151
|
Iguchi E, Safgren SL, Marks DL, Olson RL, Fernandez-Zapico ME. Pancreatic Cancer, A Mis-interpreter of the Epigenetic Language. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:575-590. [PMID: 28018146 PMCID: PMC5168833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pancreatic cancer is the third leading cause of cancer mortality in the U.S. with close to 40,000 deaths per year. Pancreatic ductal adenocarcinoma (PDAC) represents approximately 90 percent of all pancreatic cancer cases and is the most lethal form of the disease. Current therapies for PDAC are ineffective and most patients cannot be treated by surgical resection. Most research efforts have primarily focused on how genetic alterations cause, alter progression, contribute to diagnosis, and influence PDAC management. Over the past two decades, a model has been advanced of PDAC initiation and progression as a multi-step process driven by the acquisition of mutations leading to loss of tumor suppressors and activation of oncogenes. The recognition of the essential roles of these genetic alterations in the development of PDAC has revolutionized our knowledge of this disease. However, none of these findings have turned into effective treatment for this dismal malignancy. In recent years, studies in the areas of chromatin modifications, and non-coding RNAs have uncovered mechanisms for regulating gene expression which occur independently of genetic alterations. Chromatin-based mechanisms are interwoven with microRNA-driven regulation of protein translation to create an integrated epigenetic language, which is grossly dysregulated in PDAC. Thus in PDAC, key tumor suppressors that are well established to play a role in PDAC may be repressed, and oncogenes can be upregulated secondary to epigenetic alterations. Unlike mutations, epigenetic changes are potentially reversible. Given this feature of epigenetic mechanisms, it is conceivable that targeting epigenetic-based events promoting and maintaining PDAC could serve as foundation for the development of new therapeutic and diagnostic approaches for this disease.
Collapse
Affiliation(s)
- Eriko Iguchi
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - David L. Marks
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Rachel L. Olson
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
152
|
Daugan M, Dufaÿ Wojcicki A, d’Hayer B, Boudy V. Metformin: An anti-diabetic drug to fight cancer. Pharmacol Res 2016; 113:675-685. [DOI: 10.1016/j.phrs.2016.10.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 12/22/2022]
|
153
|
Bhaw-Luximon A, Jhurry D. Metformin in pancreatic cancer treatment: from clinical trials through basic research to biomarker quantification. J Cancer Res Clin Oncol 2016; 142:2159-71. [PMID: 27160287 DOI: 10.1007/s00432-016-2178-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/02/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE Three major chemotherapy strategies have emerged in the treatment of PDAC in the recent past: multiple drug combination, stroma depletion, and use of nanodrug therapy. Anti-diabetic metformin was shown to improve the outcome of a number of cancer types the first seminal report on an observational study published in 2005 and the first hospital-based case-control study on pancreatic cancer in 2009. METHODS In this review paper, we confront the findings of a selected number of epidemiological studies and clinical trials on the use of metformin in pancreatic cancer treatment with basic knowledge and research. We particularly emphasize on the point that contradictory clinical results likely originate from heterogeneous study design due to a trial and error approach rather than an evidence-based and scientific approach. A non-rigorous selection of patients suffering from PDAC and often a poor understanding of the biological mechanism of metformin coupled with lack of scientific data has led to general statements on metformin positive or negative action, another aspect which we highlight in the review. RESULTS We here present a few pathways which in our opinion are predominant for pancreatic cancer specifically: mitochondrial activity, AMPK activation, mTOR inhibition, and decreased IGF-1R and HIF-1α expression. CONCLUSION We stress on the need for a better stratification of patients and a more rigorous planning of clinical trials not only focusing on classical parameters but also on potential predictive biomarkers (AMPK, mTOR, HIF-1α, IGF-1R) and metformin dosage for positive outcome.
Collapse
Affiliation(s)
- Archana Bhaw-Luximon
- Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius
| | - Dhanjay Jhurry
- Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius.
| |
Collapse
|
154
|
Elmaci İ, Altinoz MA. A Metabolic Inhibitory Cocktail for Grave Cancers: Metformin, Pioglitazone and Lithium Combination in Treatment of Pancreatic Cancer and Glioblastoma Multiforme. Biochem Genet 2016; 54:573-618. [PMID: 27377891 DOI: 10.1007/s10528-016-9754-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) and glioblastoma multiforme (GBM) are among the human cancers with worst prognosis which require an urgent need for efficient therapies. Here, we propose to apply to treat both malignancies with a triple combination of drugs, which are already in use for different indications. Recent studies demonstrated a considerable link between risk of PC and diabetes. In experimental models, anti-diabetogenic agents suppress growth of PC, including metformin (M), pioglitazone (P) and lithium (L). L is used in psychiatric practice, yet also bears anti-diabetic potential and selectively inhibits glycogen synthase kinase-3 beta (GSK-3β). M, a biguanide class anti-diabetic agent shows anticancer activity via activating AMP-activated protein kinase (AMPK). Glitazones bind to PPAR-γ and inhibit NF-κB, triggering cell proliferation, apoptosis resistance and synthesis of inflammatory cytokines in cancer cells. Inhibition of inflammatory cytokines could simultaneously decrease tumor growth and alleviate cancer cachexia, having a major role in PC mortality. Furthermore, mutual synergistic interactions exist between PPAR-γ and GSK-3β, between AMPK and GSK-3β and between AMPK and PPAR-γ. In GBM, M blocks angiogenesis and migration in experimental models. Very noteworthy, among GBM patients with type 2 diabetes, usage of M significantly correlates with better survival while reverse is true for sulfonylureas. In experimental models, P synergies with ligands of RAR, RXR and statins in reducing growth of GBM. Further, usage of P was found to be lesser in anaplastic astrocytoma and GBM patients, indicating a protective effect of P against high-grade gliomas. L is accumulated in GBM cells faster and higher than in neuroblastoma cells, and its levels further increase with chronic exposure. Recent studies revealed anti-invasive potential of L in GBM cell lines. Here, we propose that a triple-agent regime including drugs already in clinical usage may provide a metabolic adjuvant therapy for PC and GBM.
Collapse
Affiliation(s)
- İlhan Elmaci
- Department of Neurosurgery, Memorial Hospital, Istanbul, Turkey
- Neuroacademy Group, Istanbul, Turkey
| | - Meric A Altinoz
- Department of Immunology, Experimental Medicine Research Center, Istanbul, Turkey.
| |
Collapse
|
155
|
S Franco S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, Dinnyés A. In vitro models of cancer stem cells and clinical applications. BMC Cancer 2016; 16:738. [PMID: 27766946 PMCID: PMC5073996 DOI: 10.1186/s12885-016-2774-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer cells, stem cells and cancer stem cells have for a long time played a significant role in the biomedical sciences. Though cancer therapy is more effective than it was a few years ago, the truth is that still none of the current non-surgical treatments can cure cancer effectively. The reason could be due to the subpopulation called “cancer stem cells” (CSCs), being defined as those cells within a tumour that have properties of stem cells: self-renewal and the ability for differentiation into multiple cell types that occur in tumours. The phenomenon of CSCs is based on their resistance to many of the current cancer therapies, which results in tumour relapse. Although further investigation regarding CSCs is still needed, there is already evidence that these cells may play an important role in the prognosis of cancer, progression and therapeutic strategy. Therefore, long-term patient survival may depend on the elimination of CSCs. Consequently, isolation of pure CSC populations or reprogramming of cancer cells into CSCs, from cancer cell lines or primary tumours, would be a useful tool to gain an in-depth knowledge about heterogeneity and plasticity of CSC phenotypes and therefore carcinogenesis. Herein, we will discuss current CSC models, methods used to characterize CSCs, candidate markers, characteristic signalling pathways and clinical applications of CSCs. Some examples of CSC-specific treatments that are currently in early clinical phases will also be presented in this review.
Collapse
Affiliation(s)
- Sara S Franco
- Szent István University, Gödöllö, Hungary.,Biotalentum Ltd., Gödöllö, Hungary
| | | | - Maria S Iliou
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ali Mobasheri
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - András Dinnyés
- Szent István University, Gödöllö, Hungary. .,Biotalentum Ltd., Gödöllö, Hungary. .,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
156
|
Zhou JY, Xu B, Li L. A New Role for an Old Drug: Metformin Targets MicroRNAs in Treating Diabetes and Cancer. Drug Dev Res 2016; 76:263-9. [PMID: 26936407 DOI: 10.1002/ddr.21265] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are a family of short, noncoding, 19-23 base pair RNA molecules. Due to their unique role in gene regulation in various tissues, miRNAs play important roles in regulating insulin secretion, metabolic disease, and cancer biology. Emerging evidence demonstrates that miRNAs could also be novel diagnostic markers for a variety of disease states. Additionally, miRNAs have been found to function either as oncogenes, or tumor suppressor genes in cerian cancers. An increasing number of studies have been conducted investigating new drugs targeting miRNAs as a potential anticancer therapy. Metformin is the most widely prescribed medication for treating Type 2 diabetes (T2D). Recent clinical data suggests that metformin impacts the miRNA profile in T2D subjects. Most excitingly, studies have found that metformin is protective against cancer. The anticancer activity of metformin is mediated through a direct regulation of miRNAs, which further modulates several downstream genes in metabolic or preoncogenic pathways. These miRNAs are, therefore, prospective therapeutic targets for treating diabetes and cancer which is the topic of this review. Further study on the regulation of miRNAs by metformin could result in novel therapeutic strategies for recurrent or drug-esistant cancer, and as part of combinatorial approaches with conventional anticancer therapies.
Collapse
Affiliation(s)
- Joseph Yi Zhou
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 0G4
| | - Biao Xu
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lixin Li
- Department of Physician Assistant, College of Health Professions, Central Michigan University, Mount Pleasant, MI, 48859, USA
| |
Collapse
|
157
|
Cabello P, Pineda B, Tormo E, Lluch A, Eroles P. The Antitumor Effect of Metformin Is Mediated by miR-26a in Breast Cancer. Int J Mol Sci 2016; 17:E1298. [PMID: 27517917 PMCID: PMC5000695 DOI: 10.3390/ijms17081298] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 12/22/2022] Open
Abstract
Metformin, a drug approved for diabetes type II treatment, has been associated with a reduction in the incidence of breast cancer and metastasis and increased survival in diabetic breast cancer patients. High levels of miR-26a expression have been proposed as one of the possible mechanisms for this effect; likewise, this miRNA has also been associated with survival/apoptosis processes in breast cancer. Our aim was to evaluate if miR-26a and some of its targets could mediate the effect of metformin in breast cancer. The viability of MDA-MB-231, MDA-MB-468, and MCF-7 breast cancer cell lines was evaluated with an MTT assay after ectopic overexpression and/or downregulation of miR-26a. Similarly, the expression levels of the miR-26a targets CASP3, CCNE2, ABL2, APAF1, XIAP, BCL-2, PTEN, p53, E2F3, CDC25A, BCL2L1, MCL-1, EZH2, and MTDH were assessed by quantitative polymerase chain reaction (PCR). The effect of metformin treatment on breast cancer cell viability and miR-26a, BCL-2, PTEN, MCL-1, EZH2, and MTDH modulation were evaluated. Wound healing experiments were performed to analyze the effect of miR-26a and metformin treatment on cell migration. MiR-26a overexpression resulted in a reduction in cell viability that was partially recovered by inhibiting it. E2F3, MCL-1, EZH2, MTDH, and PTEN were downregulated by miR-26a and the PTEN (phosphatase and tensin homolog) protein was also reduced after miR-26a overexpression. Metformin treatment reduced breast cancer cell viability, increased miR-26a expression, and led to a reduction in BCL-2, EZH2, and PTEN expression. miR-26a inhibition partly prevents the metformin viability effect and the PTEN and EZH2 expression reduction. Our results indicate that metformin effectively reduces breast cancer cell viability and suggests that the effects of the drug are mediated by an increase in miR-26a expression and a reduction of its targets, PTEN and EHZ2 Thus, the use of metformin in breast cancer treatment constitutes a promising potential breast cancer therapy.
Collapse
Affiliation(s)
- Paula Cabello
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain.
| | - Begoña Pineda
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain.
| | - Eduardo Tormo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain.
| | - Ana Lluch
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain.
- Oncology and Hematology Department, Hospital Clinico Universitario, 46010 Valencia, Spain.
| | - Pilar Eroles
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain.
| |
Collapse
|
158
|
Wu K, Ma L, Zhu J. miR‑483‑5p promotes growth, invasion and self‑renewal of gastric cancer stem cells by Wnt/β‑catenin signaling. Mol Med Rep 2016; 14:3421-8. [PMID: 27511210 DOI: 10.3892/mmr.2016.5603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
Gastric carcinoma (GC) ranks as the second most common cause of cancer‑associated mortality worldwide. Emerging evidence has suggested a potential novel therapeutic strategy based on the ability of cancer stem cells (CSCs) to trigger tumorigenesis. MicroRNAs (miRNAs) have previously been implicated in CSC formation and regulation of their functional characteristics. In the current study, a significant upregulation of miR‑483‑5p levels was demonstrated in spheroid body‑forming cells (P<0.01) by reverse transcription‑quantitative polymerase chain reaction, which were isolated from the MKN‑45 gastric cancer cell line and possessed gastric CSC (GCSC) properties. An MTT assay demonstrated that overexpression of miR‑483‑5p by transfection with miR‑483‑5p mimics significantly increased cell proliferation and Annexin V‑propidium iodide staining indicated the suppression of cell apoptosis, suggesting that miR‑483‑5p has an important function in GCSC growth. Notably, Transwell and sphere formation assays demonstrated that miR‑483‑5p elevation promoted GCSC invasion and cell self‑renewal ability, respectively. Further western blotting assays demonstrated that miR‑483‑5p upregulation induced an increase in the protein expression levels of β‑catenin and its downstream target molecules, including cyclin D1, Bcl‑2 and matrix metalloproteinase 2, indicating that miR‑483‑5p activates Wnt/β‑catenin signaling. Inhibition of this pathway by β‑catenin small interfering RNA transfection attenuated the miR‑483‑5p‑induced effects on cell growth, invasion and self‑renewal. These results demonstrate that miR‑483‑5p may act as an oncogene to promote the development of GC by regulating GCSC growth, invasion and self‑renewal via the Wnt/β‑catenin signaling pathway. Thus, the present study suggests that miR‑483‑5p may be a promising therapeutic target against GC.
Collapse
Affiliation(s)
- Kai Wu
- Department of General Surgery, The Third Affiliated Hospital (Shaanxi Provincial People's Hospital), Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Longan Ma
- Department of General Surgery, The Third Affiliated Hospital (Shaanxi Provincial People's Hospital), Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jinxiang Zhu
- Department of General Surgery, The Third Affiliated Hospital (Shaanxi Provincial People's Hospital), Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
159
|
Shi Y, He Z, Jia Z, Xu C. Inhibitory effect of metformin combined with gemcitabine on pancreatic cancer cells in vitro and in vivo. Mol Med Rep 2016; 14:2921-8. [PMID: 27499118 PMCID: PMC5042754 DOI: 10.3892/mmr.2016.5592] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 06/02/2016] [Indexed: 12/29/2022] Open
Abstract
Pancreatic cancer is a malignant digestive system tumor with a particularly poor prognosis, and is the fourth leading cause of cancer-associated mortality in the USA. The anti-diabetic therapeutic agent, metformin (MET) has been demonstrated to exert anti-tumor effects. The present study assessed the ability of MET, alone or in combination with gemcitabine (GEM), to inhibit the growth of the human CFPAC-1 pancreatic cancer cell line in vitro and in vivo. Cell counting kit-8 assays were performed to measure CFPAC-1 cell viability and apoptosis was detected with annexin V/propidium iodide. Cell cycle analysis was conducted by flow cytometry. The mRNA and protein levels of B-cell lymphoma-extra large (Bcl-xL), Bcl2 associated X protein (Bax), caspase-3, survivin and cyclin D1 in CFPAC-1 cells and tumor tissues were detected by reverse transcription-polymerase chain reaction and western blotting, respectively. Furthermore, the expression levels of caspase-3 and proliferating cell nuclear antigen in tumor tissues were detected by immunohistochemistry. The results demonstrated that following MET treatment, the growth of CFPAC-1 cells and xenografts in nude mice was inhibited, the expression levels of Bcl-xL, survivin and cyclin D1 were downregulated, while the expression levels of Bax and caspase-3 were upregulated. These effects were enhanced when MET was administered in combination with GEM. The mechanism underlying the anti-tumor effect of MET may be associated with the induction of cell apoptosis and the inhibition of proliferation.
Collapse
Affiliation(s)
- Yuqi Shi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhilong He
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhenyu Jia
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
160
|
Cao H, Dong W, Qu X, Shen H, Xu J, Zhu L, Liu Q, Du J. Metformin Enhances the Therapy Effects of Anti-IGF-1R mAb Figitumumab to NSCLC. Sci Rep 2016; 6:31072. [PMID: 27488947 PMCID: PMC4973270 DOI: 10.1038/srep31072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling system plays a critical role in tumorigenesis, highlighting the potential of targeting IGF-1R as an anti-cancer therapy. Although multiple anti-IGF-1R monoclonal antibody (mAb) drugs have been developed, challenges remain in the validation of the therapeutic effects and understanding the molecular mechanism of these mAbs. Herein, we conducted a study to validate the effect of Figitumumab (CP), an anti-IGF-1R mAb, in a panel of non-small cell lung cancer (NSCLC) cell lines. We found all tested cell lines were sensitive to CP, and CP could block IGF-1R and the downstream PI3K/AKT pathway activation. Unexpectedly, we found CP could activate ERK signaling pathway in IGF-1R kinase independent manner, which we further verified was mainly mediated by β-arrestin2. We also investigated the anti-tumor effect of metformin alone as well as its combination with CP to target NSCLC. Metformin could target IGF-1R signaling pathway by attenuating PI3K/AKT and MEK/ERK signaling pathways and down-regulating IGF-1R. Finally, we found that combining metformin with CP could further induce IGF-1R down-regulation and was more effective to target NSCLC cells. Our data suggests the combining of metformin with CP has additive therapeutic value against NSCLC.
Collapse
Affiliation(s)
- Hongxin Cao
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China.,Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Shandong University, Jinan, P.R. China
| | - Wei Dong
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Xiao Qu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Hongchang Shen
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Jun Xu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Linhai Zhu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Qi Liu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| |
Collapse
|
161
|
Early pancreatic carcinogenesis - risk factors, early symptoms, and the impact of antidiabetic drugs. Eur J Gastroenterol Hepatol 2016; 28:e19-25. [PMID: 27120389 DOI: 10.1097/meg.0000000000000646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Risk factors (long-term diabetes, obesity) and early symptoms (new-onset diabetes, loss of weight, or persistent low body mass) are the initial symptoms of pancreatic carcinogenesis. They may be influenced by antidiabetic drugs and their correct evaluation is a prerequisite for early diagnosis of pancreatic cancer (PC). We review the risk factors, early symptoms, and the impact of antidiabetic drugs on early pancreatic carcinogenesis. The main source of data was the database Medline/PubMed and abstracts of international congresses (DDW, UEGW). The risk factors and early symptoms are integral components of the familial PC surveillance and sporadic PC screening. Preventive programs should always be include multistep and multidisciplinary procedures. The correct evaluation of antidiabetic drugs and their interactions with other components of pancreatic carcinogenesis may influence the early diagnosis of PC.
Collapse
|
162
|
Rios A, Hsu SH, Blanco A, Buryanek J, Day AL, McGuire MF, Brown RE. Durable response of glioblastoma to adjuvant therapy consisting of temozolomide and a weekly dose of AMD3100 (plerixafor), a CXCR4 inhibitor, together with lapatinib, metformin and niacinamide. Oncoscience 2016; 3:156-63. [PMID: 27489862 PMCID: PMC4965258 DOI: 10.18632/oncoscience.311] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/03/2016] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a CNS (central nervous system) malignancy with a low cure rate. Median time to progression after standard treatment is 7 months and median overall survival is 15 months [1]. Post-treatment vasculogenesis promoted by recruitment of bone marrow derived cells (BMDCs, CD11b+ myelomonocytes) is one of main mechanisms of GBM resistance to initial chemoradiotherapy treatment [2]. Local secretion of SDF-1, cognate ligand of BMDCs CXCR4 receptors attracts BMDCs to the post-radiation tumor site.[3]. This SDF-1 hypoxia-dependent effect can be blocked by AMD3100 (plerixafor) [4]. We report a GBM case treated after chemo- radiotherapy with plerixafor and a combination of an mTOR, a Sirt1 and an EGFRvIII inhibitor. After one year temozolomide and the EGFRvIII inhibitor were stopped. Plerixafor, and the MTOR and Sirt-1 inhibitors were continued. He is in clinical and radiologic remission 30 months from the initiation of his adjuvant treatment. To our knowledge, this is the first report of a patient treated for over two years with a CXCR4 inhibitor (plerixafor), as part of his adjuvant treatment. We believe there is sufficient experimental evidence to consider AMD3100 (plerixafor) part of the adjuvant treatment of GBM.
Collapse
Affiliation(s)
- Adan Rios
- Division of Oncology at UTHealth McGovern Medical School, Houston, TX, USA
| | - Sigmund H Hsu
- Department of Neurosurgery at UTHealth McGovern Medical School, Houston, TX, USA
| | - Angel Blanco
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Jamie Buryanek
- Department of Pathology and Laboratory Medicine at UTHealth McGovern Medical School, Houston, TX, USA
| | - Arthur L Day
- Department of Neurosurgery at UTHealth McGovern Medical School, Houston, TX, USA
| | - Mary F McGuire
- Adjunct Faculty, Mathematics & Computer Science at University of St. Thomas-Houston, Houston, TX, USA
| | - Robert E Brown
- Department of Pathology and Laboratory Medicine at UTHealth McGovern Medical School, Houston, TX, USA
| |
Collapse
|
163
|
Xin HW, Ambe CM, Miller TC, Chen JQ, Wiegand GW, Anderson AJ, Ray S, Mullinax JE, Hari DM, Koizumi T, Godbout JD, Goldsmith PK, Stojadinovic A, Rudloff U, Thorgeirsson SS, Avital I. Liver Label Retaining Cancer Cells Are Relatively Resistant to the Reported Anti-Cancer Stem Cell Drug Metformin. J Cancer 2016; 7:1142-51. [PMID: 27326258 PMCID: PMC4911882 DOI: 10.7150/jca.10047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background & Aims: Recently, we reported that liver Label Retaining Cancer Cells (LRCC) can initiate tumors with only 10 cells and are relatively resistant to the targeted drug Sorafenib, a standard of practice in advanced hepatocellular carcinoma (HCC). LRCC are the only cancer stem cells (CSC) isolated alive according to a stem cell fundamental function, asymmetric cell division. Metformin has been reported to preferentially target many other types of CSC of different organs, including liver. It's important to know if LRCC, a novel class of CSC, are relatively resistant to metformin, unlike other types of CSC. As metformin inhibits the Sorafenib-Target-Protein (STP) PI3K, and LRCC are newly described CSC, we undertook this study to test the effects of Metformin on Sorafenib-treated HCC and HCC-derived-LRCC. Methods: We tested various STP levels and phosphorylation status, associated genes' expression, proliferation, viability, toxicity, and apoptosis profiles, before and after treatment with Sorafenib with/without Metformin. Results: Metformin enhances the effects of Sorafenib on HCC, and significantly decreased viability/proliferation of HCC cells. This insulin-independent effect was associated with inhibition of multiple STPs (PKC, ERK, JNK and AKT). However, Metformin increased the relative proportion of LRCCs. Comparing LRCC vs. non-LRCC, this effect was associated with improved toxicity and apoptosis profiles, down-regulation of cell death genes and up-regulation of cell proliferation and survival genes in LRCC. Concomitantly, Metformin up-regulated pluripotency, Wnt, Notch and SHH pathways genes in LRCC vs. non-LRCC. Conclusions: Metformin and Sorafenib have enhanced anti-cancer effects. However, in contradistinction to reports on other types of CSC, Metformin is less effective against HCC-derived-CSC LRCC. Our results suggest that combining Metformin with Sorafenib may be able to repress the bulk of tumor cells, but as with other anti-cancer drugs, may leave LRCC behind leading to cancer recurrence. Therefore, liver LRCC, unlike other types of CSC, are relatively resistant to the reported anti-cancer stem cell drug metformin. This is the first report that there is a type of CSC that is not relatively resistant to the CSC-targeting drug. Our findings suggest that a drug targeting LRCC may be critically needed to target CSC and prevent cancer recurrence. These may significantly contribute to the understanding of Metformin's anti-cancer effects and the development of novel drugs targeting the relatively resistant LRCC.
Collapse
Affiliation(s)
- Hong-Wu Xin
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;; 2. Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Chenwi M Ambe
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler C Miller
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jin-Qiu Chen
- 3. Collaborative Protein Technology Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gordon W Wiegand
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Anderson
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Satyajit Ray
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John E Mullinax
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle M Hari
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomotake Koizumi
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica D Godbout
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul K Goldsmith
- 3. Collaborative Protein Technology Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander Stojadinovic
- 5. Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Udo Rudloff
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Snorri S Thorgeirsson
- 4. Laboratory for Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Itzhak Avital
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;; 6. Department of Surgery, Saint Peter's Healthcare System, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
164
|
Wang H. Predicting MicroRNA Biomarkers for Cancer Using Phylogenetic Tree and Microarray Analysis. Int J Mol Sci 2016; 17:E773. [PMID: 27213352 PMCID: PMC4881592 DOI: 10.3390/ijms17050773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are shown to be involved in the initiation and progression of cancers in the literature, and the expression of miRNAs is used as an important cancer prognostic tool. The aim of this study is to predict high-confidence miRNA biomarkers for cancer. We adopt a method that combines miRNA phylogenetic structure and miRNA microarray data analysis to discover high-confidence miRNA biomarkers for colon, prostate, pancreatic, lung, breast, bladder and kidney cancers. There are 53 miRNAs selected through this method that either have potential to involve a single cancer's development or to involve several cancers' development. These miRNAs can be used as high-confidence miRNA biomarkers of these seven investigated cancers for further experiment validation. miR-17, miR-20, miR-106a, miR-106b, miR-92, miR-25, miR-16, miR-195 and miR-143 are selected to involve a single cancer's development in these seven cancers. They have the potential to be useful miRNA biomarkers when the result can be confirmed by experiments.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
165
|
Abstract
Awareness that the metabolic phenotype of cells within tumours is heterogeneous - and distinct from that of their normal counterparts - is growing. In general, tumour cells metabolize glucose, lactate, pyruvate, hydroxybutyrate, acetate, glutamine, and fatty acids at much higher rates than their nontumour equivalents; however, the metabolic ecology of tumours is complex because they contain multiple metabolic compartments, which are linked by the transfer of these catabolites. This metabolic variability and flexibility enables tumour cells to generate ATP as an energy source, while maintaining the reduction-oxidation (redox) balance and committing resources to biosynthesis - processes that are essential for cell survival, growth, and proliferation. Importantly, experimental evidence indicates that metabolic coupling between cell populations with different, complementary metabolic profiles can induce cancer progression. Thus, targeting the metabolic differences between tumour and normal cells holds promise as a novel anticancer strategy. In this Review, we discuss how cancer cells reprogramme their metabolism and that of other cells within the tumour microenvironment in order to survive and propagate, thus driving disease progression; in particular, we highlight potential metabolic vulnerabilities that might be targeted therapeutically.
Collapse
|
166
|
Dai X, Pang W, Zhou Y, Yao W, Xia L, Wang C, Chen X, Zen K, Zhang CY, Yuan Y. Altered profile of serum microRNAs in pancreatic cancer-associated new-onset diabetes mellitus. J Diabetes 2016; 8:422-33. [PMID: 25991015 DOI: 10.1111/1753-0407.12313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND New-onset diabetes mellitus in pancreatic cancer has been recognized as a paraneoplastic phenomenon caused by the existence of the tumor. Circulating microRNAs (miRNAs) are emerging as non-invasive biomarkers for the detection of various cancers. In the present study, we hypothesized that a specific serum miRNA profile exists in pancreatic cancer-associated new-onset diabetes mellitus (PaC-DM). METHODS Initial screening of differentially expressed miRNAs in pooled serum samples from 25 PaC-DM patients, 25 non-cancer new-onset type 2 diabetes mellitus (T2DM) patients, and 25 healthy controls was performed by TaqMan low-density arrays (TLDA). A stem-loop quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to confirm the relative concentrations of candidate miRNAs in 80 PaC-DM, 85 non-cancer new-onset T2DM patients, and 80 healthy controls. RESULTS The TLDA identified 16 serum miRNAs that were significantly increased in PaC-DM samples. A combination of six serum miRNAs (miR-483-5p, miR-19a, miR-29a, miR-20a, miR-24, miR-25) was selected by qRT-PCR as a biomarker for PaC-DM. The area under the receiver operating characteristic curve (AUC) for the six-miRNA panel training and validation sets was 0.959 (95% confidence interval [CI] 0.890-1.028) and 0.902 (95% CI 0.844-0.955), respectively. The combination of these six miRNAs enabled the discrimination of PaC-DM from non-cancer new-onset T2DM with an AUC of 0.885 (95% CI 0.784-0.986) and 0.887 (95% CI 0.823-0.952) for the training and validation sets, respectively. CONCLUSION The six-serum miRNA panel may have potential as a biomarker for the accurate diagnosis and discrimination of PaC-DM from healthy controls and non-cancer new-onset T2DM.
Collapse
Affiliation(s)
- Xin Dai
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjing Pang
- Department of Gastroenterology, Tianyou Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Yufeng Zhou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiyan Yao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu Xia
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cheng Wang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xi Chen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yaozong Yuan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
167
|
miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance. J Mol Med (Berl) 2016; 94:629-44. [PMID: 27094812 DOI: 10.1007/s00109-016-1420-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are 20-22-nucleotide small endogenous non-coding RNAs which regulate gene expression at post-transcriptional level. In the last two decades, identification of almost 2600 miRNAs in human and their potential to be modulated opened a new avenue to target almost all hallmarks of cancer. miRNAs have been classified as tumor suppressors or oncogenes depending on the phenotype they induce, the targets they modulate, and the tissue where they function. miR-200c, an illustrious tumor suppressor, is one of the highly studied miRNAs in terms of development, stemness, proliferation, epithelial-mesenchymal transition (EMT), therapy resistance, and metastasis. In this review, we first focus on the regulation of miR-200c expression and its role in regulating EMT in a ZEB1/E-cadherin axis-dependent and ZEB1/E-cadherin axis-independent manner. We then describe the role of miR-200c in therapy resistance in terms of multidrug resistance, chemoresistance, targeted therapy resistance, and radiotherapy resistance in various cancer types. We highlight the importance of miR-200c at the intersection of EMT and chemoresistance. Furthermore, we show how miR-200c coordinates several important signaling cascades such as TGF-β signaling, PI3K/Akt signaling, Notch signaling, VEGF signaling, and NF-κB signaling. Finally, we discuss miR-200c as a potential prognostic/diagnostic biomarker in several diseases, but mainly focusing on cancer and its potential application in future therapeutics.
Collapse
|
168
|
Narayanan V, Weekes CD. Molecular therapeutics in pancreas cancer. World J Gastrointest Oncol 2016; 8:366-79. [PMID: 27096032 PMCID: PMC4824715 DOI: 10.4251/wjgo.v8.i4.366] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/15/2015] [Accepted: 01/27/2016] [Indexed: 02/05/2023] Open
Abstract
The emergence of the "precision-medicine" paradigm in oncology has ushered in tremendous improvements in patient outcomes in a wide variety of malignancies. However, pancreas ductal adenocarcinoma (PDAC) has remained an obstinate challenge to the oncology community and continues to be associated with a dismal prognosis with 5-year survival rates consistently less than 5%. Cytotoxic chemotherapy with gemcitabine-based regimens has been the cornerstone of treatment in PDAC especially because most patients present with inoperable disease. But in recent years remarkable basic science research has improved our understanding of the molecular and genetic basis of PDAC. Whole genomic analysis has exemplified the genetic heterogeneity of pancreas cancer and has led to ingenious efforts to target oncogenes and their downstream signaling cascades. Novel stromal depletion strategies have been devised based on our enhanced recognition of the complex architecture of the tumor stroma and the various mechanisms in the tumor microenvironment that sustain tumorigenesis. Immunotherapy using vaccines and immune checkpoint inhibitors has also risen to the forefront of therapeutic strategies against PDAC. Furthermore, adoptive T cell transfer and strategies to target epigenetic regulators are being explored with enthusiasm. This review will focus on the recent advances in molecularly targeted therapies in PDAC and offer future perspectives to tackle this lethal disease.
Collapse
|
169
|
Sancho P, Alcala S, Usachov V, Hermann PC, Sainz B. The ever-changing landscape of pancreatic cancer stem cells. Pancreatology 2016; 16:489-96. [PMID: 27161173 DOI: 10.1016/j.pan.2016.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Over the past decade, the cancer stem cell (CSC) concept in solid tumors has gained enormous momentum as an attractive model to explain tumor heterogeneity. The model proposes that tumors contain a subpopulation of rare cancer cells with stem-like properties that maintain the hierarchy of the tumor and drive tumor initiation, progression, metastasis, and chemoresistance. The identification and subsequent isolation of CSCs in pancreatic ductal adenocarcinoma (PDAC) in 2007 provided enormous insight into this extremely metastatic and chemoresistant tumor and renewed hope for developing more specific therapies against this disease. Unfortunately, we have made only marginal advances in applying the knowledge learned to the development of new and more effective treatments for pancreatic cancer. The latter has been partly due to the lack of adequate in vitro and in vivo systems compounded by the use of markers that do not reproducibly nor exclusively select for an enriched CSC population. Thus, attempts to define a pancreatic CSC-specific genetic, epigenetic or proteomic signature has been challenging. Fortunately recent advances in the CSC field have overcome many of these challenges and have opened up new opportunities for developing therapies that target the CSC population. In this review, we discuss these current advances, specifically new methods for the identification and isolation of pancreatic CSCs, new insights into the metabolic profile of CSCs at the level of mitochondrial respiration, and the utility of genetically engineered mouse models as surrogate systems to both study CSC biology and evaluate CSC-specific targeted therapies in vivo.
Collapse
Affiliation(s)
- Patricia Sancho
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, UK
| | - Sonia Alcala
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | | | - Bruno Sainz
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
170
|
FU TINGGANG, WANG LING, LI WEI, LI JIANZHONG, LI JIAN. miR-143 inhibits oncogenic traits by degrading NUAK2 in glioblastoma. Int J Mol Med 2016; 37:1627-35. [DOI: 10.3892/ijmm.2016.2562] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/07/2016] [Indexed: 11/06/2022] Open
|
171
|
miR-29s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget 2016; 6:12837-61. [PMID: 25968566 PMCID: PMC4536984 DOI: 10.18632/oncotarget.3805] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
A wealth of studies has highlighted the biological complexity of hematologic malignancies and the role of dysregulated signal transduction pathways. Along with the crucial role of genetic abnormalities, epigenetic aberrations are nowadays emerging as relevant players in cancer development, and significant research efforts are currently focusing on mechanisms by which histone post-translational modifications, DNA methylation and noncoding RNAs contribute to the pathobiology of cancer. As a consequence, these studies have provided the rationale for the development of epigenetic drugs, such as histone deacetylase inhibitors and demethylating compounds, some of which are currently in advanced phase of pre-clinical investigation or in clinical trials. In addition, a more recent body of evidence indicates that microRNAs (miRNAs) might target effectors of the epigenetic machinery, which are aberrantly expressed or active in cancers, thus reverting those epigenetic abnormalities driving tumor initiation and progression. This review will focus on the broad epigenetic activity triggered by members of the miR-29 family, which underlines the potential of miR-29s as candidate epi-therapeutics for the treatment of hematologic malignancies.
Collapse
|
172
|
Bittoni A, Piva F, Santoni M, Andrikou K, Conti A, Loretelli C, Mandolesi A, Lanese A, Pellei C, Scarpelli M, Principato G, Cascinu S. KRAS mutation status is associated with specific pattern of genes expression in pancreatic adenocarcinoma. Future Oncol 2016; 11:1905-17. [PMID: 26161927 DOI: 10.2217/fon.15.98] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIMS To evaluate potential differences at a molecular level between KRAS mutant tumors (MT) and KRAS wild-type (WT) pancreatic tumors and the biological and prognostic significance of different KRAS mutations. MATERIALS & METHODS Expression of a panel of 29 genes was analyzed in KRAS WT and MT tumors. Effects of KRAS mutation and gene expression levels were assessed on patients' survival. RESULTS MUC6 (p = 0.009), HGF (p = 0.011), VEGFR-2 (p = 0.020) and VEGFB (p = 0.026) were significantly more expressed and SMAD4 was less suppressed (p = 0.003) in WT KRAS. Contrariwise, SHH (p = 0.012) and IHH (p = 0.031) were more expressed in MT KRAS patients. No OS difference was found between WT and MT KRAS tumors. CONCLUSION KRAS mutation status seems to identify two different subtypes of pancreatic ductal adenocarcinoma with similar outcome but distinct molecular features and probably different therapeutic targets.
Collapse
Affiliation(s)
- Alessandro Bittoni
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Matteo Santoni
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - Kalliopi Andrikou
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - Alessandro Conti
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - Cristian Loretelli
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - Alessandra Mandolesi
- Department of Pathology, AOU Ospedali Riuniti, Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - Andrea Lanese
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - Chiara Pellei
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - Marina Scarpelli
- Department of Pathology, AOU Ospedali Riuniti, Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - Giovanni Principato
- Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| |
Collapse
|
173
|
Chen J, Zhang K, Xu Y, Gao Y, Li C, Wang R, Chen L. The role of microRNA-26a in human cancer progression and clinical application. Tumour Biol 2016; 37:7095-108. [PMID: 27039398 DOI: 10.1007/s13277-016-5017-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/18/2016] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs, a class of endogenous, small (18-25 nucleotides) noncoding RNAs, regulate gene expression by directly binding to the 3'-untranslated regions of target messenger RNAs. Evidence has shown that alteration of microRNAs is involved in cancer initial and progression. MicroRNA-26a is commonly dysregulated in diverse cancers and is involved in various biological processes, including proliferation, migration, invasion, angiogenesis, and metabolism by targeting multiple mRNAs. This review summarizes current research on the physiology and pathological functions of miR-26a and its applications for clinical therapy.
Collapse
Affiliation(s)
- Jing Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhong Shan Road East, Nanjing, Jiangsu Province, People's Republic of China
| | - Kai Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhong Shan Road East, Nanjing, Jiangsu Province, People's Republic of China
| | - Yuejuan Xu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Nanjing, People's Republic of China
| | - Yanping Gao
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhong Shan Road East, Nanjing, Jiangsu Province, People's Republic of China
| | - Chen Li
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhong Shan Road East, Nanjing, Jiangsu Province, People's Republic of China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhong Shan Road East, Nanjing, Jiangsu Province, People's Republic of China.
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhong Shan Road East, Nanjing, Jiangsu Province, People's Republic of China.
| |
Collapse
|
174
|
Lee SH, Yoon SH, Lee HS, Chung MJ, Park JY, Park SW, Song SY, Chung JB, Bang S. Can metformin change the prognosis of pancreatic cancer? Retrospective study for pancreatic cancer patients with pre-existing diabetes mellitus type 2. Dig Liver Dis 2016; 48:435-440. [PMID: 26775128 DOI: 10.1016/j.dld.2015.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/05/2015] [Accepted: 12/11/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUNDS The effect of metformin on survival in patients with pancreatic cancer is controversial. AIMS To investigate the beneficial effect of metformin in pancreatic cancer patients. METHODS We retrospectively analyzed patients with pancreatic cancer and pre-existing diabetes mellitus type 2 who were treated at Severance Hospital (Seoul, South Korea) between May 2005 and December 2013. RESULTS Among 237 enrolled patients, 117 patients (49.4%) were exposed to metformin. The median overall survival was 13.7 months for the metformin group versus 8.9 months for the non-metformin group (P=0.001) In univariate analysis, metformin exposure, low serum carbohydrate antigen 19-9 levels (<1000 U/mL), small tumor size (≤20 mm), no tail involvement, good performance status (ECOG 0 vs. 1 or 2), and resectable cancer stage were associated with favorable survival outcomes (all P<0.05). In multivariate analysis, in addition to low serum carbohydrate antigen 19-9 levels (<1000 U/mL) and resectable cancer stage, metformin exposure was significantly associated with longer survival with a hazard ratio of 0.61 (P=0.001). Additionally, the cumulative duration of metformin use was significantly correlated with a favorable survival outcome. CONCLUSION Our findings supported that metformin exposure was associated with survival benefits in patients with pancreatic cancer and pre-existing type 2 diabetes mellitus, especially among those with an advanced cancer stage.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hyun Yoon
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Youp Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Woo Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Bock Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
175
|
Jiang X, Ma N, Wang D, Li F, He R, Li D, Zhao R, Zhou Q, Wang Y, Zhang F, Wan M, Kang P, Gao X, Cui Y. Metformin inhibits tumor growth by regulating multiple miRNAs in human cholangiocarcinoma. Oncotarget 2016; 6:3178-94. [PMID: 25605008 PMCID: PMC4413646 DOI: 10.18632/oncotarget.3063] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/12/2014] [Indexed: 01/25/2023] Open
Abstract
The antidiabetic drug metformin exerts antineoplastic effects in many types of malignancies, however the effect of metformin on cholangiocarcinoma (CCA) still remains unclear. In the present study, we investigated that metformin treatment was closely associated with the clinicopathologic characteristics and improved postoperative survival of CCA patients. Metformin inhibited CCA tumor growth by cell cycle arrest in vitro and in vivo. We explored that the expression of six miRNAs (mir124, 182, 27b, let7b, 221 and 181a), which could directly target cell-cycle-regulatory genes, was altered by metformin in vitro and in vivo. These miRNAs were dysregulated in cholangiocarcinoma and promoted the CCA genesis and metformin exactly modulated these carcinogenic miRNAs expression to arrest the cell cycle and inhibit the proliferation. Meanwhile, these miRNAs expression changes correlated with the tumor volume and postoperative survival of CCA patients and could be used to predict the prognosis. Further we confirmed that metformin upregulated Drosha to modulate these miRNAs expression. Our results elucidated that metformin inhibited CCA tumor growth via the regulation of Drosha-mediated multiple carcinogenic miRNAs expression and comprehensive evaluation of these miRNAs expression could be more efficient to predict the prognosis. Moreover, metformin might be a quite promising strategy for CCA prevention and treatment.
Collapse
Affiliation(s)
- Xingming Jiang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ning Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Fuyuan Li
- Center for Endemic Disease Control, Harbin Medical University, Harbin, China
| | - Rongzhang He
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Dongliang Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Ruiqi Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Qingxin Zhou
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yimin Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fumin Zhang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Wan
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
176
|
Meng X, Guo J, Fang W, Dou L, Li M, Huang X, Zhou S, Man Y, Tang W, Yu L, Li J. Liver MicroRNA-291b-3p Promotes Hepatic Lipogenesis through Negative Regulation of Adenosine 5'-Monophosphate (AMP)-activated Protein Kinase α1. J Biol Chem 2016; 291:10625-34. [PMID: 27013659 DOI: 10.1074/jbc.m116.713768] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
In a microarray study, we found that hepatic miR-291b-3p was significantly increased in leptin-receptor-deficient type 2 mice (db/db), a mouse model of diabetes. The function of miR-291b-3p is unknown. The potential role of miR-291b-3p in regulating hepatic lipid metabolism was explored in this study. High-fat diet (HFD)- and chow-fed mice were injected with an adenovirus expressing a miR-291b-3p inhibitor and a miR-291b-3p mimic through the tail vein. Hepatic lipids and lipogenic gene expression were analyzed. Additionally, gain- and loss-of-function studies were performed in vitro to identify direct targets of miR-291b-3p. MiR-291b-3p expression and the protein levels of sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS) were increased in the steatotic liver of db/db mice and HFD-fed mice versus their respective controls. Inhibition of hepatic miR-291b-3p expression prevented increases in hepatic lipogenesis and steatosis in HFD-fed mice. The opposite was observed when miR-291b-3p was overexpressed in the livers of chow-fed C57BL/6J wild-type mice. In vitro studies revealed that silencing of miR-291b-3p in NCTC1469 hepatic cells ameliorated oleic acid/palmitic acid mixture-induced elevation of cellular triglycerides. Importantly, we identified AMP-activated protein kinase (AMPK)-α1 as a direct target of miR-291b-3p. Using metformin, an activator of AMPK, we showed that AMPK activation-induced inhibition of hepatic lipid accumulation was accompanied by reduced expression of miR-291b-3p in the liver. Liver miR-291b-3p promoted hepatic lipogenesis and lipid accumulation in mice. AMPKα1 is a direct target of miR-291b-3p. In conclusion, our findings indicate that miR-291b-3p promotes hepatic lipogenesis by suppressing AMPKα1 expression and activity, indicating the therapeutic potential of miR-291b-3p inhibitors in fatty liver disease.
Collapse
Affiliation(s)
- Xiangyu Meng
- From The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Jun Guo
- From The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Weiwei Fang
- From The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | - Lin Dou
- From The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | - Meng Li
- From The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | - Xiuqing Huang
- From The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | - Shutong Zhou
- From The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | - Yong Man
- From The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | - Weiqing Tang
- From The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China, Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742
| | - Jian Li
- From The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China,
| |
Collapse
|
177
|
Gao ZY, Liu Z, Bi MH, Zhang JJ, Han ZQ, Han X, Wang HY, Sun GP, Liu H. Metformin induces apoptosis via a mitochondria-mediated pathway in human breast cancer cells in vitro. Exp Ther Med 2016; 11:1700-1706. [PMID: 27168791 PMCID: PMC4840526 DOI: 10.3892/etm.2016.3143] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 12/18/2015] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most commonly occurring cancer and second leading cause of mortality in women. Metformin is a widely prescribed anti-hyperglycemic drug, which is emerging as a potential cancer preventative and treatment agent. However, the mechanisms underlying the suppressive effects of metformin on cancer cell growth and the induction of cancer cell apoptosis are not fully elucidated. The present study aimed to identify the pathways regulated by metformin in two breast cancer cell lines, MDA-MB-231 and MDA-MB-435. Cells were treated with various concentrations of metformin and then evaluated with respect to viability, proliferation, adenosine triphosphate (ATP) and reactive oxygen species (ROS) levels, mitochondrial membrane potential (∆ψm), and the expression of anti- and pro-apoptotic proteins. Metformin caused apoptosis in a concentration- and time-dependent manner, and decreased cell viability and ATP production. Furthermore, metformin induced the generation of ROS and decreased the ∆ψm. Moreover, metformin downregulated the expression of the anti-apoptotic proteins B-cell lymphoma 2 (BCL-2) and myeloid cell leukemia-1, and upregulated the expression of the pro-apoptotic BCL-2-associated X protein in MDA-MB-231 cells. These results demonstrate that the apoptotic and cytotoxic effects of metformin on breast cancer cells are mediated by the intrinsic mitochondria-mediated apoptosis pathway.
Collapse
Affiliation(s)
- Zhen-Yuan Gao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032. P.R. China
| | - Zhe Liu
- Faculty of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, Anhui 233030, P.R. China
| | - Ming-Hong Bi
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233022, P.R. China
| | - Jing-Jing Zhang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233022, P.R. China
| | - Zheng-Quan Han
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233022, P.R. China
| | - Xiao Han
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233022, P.R. China
| | - Hong-Ya Wang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233022, P.R. China
| | - Guo-Ping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032. P.R. China
| | - Hao Liu
- Faculty of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
178
|
Metformin and AICAR regulate NANOG expression via the JNK pathway in HepG2 cells independently of AMPK. Tumour Biol 2016; 37:11199-208. [PMID: 26939902 DOI: 10.1007/s13277-016-5007-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/25/2016] [Indexed: 12/21/2022] Open
Abstract
NANOG, a marker of stemness, impacts tumor progression and therapeutic resistance in cancer cells. In human hepatocellular carcinoma (HCC), upregulation of NANOG is associated with metastasis and a low survival rate, while its downregulation results in a lower colony formation rate and enhanced chemosensitivity. Metformin, an agent widely used for diabetes treatment, and AICAR, another AMP-activated protein kinase (AMPK) activator, have been reported to inhibit the growth of several types of cancer. Although inhibitory effects of metformin on NANOG in pancreatic cancer cells and of AICAR in mouse embryonic stem cells have been described, the underlying molecular mechanisms remain uncertain in HCC. In this study, we used the HepG2 cell line and found that metformin/AICAR downregulated NANOG expression with decreased cell viability and enhanced chemosensitivity to 5-fluorouracil (5-FU). Moreover, metformin/AICAR inhibited c-Jun N-terminal kinase (JNK) activity, and blockade of either the JNK MAPK pathway or knockdown of JNK1 gene expression reduced NANOG levels. The upregulation of NANOG and phospho-JNK by basic fibroblast growth factor (bFGF) was abrogated by metformin/AICAR. Additionally, although transient upregulation of NANOG within 2 h of treatment with metformin/AICAR was concordant with both JNK and AMPK activation, increased NANOG expression with activation of JNK was also observed following AMPK inhibition with compound C. Taken together, our data suggest that metformin/AICAR regulate NANOG expression via the JNK MAPK pathway in HepG2 cells independently of AMPK, and that this JNK/NANOG signaling pathway may offer new therapeutic strategies for the treatment of HCC.
Collapse
|
179
|
Novel approach to target cancer stem cells for therapy. Med Hypotheses 2016; 88:83-5. [DOI: 10.1016/j.mehy.2015.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 01/15/2023]
|
180
|
Polvani S, Tarocchi M, Tempesti S, Bencini L, Galli A. Peroxisome proliferator activated receptors at the crossroad of obesity, diabetes, and pancreatic cancer. World J Gastroenterol 2016; 22:2441-2459. [PMID: 26937133 PMCID: PMC4768191 DOI: 10.3748/wjg.v22.i8.2441] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/17/2015] [Accepted: 01/09/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth cause of cancer death with an overall survival of 5% at five years. The development of PDAC is characteristically associated to the accumulation of distinctive genetic mutations and is preceded by the exposure to several risk factors. Epidemiology has demonstrated that PDAC risk factors may be non-modifiable risks (sex, age, presence of genetic mutations, ethnicity) and modifiable and co-morbidity factors related to the specific habits and lifestyle. Recently it has become evident that obesity and diabetes are two important modifiable risk factors for PDAC. Obesity and diabetes are complex systemic and intertwined diseases and, over the years, experimental evidence indicate that insulin-resistance, alteration of adipokines, especially leptin and adiponectin, oxidative stress and inflammation may play a role in PDAC. Peroxisome proliferator activated receptor-γ (PPARγ) is a nuclear receptor transcription factor that is implicated in the regulation of metabolism, differentiation and inflammation. PPARγ is a key regulator of adipocytes differentiation, regulates insulin and adipokines production and secretion, may modulate inflammation, and it is implicated in PDAC. PPARγ agonists are used in the treatment of diabetes and oxidative stress-associated diseases and have been evaluated for the treatment of PDAC. PPARγ is at the cross-road of diabetes, obesity, and PDAC and it is an interesting target to pharmacologically prevent PDAC in obese and diabetic patients.
Collapse
|
181
|
The Role of miRNAs in the Regulation of Pancreatic Cancer Stem Cells. Stem Cells Int 2016; 2016:8352684. [PMID: 27006664 PMCID: PMC4783541 DOI: 10.1155/2016/8352684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/24/2015] [Accepted: 01/27/2016] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is currently one of the deadliest cancers with low overall survival rate. This disease leads to an aggressive local invasion and early metastases and is poorly responsive to treatment with chemotherapy or chemoradiotherapy. Several studies have shown that pancreatic cancer stem cells (PCSCs) play different roles in the regulation of drug resistance and recurrence in pancreatic cancer. MicroRNA (miRNA), a class of newly emerging small noncoding RNAs, is involved in the modulation of several biological activities ranging from invasion to metastases development, as well as drug resistance of pancreatic cancer. In this review, we synthesize the latest findings on the role of miRNAs in regulating different biological properties of pancreatic cancer stem cells.
Collapse
|
182
|
DePeralta DK, Wei L, Ghoshal S, Schmidt B, Lauwers GY, Lanuti M, Chung RT, Tanabe KK, Fuchs BC. Metformin prevents hepatocellular carcinoma development by suppressing hepatic progenitor cell activation in a rat model of cirrhosis. Cancer 2016; 122:1216-27. [PMID: 26914713 DOI: 10.1002/cncr.29912] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 12/07/2015] [Accepted: 12/21/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC)-associated mortality is increasing at an alarming rate, and there is a readily identifiable cohort of at-risk patients with cirrhosis, viral hepatitis, nonalcoholic fatty liver disease, and diabetes. These patients are candidates for chemoprevention. Metformin is an attractive agent for chemoprevention because it is inexpensive, has a favorable safety profile, and is well tolerated over long time periods. METHODS The authors studied the efficacy of metformin as a prevention agent in a clinically relevant rat model of HCC, in which tumors develop in the setting of chronic inflammation and cirrhosis. Repeated injections of diethylnitrosamine were used to induce sequential cirrhosis and HCC, and metformin was administered at the first signs of either fibrosis or cirrhosis. RESULTS Prolonged metformin exposure was safe and was associated with decreases in fibrotic and inflammatory markers, especially when administered early at the first signs of fibrosis. In addition, early metformin treatment led to a 44% decrease in HCC incidence, whereas tumor burden was unchanged when metformin was administered at the first signs of cirrhosis. It is noteworthy that activation of the hepatic progenitor/stem cell compartment was first observed at the onset of cirrhosis; therefore, only early metformin treatment suppressed receptor for advanced glycation end products and inhibited the activation of hepatic progenitor cells. CONCLUSIONS The current results are the first to demonstrate an effect on progenitor/stem cells in the setting of chemoprevention and provide further rationale to explore metformin as an early intervention in clinical trials of patients with chronic liver disease at high risk for HCC.
Collapse
Affiliation(s)
- Danielle K DePeralta
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Lan Wei
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Sarani Ghoshal
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Benjamin Schmidt
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Gregory Y Lauwers
- Department of Pathology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Raymond T Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kenneth K Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
183
|
Diabetes and cancer, common threads and missing links. Cancer Lett 2016; 374:54-61. [PMID: 26879686 DOI: 10.1016/j.canlet.2016.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a serious and growing health problem worldwide and is associated with severe acute and chronic complications. Accruing epidemiological and clinical evidence have suggested that an increased cancer incidence is associated with diabetes as well as certain diabetes risk factors and diabetes medications. Several pathophysiological mechanisms for this relationship have been postulated, including insulin resistance and hyperinsulinemia, enhanced inflammation, aberrant metabolic state, endoplasmic reticulum stress, and deregulation of autophagy. In addition to these potential mechanisms, a number of common risk factors, including obesity, may be behind the association between diabetes and cancer. Furthermore, different anti-diabetic medications may modify cancer risk and mortality in patients with diabetes. This Review discusses evidence to support the relationship between diabetes and cancer development as well as the underlying mechanisms. We also discuss the relationship of current diabetes treatments and cancer risk or prognosis. Understanding the mechanisms that connect type 2 diabetes or diabetes treatments to cancer are crucial for establishing the fundamental strategies concerning about primary prevention, early detection and effective therapy against these diseases.
Collapse
|
184
|
Abstract
The worldwide increase in the prevalence of obesity and type 2 diabetes and the associated elevated risk of cardiovascular disease (CVD) has emphasized the need to seek new therapeutic targets to offset the negative impact on human health outcomes. In this regards, microRNAs (miRNAs), a class of small noncoding RNAs that mediate posttranscriptional gene silencing, have received considerable interest. miRNAs repress gene expression by their ability to pair with target sequences in the 3' untranslated region of the messenger RNA. miRNAs play a crucial role in the biogenesis and function of the cardiovascular system and are implicated as dynamic regulators of cardiac and vascular signaling and pathophysiology. Numerous miRNAs have been identified as novel biomarkers and potential therapeutic targets for CVD. In this review, we discuss the contribution of miRNAs to the regulation of CVD, their role in macrovascular/microvascular (dys)function, their potential as important biomarkers for the early detection of CVD, and, finally, as therapeutic targets.
Collapse
|
185
|
Gill KS, Tassone P, Hamilton J, Hjelm N, Luginbuhl A, Cognetti D, Tuluc M, Martinez-Outschoorn U, Johnson JM, Curry JM. Thyroid Cancer Metabolism: A Review. JOURNAL OF THYROID DISORDERS & THERAPY 2016; 5:200. [PMID: 27213120 PMCID: PMC4874252 DOI: 10.4172/2167-7948.1000200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolic dysregulation within the tumor microenvironment (TME) is critical to the process of tumorigenesis in various cancer types. Thyrocyte metabolism in papillary and anaplastic thyroid cancer, however, remains poorly characterized, and studies analyzing the role of multicompartment metabolism in thyrocyte oncogenesis are sparse. We present a review of the current knowledge on cellular metabolism in non-cancerous and cancerous thyroid tissues, focusing on the monocarboxylate transporters MCT1 and MCT4, and on a transporter of the outer mitochondrial membrane TOMM20. Understanding the metabolic phenotype of tumor cells and associated stromal cells in thyroid cancer can have profound implications on the use of biomarker staining in detecting subclinical cancer, imaging as it relates to expression of various transport proteins, and therapeutic interventions that manipulate this dysregulated tumor metabolism to halt tumorigenesis and eradicate the cancer. Future studies are required to confirm the prognostic significance of these biomarkers and their correlation with existing staging schemas such as the AGES, AMES, ATA and MACIS scoring systems.
Collapse
Affiliation(s)
- Kurren S Gill
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, USA
| | - Patrick Tassone
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, USA
| | - James Hamilton
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, USA
| | - Nikolaus Hjelm
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, USA
| | - Adam Luginbuhl
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, USA
| | - David Cognetti
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, USA
| | - Madalina Tuluc
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, USA
| | | | - Jennifer M Johnson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, USA
| | - Joseph M Curry
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
186
|
Banerjee P, Dutta S, Pal R. Dysregulation of Wnt-Signaling and a Candidate Set of miRNAs Underlie the Effect of Metformin on Neural Crest Cell Development. Stem Cells 2016; 34:334-45. [PMID: 26529121 DOI: 10.1002/stem.2245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/27/2015] [Accepted: 09/25/2015] [Indexed: 11/11/2022]
Abstract
Neural crest cells (NCC) are a population of epithelial cells that arise from the dorsal tube and undergo epithelial-mesenchymal transition (EMT) eventually generating tissues from peripheral nervous system, melanocytes, craniofacial cartilage, and bone. The antidiabetic drug metformin reportedly inhibits EMT in physiological conditions like cancer and fibrosis. We hypothesize that perturbation of EMT may also contribute to developmental disabilities associated with neural crest (NC) development. To understand the molecular network underlying metformin action during NC formation, we first differentiated murine embryonic stem (ES) cells into NCC and characterized them by demonstrating spatiotemporal regulation of key markers. Metformin treatment prompted a delay in delamination of NCC by inhibiting key markers like Sox-1, Sox-9, HNK-1, and p-75. We then revealed that metformin impedes Wnt axis, a major signaling pathway active during NC formation via DVL-3 inhibition and impairment in nuclear translocation of β-catenin. Concomitantly we identified and tested a candidate set of miRNAs that play a crucial role in NC cell fate determination. Further studies involving loss and gain of function confirmed that NCC specifiers like Sox-1 and Sox-9 are direct targets of miR-200 and miR-145, respectively and that they are essentially modulated by metformin. Our in vitro findings were strongly supported by in vivo studies in zebrafish. Given that metformin is a widely used drug, for the first time we demonstrate that it can induce a delayed onset of developmental EMT during NC formation by interfering with canonical Wnt signaling and mysregulation of miR-145 and miR-200.
Collapse
Affiliation(s)
- Poulomi Banerjee
- School of Regenerative Medicine, Manipal University, Yelahanka, Bangalore, India
| | - Sunit Dutta
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rajarshi Pal
- School of Regenerative Medicine, Manipal University, Yelahanka, Bangalore, India
| |
Collapse
|
187
|
Othman EM, Oli RG, Arias-Loza PA, Kreissl MC, Stopper H. Metformin Protects Kidney Cells From Insulin-Mediated Genotoxicity In Vitro and in Male Zucker Diabetic Fatty Rats. Endocrinology 2016; 157:548-59. [PMID: 26636185 DOI: 10.1210/en.2015-1572] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperinsulinemia is thought to enhance cancer risk. A possible mechanism is induction of oxidative stress and DNA damage by insulin, Here, the effect of a combination of metformin with insulin was investigated in vitro and in vivo. The rationales for this were the reported antioxidative properties of metformin and the aim to gain further insights into the mechanisms responsible for protecting the genome from insulin-mediated oxidative stress and damage. The comet assay, a micronucleus frequency test, and a mammalian gene mutation assay were used to evaluate the DNA damage produced by insulin alone or in combination with metformin. For analysis of antioxidant activity, oxidative stress, and mitochondrial disturbances, the cell-free ferric reducing antioxidant power assay, the superoxide-sensitive dye dihydroethidium, and the mitochondrial membrane potential-sensitive dye 5,5',6,6'tetrachloro-1,1',3,3'-tetraethylbenzimidazol-carbocyanine iodide were applied. Accumulation of p53 and pAKT were analyzed. As an in vivo model, hyperinsulinemic Zucker diabetic fatty rats, additionally exposed to insulin during a hyperinsulinemic-euglycemic clamp, were treated with metformin. In the rat kidney samples, dihydroethidium staining, p53 and pAKT analysis, and quantification of the oxidized DNA base 8-oxo-7,8-dihydro-2'-deoxyguanosine were performed. Metformin did not show intrinsic antioxidant activity in the cell-free assay, but protected cultured cells from insulin-mediated oxidative stress, DNA damage, and mutation. Treatment of the rats with metformin protected their kidneys from oxidative stress and genomic damage induced by hyperinsulinemia. Metformin may protect patients from genomic damage induced by elevated insulin levels. This may support efforts to reduce the elevated cancer risk that is associated with hyperinsulinemia.
Collapse
Affiliation(s)
- Eman Maher Othman
- Institute of Pharmacology and Toxicology (E.M.O., R.G.O., H.S.), University of Würzburg, D-97078 Würzburg, Germany; Department of Analytical Chemistry (E.M.O.), Faculty of Pharmacy, University of El-Minia, 61519 Minia, Egypt; and Department of Nuclear Medicine (P.-A.A.-L., M.C.K.), University Hospital Würzburg, Würzburg 97080, Germany
| | - R G Oli
- Institute of Pharmacology and Toxicology (E.M.O., R.G.O., H.S.), University of Würzburg, D-97078 Würzburg, Germany; Department of Analytical Chemistry (E.M.O.), Faculty of Pharmacy, University of El-Minia, 61519 Minia, Egypt; and Department of Nuclear Medicine (P.-A.A.-L., M.C.K.), University Hospital Würzburg, Würzburg 97080, Germany
| | - Paula-Anahi Arias-Loza
- Institute of Pharmacology and Toxicology (E.M.O., R.G.O., H.S.), University of Würzburg, D-97078 Würzburg, Germany; Department of Analytical Chemistry (E.M.O.), Faculty of Pharmacy, University of El-Minia, 61519 Minia, Egypt; and Department of Nuclear Medicine (P.-A.A.-L., M.C.K.), University Hospital Würzburg, Würzburg 97080, Germany
| | - Michael C Kreissl
- Institute of Pharmacology and Toxicology (E.M.O., R.G.O., H.S.), University of Würzburg, D-97078 Würzburg, Germany; Department of Analytical Chemistry (E.M.O.), Faculty of Pharmacy, University of El-Minia, 61519 Minia, Egypt; and Department of Nuclear Medicine (P.-A.A.-L., M.C.K.), University Hospital Würzburg, Würzburg 97080, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology (E.M.O., R.G.O., H.S.), University of Würzburg, D-97078 Würzburg, Germany; Department of Analytical Chemistry (E.M.O.), Faculty of Pharmacy, University of El-Minia, 61519 Minia, Egypt; and Department of Nuclear Medicine (P.-A.A.-L., M.C.K.), University Hospital Würzburg, Würzburg 97080, Germany
| |
Collapse
|
188
|
Bost F, Decoux-Poullot AG, Tanti JF, Clavel S. Energy disruptors: rising stars in anticancer therapy? Oncogenesis 2016; 5:e188. [PMID: 26779810 PMCID: PMC4728676 DOI: 10.1038/oncsis.2015.46] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023] Open
Abstract
The metabolic features of tumor cells diverge from those of normal cells. Otto Warburg was the first to observe that cancer cells dramatically increase their glucose consumption to generate ATP. He also claimed that cancer cells do not have functional mitochondria or oxidative phosphorylation (OXPHOS) but simply rely on glycolysis to provide ATP to the cell, even in the presence of oxygen (aerobic glycolysis). Several studies have revisited this observation and demonstrated that most cancer cells contain metabolically efficient mitochondria. Indeed, to sustain high proliferation rates, cancer cells require functional mitochondria to provide ATP and intermediate metabolites, such as citrate and cofactors, for anabolic reactions. This difference in metabolism between normal and tumors cells causes the latter to be more sensitive to agents that can disrupt energy homeostasis. In this review, we focus on energy disruptors, such as biguanides, 2-deoxyglucose and 5-aminoimidazole-4-carboxamide ribonucleotide, that interfere with the main metabolic pathways of the cells, OXPHOS, glycolysis and glutamine metabolism. We discuss the preclinical data and the mechanisms of action of these disruptors at the cellular and molecular levels. Finally, we consider whether these drugs can reasonably contribute to the antitumoral therapeutic arsenal in the future.
Collapse
Affiliation(s)
- F Bost
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - A-G Decoux-Poullot
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - J F Tanti
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - S Clavel
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| |
Collapse
|
189
|
Metformin Treatment Does Not Inhibit Growth of Pancreatic Cancer Patient-Derived Xenografts. PLoS One 2016; 11:e0147113. [PMID: 26760500 PMCID: PMC4711922 DOI: 10.1371/journal.pone.0147113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/29/2015] [Indexed: 01/27/2023] Open
Abstract
There is currently tremendous interest in developing anti-cancer therapeutics targeting cell signaling pathways important for both cancer cell metabolism and growth. Several epidemiological studies have shown that diabetic patients taking metformin have a decreased incidence of pancreatic cancer. This has prompted efforts to evaluate metformin, a drug with negligible toxicity, as a therapeutic modality in pancreatic cancer. Preclinical studies in cell line xenografts and one study in patient-derived xenograft (PDX) models were promising, while recently published clinical trials showed no benefit to adding metformin to combination therapy regimens for locally advanced and metastatic pancreatic cancer. PDX models in which patient tumors are directly engrafted into immunocompromised mice have been shown to be excellent preclinical models for biomarker discovery and therapeutic development. We evaluated the response of four PDX tumor lines to metformin treatment and found that all four of our PDX lines were resistant to metformin. We found that the mechanisms of resistance may occur through lack of sustained activation of adenosine monophosphate-activated protein kinase (AMPK) or downstream reactivation of the mammalian target of rapamycin (mTOR). Moreover, combined treatment with metformin and mTOR inhibitors failed to improve responses in cell lines, which further indicates that metformin alone or in combination with mTOR inhibitors will be ineffective in patients, and that resistance to metformin may occur through multiple pathways. Further studies are required to better understand these mechanisms of resistance and inform potential combination therapies with metformin and existing or novel therapeutics.
Collapse
|
190
|
Topcul M, Cetin I. Effects of metformin on cell kinetic parameters of MCF-7 breast cancer cells in vitro. Asian Pac J Cancer Prev 2016; 16:2351-4. [PMID: 25824763 DOI: 10.7314/apjcp.2015.16.6.2351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In this study, the antiproliferative effects of the metformin was evaluated on MCF-7 Cells (human breast adenocarcinoma cell line). For this purpose cell kinetic parameters including cell proliferation assay, mitotic index and labelling index analysis were used. 30 μM, 65 μM and 130 μM Metformin doses were applied to cells for 24, 48 and 72 hours. The results showed that there was a significant decrease in cell proliferation, mitotic index and labelling index for all experimental groups (p<0.05) for all applications.
Collapse
Affiliation(s)
- Mehmet Topcul
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey E-mail :
| | | |
Collapse
|
191
|
Zhou G, Yu J, Wang A, Liu SH, Sinnett-Smith J, Wu J, Sanchez R, Nemunaitis J, Ricordi C, Rozengurt E, Brunicardi FC. Metformin Restrains Pancreatic Duodenal Homeobox-1 (PDX-1) Function by Inhibiting ERK Signaling in Pancreatic Ductal Adenocarcinoma. Curr Mol Med 2016; 16:83-90. [PMID: 26695692 PMCID: PMC4994969 DOI: 10.2174/1566524016666151222145551] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/20/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most potent and perilous diseases known, with a median survival rate of 3-5 months due to the combination of only advanced stage diagnosis and ineffective therapeutic options. Metformin (1,1-Dimethylbiguanide hydrochloride), the leading drug used for type 2 diabetes mellitus, emerges as a potential therapy for PDAC and other human cancers. Metformin exerts its anticancer action via a variety of adenosine monophosphate (AMP)-activated protein kinase (AMPK)- dependent and/or AMPK-independent mechanisms. We present data here showing that metformin downregulated pancreatic transcription factor pancreatic duodenal homeobox-1 (PDX-1), suggesting a potential novel mechanism by which metformin exerts its anticancer action. Metformin inhibited PDX-1 expression at both protein and mRNA levels and PDX-1 transactivity as well in PDAC cells. Extracellular signal-regulated kinase (ERK) was identified as a PDX-1-interacting protein by antibody array screening in GFP-PDX-1 stable HEK293 cells. Co-transfection of ERK1 with PDX-1 resulted in an enhanced PDX-1 expression in HEK293 cells in a dose-dependent manner. Immunoprecipitation/Western blotting analysis confirmed the ERK-PDX-1 interaction in PANC-1 cells stimulated by epidermal growth factor (EGF). EGF induced an enhanced PDX-1 expression in PANC-1 cells and this stimulation was inhibited by MEK inhibitor PD0325901. Metformin inhibited EGF-stimulated PDX-1 expression with an accompanied inhibition of ERK kinase activation in PANC- 1 cells. Taken together, our studies show that PDX-1 is a potential novel target for metformin in PDAC cells and that metformin may exert its anticancer action in PDAC by down-regulating PDX-1 via a mechanism involving inhibition of ERK signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - F C Brunicardi
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA, USA.
| |
Collapse
|
192
|
Suwei D, Liang Z, Zhimin L, Ruilei L, Yingying Z, Zhen L, Chunlei G, Zhangchao L, Yuanbo X, Jinyan Y, Gaofeng L, Xin S. NLK functions to maintain proliferation and stemness of NSCLC and is a target of metformin. J Hematol Oncol 2015; 8:120. [PMID: 26503334 PMCID: PMC4620602 DOI: 10.1186/s13045-015-0203-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
Objective Nemo-like kinase (NLK) is an evolutionarily conserved serine/threonine kinase that regulates the activity of a wide range of signal transduction pathways. Metformin, an oral antidiabetic drug, is used for cancer prevention. However, the significance and underlying mechanism of NLK and metformin in oncogenesis has not been fully elucidated. Here, we investigate a novel role of NLK and metformin in human non-small cell lung cancer (NSCLC). Materials and methods NLK expression was analyzed in 121 NSCLCs and 92 normal lung tissue samples from benign pulmonary disease. Lentivirus vectors with NLK-shRNA were used to examine the effect of NLK on cell proliferation and tumorigenesis in vitro. Then, tumor xenograft mouse models revealed that NLK knockdown cells had a reduced ability for tumor formation compared with the control group in vivo. Multiple cell cycle regulator expression patterns induced by NLK silencing were examined by western blots in A549 cells. We also employed metformin to study its anti-cancer effects and mechanisms. Cancer stem cell property was checked by tumor sphere formation and markers including CD133, Nanog, c-Myc, and TLF4. Results Immunohistochemical (IHC) analysis revealed that NLK expression was up-regulated in NSCLC cases (p < 0.001) and correlated with tumor T stage (p < 0.05). Silencing of NLK suppressed cell proliferation and tumorigenicity significantly in vitro and in vivo, which might be modulated by JUN family proteins. Furthermore, metformin selectively inhibits NLK expression and proliferation in NSCLC cells, but not immortalized noncancerous lung bronchial epithelial cells. In addition, both NLK knockdown and metformin treatment reduced the tumor sphere formation capacity and percentage of CD133+ cells. Accordingly, the expression level of stem cell markers (Nanog, c-Myc, and TLF4) were decreased significantly. Conclusion NLK is critical for cancer cell cycle progression, and tumorigenesis in NSCLC, NLK knockdown, and metformin treatment inhibit cancer cell proliferation and stemness. Metformin inhibits NLK expression and might be a potential treatment strategy for NSCLC.
Collapse
Affiliation(s)
- Dong Suwei
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic of China. .,Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Zeng Liang
- Department of Pathology, Hunan Tumor Hospital, Changsha, Hunan, People's Republic of China.
| | - Liu Zhimin
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Li Ruilei
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Zou Yingying
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, Yunnan, People's Republic of China.
| | - Li Zhen
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic of China. .,Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Ge Chunlei
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Lai Zhangchao
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Xue Yuanbo
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Yang Jinyan
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Li Gaofeng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Song Xin
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic of China. .,Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| |
Collapse
|
193
|
Rao CV, Janakiram NB, Madka V, Devarkonda V, Brewer M, Biddick L, Lightfoot S, Steele VE, Mohammed A. Simultaneous targeting of 5-LOX-COX and EGFR blocks progression of pancreatic ductal adenocarcinoma. Oncotarget 2015; 6:33290-305. [PMID: 26429877 PMCID: PMC4741766 DOI: 10.18632/oncotarget.5396] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
Cyclooxygenase-2 (COX-2), 5-Lipoxygenase (5-LOX), and epidermal growth factor receptor (EGRF) are over-expressed in human pancreatic ductal adenocarcinoma (PDAC). Using next-generation sequencing (NGS) analysis, we show significant increase in COX-2, 5-LOX, and EGFR expression during PDAC progression. Targeting complementary pathways will achieve better treatment efficacy than a single agent high-dose strategy that could increase risk of side effects and tumor resistance. To target COX-2, 5-LOX, and EGFR simultaneously, we tested effects of licofelone (dual 5-LOX-COX inhibitor), and gefitinib (EGFR inhibitor), individually and in combination, on pancreatic intraepithelial neoplasms (PanINs) and their progression to PDAC using genetically engineered mice. Individually, licofelone (L) and gefitinib (G) significantly inhibited incidence of PDAC in male (72% L, 90% G, p < 0.0001) and female (90% L, 85% G, p < 0.0001) mice. The combination drug treatment produced complete inhibition of PDAC in both genders. Pancreata of mice receiving combination treatment showed significantly fewer Dclk1-positive cancer stem-like cells, inhibition of COX-2, 5-LOX, PCNA, EGFR and β-catenin expression (p < 0.05-0.0002), increased p21 expression. Significant changes in tumor immune responses and desmoplastic reaction was observed by NGS analysis in combination treatment (p < 0.05). In summary, early simultaneous targeting of 5-LOX-COX- and EGFR pathways may provide additive inhibitory effects leading to complete suppression of PDAC.
Collapse
Affiliation(s)
- Chinthalapally V. Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Naveena B. Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vishal Devarkonda
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Misty Brewer
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Laura Biddick
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stan Lightfoot
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vernon E. Steele
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, Bethesda, MD, USA
| | - Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
194
|
Metformin: A Novel Biological Modifier of Tumor Response to Radiation Therapy. Int J Radiat Oncol Biol Phys 2015; 93:454-64. [PMID: 26383681 DOI: 10.1016/j.ijrobp.2015.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 01/03/2023]
|
195
|
Coperchini F, Leporati P, Rotondi M, Chiovato L. Expanding the therapeutic spectrum of metformin: from diabetes to cancer. J Endocrinol Invest 2015; 38:1047-55. [PMID: 26233338 DOI: 10.1007/s40618-015-0370-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Metformin, an oral hypoglycemic agent, was introduced in the clinical practice for the treatment of type 2 diabetes mellitus more than a half-century ago. Over the years, several studies demonstrated that diabetic patients treated with metformin have a lower incidence of cancer, raising the hypothesis that the spectrum of clinical applications of the drug could be expanded also to cancer therapy. Following these initial findings, a large number of studies were performed aimed at elucidating the effects of metformin on different types of tumor, at explaining its direct and indirect anti-cancer mechanisms and at identifying the molecular pathways targeted by the drug. Several clinical trials were also performed aimed at evaluating the potential anti-cancer effect of metformin among diabetic and non-diabetic patients affected by different types of cancer. While the results of several clinical studies are encouraging, a considerable number of other investigations do not support a role of metformin as an anti-cancer agent, and highlight variables possibly accounting for discrepancies. AIM We hereby review the results of in vitro and in vivo studies addressing the issue of the anti-cancer effects of metformin. CONCLUSIONS If in vitro data appear solid, the results provided by in vivo studies are somehow controversial. In this view, larger studies are needed to fully elucidate the role of metformin on cancer development and progression, as well as the specific clinical settings in which metformin could become an anti-cancer drug.
Collapse
Affiliation(s)
- F Coperchini
- Chair of Endocrinology, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - P Leporati
- Chair of Endocrinology, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - M Rotondi
- Chair of Endocrinology, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - L Chiovato
- Chair of Endocrinology, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy.
| |
Collapse
|
196
|
Chai X, Chu H, Yang X, Meng Y, Shi P, Gou S. Metformin Increases Sensitivity of Pancreatic Cancer Cells to Gemcitabine by Reducing CD133+ Cell Populations and Suppressing ERK/P70S6K Signaling. Sci Rep 2015; 5:14404. [PMID: 26391180 PMCID: PMC4585731 DOI: 10.1038/srep14404] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/26/2015] [Indexed: 12/14/2022] Open
Abstract
The prognosis of pancreatic cancer remains dismal, with little advance in chemotherapy because of its high frequency of chemoresistance. Metformin is widely used to treat type II diabetes, and was shown recently to inhibit pancreatic cancer stem cell proliferation. In the present study, we investigated the role of metformin in chemoresistance of pancreatic cancer cells to gemcitabine, and its possible cellular and molecular mechanisms. Metformin increases sensitivity of pancreatic cancer cells to gemcitabine. The mechanism involves, at least in part, the inhibition of CD133+ cells proliferation and suppression of P70S6K signaling activation via inhibition of ERK phosphorylation. Studies of primary tumor samples revealed a relationship between P70S6K signaling activation and the malignancy of pancreatic cancer. Analysis of clinical data revealed a trend of the benefit of metformin for pancreatic cancer patients with diabetes. The results suggested that metformin has a potential clinical use in overcoming chemoresistance of pancreatic cancer.
Collapse
Affiliation(s)
- Xinqun Chai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Hongpeng Chu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Xuan Yang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Yuanpu Meng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Pengfei Shi
- Department of Breast and Thyroid Surgery, Central Hospital of Wuhan
| | - Shanmiao Gou
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
197
|
Heckman-Stoddard BM, Gandini S, Puntoni M, Dunn BK, DeCensi A, Szabo E. Repurposing old drugs to chemoprevention: the case of metformin. Semin Oncol 2015; 43:123-133. [PMID: 26970131 DOI: 10.1053/j.seminoncol.2015.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Multiple epidemiologic studies have documented an association between the anti-diabetic agent metformin and reduced cancer incidence and mortality. However, this effect has not been consistently demonstrated in animal models or more recent epidemiological studies. The purpose of this paper is to examine metformin's chemopreventive potential by reviewing relevant mechanisms of action, preclinical evidence of efficacy, updated epidemiologic evidence after correction for potential biases and confounders, and recently completed and ongoing clinical trials. Although repurposing drugs with well described mechanisms of action and safety profiles is an appealing strategy for cancer prevention, there is no substitute for well executed late phase clinical trials to define efficacy and populations that are most likely to benefit from an intervention.
Collapse
Affiliation(s)
| | - Sara Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Matteo Puntoni
- Office of the Scientific Director, E.O. Ospedali Galliera, Genoa, Italy
| | - Barbara K Dunn
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Andrea DeCensi
- Division of Medical Oncology, E.O. Ospedali Galliera, Genoa, Italy; Division of Cancer Prevention and Genetics, European Institute of Oncology, Milan, Italy
| | - Eva Szabo
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
198
|
Yue W, Zheng X, Lin Y, Yang CS, Xu Q, Carpizo D, Huang H, DiPaola RS, Tan XL. Metformin combined with aspirin significantly inhibit pancreatic cancer cell growth in vitro and in vivo by suppressing anti-apoptotic proteins Mcl-1 and Bcl-2. Oncotarget 2015; 6:21208-24. [PMID: 26056043 PMCID: PMC4673260 DOI: 10.18632/oncotarget.4126] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/02/2015] [Indexed: 12/16/2022] Open
Abstract
Metformin and aspirin have been studied extensively as cancer preventive or therapeutic agents. However, the effects of their combination on pancreatic cancer cells have not been investigated. Herein, we evaluated the effects of metformin and aspirin, alone or in combination, on cell viability, migration, and apoptosis as well as the molecular changes in mTOR, STAT3 and apoptotic signaling pathways in PANC-1 and BxPC3 cells. Metformin and aspirin, at relatively low concentrations, demonstrated synergistically inhibitory effects on cell viability. Compared to the untreated control or individual drug, the combination of metformin and aspirin significantly inhibited cell migration and colony formation of both PANC-1 and BxPC-3 cells. Metformin combined with aspirin significantly inhibited the phosphorylation of mTOR and STAT3, and induced apoptosis as measured by caspase-3 and PARP cleavage. Remarkably, metformin combined with aspirin significantly downregulated the anti-apoptotic proteins Mcl-1 and Bcl-2, and upregulated the pro-apoptotic proteins Bim and Puma, as well as interrupted their interactions. The downregulation of Mcl-1 and Bcl-2 was independent of AMPK or STAT3 pathway but partially through mTOR signaling and proteasome degradation. In a PANC-1 xenograft mouse model, we demonstrated that the combination of metformin and aspirin significantly inhibited tumor growth and downregulated the protein expression of Mcl-1 and Bcl-2 in tumors. Taken together, the combination of metformin and aspirin significantly inhibited pancreatic cancer cell growth in vitro and in vivo by regulating the pro- and anti-apoptotic Bcl-2 family members, supporting the continued investigation of this two drug combination as chemopreventive or chemotherapeutic agents for pancreatic cancer.
Collapse
Affiliation(s)
- Wen Yue
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Xi Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yong Lin
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Chung S. Yang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, P. R. China
| | - Darren Carpizo
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Huarong Huang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, P. R. China
- Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology, Guangzhou, P. R. China
| | - Robert S. DiPaola
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Xiang-Lin Tan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
199
|
Wang Z, Lai ST, Ma NY, Deng Y, Liu Y, Wei DP, Zhao JD, Jiang GL. Radiosensitization of metformin in pancreatic cancer cells via abrogating the G2 checkpoint and inhibiting DNA damage repair. Cancer Lett 2015; 369:192-201. [PMID: 26304716 DOI: 10.1016/j.canlet.2015.08.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/14/2015] [Accepted: 08/18/2015] [Indexed: 12/20/2022]
Abstract
Recent evidences have demonstrated the potential of metformin as a novel agent for cancer prevention and treatment. Here, we investigated its ability of radiosensitization and the underlying mechanisms in human pancreatic cancer cells. In this study, we found that metformin at 5 mM concentration enhanced the radiosensitivity of MIA PaCa-2 and PANC-1 cells, with sensitization enhancement ratios of 1.39 and 1.27, respectively. Mechanistically, metformin caused abrogation of the G2 checkpoint and increase of mitotic catastrophe, associated with suppression of Wee1 kinase and in turn CDK1 Tyr15 phosphorylation. Furthermore, metformin inhibited both expression and irradiation-induced foci formation of Rad51, a key player in homologous recombination repair, ultimately leading to persistent DNA damage, as reflected by γ-H2AX and 53BP1 signaling. Finally, metformin-mediated AMPK/mTOR/p70S6K was identified as a possible upstream pathway controlling translational regulation of Wee1 and Rad51. Our data suggest that metformin radiosensitizes pancreatic cancer cells in vitro via abrogation of the G2 checkpoint and inhibition of DNA damage repair. However, the in vivo study is needed to further confirm the findings from the in vitro study.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai 200032, China
| | - Song-Tao Lai
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai 200032, China
| | - Ning-Yi Ma
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai 200032, China
| | - Yun Deng
- Cancer Research Institute, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai 200032, China
| | - Yong Liu
- Cancer Research Institute, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai 200032, China
| | - Dong-Ping Wei
- Cancer Research Institute, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai 200032, China
| | - Jian-Dong Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai 200032, China
| | - Guo-Liang Jiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai 200032, China; Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, 4365 Kangxin Road, Shanghai 201321, China.
| |
Collapse
|
200
|
Raj D, Aicher A, Heeschen C. Concise Review: Stem Cells in Pancreatic Cancer: From Concept to Translation. Stem Cells 2015. [PMID: 26202953 DOI: 10.1002/stem.2114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer stem cells (CSCs) have been first described in 2007 and since then have emerged as an intriguing entity of cancer cells with distinct functional features including self-renewal and exclusive in vivo tumorigenicity. The heterogeneous pancreatic CSC pool has been implicated in tumor propagation as well as metastatic spread. Clinically, the most important feature of CSCs is their strong resistance to standard chemotherapy, which results in fast disease relapse, even with today's more advanced chemotherapeutic regimens. Therefore, novel therapeutic strategies to most efficiently target pancreatic CSCs are being developed and their careful clinical translation should provide new avenues to eradicate this deadly disease.
Collapse
Affiliation(s)
- Deepak Raj
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Alexandra Aicher
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Christopher Heeschen
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|