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Arndt Hartmann
- Pathological Institute, University Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Lars-Christian Horn
- Institute of Pathology, University Hospital Leipzig, Liebigstr. 26, Gebäude G, 04103, Leipzig, Germany
| | - Korinna Jöhrens
- Institute of Pathology, University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Germany
| | - Thomas Kirchner
- Pathological Institute, Ludwig-Maximilians-University Munich, Thalkirchner Str. 36, 80337, München, Germany
| | - Ruth Knüchel
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Doris Mayr
- Pathological Institute, Ludwig-Maximilians-University Munich, Thalkirchner Str. 36, 80337, München, Germany
| | | | - Hans-Ulrich Schildhaus
- Institute of Pathology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Peter Schirmacher
- Pathological Institute, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Markus Tiemann
- Fangdieckstr. 75a, Institute of Hematopathology Hamburg, 22547, Hamburg, Germany
| | - Katharina Tiemann
- Fangdieckstr. 75a, Institute of Hematopathology Hamburg, 22547, Hamburg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich, Trogerstr. 18, 81675, München, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937, Köln, Germany
| |
Collapse
|
169
|
Biomarker-targeted therapies for advanced-stage gastric and gastro-oesophageal junction cancers: an emerging paradigm. Nat Rev Clin Oncol 2021; 18:473-487. [PMID: 33790428 DOI: 10.1038/s41571-021-00492-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 02/02/2023]
Abstract
Advances in cancer biology and sequencing technology have enabled the selection of targeted and more effective treatments for individual patients with various types of solid tumour. However, only three molecular biomarkers have thus far been demonstrated to predict a response to targeted therapies in patients with gastric and/or gastro-oesophageal junction (G/GEJ) cancers: HER2 positivity for trastuzumab and trastuzumab deruxtecan, and microsatellite instability (MSI) status and PD-L1 expression for pembrolizumab. Despite this lack of clinically relevant biomarkers, distinct molecular subtypes of G/GEJ cancers have been identified and have informed the development of novel agents, including receptor tyrosine kinase inhibitors and monoclonal antibodies, several of which are currently being tested in ongoing trials. Many of these trials include biomarker stratification, and some include analysis of circulating tumour DNA (ctDNA), which both enables the noninvasive assessment of biomarker expression and provides an indication of the contributions of intratumoural heterogeneity to response and resistance. The results of these studies might help to optimize the selection of patients to receive targeted therapies, thus facilitating precision medicine approaches for patients with G/GEJ cancers. In this Review, we describe the current evidence supporting the use of targeted therapies in patients with G/GEJ cancers and provide guidance on future research directions.
Collapse
|
170
|
Williams MH, Williams RA, Hernandez B, Michalek J, Long Parma D, Arora SP. Clinicopathologic differences and mortality among Latinos and non-Latino whites with gastric cancer at a majority-minority cancer center in South Texas. J Gastrointest Oncol 2021; 12:1301-1307. [PMID: 34532089 PMCID: PMC8421882 DOI: 10.21037/jgo-21-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/30/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Latino patients have a higher incidence of gastric cancer compared to non-Latino white patients nationwide, with greater disparities in South Texas. However, the impact of Latino ethnicity on mortality in gastric cancer is controversial. We evaluated clinicopathological characteristics and survival outcomes in Latino vs. non-Latino white patients at our National Cancer Institute (NCI)-designated cancer center and its affiliated hospital. METHODS We conducted a retrospective chart review of Latino and non-Latino white patients diagnosed with gastric cancer who were seen at Mays Cancer Center at the University of Texas Health in San Antonio, Texas, from 2000-2018. Median overall survival (mOS) was estimated from Kaplan-Meier curves and groups were compared with the log-rank test. RESULTS A total of 193 patients met inclusion criteria and 65% (n=126) were Latino. Median age for all patients was 61 years. Female patients represented almost 50% of Latinos vs. 36% of non-Latino whites. There were no differences in Eastern Cooperative Oncology Group (ECOG) performance status, primary tumor location, stage, Helicobacter pylori status, HER2 status, or histologic subtype at diagnosis. Median overall survival was 14 months (95% CI: 13-36) for Latinos vs. 33 months (95% CI: 14 to n/a) for non-Latino whites (P=0.36). CONCLUSIONS Compared to non-Latino white patients, Latino patients with gastric cancer at a majority-minority cancer center in South Texas did not have significant differences in baseline clinicopathologic features or survival outcomes. Further prospective studies are needed to evaluate epidemiologic, pathogenetic, and molecular differences in gastric cancer in order to identify variables associated with treatment efficacy and survival.
Collapse
Affiliation(s)
- Madison H. Williams
- Division of Hematology/Oncology, Department of Internal Medicine, Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ryan A. Williams
- Division of Hematology/Oncology, Department of Internal Medicine, Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Brian Hernandez
- Department of Population Health Sciences, Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Joel Michalek
- Department of Population Health Sciences, Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Dorothy Long Parma
- Department of Population Health Sciences, Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Sukeshi P. Arora
- Division of Hematology/Oncology, Department of Internal Medicine, Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
171
|
Daun T, Nienhold R, Paasinen-Sohns A, Frank A, Sachs M, Zlobec I, Cathomas G. Combined Simplified Molecular Classification of Gastric Adenocarcinoma, Enhanced by Lymph Node Status: An Integrative Approach. Cancers (Basel) 2021; 13:cancers13153722. [PMID: 34359622 PMCID: PMC8345215 DOI: 10.3390/cancers13153722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary In this study, we present a simple but comprehensive molecular analysis of gastric carcinoma. The two major existing classification schemes show some discrepancies and are highly technically demanding, which makes them hardly feasible in daily diagnostic routines. Our workflow is based on simple and commercially available technology and provides a potential consensus approach by integrating the two major classification schemes. Furthermore, our approach allows the molecular subtypes to be assigned to different prognostic groups. We are convinced that our approach may help to better understand the molecular mechanisms of this worldwide health burden and that it could pave the way for new therapeutic targets. Abstract Gastric adenocarcinoma (GAC) is a heterogeneous disease and at least two major studies have recently provided a molecular classification for this tumor: The Cancer Genome Atlas (TCGA) and the Asian Cancer Research Group (ARCG). Both classifications quote four molecular subtypes, but these subtypes only partially overlap. In addition, the classifications are based on complex and cost-intensive technologies, which are hardly feasible for everyday practice. Therefore, simplified approaches using immunohistochemistry (IHC), in situ hybridization (ISH) as well as commercially available next generation sequencing (NGS) have been considered for routine use. In the present study, we screened 115 GAC by IHC for p53, MutL Homolog 1 (MLH1) and E-cadherin and performed ISH for Epstein–Barr virus (EBV). In addition, sequencing by NGS for TP53 and tumor associated genes was performed. With this approach, we were able to define five subtypes of GAC: (1) Microsatellite Instable (MSI), (2) EBV-associated, (3) Epithelial Mesenchymal Transition (EMT)-like, (4) p53 aberrant tumors surrogating for chromosomal instability and (5) p53 proficient tumors surrogating for genomics stable cancers. Furthermore, by considering lymph node metastasis in the p53 aberrant GAC, a better prognostic stratification was achieved which finally allowed us to separate the GAC highly significant in a group with poor and good-to-intermediate prognosis, respectively. Our data show that molecular classification of GAC can be achieved by using commercially available assays including IHC, ISH and NGS. Furthermore, we present an integrative workflow, which has the potential to overcome the uncertainty resulting from discrepancies from existing classification schemes.
Collapse
Affiliation(s)
- Till Daun
- Institute of Pathology, Cantonal Hospital Basel-Land, 4410 Liestal, Switzerland; (T.D.); (R.N.); (A.P.-S.); (A.F.); (M.S.)
| | - Ronny Nienhold
- Institute of Pathology, Cantonal Hospital Basel-Land, 4410 Liestal, Switzerland; (T.D.); (R.N.); (A.P.-S.); (A.F.); (M.S.)
| | - Aino Paasinen-Sohns
- Institute of Pathology, Cantonal Hospital Basel-Land, 4410 Liestal, Switzerland; (T.D.); (R.N.); (A.P.-S.); (A.F.); (M.S.)
| | - Angela Frank
- Institute of Pathology, Cantonal Hospital Basel-Land, 4410 Liestal, Switzerland; (T.D.); (R.N.); (A.P.-S.); (A.F.); (M.S.)
| | - Melanie Sachs
- Institute of Pathology, Cantonal Hospital Basel-Land, 4410 Liestal, Switzerland; (T.D.); (R.N.); (A.P.-S.); (A.F.); (M.S.)
| | - Inti Zlobec
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland;
| | - Gieri Cathomas
- Institute of Pathology, Cantonal Hospital Basel-Land, 4410 Liestal, Switzerland; (T.D.); (R.N.); (A.P.-S.); (A.F.); (M.S.)
- Correspondence: ; Tel.: +41-61-925-2622
| |
Collapse
|
172
|
Wang Z, Lv Z, Xu Q, Sun L, Yuan Y. Identification of differential proteomics in Epstein-Barr virus-associated gastric cancer and related functional analysis. Cancer Cell Int 2021; 21:368. [PMID: 34247602 PMCID: PMC8274036 DOI: 10.1186/s12935-021-02077-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epstein-Barr virus-associated gastric cancer (EBVaGC) is the most common EBV-related malignancy. A comprehensive research for the protein expression patterns in EBVaGC established by high-throughput assay remains lacking. In the present study, the protein profile in EBVaGC tissue was explored and related functional analysis was performed. METHODS Epstein-Barr virus-encoded RNA (EBER) in situ hybridization (ISH) was applied to EBV detection in GC cases. Data-independent acquisition (DIA) mass spectrometry (MS) was performed for proteomics assay of EBVaGC. Functional analysis of identified proteins was conducted with bioinformatics methods. Immunohistochemistry (IHC) staining was employed to detect protein expression in tissue. RESULTS The proteomics study for EBVaGC was conducted with 7 pairs of GC cases. A total of 137 differentially expressed proteins in EBV-positive GC group were identified compared with EBV-negative GC group. A PPI network was constructed for all of them, and several proteins with relatively high interaction degrees could be the hub genes in EBVaGC. Gene enrichment analysis showed they might be involved in the biological pathways related to energy and biochemical metabolism. Combined with GEO datasets, a highly associated protein (GBP5) with EBVaGC was screened out and validated with IHC staining. Further analyses demonstrated that GBP5 protein might be associated with clinicopathological parameters and EBV infection in GC. CONCLUSIONS The newly identified proteins with significant differences and potential central roles could be applied as diagnostic markers of EBVaGC. Our study would provide research clues for EBVaGC pathogenesis as well as novel targets for the molecular-targeted therapy of EBVaGC.
Collapse
Affiliation(s)
- Zeyang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No.155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhi Lv
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No.155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No.155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No.155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No.155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China. .,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
173
|
Katabathina VS, Marji H, Khanna L, Ramani N, Yedururi S, Dasyam A, Menias CO, Prasad SR. Decoding Genes: Current Update on Radiogenomics of Select Abdominal Malignancies. Radiographics 2021; 40:1600-1626. [PMID: 33001791 DOI: 10.1148/rg.2020200042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Technologic advances in chromosomal analysis and DNA sequencing have enabled genome-wide analysis of cancer cells, yielding considerable data on the genetic basis of malignancies. Evolving knowledge of tumor genetics and oncologic pathways has led to a better understanding of histopathologic features, tumor classification, tumor biologic characteristics, and imaging findings and discovery of targeted therapeutic agents. Radiogenomics is a rapidly evolving field of imaging research aimed at correlating imaging features with gene mutations and gene expression patterns, and it may provide surrogate imaging biomarkers that may supplant genetic tests and be used to predict treatment response and prognosis and guide personalized treatment options. Multidetector CT, multiparametric MRI, and PET with use of multiple radiotracers are some of the imaging techniques commonly used to assess radiogenomic associations. Select abdominal malignancies demonstrate characteristic imaging features that correspond to gene mutations. Recent advances have enabled us to understand the genetics of steatotic and nonsteatotic hepatocellular adenomas, a plethora of morphologic-molecular subtypes of hepatic malignancies, a variety of clear cell and non-clear cell renal cell carcinomas, a myriad of hereditary and sporadic exocrine and neuroendocrine tumors of the pancreas, and the development of targeted therapeutic agents for gastrointestinal stromal tumors based on characteristic KIT gene mutations. Mutations associated with aggressive phenotypes of these malignancies can sometimes be predicted on the basis of their imaging characteristics. Radiologists should be familiar with the genetics and pathogenesis of common cancers that have associated imaging biomarkers, which can help them be integral members of the cancer management team and guide clinicians and pathologists. Online supplemental material is available for this article. ©RSNA, 2020 See discussion on this article by Luna (pp 1627-1630).
Collapse
Affiliation(s)
- Venkata S Katabathina
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., H.M., L.K.); Departments of Radiology (S.Y., S.R.P.) and Pathology (N.R.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Haneen Marji
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., H.M., L.K.); Departments of Radiology (S.Y., S.R.P.) and Pathology (N.R.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Lokesh Khanna
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., H.M., L.K.); Departments of Radiology (S.Y., S.R.P.) and Pathology (N.R.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Nisha Ramani
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., H.M., L.K.); Departments of Radiology (S.Y., S.R.P.) and Pathology (N.R.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Sireesha Yedururi
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., H.M., L.K.); Departments of Radiology (S.Y., S.R.P.) and Pathology (N.R.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Anil Dasyam
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., H.M., L.K.); Departments of Radiology (S.Y., S.R.P.) and Pathology (N.R.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Christine O Menias
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., H.M., L.K.); Departments of Radiology (S.Y., S.R.P.) and Pathology (N.R.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Srinivasa R Prasad
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., H.M., L.K.); Departments of Radiology (S.Y., S.R.P.) and Pathology (N.R.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| |
Collapse
|
174
|
Huang W, Zhan D, Li Y, Zheng N, Wei X, Bai B, Zhang K, Liu M, Zhao X, Ni X, Xia X, Shi J, Zhang C, Lu Z, Ji J, Wang J, Wang S, Ji G, Li J, Nie Y, Liang W, Wu X, Cui J, Meng Y, Cao F, Shi T, Zhu W, Wang Y, Chen L, Zhao Q, Wang H, Shen L, Qin J. Proteomics provides individualized options of precision medicine for patients with gastric cancer. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1199-1211. [PMID: 34258712 DOI: 10.1007/s11427-021-1966-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
While precision medicine driven by genome sequencing has revolutionized cancer care, such as lung cancer, its impact on gastric cancer (GC) has been minimal. GC patients are routinely treated with chemotherapy, but only a fraction of them receive the clinical benefit. There is an urgent need to develop biomarkers or algorithms to select chemo-sensitive patients or apply targeted therapy. Here, we carried out retrospective analyses of 1,020 formalin-fixed, paraffin-embedded GC surgical resection samples from 5 hospitals and developed a mass spectrometry-based workflow for proteomic subtyping of GC. We identified two proteomic subtypes: the chemo-sensitive group (CSG) and the chemo-insensitive group (CIG) in the discovery set. The 5-year overall survival of CSG was significantly improved in patients who had received adjuvant chemotherapy after surgery compared with those who received surgery only (64.2% vs. 49.6%; Cox P-value=0.002), whereas no such improvement was observed in CIG (50.0% vs. 58.6%; Cox P-value=0.495). We validated these results in an independent validation set. Further, differential proteome analysis uncovered 9 FDA-approved drugs that may be applicable for targeted therapy of GC. A prospective study is warranted to test these findings for future GC patient care.
Collapse
Affiliation(s)
- Wenwen Huang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.,Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yazhuo Li
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Nairen Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xin Wei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.,Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bin Bai
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Kecheng Zhang
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital First Medical Center, Beijing, 100853, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xuefei Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaotian Ni
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xia Xia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jinwen Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Cheng Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Juan Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Shiqi Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Jipeng Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenquan Liang
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital First Medical Center, Beijing, 100853, China
| | - Xiaosong Wu
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital First Medical Center, Beijing, 100853, China
| | - Jianxin Cui
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital First Medical Center, Beijing, 100853, China
| | - Yongsheng Meng
- Department of tumor biobank, Shanxi Cancer Hospital, Taiyuan, 030013, China
| | - Feilin Cao
- Department of tumor biobank, Shanxi Cancer Hospital, Taiyuan, 030013, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Weimin Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Lin Chen
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital First Medical Center, Beijing, 100853, China.
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| | - Hongwei Wang
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China. .,State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
175
|
Weidle UH, Birzele F, Brinkmann U, Auslaender S. Gastric Cancer: Identification of microRNAs Inhibiting Druggable Targets and Mediating Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:497-514. [PMID: 34183383 DOI: 10.21873/cgp.20275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023] Open
Abstract
In addition to chemotherapy, targeted therapies have been approved for treatment of locally advanced and metastatic gastric cancer. The therapeutic benefit is significant but more durable responses and improvement of survival should be achieved. Therefore, the identification of new targets and new approaches for clinical treatment are of paramount importance. In this review, we searched the literature for down-regulated microRNAs which interfere with druggable targets and exhibit efficacy in preclinical in vivo efficacy models. As druggable targets, we selected transmembrane receptors, secreted factors and enzymes. We identified 38 microRNAs corresponding to the criteria as outlined. A total of 13 miRs target transmembrane receptors, nine inhibit secreted proteins and 16 attenuate enzymes. These microRNAs are targets for reconstitution therapy of gastric cancer. Further target validation experiments are mandatory for all of the identified microRNAs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRed), Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany;
| | - Simon Auslaender
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
176
|
Sp1-Induced FNBP1 Drives Rigorous 3D Cell Motility in EMT-Type Gastric Cancer Cells. Int J Mol Sci 2021; 22:ijms22136784. [PMID: 34202606 PMCID: PMC8267707 DOI: 10.3390/ijms22136784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is heterogeneous among patients, requiring a thorough understanding of molecular subtypes and the establishment of therapeutic strategies based on its behavior. Gastric cancer (GC) is adenocarcinoma with marked heterogeneity leading to different prognoses. As an effort, we previously identified a stem-like subtype, which is prone to metastasis, with the worst prognosis. Here, we propose FNBP1 as a key to high-level cell motility, present only in aggressive GC cells. FNBP1 is also up-regulated in both the GS subtype from the TCGA project and the EMT subtype from the ACRG study, which include high portions of diffuse histologic type. Ablation of FNBP1 in the EMT-type GC cell line brought changes in the cell periphery in transcriptomic analysis. Indeed, loss of FNBP1 resulted in the loss of invasive ability, especially in a three-dimensional culture system. Live imaging indicated active movement of actin in FNBP1-overexpressed cells cultured in an extracellular matrix dome. To find the transcription factor which drives FNBP1 expression in an EMT-type GC cell line, the FNBP1 promoter region and DNA binding motifs were analyzed. Interestingly, the Sp1 motif was abundant in the promoter, and pharmacological inhibition and knockdown of Sp1 down-regulated FNBP1 promoter activity and the transcription level, respectively. Taken together, our results propose Sp1-driven FNBP1 as a key molecule explaining aggressiveness in EMT-type GC cells.
Collapse
|
177
|
Lee IS, Ahn J, Kim K, Okugawa Y, Toiyama Y, Hur H, Goel A. A blood-based transcriptomic signature for noninvasive diagnosis of gastric cancer. Br J Cancer 2021; 125:846-853. [PMID: 34163003 DOI: 10.1038/s41416-021-01461-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/01/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Delayed detection of tumours contributes to poor prognosis in patients with gastric cancer (GC). The invasive nature of endoscopy and the absence of an effective serum markers highlight the need to develop novel, noninvasive biomarkers. METHODS We performed biomarker discovery and validation to identify candidate genes in three gene expression data sets. After validating the gene panel in clinical tissues, we translated the gene panel into serum samples by performing training and validation in 89 samples from GC patients and 54 from healthy donors in two independent cohorts. RESULTS We identified a nine-gene panel in the discovery phase, with subsequent validation in tissue specimens. Using a serum training cohort, we developed a 5-gene risk prediction formulae for the diagnosis of GC; bootstrapped analysis exhibited an AUC of 0.896. We validated this 5-gene biomarker panel using an independent serum cohort, yielding an AUC of 0.947. This biomarker panel successfully identified GC, regardless of tumour histology. Notably, biomarker performance for detection of stage 1 and 2 GC displayed an AUC of 0.928 and 0.980 in both serum cohorts. CONCLUSIONS We identified a novel 5-gene biomarker panel for noninvasive diagnosis of GC, which might serve as a potential diagnostic tool for early detection.
Collapse
Affiliation(s)
- In-Seob Lee
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA.,Department of Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Korea
| | - Jiyoung Ahn
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Hoon Hur
- Department of Surgery, Ajou University of School of Medicine, Suwon, Korea.,Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA. .,City of Hope Comprehensive Cancer Centre, Duarte, CA, USA.
| |
Collapse
|
178
|
Wang H, Liu J, Zhang Y, Sun L, Zhao M, Luo B. Eukaryotic initiating factor eIF4E is targeted by EBV-encoded miR-BART11-3p and regulates cell cycle and apoptosis in EBV-associated gastric carcinoma. Virus Genes 2021; 57:358-368. [PMID: 34146250 DOI: 10.1007/s11262-021-01854-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/08/2021] [Indexed: 12/26/2022]
Abstract
The eukaryotic translation initiation factor 4E (eIF4E) is a component of the eukaryotic translation initiation factor 4F, a significant complex in the protein translation process. It has been found to be closely related to many human tumors, such as gastric carcinoma. It is known that the Epstein-Barr virus (EBV) upregulates eIF4E in various ways in nasopharyngeal carcinoma. However, there are very few studies on eIF4E in EBV-associated gastric carcinoma. We found that the expression level of eIF4E in EBV-associated gastric carcinoma was lower than other types of gastric carcinoma, and the downregulation of eIF4E could lead to increased apoptosis of gastric carcinoma cells, retardation at S phase, and decreased cell migration. The dual luciferase reporter experiment showed that EBV-miR-BART11-3p could directly target the 3'-UTR region of eIF4E, and BART11-3p is the key factor leading to the downregulation of eIF4E. It could provide a new evidence for EBV-regulating host gene to affect the development of gastric carcinoma.
Collapse
Affiliation(s)
- Hanqing Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Sandong, PR China
| | - Juanjuan Liu
- School of Basic Medicine, Qingdao University, Qingdao, Sandong, PR China
| | - Yan Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, Sandong, PR China
| | - Lingling Sun
- Department of Pathology, Affiliated Hospital of Qingdao University Medical College, 308 NingXia Road, Qingdao, 266021, PR China
| | - Menghe Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Sandong, PR China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Sandong, PR China.
| |
Collapse
|
179
|
Cha DI, Lee J, Jeong WK, Kim ST, Kim JH, Hong JY, Kang WK, Kim KM, Kim SW, Choi D. Prediction of epithelial-to-mesenchymal transition molecular subtype using CT in gastric cancer. Eur Radiol 2021; 32:1-11. [PMID: 34120231 DOI: 10.1007/s00330-021-08094-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To develop a prediction model with computed tomography (CT) images and to build a nomogram incorporating known clinicopathologic variables for individualized estimation of epithelial-to-mesenchymal transition (EMT) subtype gastric cancer. METHODS Patients who underwent primary resection of gastric cancer (GC) and molecular subgroup analysis (n = 451) were reviewed. Multivariable analysis using a stepwise variable selection method was performed to build a predictive model for EMT subtype GC. A nomogram using the results of the multivariable analysis was constructed. An optimal cutoff value of total prognostic points of the nomogram for the prediction of EMT subtype was determined. The predictive model for the EMT subtype was internally validated by bootstrap resampling method. RESULTS There were 88 patients with EMT subtype and 363 patients with non-EMT subtype based on transcriptome analysis. The patient's age, Lauren classification, and mural stratification on CT were variables selected for the predictive model. The area under the curve (AUC) of the model was 0.865, and the validated AUC of the bootstrap sample was 0.860. The optimal cutoff value of total prognostic points for the prediction of EMT subtype was 94.622, with 90.9% sensitivity, 67.2% specificity, and 71.8% accuracy. CONCLUSION A predictive model using patient's age, Lauren classification, and mural stratification on CT for EMT molecular subtype GC was made. A nomogram was built which would serve as a useful screening tool for an individualized estimate of EMT subtype. KEY POINTS • A predictive model for epithelial-to-mesenchymal transition (EMT) subtype incorporating patient's age, Lauren classification, and mural stratification on CT was built. • The predictive model had high diagnostic accuracy (area under the curve (AUC) = 0.865) and was validated (bootstrap AUC = 0.860). • Adding CT findings to clinicopathologic variables increases the accuracy of the predictive model than using only.
Collapse
Affiliation(s)
- Dong Ik Cha
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo Kyoung Jeong
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae-Hun Kim
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seon Woo Kim
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dongil Choi
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| |
Collapse
|
180
|
Assessment of copy number in protooncogenes are predictive of poor survival in advanced gastric cancer. Sci Rep 2021; 11:12117. [PMID: 34108525 PMCID: PMC8190267 DOI: 10.1038/s41598-021-91652-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/28/2021] [Indexed: 12/01/2022] Open
Abstract
The copy number (CN) gain of protooncogenes is a frequent finding in gastric carcinoma (GC), but its prognostic implication remains elusive. The study aimed to characterize the clinicopathological features, including prognosis, of GCs with copy number gains in multiple protooncogenes. Three hundred thirty-three patients with advanced GC were analyzed for their gene ratios in EGFR, GATA6, IGF2, and SETDB1 using droplet dPCR (ddPCR) for an accurate assessment of CN changes in target genes. The number of GC patients with 3 or more genes with CN gain was 16 (4.8%). Compared with the GCs with 2 or less genes with CN gain, the GCs with 3 or more CN gains displayed more frequent venous invasion, a lower density of tumor-infiltrating lymphocytes, and lower methylation levels of L1 or SAT-alpha. Microsatellite instability-high tumors or Epstein–Barr virus-positive tumors were not found in the GCs with 3 or more genes with CN gain. Patients of this groups also showed the worst clinical outcomes for both overall survival and recurrence-free survival, which was persistent in the multivariate survival analyses. Our findings suggest that the ddPCR-based detection of multiple CN gain of protooncogenes might help to identify a subset of patients with poor prognosis.
Collapse
|
181
|
Shin M, Kim J, Kim D, Lee SH, Shin J, Jeong YS, Sohn BH, Kim J, Kim S, Ajani JA, Lee J, Cheong J. Long non-coding RNAs are significantly associated with prognosis and response to therapies in gastric cancer. Clin Transl Med 2021; 11:e421. [PMID: 34185430 PMCID: PMC8181196 DOI: 10.1002/ctm2.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 02/03/2023] Open
Affiliation(s)
| | - Jungmin Kim
- Brain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulKorea
| | - Dachan Kim
- Yonsei University College of MedicineSeoulKorea
| | - Sung Hwan Lee
- Department of Systems Biology and Department of GI medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ji‐Hyun Shin
- Department of Systems Biology and Department of GI medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Yun Seong Jeong
- Department of Systems Biology and Department of GI medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Bo Hwa Sohn
- Department of Systems Biology and Department of GI medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jimin Kim
- Catholic University College of MedicineSeoulKorea
| | | | - Jaffer A. Ajani
- Department of Systems Biology and Department of GI medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ju‐Seog Lee
- Department of Systems Biology and Department of GI medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jae‐Ho Cheong
- Yonsei University College of MedicineSeoulKorea,Brain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulKorea,Department of SurgeryYonsei University Health SystemSeoulKorea,Yonsei University College of MedicineSeoulKorea,Department of Biochemistry and Molecular BiologySeoulKorea,Department of Biomedical Systems InformaticsYonsei University College of MedicineSeoulKorea
| |
Collapse
|
182
|
Gallardo Martin E, Cousillas Castiñeiras A. Vitamin D modulation and microRNAs in gastric cancer: prognostic and therapeutic role. Transl Cancer Res 2021; 10:3111-3127. [PMID: 35116620 PMCID: PMC8797897 DOI: 10.21037/tcr-20-2813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Gastric adenocarcinoma arises after a complex interaction between the host and environmental factors. Tumor location and TNM are the tools that currently guide treatment decisions. Surgery is the only curative treatment, but relapse is common. After relapse or advanced staged disease survival is poor and systemic treatment has modestly improved survival. An association between sun exposure, vitamin D status and gastric cancer (GC) incidence and mortality has been reported. The molecular differences of the histological subtypes and the new molecular classifications account for the great heterogeneity of this disease and are the basis for the discovery of new therapeutic targets. New prognostic and predictive factors are essential and microRNAs (miRNAs) are endogenous small non-coding RNA molecules with a great potential for diagnosis, prognosis and treatment of cancer. There are hundreds of miRNAs with altered expression in tumor gastric tissue when compared to normal gastric tissue. Many of these miRNAs are associated with clinicopathological variables and survival in patients with GC. Furthermore, the expression of some of these miRNAs with prognostic importance in CG is influenced by vitamin D and others are mediators of some of the actions of this vitamin. This review aims to update the evidence on several miRNAs with prognostic value and therapeutic potential in GC, whose expression may be influenced by vitamin D or may regulate vitamin D signaling.
Collapse
Affiliation(s)
- Elena Gallardo Martin
- Medical Oncology Department in Complejo Hospitalario Universitario de Pontevedra, University Hospital of Pontevedra, CP 36001 Pontevedra, Spain
| | - Antia Cousillas Castiñeiras
- Medical Oncology Department in Complejo Hospitalario Universitario de Pontevedra, University Hospital of Pontevedra, CP 36001 Pontevedra, Spain
| |
Collapse
|
183
|
Rüschoff J, Baretton G, Bläker H, Dietmaier W, Dietel M, Hartmann A, Horn LC, Jöhrens K, Kirchner T, Knüchel R, Mayr D, Merkelbach-Bruse S, Schildhaus HU, Schirmacher P, Tiemann M, Tiemann K, Weichert W, Büttner R. [MSI testing : What is new? What should be considered? German version]. DER PATHOLOGE 2021; 42:414-423. [PMID: 34043067 DOI: 10.1007/s00292-021-00944-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
Based on new trial data regarding immune checkpoint inhibitors (ICIs), the detection of high-grade microsatellite instability (MSI-H) or underlying deficient mismatch repair protein (dMMR) is now becoming increasingly important for predicting treatment response. For the first time, a PD‑1 ICI (pembrolizumab) has been approved by the European Medicines Agency (EMA) for first-line treatment of advanced (stage IV) dMMR/MSI‑H colorectal cancer (CRC). Further indications, such as dMMR/MSI‑H endometrial carcinoma (EC), have already succeeded (Dostarlimab, 2nd line treatment) and others are expected to follow before the end of 2021. The question of optimal testing in routine diagnostics should therefore be re-evaluated. Based on a consideration of the strengths and weaknesses of the widely available methods (immunohistochemistry and PCR), a test algorithm is proposed that allows quality assured, reliable, and cost-effective dMMR/MSI‑H testing. For CRC and EC, testing is therefore already possible at the primary diagnosis stage, in line with international recommendations (NICE, NCCN). The clinician is therefore enabled from the outset to consider not only the predictive but also the prognostic and predispositional implications of such a test when counseling patients and formulating treatment recommendations. As a basis for quality assurance, participation in interlaboratory comparisons and continuous documentation of results (e.g., QuIP Monitor) are strongly recommended.
Collapse
Affiliation(s)
- Josef Rüschoff
- Institut für Pathologie Nordhessen, TARGOS Molecular Pathology GmbH, Germaniastr. 7, 34119, Kassel, Deutschland.
| | - Gustavo Baretton
- Institut für Pathologie, Universitätsklinikum Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - Hendrik Bläker
- Institut für Pathologie, Universitätsklinikum Leipzig, Liebigstr. 26, Gebäude G, 04103, Leipzig, Deutschland
| | - Wolfgang Dietmaier
- Institut für Pathologie/Zentrum für molekularpathologische Diagnostik, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Deutschland
| | - Manfred Dietel
- Institut für Pathologie, Campus Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Arndt Hartmann
- Pathologisches Institut, Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054, Erlangen, Deutschland
| | - Lars-Christian Horn
- Institut für Pathologie, Universitätsklinikum Leipzig, Liebigstr. 26, Gebäude G, 04103, Leipzig, Deutschland
| | - Korinna Jöhrens
- Institut für Pathologie, Universitätsklinikum Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - Thomas Kirchner
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
| | - Ruth Knüchel
- Institut für Pathologie, Universitätsklinikum RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Doris Mayr
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
| | - Sabine Merkelbach-Bruse
- Institut für Pathologie, Universitätsklinikum Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - Hans-Ulrich Schildhaus
- Institut für Pathologie, Universitätsklinikum Essen, Hufelandstraße 55, 45147, Essen, Deutschland
| | - Peter Schirmacher
- Pathologisches Institut, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Deutschland
| | - Markus Tiemann
- Institut für Hämatopathologie Hamburg, Fangdieckstr. 75a, 22547, Hamburg, Deutschland
| | - Katharina Tiemann
- Institut für Hämatopathologie Hamburg, Fangdieckstr. 75a, 22547, Hamburg, Deutschland
| | - Wilko Weichert
- Institut für Pathologie, Technische Universität München, Trogerstr. 18, 81675, München, Deutschland
| | - Reinhard Büttner
- Institut für Pathologie, Universitätsklinikum Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| |
Collapse
|
184
|
Yang N, Wu Y, Jin M, Jia Z, Wang Y, Cao D, Qin L, Wang X, Zheng M, Cao X, Jiang J. Microsatellite instability and Epstein-Barr virus combined with PD-L1 could serve as a potential strategy for predicting the prognosis and efficacy of postoperative chemotherapy in gastric cancer. PeerJ 2021; 9:e11481. [PMID: 34046266 PMCID: PMC8139270 DOI: 10.7717/peerj.11481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background Microsatellite instability (MSI) and Epstein-Barr virus (EBV)-positive molecular subtypes exhibit complex immune responses in gastric cancer (GC), and PD-L1 has emerged as a prognostic biomarker associated with the cancer immune microenvironment. This study aimed to determine the prognostic value of molecular subtypes and whether the addition of PD-L1 would accurately predict the prognosis and guide postoperative chemotherapy for GC patients. Methods We performed molecular subtyping of tissue microarray slides from 226 GC patients who were treated with radical gastrectomy. The MSI status and PD-L1 expression were evaluated through immunohistochemistry (IHC) and EBV status through situ hybridization. Multiplex polymerase chain reaction (PCR) was also performed on 50 cases to validate the accuracy of IHC in defining MSI status. Differences in overall survival (OS) were assessed using the Kaplan-Meier method, log-rank test and Cox proportional hazards regression model. Results Among the 226 GC patients, 52 (23.2%) patients were classified as the MSI subtype, 11 (4.9%) were EBV+ subtype, and 161 (71.9%) were MSS (Microsatellite stable) /EBV subtype according to TCGA analysis. Two patients were both positive for MSI and EBV infection. EBV+ cases showed higher PD-L1 positivity than MSI cases and MSS/EBV cases (81.8% vs. 50.0% vs. 35.4%, P = 0.003). Compared with the non-MSS/EBV (MSI or EBV+ cases) subgroup, GC patients with MSS/EBV were associated with the worst outcomes (HR = 1.610, 95% CI [1.0462.479], P = 0.031). MSS/EBV GCs alone could benefit from postoperative chemotherapy (HR = 0.452, 95% CI [0.2990.682], P<0.001), and PD-L1-positive expression could also predict a better prognosis (HR = 0.612, 95% CI [0.3890.962], P = 0.033) in this subgroup. Considering both chemotherapy efficacy and PD-L1 expression in the MSS/EBV subgroup, chemotherapy could improve the prognosis for PD-L1-negative MSS/EBV GCs (HR = 0.357, 95% CI [0.2170.587], P <0.001) but not PD-L1-positive MSS/EBV GCs. Conclusions Molecular subtyping combined with PD-L1 expression could serve as a potential strategy to better predict prognosis and guide postoperative chemotherapy of GC patients.
Collapse
Affiliation(s)
- Na Yang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yanhua Wu
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Meishan Jin
- Division of Pathology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhifang Jia
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yueqi Wang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Donghui Cao
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lili Qin
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xueying Wang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.,Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Min Zheng
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jing Jiang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
185
|
Lengyel CG, Hussain S, Trapani D, El Bairi K, Altuna SC, Seeber A, Odhiambo A, Habeeb BS, Seid F. The Emerging Role of Liquid Biopsy in Gastric Cancer. J Clin Med 2021; 10:2108. [PMID: 34068319 PMCID: PMC8153353 DOI: 10.3390/jcm10102108] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Liquid biopsy (LB) is a novel diagnostic method with the potential of revolutionizing the prevention, diagnosis, and treatment of several solid tumors. The present paper aims to summarize the current knowledge and explore future possibilities of LB in the management of metastatic gastric cancer. (2) Methods: This narrative review examined the most recent literature on the use of LB-based techniques in metastatic gastric cancer and the current LB-related clinical trial landscape. (3) Results: In gastric cancer, the detection of circulating cancer cells (CTCs) has been recognized to have a prognostic role in all the disease stages. In the setting of localized disease, cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) qualitative and quantitative detection have the potential to inform on the risk of cancer recurrence and metastatic dissemination. In addition, gastric cancer-released exosomes may play an essential part in metastasis formation. In the metastatic setting, the levels of cfDNA show a positive correlation with tumor burden. There is evidence that circulating tumor microemboli (CTM) in the blood of metastatic patients is an independent prognostic factor for shorter overall survival. Gastric cancer-derived exosomal microRNAs or clonal mutations and copy number variations detectable in ctDNA may contribute resistance to chemotherapy or targeted therapies, respectively. There is conflicting and limited data on CTC-based PD-L1 verification and cfDNA-based Epstein-Barr virus detection to predict or monitor immunotherapy responses. (4) Conclusions: Although preliminary studies analyzing LBs in patients with advanced gastric cancer appear promising, more research is required to obtain better insights into the molecular mechanisms underlying resistance to systemic therapies. Moreover, validation and standardization of LB methods are crucial before introducing them in clinical practice. The feasibility of repeatable, minimally invasive sampling opens up the possibility of selecting or dynamically changing therapies based on prognostic risk or predictive biomarkers, such as resistance markers. Research is warranted to exploit a possible transforming area of cancer care.
Collapse
Affiliation(s)
| | - Sadaqat Hussain
- North West Cancer Center, Altnagelvin Hospital, Londonderry BT47 6SB, UK;
| | - Dario Trapani
- European Institute of Oncology, IRCCS, 20141 Milan, Italy;
| | | | | | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andrew Odhiambo
- Unit of Medical Oncology, Department of Clinical Medicine, University of Nairobi, Nairobi 30197, Kenya;
| | - Baker Shalal Habeeb
- Department of Medical Oncology, Shaqlawa Teaching Hospital, Shaqlawa, Erbil 44005, Iraq;
| | - Fahmi Seid
- School of Medicine and Health Sciences, Hawassa University, Hawassa 1560, Ethiopia;
| |
Collapse
|
186
|
Expression of Indoleamine 2, 3-dioxygenase 1 (IDO1) and Tryptophanyl-tRNA Synthetase (WARS) in Gastric Cancer Molecular Subtypes. Appl Immunohistochem Mol Morphol 2021; 28:360-368. [PMID: 31033497 DOI: 10.1097/pai.0000000000000761] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIMS Developments in genomic pathology have led to novel molecular classification schemes in gastric cancers. Two of these new subtypes, Epstein-Barr virus (EBV)-associated and microsatellite instability-high (MSI-H), are associated with a dominant T-cell-mediated immune response. The roles of the immune modulators, indoleamine 2, 3-dioxygenase 1 (IDO1) and tryptophanyl-tRNA synthetase (WARS), have not been investigated in the context of this classification. METHODS AND RESULTS Using in situ hybridization and immunohistochemistry we subclassified 421 primary gastric adenocarcinomas into 5 subtypes, EBV-associated, epithelial to mesenchymal transition, MSI-H, p53-aberrant, and p53-wildtype tumors. Tumor-infiltrative lymphocytes were counted and protein expression of IDO1 and WARS was graded on tissue microarrays of these 421 tumors. High tumor-infiltrative lymphocytes as well as high expression of both IDO1 and WARS was found in EBV and MSI-H tumors. The prognostic effects of IDO1 and WARS expression were tumor subtype dependent. Although high expression levels of IDO1 and WARS were associated with poor prognosis in p53-aberrant, p53-wildtype, and all cancers combined, WARS expression was associated with better prognosis in MSI tumors. CONCLUSIONS The immunomodulators, IDO1 and WARs, are upregulated and have prognostic significance in EBV-associated and MSI-H tumors. Novel therapies targeting these proteins should be considered in the treatment of these patients.
Collapse
|
187
|
Lonie JM, Barbour AP, Dolcetti R. Understanding the immuno-biology of oesophageal adenocarcinoma: Towards improved therapeutic approaches. Cancer Treat Rev 2021; 98:102219. [PMID: 33993033 DOI: 10.1016/j.ctrv.2021.102219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
With an incidence that is constantly rising, oesophageal adenocarcinoma (OAC) is becoming an increasing health burden worldwide. Although significant advances in treatment regimens have improved patient outcomes, survival rates for this deadly cancer remain unsatisfactory. This highlights the need to improve current therapeutic approaches and develop novel therapeutic strategies for treating OAC patients. The advent of immunotherapy has revolutionised treatment across a range of malignancies, however outcomes in OAC show modest results. The inherent resistance of OAC to treatment reflects the complex genomic landscape of this cancer, which displays a lack of ubiquitous driver mutations and large-scale genomic alterations along with high tumour and immune heterogeneity. Research into the immune landscape of OAC is limited, and elucidation of the mechanisms surrounding the immune responses to this complex cancer will result in improved therapeutic approaches. This review explores what is known about the immuno-biology of OAC and explores promising therapeutic avenues that may improve responses to immunotherapeutic regimens.
Collapse
Affiliation(s)
- James M Lonie
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.
| | - Andrew P Barbour
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia; Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Riccardo Dolcetti
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia; Sir Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
188
|
Carino A, Graziosi L, Marchianò S, Biagioli M, Marino E, Sepe V, Zampella A, Distrutti E, Donini A, Fiorucci S. Analysis of Gastric Cancer Transcriptome Allows the Identification of Histotype Specific Molecular Signatures With Prognostic Potential. Front Oncol 2021; 11:663771. [PMID: 34012923 PMCID: PMC8126708 DOI: 10.3389/fonc.2021.663771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the fifth most common malignancy but the third leading cause of cancer-associated mortality worldwide. Therapy for gastric cancer remain largely suboptimal making the identification of novel therapeutic targets an urgent medical need. In the present study we have carried out a high-throughput sequencing of transcriptome expression in patients with gastric cancers. Twenty-four patients, among a series of 53, who underwent an attempt of curative surgery for gastric cancers in a single center, were enrolled. Patients were sub-grouped according to their histopathology into diffuse and intestinal types, and the transcriptome of the two subgroups assessed by RNAseq analysis and compared to the normal gastric mucosa. The results of this investigation demonstrated that the two histopathology phenotypes express two different patterns of gene expression. A total of 2,064 transcripts were differentially expressed between neoplastic and non-neoplastic tissues: 772 were specific for the intestinal type and 407 for the diffuse type. Only 885 transcripts were simultaneously differentially expressed by both tumors. The per pathway analysis demonstrated an enrichment of extracellular matrix and immune dysfunction in the intestinal type including CXCR2, CXCR1, FPR2, CARD14, EFNA2, AQ9, TRIP13, KLK11 and GHRL. At the univariate analysis reduced levels AQP9 was found to be a negative predictor of 4 years survival. In the diffuse type low levels CXCR2 and high levels of CARD14 mRNA were negative predictors of 4 years survival. In summary, we have identified a group of genes differentially regulated in the intestinal and diffuse histotypes of gastric cancers with AQP9, CARD14 and CXCR2 impacting on patients' prognosis, although CXCR2 is the only factor independently impacting overall survival.
Collapse
Affiliation(s)
- Adriana Carino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Graziosi
- S.C.Gastroenterologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elisabetta Marino
- S.C.Gastroenterologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Annibale Donini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
189
|
Lee IS, Sahu D, Hur H, Yook JH, Kim BS, Goel A. Discovery and validation of an expression signature for recurrence prediction in high-risk diffuse-type gastric cancer. Gastric Cancer 2021; 24:655-665. [PMID: 33523340 DOI: 10.1007/s10120-021-01155-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diffuse type gastric cancer (DGC), represented by low sensitivity to chemotherapy and poor prognosis, is a heterogenous malignancy in which patient subsets exhibit diverse oncological risk-profiles. This study aimed to develop molecular biomarkers for robust prognostic risk-stratification and improve survival outcomes in patients with diffuse type gastric cancer (DGC). METHODS We undertook a systematic and comprehensive discovery and validation effort to identify recurrence prediction biomarkers by analyzing genome-wide transcriptomic profiling data from 157 patients with DGC, followed by their validation in 254 patients from 2 clinical cohorts. RESULTS Genome-wide transcriptomic profiling identified a 7-gene panel for robust prediction of recurrence in DGC patients (AUC = 0.91), which was successfully validated in an independent dataset (AUC = 0.86). Examination of 180 specimens from a training cohort allowed us to establish a gene-based risk prediction model (AUC = 0.78; 95% CI 0.71-0.84), which was subsequently validated in an independent cohort of 74 GC patients (AUC = 0.83; 95% CI 0.72-0.90). The Kaplan-Meier analyses exhibited a consistently superior performance of our risk-prediction model in the identification of high- and low-risk patient subgroups, which was significantly improved when we combined our gene signature with the tumor stage in both clinical cohorts (AUC of 0.83 in the training cohort and 0.89 in the validation cohort). Finally, for an easier clinical translation, we established a nomogram that robustly predicted prognosis in patients with DGC. CONCLUSIONS Our novel transcriptomic signature for risk-stratification and identification of high-risk patients with recurrence could serve as an important clinical decision-making tool in patients with DGC.
Collapse
Affiliation(s)
- In-Seob Lee
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Biomedical Research Center, 1218 S. Fifth Avenue, Monrovia, CA, 91016, USA.,Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Divya Sahu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Biomedical Research Center, 1218 S. Fifth Avenue, Monrovia, CA, 91016, USA
| | - Hoon Hur
- Department of Surgery, Ajou University of School of Medicine, Suwon, South Korea.,Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Jeong-Hwan Yook
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Byung-Sik Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Biomedical Research Center, 1218 S. Fifth Avenue, Monrovia, CA, 91016, USA.
| |
Collapse
|
190
|
Zhou YJ, Lu XF, Meng JL, Wang QW, Chen JN, Zhang QW, Zheng KI, Rocha CS, Martins CB, Yan FR, Li XB. Specific epigenetic age acceleration patterns among four molecular subtypes of gastric cancer and their prognostic value. Epigenomics 2021; 13:767-778. [PMID: 33876652 DOI: 10.2217/epi-2020-0290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims: To determine the association of the methylation age (Horvath epigenetic clock) of gastric cancer (GC) tissues with molecular subtypes and patient survival. Materials & methods: Multivariate regression models were used to determine the association of methylation age acceleration (AA) with the clinical and molecular characteristics of 333 GC patients. Results: Relative to the chromosomal instability subtype, the epigenetic AA was 49.8 (95% CI: 42.7-56.9) years for Epstein-Barr virus, 16.1 (10.6-21.6) years for microsatellite instability, and 6.05 (0.1-11.1) years for genomic stability subtype. GC patients with accelerated aging of tumor tissues had better outcomes (adjusted hazard ratio: 3.13; p = 0.03). Differentially methylated probes in patients with accelerated and decelerated methylation aging enriched in pathways including BMP signaling, HMGB1 signaling, STAT3 signaling and human embryonic stem cell pluripotency. Conclusions: Our results highlight the prognostic value of epigenetic AA in GC and suggest that epigenetic AA is also an indicator of molecular subtype in GC.
Collapse
Affiliation(s)
- Yu-Jie Zhou
- Division of Gastroenterology & Hepatology, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao-Fan Lu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Lin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China.,Department of Urology, University of Rochester Medical Center, Rochester 14620, NY, USA
| | - Qi-Wen Wang
- Division of Gastroenterology & Hepatology, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jin-Nan Chen
- Division of Gastroenterology & Hepatology, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qing-Wei Zhang
- Division of Gastroenterology & Hepatology, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kenneth I Zheng
- Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Claudia S Rocha
- School of International Studies, Wenzhou Medical University, Wenzhou 325000, China
| | - Carla B Martins
- School of International Studies, Wenzhou Medical University, Wenzhou 325000, China
| | - Fang-Rong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Bo Li
- Division of Gastroenterology & Hepatology, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
191
|
Wenzel C, Herold S, Wermke M, E. Aust D, B. Baretton G. Routine Molecular Pathology Diagnostics in Precision Oncology. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:arztebl.m2021.0025. [PMID: 33536117 PMCID: PMC8287073 DOI: 10.3238/arztebl.m2021.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/01/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Technical advances in the field of molecular genetics permit precise genomic characterization of malignant tumors. This has not only improved our understanding of tumor biology but also paved the way for molecularly stratified treatment strategies in routine clinical practice. METHODS A selective search of PubMed to identify literature on molecular pathology methods, their indications, the challenges associated with molecular findings, and future developments. RESULTS Tumors can be characterized with the aid of immunohistochemistry, in-situ hybridization, and sequencing of DNA or RNA. The benefits of molecularly stratified tumor treatment have been demonstrated by randomized clinical trials on numerous tumor entities, e.g., non-small-cell lung cancer, colorectal cancer, and breast cancer. Therefore, initiation of specific treatment for these entities should be preceded by molecular pathology biomarker analyses, generally carried out on tumor tissue. Randomized controlled trials and non-controlled studies show that enhanced progression-free survival ensues if the pharmacological treatment is oriented on the findings of molecular pathology diagnostics. In next-generation sequencing, numerous relevant gene sequences or even whole genes can be sequenced in parallel, dispensing with complex staged diagnostics and reducing the use of biomaterials. These new methods also complement the currently relevant predictive biomarkers by permitting the investigation of genetic alterations presently of interest in the context of clinical studies. Prior to widespread routine clinical application, however, sequencing of large gene panels or whole genomes or exomes need to be even more stringently validated. CONCLUSION Quality-assured molecular pathology assays are universally available for the determination of currently relevant predictive biomarkers. However, the integration of extensive genomic analyses into routine molecular pathology diagnostics represents a future challenge in precision oncology.
Collapse
Affiliation(s)
- Carina Wenzel
- Institute of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden
| | - Sylvia Herold
- Institute of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden
| | - Martin Wermke
- Medical Department I, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden: Dr. med. Martin Wermke
| | - Daniela E. Aust
- Institute of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden
| | - Gustavo B. Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden
| |
Collapse
|
192
|
Ramos MFKP, Pereira MA, Cardili L, de Mello ES, Ribeiro Jr U, Zilberstein B, Cecconello I. Expression profiles of gastric cancer molecular subtypes in remnant tumors. World J Gastrointest Oncol 2021; 13:265-278. [PMID: 33889278 PMCID: PMC8040060 DOI: 10.4251/wjgo.v13.i4.265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Remnant gastric cancer (RGC) is a carcinoma arising in the stomach remnant after previous gastric resection. It is frequently reported as a tumor with a poor prognosis and distinct biological features from primary gastric cancer (PGC). However, as it is less frequent, its profile regarding the current molecular classifications of gastric cancer has not been evaluated.
AIM To evaluate a cohort of RGC according to molecular subtypes of GC using a panel of immunohistochemistry and in situ hybridization to determine whether the expression profile is different between PGC and RGC.
METHODS Consecutive RGC patients who underwent gastrectomy between 2009 and 2019 were assessed using seven GC panels: Epstein-Barr virus in situ hybridization, immunohistochemistry for mismatch repair proteins (MutL homolog 1, MutS homolog 2, MutS homolog 6, and PMS1 homolog 2), p53 protein, and E-cadherin expression. Clinicopathological characteristics and survival of these patients were compared to 284 PGC patients.
RESULTS A total of 40 RGC patients were enrolled in this study. Compared to PGC, older age (P < 0.001), male (P < 0.001), lower body mass index (P = 0.010), and lower hemoglobin level (P < 0.001) were associated with RGC patients. No difference was observed regarding Lauren’s type and pathologic Tumor Node Metastasis stage between the groups. Regarding the profiles evaluated, EBV-positive tumors were higher in RGC compared to PGC (P = 0.039). The frequency of microsatellite instability, aberrant p53 immunostaining, and loss of E-cadherin expression were similar between RGC and PGC. Higher rates of simultaneous alterations in two or more profiles were observed in RGC compared to PGC (P < 0.001). According to the molecular classification, the subtypes were defined as EBV in nine (22.5%) cases, microsatellite instability in nine (22.5%) cases, genomically stable in one (2.5%) case, and chromosomal instability in 21 (52.5%) cases. There was no significant difference in survival between molecular subtypes in RGC patients.
CONCLUSION RGC was associated with EBV positivity and higher rates of co-altered expression profiles compared to PGC. According to the molecular classification, there was no significant difference in survival between the subtypes of RGC.
Collapse
Affiliation(s)
- Marcus Fernando Kodama Pertille Ramos
- Department of Gastroenterology, Instituto do Cancer, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, São Paulo, Brazil
| | - Marina Alessandra Pereira
- Department of Gastroenterology, Instituto do Cancer, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, São Paulo, Brazil
| | - Leonardo Cardili
- Department of Pathology, Instituto do Cancer, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, São Paulo, Brazil
| | - Evandro Sobroza de Mello
- Department of Pathology, Instituto do Cancer, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, São Paulo, Brazil
| | - Ulysses Ribeiro Jr
- Department of Gastroenterology, Instituto do Cancer, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, São Paulo, Brazil
| | - Bruno Zilberstein
- Department of Gastroenterology, Instituto do Cancer, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, São Paulo, Brazil
| | - Ivan Cecconello
- Department of Gastroenterology, Instituto do Cancer, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, São Paulo, Brazil
| |
Collapse
|
193
|
Rihawi K, Ricci AD, Rizzo A, Brocchi S, Marasco G, Pastore LV, Llimpe FLR, Golfieri R, Renzulli M. Tumor-Associated Macrophages and Inflammatory Microenvironment in Gastric Cancer: Novel Translational Implications. Int J Mol Sci 2021; 22:ijms22083805. [PMID: 33916915 PMCID: PMC8067563 DOI: 10.3390/ijms22083805] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) represents the fifth most frequently diagnosed cancer worldwide, with a poor prognosis in patients with advanced disease despite many improvements in systemic treatments in the last decade. In fact, GC has shown resistance to several treatment options, and thus, notable efforts have been focused on the research and identification of novel therapeutic targets in this setting. The tumor microenvironment (TME) has emerged as a potential therapeutic target in several malignancies including GC, due to its pivotal role in cancer progression and drug resistance. Therefore, several agents and therapeutic strategies targeting the TME are currently under assessment in both preclinical and clinical studies. The present study provides an overview of available evidence of the inflammatory TME in GC, highlighting different types of tumor-associated cells and implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Karim Rihawi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Angela Dalia Ricci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Stefano Brocchi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
| | - Giovanni Marasco
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Luigi Vincenzo Pastore
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
| | - Fabiola Lorena Rojas Llimpe
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
| | - Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
- Correspondence: ; Tel.: +39-0512142958; Fax: +39-0512142805
| |
Collapse
|
194
|
Chen Y, Cheng WY, Shi H, Huang S, Chen H, Liu D, Xu W, Yu J, Wang J. Classifying gastric cancer using FLORA reveals clinically relevant molecular subtypes and highlights LINC01614 as a biomarker for patient prognosis. Oncogene 2021; 40:2898-2909. [PMID: 33742127 PMCID: PMC8062268 DOI: 10.1038/s41388-021-01743-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022]
Abstract
Molecular-based classifications of gastric cancer (GC) were recently proposed, but few of them robustly predict clinical outcomes. While mutation and expression signature of protein-coding genes were used in previous molecular subtyping methods, the noncoding genome in GC remains largely unexplored. Here, we developed the fast long-noncoding RNA analysis (FLORA) method to study RNA sequencing data of GC cases, and prioritized tumor-specific long-noncoding RNAs (lncRNAs) by integrating clinical and multi-omic data. We uncovered 1235 tumor-specific lncRNAs, based on which three subtypes were identified. The lncRNA-based subtype 3 (L3) represented a subgroup of intestinal GC with worse survival, characterized by prevalent TP53 mutations, chromatin instability, hypomethylation, and over-expression of oncogenic lncRNAs. In contrast, the lncRNA-based subtype 1 (L1) has the best survival outcome, while LINC01614 expression further segregated a subgroup of L1 cases with worse survival and increased chance of developing distal metastasis. We demonstrated that LINC01614 over-expression is an independent prognostic factor in L1 and network-based functional prediction implicated its relevance to cell migration. Over-expression and CRISPR-Cas9-guided knockout experiments further validated the functions of LINC01614 in promoting GC cell growth and migration. Altogether, we proposed a lncRNA-based molecular subtype of GC that robustly predicts patient survival and validated LINC01614 as an oncogenic lncRNA that promotes GC proliferation and migration.
Collapse
Affiliation(s)
- Yiyun Chen
- Division of Life Science and Department of Chemical and Biological Engineering, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Wing Yin Cheng
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hongyu Shi
- Division of Life Science and Department of Chemical and Biological Engineering, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shengshuo Huang
- Division of Life Science and Department of Chemical and Biological Engineering, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huarong Chen
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dabin Liu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weiqi Xu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jiguang Wang
- Division of Life Science and Department of Chemical and Biological Engineering, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
195
|
Ricci AD, Rizzo A, Rojas Llimpe FL, Di Fabio F, De Biase D, Rihawi K. Novel HER2-Directed Treatments in Advanced Gastric Carcinoma: AnotHER Paradigm Shift? Cancers (Basel) 2021; 13:cancers13071664. [PMID: 33916206 PMCID: PMC8036476 DOI: 10.3390/cancers13071664] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/05/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed and/or amplified in approximately 15-20% of gastric adenocarcinoma (GC) patients. In 2010, the landmark ToGA trial established the combination of trastuzumab plus chemotherapy as the first-line standard of care for HER2-positive GC patients with advanced disease. However, subsequent studies on HER2 targeted therapies in this setting failed to meet their primary endpoints, and not all HER2-positive GC patients benefit from targeted approaches. More recently, novel HER2-directed treatments have been investigated, including trastuzumab deruxtecan (T-Dxd); following the results of the DESTINY-Gastric01 study, T-Dxd received its first U.S. Food and Drug Administration (FDA) approval on 15 January 2021 for the treatment of adults with unresectable, locally advanced, or metastatic GC who have received a prior trastuzumab-based regimen. In this review, we discuss the current HER2-targeted treatments for GC in the advanced disease setting, mainly focusing on emerging new treatments and future research directions.
Collapse
Affiliation(s)
- Angela Dalia Ricci
- Division of Oncology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (A.D.R.); (F.L.R.L.); (F.D.F.); (K.R.)
- Department of Experimental, Diagnostic & Specialty Medicine, Azienda Ospedaliero—Universitaria di Bologna, Via Massarenti 13, 40138 Bologna, Italy
| | - Alessandro Rizzo
- Division of Oncology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (A.D.R.); (F.L.R.L.); (F.D.F.); (K.R.)
- Department of Experimental, Diagnostic & Specialty Medicine, Azienda Ospedaliero—Universitaria di Bologna, Via Massarenti 13, 40138 Bologna, Italy
- Correspondence:
| | - Fabiola Lorena Rojas Llimpe
- Division of Oncology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (A.D.R.); (F.L.R.L.); (F.D.F.); (K.R.)
| | - Francesca Di Fabio
- Division of Oncology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (A.D.R.); (F.L.R.L.); (F.D.F.); (K.R.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40138 Bologna, Italy;
| | - Karim Rihawi
- Division of Oncology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (A.D.R.); (F.L.R.L.); (F.D.F.); (K.R.)
| |
Collapse
|
196
|
Cai Z, Song H, Fingerhut A, Sun J, Ma J, Zhang L, Li S, Yu C, Zheng M, Zang L. A greater lymph node yield is required during pathological examination in microsatellite instability-high gastric cancer. BMC Cancer 2021; 21:319. [PMID: 33765970 PMCID: PMC7992823 DOI: 10.1186/s12885-021-08044-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Background The impact of microsatellite status on lymph node (LN) yield during lymphadenectomy and pathological examination has never been assessed in gastric cancer (GC). In this study, we aimed to appraise the association between microsatellite instability-high (MSI-H) and LN yield after curative gastrectomy. Methods We retrospectively analyzed 1757 patients with GC undergoing curative gastrectomy and divided them into two groups: MSI-H (n = 185(10.5%)) and microsatellite stability (MSS) (n = 1572(89.5%)), using a five-Bethesda-marker (NR-24, BAT-25, BAT-26, CAT-25, MONO-27) panel. The median LN count and the percentage of specimens with a minimum of 16 LNs (adequate LN ratio) were compared between the two groups. The log odds (LODDS) of positive LN count (PLNC) to negative LN count (NLNC) and the target LN examined threshold (TLNT(x%)) were calculated in both groups. Results Statistically significant differences were found in the median LN count between MSI-H and MSS groups for the complete cohort (30 vs. 28, p = 0.031), for patients undergoing distal gastrectomy (DG) (30 vs. 27, p = 0.002), for stage II patients undergoing DG (34 vs. 28, p = 0.005), and for LN-negative patients undergoing DG (28 vs. 24, p = 0.002). MSI-H was an independent factor for higher total LN count in patients undergoing DG (p = 0.011), but it was not statistically correlated to the adequate LN ratio. Statistically significant differences in PLNC, NLNC and LODDS were found between MSI-H GC and MSS GC (all p < 0.001). The TLNT(90%) for MSI-H and MSS groups were 31 and 25, respectively. TLNT(X%) of MSI-H GC was always higher than that of MSS GC regardless of the given value of X%. Conclusions MSI-H was associated with higher LN yield in patients undergoing gastrectomy for GC. Although MSI-H did not affect the adequacy of LN harvest, we speculate that a greater lymph node yield is required during pathological examination in MSI-H GC.
Collapse
Affiliation(s)
- Zhenghao Cai
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, P. R. China.,Shanghai Minimally Invasive Surgery Center, Shanghai, P. R. China
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, P. R. China.,Shanghai Minimally Invasive Surgery Center, Shanghai, P. R. China
| | - Abe Fingerhut
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, P. R. China.,Shanghai Minimally Invasive Surgery Center, Shanghai, P. R. China.,Section for Surgical Research, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, P. R. China.,Shanghai Minimally Invasive Surgery Center, Shanghai, P. R. China
| | - Junjun Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, P. R. China.,Shanghai Minimally Invasive Surgery Center, Shanghai, P. R. China
| | - Luyang Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, P. R. China.,Shanghai Minimally Invasive Surgery Center, Shanghai, P. R. China
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, P. R. China.,Shanghai Minimally Invasive Surgery Center, Shanghai, P. R. China
| | - Chaoran Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, P. R. China.,Shanghai Minimally Invasive Surgery Center, Shanghai, P. R. China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, P. R. China. .,Shanghai Minimally Invasive Surgery Center, Shanghai, P. R. China.
| | - Lu Zang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, P. R. China. .,Shanghai Minimally Invasive Surgery Center, Shanghai, P. R. China.
| |
Collapse
|
197
|
Fornaro L, Spallanzani A, de Vita F, D’Ugo D, Falcone A, Lorenzon L, Tirino G, Cascinu S. Beyond the Guidelines: The Grey Zones of the Management of Gastric Cancer. Consensus Statements from the Gastric Cancer Italian Network (GAIN). Cancers (Basel) 2021; 13:1304. [PMID: 33804024 PMCID: PMC8001719 DOI: 10.3390/cancers13061304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Management of gastric and gastroesophageal junction (GEJ) adenocarcinoma remains challenging, because of the heterogeneity in tumor biology within the upper gastrointestinal tract. Daily clinical practice is full of grey areas regarding the complexity of diagnostic, staging, and therapeutic procedures. The aim of this paper is to provide a guide for clinicians facing challenging situations in routine practice, taking a multidisciplinary consensus approach based on available literature. METHODS The GAIN (GAstric cancer Italian Network) group was established with the aims of reviewing literature evidence, discussing key issues in prevention, diagnosis, and management of gastric and GEJ adenocarcinoma, and offering a summary of statements. A Delphi consensus method was used to obtain opinions from the expert panel of specialists. RESULTS Forty-nine clinical questions were identified in six areas of interest: role of multidisciplinary team; risk factors; diagnosis; management of early gastric cancer and multimodal approach to localized gastric cancer; treatment of elderly patients with locally advanced resectable disease; and treatment of locally advanced and metastatic cancer. CONCLUSIONS The statements presented may guide clinicians in practical management of this disease.
Collapse
Affiliation(s)
- Lorenzo Fornaro
- Department of Translational Medicine, Division of Medical Oncology, AOU Pisana, 56126 Pisa, Italy;
| | - Andrea Spallanzani
- Department of Oncology and Hematology, University Hospital of Modena, 41125 Modena, Italy;
| | - Ferdinando de Vita
- Department of Precision Medicine, Division of Medical Oncology, School of Medicine, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy; (F.d.V.); (G.T.)
| | - Domenico D’Ugo
- General Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University, 00168 Rome, Italy; (D.D.); (L.L.)
| | - Alfredo Falcone
- Department of Translational Medicine, Division of Medical Oncology, University of Pisa, 56126 Pisa, Italy;
| | - Laura Lorenzon
- General Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University, 00168 Rome, Italy; (D.D.); (L.L.)
| | - Giuseppe Tirino
- Department of Precision Medicine, Division of Medical Oncology, School of Medicine, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy; (F.d.V.); (G.T.)
| | - Stefano Cascinu
- Medical Oncology, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | | |
Collapse
|
198
|
Ji J, Chen J, Wang A, Zhang W, Ju H, Liu Y, Li L. KK-LC-1 may be an effective prognostic biomarker for gastric cancer. BMC Cancer 2021; 21:267. [PMID: 33711953 PMCID: PMC7953676 DOI: 10.1186/s12885-021-07974-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Background The objective of the study was to detect the expression of Kita-Kyushu lung cancer antigen-1 (KK-LC-1) in gastric cancer (GC) specimens and analyse the associations between KK-LC-1 expression and clinicopathological parameters and clinical prognosis. Methods All of the 94 patients in this study were GC patients who underwent surgical resection. KK-LC-1 protein expression in GC tissue was detected by immunohistochemistry. This report applies the histological score (H-score) to evaluate KK-LC-1 expression. To calculate this indicator, the number of positive cells in each section and their staining intensity were converted to corresponding values. The expression of KK-LC-1 in the cytoplasm of cancer and normal tissues was scored to obtain their respective H values. The chi-square test, Kaplan-Meier method and Cox regression were used to analyse the linear association between KK-LC-1 expression and clinicopathological data and prognosis. Results In the cytoplasm, KK-LC-1 expression in tumour tissues was significantly higher than that in normal tissues (P < 0.001). Using the median H-score as the cut-off value, we discovered that GC patients with high levels of KK-LC-1 expression in the cytoplasm had favourable overall survival (OS) (P = 0.016), and this result was statistically significant in the Cox regression analysis. Additionally, a negative correlation was found between KK-LC-1 protein expression and the pathological grade of the tumour (P = 0.036), with significantly more KK-LC-1 protein expression observed in the intestinal type of GC than in the diffuse type (P = 0.008). Conclusions Our research data showed that KK-LC-1 expression was greater in GC tissues than in normal tissues, and higher KK-LC-1 expression was associated with longer OS of GC patients. KK-LC-1 can be used as a biomarker for a good prognosis in GC patients.
Collapse
Affiliation(s)
- Jun Ji
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,First Affiliated Hospital of Baotou Medical College, General Surgery, Baotou, 014010, Inner Mongolia, China
| | - Jiahui Chen
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Anqiang Wang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Wei Zhang
- Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, 014060, Inner Mongolia, China
| | - Hongge Ju
- Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, 014060, Inner Mongolia, China
| | - Yang Liu
- Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, 014060, Inner Mongolia, China.
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
199
|
Lee BE. Epstein-Barr Virus-associated Gastric Carcinoma. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2020.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epstein-Barr virus-associated gastric carcinoma (EBVaGC) comprises approximately 10% of all gastric cancers and is now defined as one of the four subtypes of gastric cancer according to the molecular classification proposed by the Cancer Genome Atlas project. EBVaGC has characteristic genetic profiles that harbor a DNA methylation phenotype, frequent mutations in PIK3CA and ARID1A, and amplification of JAK2 and programmed death-ligand (PD-L)1/PD-L2. Therefore, EBVaGC shows several distinct clinicopathological features, including a male predominance, proximal stomach location, gastric carcinoma with lymphoid stroma histology, low risk of lymph node metastasis, and favorable prognosis. In clinical practice, patients with early EBVaGC might be good candidates for endoscopic resection or minimally invasive surgery since the rate of lymph node metastasis is very low, even with deep submucosal invasion. Furthermore, in the case of advanced EBVaGC, the applicability of immunotherapy has been investigated based on its increased expression of PD-L1 and high immunogenicity. In conclusion, EBV can serve as a biomarker in gastric cancer, and further identification of other molecular characteristics of EBVaGC is essential for new potential therapeutic targets.
Collapse
|
200
|
Puliga E, Corso S, Pietrantonio F, Giordano S. Microsatellite instability in Gastric Cancer: Between lights and shadows. Cancer Treat Rev 2021; 95:102175. [PMID: 33721595 DOI: 10.1016/j.ctrv.2021.102175] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Gastric cancer (GC) represents an important contributor to the global burden of cancer, being one of the most common and deadly malignancies worldwide. According to TCGA and ACRG classifications, the microsatellite instable (MSI) group represents a significant subset of GCs and is currently in the limelight of many researches due to its favorable survival outcome in resectable stages compared to microsatellite stable tumors. MSI GCs hypermutated phenotype triggers immunosurveillance, making this molecular subgroup a promising candidate for immune checkpoint inhibitors treatment. Conversely, conflicting outcomes have been reported in chemotherapy settings. Due to the clinical relevance of these observations, in this review we report and discuss the molecular, pathological, prognostic, and predictive features of MSI gastric tumors.
Collapse
Affiliation(s)
- Elisabetta Puliga
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| | - Simona Corso
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| |
Collapse
|