151
|
Meyer SC, Keller MD, Chiu S, Koppikar P, Guryanova OA, Rapaport F, Xu K, Manova K, Pankov D, O'Reilly RJ, Kleppe M, McKenney AS, Shih AH, Shank K, Ahn J, Papalexi E, Spitzer B, Socci N, Viale A, Mandon E, Ebel N, Andraos R, Rubert J, Dammassa E, Romanet V, Dölemeyer A, Zender M, Heinlein M, Rampal R, Weinberg RS, Hoffman R, Sellers WR, Hofmann F, Murakami M, Baffert F, Gaul C, Radimerski T, Levine RL. CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms. Cancer Cell 2015; 28:15-28. [PMID: 26175413 PMCID: PMC4503933 DOI: 10.1016/j.ccell.2015.06.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/05/2015] [Accepted: 06/14/2015] [Indexed: 02/02/2023]
Abstract
Although clinically tested JAK inhibitors reduce splenomegaly and systemic symptoms, molecular responses are not observed in most myeloproliferative neoplasm (MPN) patients. We previously demonstrated that MPN cells become persistent to type I JAK inhibitors that bind the active conformation of JAK2. We investigated whether CHZ868, a type II JAK inhibitor, would demonstrate activity in JAK inhibitor persistent cells, murine MPN models, and MPN patient samples. JAK2 and MPL mutant cell lines were sensitive to CHZ868, including type I JAK inhibitor persistent cells. CHZ868 showed significant activity in murine MPN models and induced reductions in mutant allele burden not observed with type I JAK inhibitors. These data demonstrate that type II JAK inhibition is a viable therapeutic approach for MPN patients.
Collapse
Affiliation(s)
- Sara C Meyer
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew D Keller
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sophia Chiu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Priya Koppikar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olga A Guryanova
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Franck Rapaport
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ke Xu
- Molecular Cytology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katia Manova
- Molecular Cytology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dmitry Pankov
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard J O'Reilly
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Sophia McKenney
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alan H Shih
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kaitlyn Shank
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jihae Ahn
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eftymia Papalexi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Barbara Spitzer
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nick Socci
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Agnes Viale
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emeline Mandon
- Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Nicolas Ebel
- Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Rita Andraos
- Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Joëlle Rubert
- Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Ernesta Dammassa
- Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Vincent Romanet
- Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Arno Dölemeyer
- Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Michael Zender
- Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Melanie Heinlein
- Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Raajit Rampal
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Ronald Hoffman
- Department of Medicine, Mount Sinai Hospital, New York, NY 10029, USA
| | - William R Sellers
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Francesco Hofmann
- Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Masato Murakami
- Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Fabienne Baffert
- Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Christoph Gaul
- Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Thomas Radimerski
- Novartis Institutes for Biomedical Research, Basel 4056, Switzerland.
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
152
|
Langdon CG, Held MA, Platt JT, Meeth K, Iyidogan P, Mamillapalli R, Koo AB, Klein M, Liu Z, Bosenberg MW, Stern DF. The broad-spectrum receptor tyrosine kinase inhibitor dovitinib suppresses growth of BRAF-mutant melanoma cells in combination with other signaling pathway inhibitors. Pigment Cell Melanoma Res 2015; 28:417-30. [PMID: 25854919 PMCID: PMC5215495 DOI: 10.1111/pcmr.12376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/07/2015] [Indexed: 11/28/2022]
Abstract
BRAF inhibitors have revolutionized treatment of mutant BRAF metastatic melanomas. However, resistance develops rapidly following BRAF inhibitor treatment. We have found that BRAF-mutant melanoma cell lines are more sensitive than wild-type BRAF cells to the small molecule tyrosine kinase inhibitor dovitinib. Sensitivity is associated with inhibition of a series of known dovitinib targets. Dovitinib in combination with several agents inhibits growth more effectively than either agent alone. These combinations inhibit BRAF-mutant melanoma and colorectal carcinoma cell lines, including cell lines with intrinsic or selected BRAF inhibitor resistance. Hence, combinations of dovitinib with second agents are potentially effective therapies for BRAF-mutant melanomas, regardless of their sensitivity to BRAF inhibitors.
Collapse
Affiliation(s)
- Casey G. Langdon
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew A. Held
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - James T. Platt
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Breast Medical Oncology Group, Yale University School of Medicine, New Haven, CT, USA
| | - Katrina Meeth
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Pinar Iyidogan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Andrew B. Koo
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Klein
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Zongzhi Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Marcus W. Bosenberg
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - David F. Stern
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
153
|
Prabhu VV, El-Deiry WS. 4th international conference on tumor progression and therapeutic resistance: meeting report. Cancer Biol Ther 2015; 16:363-76. [PMID: 25782066 DOI: 10.1080/15384047.2015.1004928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The fourth international conference on tumor progression and therapeutic resistance organized in association with GTCbio was held in Boston, MA from March 9 to 11, 2014. The meeting attracted a diverse group of experts in the field of cancer biology, therapeutics and medical oncology from academia and industry. The meeting addressed the current challenges in the treatment of cancer including tumor heterogeneity, therapy resistance and metastasis along with the need for improved biomarkers of tumor progression and clinical trial design. Keynote speakers included Clifton Leaf, Editor at Fortune Magazine, Dr. Mina Bissell from the Lawrence Berkeley National Laboratory and Dr. Levi Garraway from the Dana Farber Cancer Institute. The meeting featured cutting edge tools, preclinical models and the latest basic, translational and clinical research findings in the field.
Collapse
Affiliation(s)
- Varun V Prabhu
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | | |
Collapse
|
154
|
Richer AL, Friel JM, Carson VM, Inge LJ, Whitsett TG. Genomic profiling toward precision medicine in non-small cell lung cancer: getting beyond EGFR. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2015; 8:63-79. [PMID: 25897257 PMCID: PMC4397718 DOI: 10.2147/pgpm.s52845] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide. The application of next-generation genomic technologies has offered a more comprehensive look at the mutational landscape across the different subtypes of non-small cell lung cancer (NSCLC). A number of recurrent mutations such as TP53, KRAS, and epidermal growth factor receptor (EGFR) have been identified in NSCLC. While targeted therapeutic successes have been demonstrated in the therapeutic targeting of EGFR and ALK, the majority of NSCLC tumors do not harbor these genomic events. This review looks at the current treatment paradigms for lung adenocarcinomas and squamous cell carcinomas, examining genomic aberrations that dictate therapy selection, as well as novel therapeutic strategies for tumors harboring mutations in KRAS, TP53, and LKB1 which, to date, have been considered “undruggable”. A more thorough understanding of the molecular alterations that govern NSCLC tumorigenesis, aided by next-generation sequencing, will lead to targeted therapeutic options expected to dramatically reduce the high mortality rate observed in lung cancer.
Collapse
Affiliation(s)
- Amanda L Richer
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jacqueline M Friel
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Vashti M Carson
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Landon J Inge
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Timothy G Whitsett
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
155
|
Richters A, Basu D, Engel J, Ercanoglu MS, Balke-Want H, Tesch R, Thomas RK, Rauh D. Identification and further development of potent TBK1 inhibitors. ACS Chem Biol 2015; 10:289-98. [PMID: 25540906 DOI: 10.1021/cb500908d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cytosolic Ser/Thr kinase TBK1 was discovered to be an essential element in the mediation of signals that lead to tumor migration and progression. These findings meet the need for the identification of novel tool compounds and potential therapeutics to gain deeper insights into TBK1 related signaling and its relevance in tumor progression. Herein, we undertake the activity-based screening for unique inhibitors of TBK1 and their subsequent optimization. Initial screening approaches identified a selection of TBK1 inhibitors that were optimized using methods of medicinal chemistry. Variations of the structural characteristics of a representative 2,4,6-substituted pyrimidine scaffold resulted in improved potency. Prospective use as tool compounds or basic contributions to drug design approaches are anticipated for our improved small molecules.
Collapse
Affiliation(s)
- André Richters
- Department
of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Debjit Basu
- Department
of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Julian Engel
- Department
of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Meryem S. Ercanoglu
- Department
of Translational Genomics, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Hyatt Balke-Want
- Department
of Translational Genomics, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Roberta Tesch
- Department
of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
- Programa
de Pós-Graduação em Farmacologia e Química
Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-901 Brazil
| | - Roman K. Thomas
- Department
of Translational Genomics, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Daniel Rauh
- Department
of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
156
|
Barbie TU, Alexe G, Aref AR, Li S, Zhu Z, Zhang X, Imamura Y, Thai TC, Huang Y, Bowden M, Herndon J, Cohoon TJ, Fleming T, Tamayo P, Mesirov JP, Ogino S, Wong KK, Ellis MJ, Hahn WC, Barbie DA, Gillanders WE. Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. J Clin Invest 2014; 124:5411-23. [PMID: 25365225 DOI: 10.1172/jci75661] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 09/30/2014] [Indexed: 12/25/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are a heterogeneous set of cancers that are defined by the absence of hormone receptor expression and HER2 amplification. Here, we found that inducible IκB kinase-related (IKK-related) kinase IKBKE expression and JAK/STAT pathway activation compose a cytokine signaling network in the immune-activated subset of TNBC. We found that treatment of cultured IKBKE-driven breast cancer cells with CYT387, a potent inhibitor of TBK1/IKBKE and JAK signaling, impairs proliferation, while inhibition of JAK alone does not. CYT387 treatment inhibited activation of both NF-κB and STAT and disrupted expression of the protumorigenic cytokines CCL5 and IL-6 in these IKBKE-driven breast cancer cells. Moreover, in 3D culture models, the addition of CCL5 and IL-6 to the media not only promoted tumor spheroid dispersal but also stimulated proliferation and migration of endothelial cells. Interruption of cytokine signaling by CYT387 in vivo impaired the growth of an IKBKE-driven TNBC cell line and patient-derived xenografts (PDXs). A combination of CYT387 therapy with a MEK inhibitor was particularly effective, abrogating tumor growth and angiogenesis in an aggressive PDX model of TNBC. Together, these findings reveal that IKBKE-associated cytokine signaling promotes tumorigenicity of immune-driven TNBC and identify a potential therapeutic strategy using clinically available compounds.
Collapse
|
157
|
Abstract
Despite more than three decades of intensive effort, no effective pharmacological inhibitors of the RAS oncoproteins have reached the clinic, prompting the widely held perception that RAS proteins are 'undruggable'. However, recent data from the laboratory and the clinic have renewed our hope for the development of RAS-inhibitory molecules. In this Review, we summarize the progress and the promise of five key approaches. Firstly, we focus on the prospects of using direct inhibitors of RAS. Secondly, we address the issue of whether blocking RAS membrane association is a viable approach. Thirdly, we assess the status of targeting RAS downstream effector signalling, which is arguably the most favourable current approach. Fourthly, we address whether the search for synthetic lethal interactors of mutant RAS still holds promise. Finally, RAS-mediated changes in cell metabolism have recently been described and we discuss whether these changes could be exploited for new therapeutic directions. We conclude with perspectives on how additional complexities, which are not yet fully understood, may affect each of these approaches.
Collapse
|
158
|
Abstract
The great majority of targeted anticancer drugs inhibit mutated oncogenes that display increased activity. Yet many tumors do not contain such actionable aberrations, such as those harboring loss-of-function mutations. The notion of targeting synthetic lethal vulnerabilities in cancer cells has provided an alternative approach to exploiting more of the genetic and epigenetic changes acquired during tumorigenesis. Here, we review synthetic lethality as a therapeutic concept that exploits the inherent differences between normal cells and cancer cells. Furthermore, we provide an overview of the screening approaches that can be used to identify synthetic lethal interactions in human cells and present several recently identified interactions that may be pharmacologically exploited. Finally, we indicate some of the challenges of translating synthetic lethal interactions into the clinic and how these may be overcome.
Collapse
Affiliation(s)
- Ferran Fece de la Cruz
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, A1090 Vienna, Austria;
| | | | | |
Collapse
|
159
|
Sos ML, Levin RS, Gordan JD, Oses-Prieto JA, Webber JT, Salt M, Hann B, Burlingame AL, McCormick F, Bandyopadhyay S, Shokat KM. Oncogene mimicry as a mechanism of primary resistance to BRAF inhibitors. Cell Rep 2014; 8:1037-48. [PMID: 25127139 DOI: 10.1016/j.celrep.2014.07.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/14/2014] [Accepted: 07/10/2014] [Indexed: 01/11/2023] Open
Abstract
Despite the development of potent RAF/mitogen-activated protein kinase (MAPK) pathway inhibitors, only a fraction of BRAF-mutant patients benefit from treatment with these drugs. Using a combined chemogenomics and chemoproteomics approach, we identify drug-induced RAS-RAF-MEK complex formation in a subset of BRAF-mutant cancer cells characterized by primary resistance to vemurafenib. In these cells, autocrine interleukin-6 (IL-6) secretion may contribute to the primary resistance phenotype via induction of JAK/STAT3 and MAPK signaling. In a subset of cell lines, combined IL-6/MAPK inhibition is able to overcome primary resistance to BRAF-targeted therapy. Overall, we show that the signaling plasticity exerted by primary resistant BRAF-mutant cells is achieved by their ability to mimic signaling features of oncogenic RAS, a strategy that we term "oncogene mimicry." This model may guide future strategies for overcoming primary resistance observed in these tumors.
Collapse
Affiliation(s)
- Martin L Sos
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rebecca S Levin
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, CA 94158, USA
| | - John D Gordan
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, CA 94158, USA
| | - James T Webber
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Megan Salt
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Byron Hann
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, CA 94158, USA
| | - Frank McCormick
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sourav Bandyopadhyay
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
160
|
Vu HL, Aplin AE. Targeting TBK1 inhibits migration and resistance to MEK inhibitors in mutant NRAS melanoma. Mol Cancer Res 2014; 12:1509-19. [PMID: 24962318 DOI: 10.1158/1541-7786.mcr-14-0204] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
UNLABELLED Melanoma is a devastating form of skin cancer with limited therapeutic options. Fifteen to 20% of patients with melanoma have an activating mutation in the GTPase, NRAS. The major downstream effectors of RAS are RAFs (ARAF, BRAF, and CRAF), phosphoinositide 3-kinase (PI3K), and the Ral guanine exchange factors (RalGEF). TANK-binding kinase 1 (TBK1) is an atypical IκB kinase family member that acts downstream of RalGEFs. Whereas many studies have analyzed RAF and PI3K signaling in mutant NRAS melanoma, the role of RalGEF/Ral is understudied and TBK1 has not been examined. To address this, TBK1 was modulated with knockdown approaches and targeted therapies to determine the role of TBK1 in motility, apoptosis, and signaling. In melanoma, NRAS overexpression increased TBK1 phosphorylation. TBK1 depletion inhibited migration and invasion, whereas its constitutive overexpression led to an increase in invasion. In three-dimensional systems that mimic the dermal microenvironment, TBK1 depletion or inhibition cooperated with MEK inhibitors to promote apoptosis, particularly in the context of MEK-insensitive mutant NRAS. This effect was absent in melanoma cells that are wild-type for NRAS. These results suggest the utility of TBK1 inhibitors as part of a treatment regimen for patients with mutant NRAS melanoma, for whom there are no current effective therapies. IMPLICATIONS TBK1 promotes the malignant properties of NRAS-mutant melanoma and its targeting, in combination with MEK, promotes apoptosis, thus providing a potential novel targeted therapeutic option.
Collapse
Affiliation(s)
- Ha Linh Vu
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
161
|
Abstract
KRAS is one of the most commonly mutated oncogenes in human tumors, and is typically associated with aggressive disease. Despite intensive study and years of effort, KRAS has remained refractory to targeted inhibition. Given the challenge of inhibiting KRAS directly, current approaches to KRAS targeted therapy have involved the disruption of downstream signaling pathways. However, combinations of drugs that target RAF/MEK and PI3K/AKT signaling have failed to live up to expectations in the clinic. Here we summarize the evidence that the cytokine signaling circuitry of KRAS-driven tumors represents an equally tractable drug target. Indeed, the incorporation of novel therapeutics that disrupts these cytokine signaling networks may hold the key to overcoming this seemingly impenetrable treatment barrier.
Collapse
Affiliation(s)
- Hadrien G Golay
- Department of Medical Oncology and Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
| | | |
Collapse
|
162
|
Shtivelman E, Hensing T, Simon GR, Dennis PA, Otterson GA, Bueno R, Salgia R. Molecular pathways and therapeutic targets in lung cancer. Oncotarget 2014; 5:1392-433. [PMID: 24722523 PMCID: PMC4039220 DOI: 10.18632/oncotarget.1891] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is still the leading cause of cancer death worldwide. Both histologically and molecularly lung cancer is heterogeneous. This review summarizes the current knowledge of the pathways involved in the various types of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. It describes the major pathways and molecular alterations implicated in the development and progression of non-small cell lung cancer (adenocarcinoma and squamous cancer), and of small cell carcinoma, emphasizing the molecular alterations comprising the specific blueprints in each group. The approved and investigational targeted therapies as well as the immune therapies, and clinical trials exploring the variety of targeted approaches to treatment of lung cancer are the main focus of this review.
Collapse
|