151
|
Yang Z, Wang Y. Clinical development of chimeric antigen receptor-T cell therapy for hematological malignancies. Chin Med J (Engl) 2023; 136:2285-2296. [PMID: 37358555 PMCID: PMC10538902 DOI: 10.1097/cm9.0000000000002549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 06/27/2023] Open
Abstract
ABSTRACT Cellular therapies have revolutionized the treatment of hematological malignancies since their conception and rapid development. Chimeric antigen receptor (CAR)-T cell therapy is the most widely applied cellular therapy. Since the Food and Drug Administration approved two CD19-CAR-T products for clinical treatment of relapsed/refractory acute lymphoblastic leukemia and diffuse large B cell lymphoma in 2017, five more CAR-T cell products were subsequently approved for treating multiple myeloma or B cell malignancies. Moreover, clinical trials of CAR-T cell therapy for treating other hematological malignancies are ongoing. Both China and the United States have contributed significantly to the development of clinical trials. However, CAR-T cell therapy has many limitations such as a high relapse rate, adverse side effects, and restricted availability. Various methods are being implemented in clinical trials to address these issues, some of which have demonstrated promising breakthroughs. This review summarizes developments in CAR-T cell trials and advances in CAR-T cell therapy.
Collapse
Affiliation(s)
- Zhihuan Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Tianjin Key Laboratory of Cell Therapy for Blood Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | | |
Collapse
|
152
|
Quach HT, Skovgard MS, Villena-Vargas J, Bellis RY, Chintala NK, Amador-Molina A, Bai Y, Banerjee S, Saini J, Xiong Y, Vista WR, Byun AJ, De Biasi A, Zeltsman M, Mayor M, Morello A, Mittal V, Gomez DR, Rimner A, Jones DR, Adusumilli PS. Tumor-Targeted Nonablative Radiation Promotes Solid Tumor CAR T-cell Therapy Efficacy. Cancer Immunol Res 2023; 11:1314-1331. [PMID: 37540803 PMCID: PMC10592183 DOI: 10.1158/2326-6066.cir-22-0840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/18/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
Infiltration of tumor by T cells is a prerequisite for successful immunotherapy of solid tumors. In this study, we investigate the influence of tumor-targeted radiation on chimeric antigen receptor (CAR) T-cell therapy tumor infiltration, accumulation, and efficacy in clinically relevant models of pleural mesothelioma and non-small cell lung cancers. We use a nonablative dose of tumor-targeted radiation prior to systemic administration of mesothelin-targeted CAR T cells to assess infiltration, proliferation, antitumor efficacy, and functional persistence of CAR T cells at primary and distant sites of tumor. A tumor-targeted, nonablative dose of radiation promotes early and high infiltration, proliferation, and functional persistence of CAR T cells. Tumor-targeted radiation promotes tumor-chemokine expression and chemokine-receptor expression in infiltrating T cells and results in a subpopulation of higher-intensity CAR-expressing T cells with high coexpression of chemokine receptors that further infiltrate distant sites of disease, enhancing CAR T-cell antitumor efficacy. Enhanced CAR T-cell efficacy is evident in models of both high-mesothelin-expressing mesothelioma and mixed-mesothelin-expressing lung cancer-two thoracic cancers for which radiotherapy is part of the standard of care. Our results strongly suggest that the use of tumor-targeted radiation prior to systemic administration of CAR T cells may substantially improve CAR T-cell therapy efficacy for solid tumors. Building on our observations, we describe a translational strategy of "sandwich" cell therapy for solid tumors that combines sequential metastatic site-targeted radiation and CAR T cells-a regional solution to overcome barriers to systemic delivery of CAR T cells.
Collapse
Affiliation(s)
- Hue Tu Quach
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Matthew S. Skovgard
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Jonathan Villena-Vargas
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Rebecca Y. Bellis
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Navin K. Chintala
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Alfredo Amador-Molina
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Yang Bai
- Department of Cardiothoracic Surgery, Weill Cornell Medicine; New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine; New York, NY, USA
| | - Srijita Banerjee
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Jasmeen Saini
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Yuquan Xiong
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - William-Ray Vista
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Alexander J. Byun
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Andreas De Biasi
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Masha Zeltsman
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Marissa Mayor
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Aurore Morello
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine; New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine; New York, NY, USA
| | - Daniel R. Gomez
- Thoracic Radiation Oncology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Andreas Rimner
- Thoracic Radiation Oncology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - David R. Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Prasad S. Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| |
Collapse
|
153
|
Cerella C, Dicato M, Diederich M. Enhancing personalized immune checkpoint therapy by immune archetyping and pharmacological targeting. Pharmacol Res 2023; 196:106914. [PMID: 37714393 DOI: 10.1016/j.phrs.2023.106914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are an expanding class of immunotherapeutic agents with the potential to cure cancer. Despite the outstanding clinical response in patient subsets, most individuals become refractory or develop resistance. Patient stratification and personalized immunotherapies are limited by the absence of predictive response markers. Recent findings show that dominant patterns of immune cell composition, T-cell status and heterogeneity, and spatiotemporal distribution of immune cells within the tumor microenvironment (TME) are becoming essential determinants of prognosis and therapeutic response. In this context, ICIs also function as investigational tools and proof of concept, allowing the validation of the identified mechanisms. After reviewing the current state of ICIs, this article will explore new comprehensive predictive markers for ICIs based on recent discoveries. We will discuss the recent establishment of a classification of TMEs into immune archetypes as a tool for personalized immune profiling, allowing patient stratification before ICI treatment. We will discuss the developing comprehension of T-cell diversity and its role in shaping the immune profile of patients. We describe the potential of strategies that score the mutual spatiotemporal modulation between T-cells and other cellular components of the TME. Additionally, we will provide an overview of a range of synthetic and naturally occurring or derived small molecules. We will compare compounds that were recently identified by in silico prediction to wet lab-validated drug candidates with the potential to function as ICIs and/or modulators of the cellular components of the TME.
Collapse
Affiliation(s)
- Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210 Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
154
|
Davis L, Miller RE, Wong YNS. The Landscape of Adoptive Cellular Therapies in Ovarian Cancer. Cancers (Basel) 2023; 15:4814. [PMID: 37835509 PMCID: PMC10571827 DOI: 10.3390/cancers15194814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Ovarian cancers are typically poorly immunogenic and have demonstrated disappointing responses to immune checkpoint inhibitor (ICI) therapy. Adoptive cellular therapy (ACT) offers an alternative method of harnessing the immune system that has shown promise, especially with the success of chimeric antigen receptor T-cell (CAR-T) therapy in haematologic malignancies. So far, ACT has led to modest results in the treatment of solid organ malignancies. This review explores the possibility of ACT as an effective alternative or additional treatment to current standards of care in ovarian cancer. We will highlight the potential of ACTs, such as CAR-T, T-cell receptor therapy (TCR-T), tumour-infiltrating lymphocytes (TILs) and cell-based vaccines, whilst also discussing their challenges. We will present clinical studies for these approaches in the treatment of immunologically 'cold' ovarian cancer and consider the rationale for future research.
Collapse
Affiliation(s)
- Lucy Davis
- Royal Free Hospital, London NW3 2QG, UK;
| | - Rowan E Miller
- Department of Medical Oncology, University College London Hospital, London NW1 3PG, UK;
- Department of Medical Oncology, St Bartholomew’s Hospital, London EC1A 7BE, UK
| | - Yien Ning Sophia Wong
- Royal Free Hospital, London NW3 2QG, UK;
- Department of Medical Oncology, University College London Hospital, London NW1 3PG, UK;
| |
Collapse
|
155
|
Mody H, Ogasawara K, Zhu X, Miles D, Shastri PN, Gokemeijer J, Liao MZ, Kasichayanula S, Yang TY, Chemuturi N, Gupta S, Jawa V, Upreti VV. Best Practices and Considerations for Clinical Pharmacology and Pharmacometric Aspects for Optimal Development of CAR-T and TCR-T Cell Therapies: An Industry Perspective. Clin Pharmacol Ther 2023; 114:530-557. [PMID: 37393588 DOI: 10.1002/cpt.2986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
With the promise of a potentially "single dose curative" paradigm, CAR-T cell therapies have brought a paradigm shift in the treatment and management of hematological malignancies. Both CAR-T and TCR-T cell therapies have also made great progress toward the successful treatment of solid tumor indications. The field is rapidly evolving with recent advancements including the clinical development of "off-the-shelf" allogeneic CAR-T therapies that can overcome the long and difficult "vein-to-vein" wait time seen with autologous CAR-T therapies. There are unique clinical pharmacology, pharmacometric, bioanalytical, and immunogenicity considerations and challenges in the development of these CAR-T and TCR-T cell therapies. Hence, to help accelerate the development of these life-saving therapies for the patients with cancer, experts in this field came together under the umbrella of International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) to form a joint working group between the Clinical Pharmacology Leadership Group (CPLG) and the Translational and ADME Sciences Leadership Group (TALG). In this white paper, we present the IQ consortium perspective on the best practices and considerations for clinical pharmacology and pharmacometric aspects toward the optimal development of CAR-T and TCR-T cell therapies.
Collapse
Affiliation(s)
- Hardik Mody
- Clinical Pharmacology, Genentech, South San Francisco, California, USA
| | - Ken Ogasawara
- Clinical Pharmacology, Pharmacometrics, Disposition and Bioanalysis, Bristol Myers Squibb, Lawrence Township, New Jersey, USA
| | - Xu Zhu
- Quantitative Clinical Pharmacology, AstraZeneca, Boston, Massachusetts, USA
| | - Dale Miles
- Clinical Pharmacology, Genentech, South San Francisco, California, USA
| | | | - Jochem Gokemeijer
- Discovery Biotherapeutics, Bristol Myers Squibb, Cambridge, Massachusetts, USA
| | - Michael Z Liao
- Clinical Pharmacology, Genentech, South San Francisco, California, USA
| | | | - Tong-Yuan Yang
- Bioanalytical Discovery and Development Sciences, Janssen R&D, LLC, Spring House, Pennsylvania, USA
| | - Nagendra Chemuturi
- Clinical Pharmacology, DMPK, Pharmacometrics, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Swati Gupta
- Development Biological Sciences, Immunology, AbbVie, Irvine, California, USA
| | - Vibha Jawa
- Clinical Pharmacology, Pharmacometrics, Disposition and Bioanalysis, Bristol Myers Squibb, Lawrence Township, New Jersey, USA
| | - Vijay V Upreti
- Clinical Pharmacology, Modeling & Simulation, Amgen, South San Francisco, California, USA
| |
Collapse
|
156
|
Dagogo-Jack I. Targeted Approaches to Treatment of Pleural Mesothelioma: A Review. JCO Precis Oncol 2023; 7:e2300344. [PMID: 37992257 PMCID: PMC10681489 DOI: 10.1200/po.23.00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 09/11/2023] [Indexed: 11/24/2023] Open
Abstract
Pleural mesothelioma is an aggressive disease that is enriched for inactivating alterations in tumor suppressor genes. Systemic therapeutic strategies for pleural mesothelioma generally involve chemotherapies and immunotherapies that are chosen without consideration of the tumor's molecular profile. As this generalized approach to treatment rarely yields durable responses, alternative therapeutic regimens are urgently indicated. Preclinical studies have identified synthetic lethal protein and metabolic interactions, recurrently overexpressed proteins, and frequent pathway perturbations that may be therapeutically exploited in mesothelioma. This review discusses the mechanism of action of emerging investigational therapies and summarizes findings from phase I-II clinical trials exploring selective, biomarker-driven therapeutic strategies for mesothelioma, with a focus on five common targets. Finally, using lessons learned from these clinical trials, imperatives for successful implementation of targeted therapy in mesothelioma are discussed.
Collapse
Affiliation(s)
- Ibiayi Dagogo-Jack
- Department of Medicine, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
157
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
158
|
Li MSC, Mok KKS, Mok TSK. Developments in targeted therapy & immunotherapy-how non-small cell lung cancer management will change in the next decade: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:358. [PMID: 37675321 PMCID: PMC10477626 DOI: 10.21037/atm-22-4444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/08/2023] [Indexed: 09/08/2023]
Abstract
Background and Objective The adoption of targeted therapy and immunotherapy has revolutionised the treatment landscape of non-small cell lung cancer. For early staged disease, incorporation of targeted therapy and immunotherapy has recently been demonstrated to reduce recurrence. Development of targeted therapies in advanced lung cancer is driven by advanced genomic sequencing techniques, better understanding of drug resistance mechanisms, and improved drug designs. The list of targetable molecular alteration is continuously expanding, and next generation molecular therapies have shown promise in circumventing drug resistance. Lung cancer patients may achieve durable disease control with immune checkpoint inhibitors however most patients develop immunotherapy resistance. A wide spectrum of resistance mechanisms, ranging from impaired T-cell activation, presence of coinhibitory immune checkpoints, to immunosuppressive tumour microenvironment, have been proposed. A multitude of novel immunotherapy strategies are under development to target such resistance mechanisms. This review aims to provide a succinct overview in the latest development in targeted therapy and immunotherapy for NSCLC management. Methods We searched all original papers and reviews on targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC) using PubMed in June 2022. Search terms included "non-small cell lung cancer", "targeted therapy", "immunotherapy", "EGFR", "ALK", "ROS1", "BRAF V600E", "MET", "RET", "KRAS", "HER2", "ERBB2", "NRG1", "immune checkpoint", "PD-1", "PD-L1", "CTLA4", "TIGIT", "VEGF", "cancer vaccine", "cellular therapy", "tumour microenvironment", "cytokine", and "gut microbiota". Key Content and Findings We first discuss the incorporation of targeted therapy and immunotherapy in early staged NSCLC. This includes the latest clinical data that led to the approval of neoadjuvant immunotherapy, adjuvant immunotherapy and adjuvant targeted therapy for early staged NSCLC. The second section focuses on targeted therapy in metastatic NSCLC. The list of targetable alteration now includes but is not limited to EGFR, ALK, ROS1, BRAF V600E, MET exon 14 skipping, RET, KRAS G12C, HER2 and NRG1. Potential drug resistance mechanisms and novel therapeutics under development are also discussed. The third section on immunotherapy in metastatic NSCLC, covers immunotherapy that are currently approved [anti-PD-(L)1 and anti-CTLA4], and agents that are under active research (e.g., anti-TIGIT, cancer vaccine, cellular therapy, cytokine and other TME modulating agents). Conclusions This review encompasses the latest updates in targeted therapy and immunotherapy in lung cancer management and discusses the future direction in the field.
Collapse
Affiliation(s)
- Molly S. C. Li
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin K. S. Mok
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong, China
| | - Tony S. K. Mok
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
159
|
Yang C, You J, Pan Q, Tang Y, Cai L, Huang Y, Gu J, Wang Y, Yang X, Du Y, Ouyang D, Chen H, Zhong H, Li Y, Yang J, Han Y, Sun F, Chen Y, Wang Q, Weng D, Liu Z, Xiang T, Xia J. Targeted delivery of a PD-1-blocking scFv by CD133-specific CAR-T cells using nonviral Sleeping Beauty transposition shows enhanced antitumour efficacy for advanced hepatocellular carcinoma. BMC Med 2023; 21:327. [PMID: 37635247 PMCID: PMC10464109 DOI: 10.1186/s12916-023-03016-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND CD133 is considered a marker for cancer stem cells (CSCs) in several types of tumours, including hepatocellular carcinoma (HCC). Chimeric antigen receptor-specific T (CAR-T) cells targeting CD133-positive CSCs have emerged as a tool for the clinical treatment of HCC, but immunogenicity, the high cost of clinical-grade recombinant viral vectors and potential insertional mutagenesis limit their clinical application. METHODS CD133-specific CAR-T cells secreting PD-1 blocking scFv (CD133 CAR-T and PD-1 s cells) were constructed using a sleeping beauty transposon system from minicircle technology, and the antitumour efficacy of CD133 CAR-T and PD-1 s cells was analysed in vitro and in vivo. RESULTS A univariate analysis showed that CD133 expression in male patients at the late stage (II and III) was significantly associated with worse progression-free survival (PFS) (P = 0.0057) and overall survival (OS) (P = 0.015), and a multivariate analysis showed a trend toward worse OS (P = 0.041). Male patients with advanced HCC exhibited an approximately 20-fold higher PD-L1 combined positive score (CPS) compared with those with HCC at an early stage. We successfully generated CD133 CAR-T and PD-1 s cells that could secrete PD-1 blocking scFv based on a sleeping beauty system involving minicircle vectors. CD133 CAR-T and PD-1 s cells exhibited significant antitumour activity against HCC in vitro and in xenograft mouse models. Thus, CD133 CAR-T and PD-1 s cells may be a therapeutically tractable strategy for targeting CD133-positive CSCs in male patients with advanced HCC. CONCLUSIONS Our study provides a nonviral strategy for constructing CAR-T cells that could also secrete checkpoint blockade inhibitors based on a Sleeping Beauty system from minicircle vectors and revealed a potential benefit of this strategy for male patients with advanced HCC and high CD133 expression (median immunohistochemistry score > 2.284).
Collapse
Affiliation(s)
- Chaopin Yang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Jinqi You
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Qiuzhong Pan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yan Tang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Liming Cai
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yue Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Jiamei Gu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Molecular Diagnostics, Sun Yat-Sen University, Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yizhi Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Xinyi Yang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yufei Du
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Dijun Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Hao Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Haoran Zhong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yongqiang Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Jieying Yang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yulong Han
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Fengze Sun
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yuanyuan Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Qijing Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Desheng Weng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.
| | - Tong Xiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.
| | - Jianchuan Xia
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.
| |
Collapse
|
160
|
Dabas P, Danda A. Revolutionizing cancer treatment: a comprehensive review of CAR-T cell therapy. Med Oncol 2023; 40:275. [PMID: 37608202 DOI: 10.1007/s12032-023-02146-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a promising new treatment for cancer that involves genetically modifying a patient's T-cells to recognize and attack cancer cells. This review provides an overview of the latest discoveries and clinical trials related to CAR-T cell therapy, as well as the concept and applications of the therapy. The review also discusses the limitations and potential side effects of CAR-T cell therapy, including the high cost and the risk of cytokine release syndrome and neurotoxicity. While CAR-T cell therapy has shown promising results in the treatment of hematologic malignancies, ongoing research is needed to improve the efficacy and safety of the therapy and expand its use to solid tumors. With continued research and development, CAR-T cell therapy has the potential to revolutionize cancer treatment and improve outcomes for patients with cancer.
Collapse
Affiliation(s)
- Preeti Dabas
- St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Adithi Danda
- St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
161
|
Lee EHJ, Murad JP, Christian L, Gibson J, Yamaguchi Y, Cullen C, Gumber D, Park AK, Young C, Monroy I, Yang J, Stern LA, Adkins LN, Dhapola G, Gittins B, Chang WC, Martinez C, Woo Y, Cristea M, Rodriguez-Rodriguez L, Ishihara J, Lee JK, Forman SJ, Wang LD, Priceman SJ. Antigen-dependent IL-12 signaling in CAR T cells promotes regional to systemic disease targeting. Nat Commun 2023; 14:4737. [PMID: 37550294 PMCID: PMC10406808 DOI: 10.1038/s41467-023-40115-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/13/2023] [Indexed: 08/09/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapeutic responses are hampered by limited T cell trafficking, persistence, and durable anti-tumor activity in solid tumors. However, these challenges can be largely overcome by relatively unconstrained synthetic engineering strategies. Here, we describe CAR T cells targeting tumor-associated glycoprotein-72 (TAG72), utilizing the CD28 transmembrane domain upstream of the 4-1BB co-stimulatory domain as a driver of potent anti-tumor activity and IFNγ secretion. CAR T cell-mediated IFNγ production facilitated by IL-12 signaling is required for tumor cell killing, which is recapitulated by engineering an optimized membrane-bound IL-12 (mbIL12) molecule in CAR T cells. These T cells show improved antigen-dependent T cell proliferation and recursive tumor cell killing in vitro, with robust in vivo efficacy in human ovarian cancer xenograft models. Locoregional administration of mbIL12-engineered CAR T cells promotes durable anti-tumor responses against both regional and systemic disease in mice. Safety and efficacy of mbIL12-engineered CAR T cells is demonstrated using an immunocompetent mouse model, with beneficial effects on the immunosuppressive tumor microenvironment. Collectively, our study features a clinically-applicable strategy to improve the efficacy of locoregionally-delivered CAR T cells engineered with antigen-dependent immune-modulating cytokines in targeting regional and systemic disease.
Collapse
Affiliation(s)
- Eric Hee Jun Lee
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - John P Murad
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Lea Christian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Jackson Gibson
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Yukiko Yamaguchi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Cody Cullen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Diana Gumber
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Anthony K Park
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Cari Young
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Isabel Monroy
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Jason Yang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Lawrence A Stern
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Lauren N Adkins
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Gaurav Dhapola
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Brenna Gittins
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Wen-Chung Chang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Catalina Martinez
- Department of Clinical and Translational Project Development, City of Hope, Duarte, CA, 91010, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope, Duarte, CA, 91010, USA
| | - Mihaela Cristea
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, 91010, USA
| | | | - Jun Ishihara
- Department of Bioengineering, Imperial College London, 86 Wood Lane, London, W120BZ, UK
| | - John K Lee
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98019, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Leo D Wang
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Pediatrics, City of Hope, Duarte, CA, 91010, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA.
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
162
|
Haas AR, Golden RJ, Litzky LA, Engels B, Zhao L, Xu F, Taraszka JA, Ramones M, Granda B, Chang WJ, Jadlowsky J, Shea KM, Runkle A, Chew A, Dowd E, Gonzalez V, Chen F, Liu X, Fang C, Jiang S, Davis MM, Sheppard NC, Zhao Y, Fraietta JA, Lacey SF, Plesa G, Melenhorst JJ, Mansfield K, Brogdon JL, Young RM, Albelda SM, June CH, Tanyi JL. Two cases of severe pulmonary toxicity from highly active mesothelin-directed CAR T cells. Mol Ther 2023; 31:2309-2325. [PMID: 37312454 PMCID: PMC10422001 DOI: 10.1016/j.ymthe.2023.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Multiple clinical studies have treated mesothelin (MSLN)-positive solid tumors by administering MSLN-directed chimeric antigen receptor (CAR) T cells. Although these products are generally safe, efficacy is limited. Therefore, we generated and characterized a potent, fully human anti-MSLN CAR. In a phase 1 dose-escalation study of patients with solid tumors, we observed two cases of severe pulmonary toxicity following intravenous infusion of this product in the high-dose cohort (1-3 × 108 T cells per m2). Both patients demonstrated progressive hypoxemia within 48 h of infusion with clinical and laboratory findings consistent with cytokine release syndrome. One patient ultimately progressed to grade 5 respiratory failure. An autopsy revealed acute lung injury, extensive T cell infiltration, and accumulation of CAR T cells in the lungs. RNA and protein detection techniques confirmed low levels of MSLN expression by benign pulmonary epithelial cells in affected lung and lung samples obtained from other inflammatory or fibrotic conditions, indicating that pulmonary pneumocyte and not pleural expression of mesothelin may lead to dose-limiting toxicity. We suggest patient enrollment criteria and dosing regimens of MSLN-directed therapies consider the possibility of dynamic expression of mesothelin in benign lung with a special concern for patients with underlying inflammatory or fibrotic conditions.
Collapse
Affiliation(s)
- Andrew R Haas
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Ryan J Golden
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Leslie A Litzky
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Boris Engels
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Linlin Zhao
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Fangmin Xu
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - John A Taraszka
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Melissa Ramones
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Brian Granda
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Wan-Jung Chang
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Julie Jadlowsky
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kim-Marie Shea
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Adam Runkle
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anne Chew
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Emily Dowd
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vanessa Gonzalez
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Fang Chen
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xiaojun Liu
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chongyun Fang
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shuguang Jiang
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Megan M Davis
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neil C Sheppard
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yangbing Zhao
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - J Joseph Melenhorst
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith Mansfield
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | - Regina M Young
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janos L Tanyi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
163
|
Du S, Yan J, Xue Y, Zhong Y, Dong Y. Adoptive cell therapy for cancer treatment. EXPLORATION (BEIJING, CHINA) 2023; 3:20210058. [PMID: 37933232 PMCID: PMC10624386 DOI: 10.1002/exp.20210058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/17/2023] [Indexed: 11/08/2023]
Abstract
Adoptive cell therapy (ACT) is a rapidly growing anti-cancer strategy that has shown promise in treating various cancer types. The concept of ACT involves activating patients' own immune cells ex vivo and then transferring them back to the patients to recognize and eliminate cancer cells. Currently, the commonly used ACT includes tumor-infiltrating lymphocytes (TILs), genetically engineered immune cells, and dendritic cells (DCs) vaccines. With the advancement of cell culture and genetic engineering techniques, ACT has been used in clinics to treat malignant hematological diseases and many new ACT-based regimens are in different stages of clinical trials. Here, representative ACT approaches are introduced and the opportunities and challenges for clinical translation of ACT are discussed.
Collapse
Affiliation(s)
- Shi Du
- Division of Pharmaceutics and PharmacologyCollege of PharmacyOhio State UniversityColumbusUSA
- Icahn Genomics InstitutePrecision Immunology InstituteDepartment of Oncological SciencesTisch Cancer InstituteFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA
| | - Jingyue Yan
- Division of Pharmaceutics and PharmacologyCollege of PharmacyOhio State UniversityColumbusUSA
- Icahn Genomics InstitutePrecision Immunology InstituteDepartment of Oncological SciencesTisch Cancer InstituteFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA
| | - Yonger Xue
- Division of Pharmaceutics and PharmacologyCollege of PharmacyOhio State UniversityColumbusUSA
- Icahn Genomics InstitutePrecision Immunology InstituteDepartment of Oncological SciencesTisch Cancer InstituteFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA
| | - Yichen Zhong
- Division of Pharmaceutics and PharmacologyCollege of PharmacyOhio State UniversityColumbusUSA
- Icahn Genomics InstitutePrecision Immunology InstituteDepartment of Oncological SciencesTisch Cancer InstituteFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA
| | - Yizhou Dong
- Division of Pharmaceutics and PharmacologyCollege of PharmacyOhio State UniversityColumbusUSA
- Icahn Genomics InstitutePrecision Immunology InstituteDepartment of Oncological SciencesTisch Cancer InstituteFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA
| |
Collapse
|
164
|
Hassan R, Butler M, O'Cearbhaill RE, Oh DY, Johnson M, Zikaras K, Smalley M, Ross M, Tanyi JL, Ghafoor A, Shah NN, Saboury B, Cao L, Quintás-Cardama A, Hong D. Mesothelin-targeting T cell receptor fusion construct cell therapy in refractory solid tumors: phase 1/2 trial interim results. Nat Med 2023; 29:2099-2109. [PMID: 37501016 PMCID: PMC10427427 DOI: 10.1038/s41591-023-02452-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023]
Abstract
The T cell receptor fusion construct (TRuC) gavocabtagene autoleucel (gavo-cel) consists of single-domain anti-mesothelin antibody that integrates into the endogenous T cell receptor (TCR) and engages the signaling capacity of the entire TCR upon mesothelin binding. Here we describe phase 1 results from an ongoing phase1/2 trial of gavo-cel in patients with treatment-refractory mesothelin-expressing solid tumors. The primary objectives were to evaluate safety and determine the recommended phase 2 dose (RP2D). Secondary objectives included efficacy. Thirty-two patients received gavo-cel at increasing doses either as a single agent (n = 3) or after lymphodepletion (LD, n = 29). Dose-limiting toxicities of grade 3 pneumonitis and grade 5 bronchioalveolar hemorrhage were noted. The RP2D was determined as 1 × 108 cells per m2 after LD. Grade 3 or higher pneumonitis was seen in 16% of all patients and in none at the RP2D; grade 3 or higher cytokine release syndrome occurred in 25% of all patients and in 15% at the RP2D. In 30 evaluable patients, the overall response rate and disease control rate were 20% (13% confirmed) and 77%, respectively, and the 6-month overall survival rate was 70%. Gavo-cel warrants further study in patients with mesothelin-expressing cancers given its encouraging anti-tumor activity, but it may have a narrow therapeutic window. ClinicalTrials.gov identifier: NCT03907852 .
Collapse
Affiliation(s)
- Raffit Hassan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Marcus Butler
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Roisin E O'Cearbhaill
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - David Y Oh
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Janos L Tanyi
- Hospital of the University of Pennsylvania, Abramson Cancer Center, Philadelphia, PA, USA
| | - Azam Ghafoor
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Liang Cao
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - David Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
165
|
Ghosn M, Tselikas L, Champiat S, Deschamps F, Bonnet B, Carre É, Testan M, Danlos FX, Farhane S, Susini S, Suzzoni S, Ammari S, Marabelle A, De Baere T. Intratumoral Immunotherapy: Is It Ready for Prime Time? Curr Oncol Rep 2023; 25:857-867. [PMID: 37129706 DOI: 10.1007/s11912-023-01422-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE OF REVIEW This review presents the rationale for intratumoral immunotherapy, technical considerations and safety. Clinical results from the latest trials are provided and discussed. RECENT FINDINGS Intratumoral immunotherapy is feasible and safe in a wide range of cancer histologies and locations, including lung and liver. Studies mainly focused on multi-metastatic patients, with some positive trials such as T-VEC in melanoma, but evidence of clinical benefit is still lacking. Recent results showed improved outcomes in patients with a low tumor burden. Intratumoral immunotherapy can lower systemic toxicities and boost local and systemic immune responses. Several studies have proven the feasibility, repeatability, and safety of this approach, with some promising results in clinical trials. The clinical benefit might be improved in patients with a low tumor burden. Future clinical trials should focus on adequate timing of treatment delivery during the course of the disease, particularly in the neoadjuvant setting.
Collapse
Affiliation(s)
- Mario Ghosn
- Radiologie Interventionnelle, Département d'Anesthésie Chirurgie Et Imagerie Interventionnelle (DACI), Gustave Roussy, Villejuif, 94800, France
- Centre D'Investigation Clinique BIOTHERIS, INSERM CIC1428, Villejuif, France
| | - Lambros Tselikas
- Radiologie Interventionnelle, Département d'Anesthésie Chirurgie Et Imagerie Interventionnelle (DACI), Gustave Roussy, Villejuif, 94800, France.
- Centre D'Investigation Clinique BIOTHERIS, INSERM CIC1428, Villejuif, France.
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Villejuif, France.
- Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France.
| | - Stéphane Champiat
- Centre D'Investigation Clinique BIOTHERIS, INSERM CIC1428, Villejuif, France
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Villejuif, France
- Département D'Innovation Thérapeutique Et D'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Frederic Deschamps
- Radiologie Interventionnelle, Département d'Anesthésie Chirurgie Et Imagerie Interventionnelle (DACI), Gustave Roussy, Villejuif, 94800, France
| | - Baptiste Bonnet
- Radiologie Interventionnelle, Département d'Anesthésie Chirurgie Et Imagerie Interventionnelle (DACI), Gustave Roussy, Villejuif, 94800, France
| | - Émilie Carre
- Centre D'Investigation Clinique BIOTHERIS, INSERM CIC1428, Villejuif, France
| | - Marine Testan
- Centre D'Investigation Clinique BIOTHERIS, INSERM CIC1428, Villejuif, France
| | - François-Xavier Danlos
- Centre D'Investigation Clinique BIOTHERIS, INSERM CIC1428, Villejuif, France
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Villejuif, France
- Département D'Innovation Thérapeutique Et D'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Siham Farhane
- Centre D'Investigation Clinique BIOTHERIS, INSERM CIC1428, Villejuif, France
| | - Sandrine Susini
- Centre D'Investigation Clinique BIOTHERIS, INSERM CIC1428, Villejuif, France
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Villejuif, France
| | - Steve Suzzoni
- Département Pharmacie, Gustave Roussy, Villejuif, France
| | - Samy Ammari
- Department of Imaging, Gustave Roussy, Université Paris Saclay, 94805, Villejuif, France
- Biomaps, UMR1281 INSERM, CEA, CNRS, Université Paris-Saclay, 94805, Villejuif, France
| | - Aurélien Marabelle
- Centre D'Investigation Clinique BIOTHERIS, INSERM CIC1428, Villejuif, France
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Villejuif, France
- Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Département D'Innovation Thérapeutique Et D'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Thierry De Baere
- Radiologie Interventionnelle, Département d'Anesthésie Chirurgie Et Imagerie Interventionnelle (DACI), Gustave Roussy, Villejuif, 94800, France
- Centre D'Investigation Clinique BIOTHERIS, INSERM CIC1428, Villejuif, France
- Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
166
|
Chu GJ, Linton A, Kao S, Klebe S, Adelstein S, Yeo D, Rasko JEJ, Cooper WA. High mesothelin expression by immunohistochemistry predicts improved survival in pleural mesothelioma. Histopathology 2023; 83:202-210. [PMID: 37040900 PMCID: PMC10952516 DOI: 10.1111/his.14916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023]
Abstract
AIMS Mesothelin (MSLN) is a cancer-associated antigen that is overexpressed in malignancies such as mesothelioma, pancreatic and ovarian cancer. It is also a target for novel personalised therapies, including antibodies, antibody-drug conjugates and chimeric antigen receptor T cells. Immunohistochemistry may predict those who would best respond to anti-mesothelin therapies and guide decisions in therapeutic strategy. This study aimed to assess the intensity and distribution of MSLN immunostaining in mesothelioma, and to determine the prognostic value of MSLN expression by histochemical-score (H-score). METHODS AND RESULTS The MN1 anti-MSLN antibody was used to stain a formalin-fixed paraffin-embedded tissue microarray of histologically confirmed mesothelioma from 75 consecutive patients who had undergone pleurectomy with or without decortication. MSLN positivity, the staining intensity, distribution of staining and H-score were evaluated. The correlation of H-score with prognosis was investigated. Sixty-six per cent of epithelioid tumours were MSLN-positive (with expression in > 5% tumour cells). Of MSLN-expressing epithelioid tumours, 70.4% had moderate (2+) or strong (3+) intensity MSLN immunostaining, although only 37% of samples had staining in ≥ 50% of tumour cells. In multivariate analysis, MSLN H-score as a continuous variable and an H-score ≥ 33 were independent predictors of improved survival (P = 0.04 and P < 0.001, respectively). CONCLUSIONS MSLN expression was more heterogenous in epithelioid mesothelioma than reported previously. Therefore, it would be appropriate to perform an immunohistochemical assessment of MSLN expression to stratify and assess patient suitability for mesothelin-targeted personalised therapies, such as chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Gerard J Chu
- Gene and Stem Cell Therapy Program Centenary InstituteUniversity of SydneySydneyNSWAustralia
- Department of Clinical Immunology and AllergyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Anthony Linton
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Department of Medical OncologyConcord HospitalConcordNSWAustralia
- Asbestos Diseases Research InstituteConcordNSWAustralia
| | - Steven Kao
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Asbestos Diseases Research InstituteConcordNSWAustralia
- Department of Medical OncologyChris O'Brien LifehouseCamperdownNSWAustralia
| | - Sonja Klebe
- Asbestos Diseases Research InstituteConcordNSWAustralia
- Department of Anatomical PathologyFlinders University and SA PathologyAdelaideSAAustralia
| | - Stephen Adelstein
- Department of Clinical Immunology and AllergyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Dannel Yeo
- Gene and Stem Cell Therapy Program Centenary InstituteUniversity of SydneySydneyNSWAustralia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Cell and Molecular Therapies, Royal Prince Alfred HospitalCamperdownNSWAustralia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary InstituteUniversity of SydneySydneyNSWAustralia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Cell and Molecular Therapies, Royal Prince Alfred HospitalCamperdownNSWAustralia
| | - Wendy A Cooper
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health PathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of MedicineWestern Sydney UniversitySydneyNSWAustralia
| |
Collapse
|
167
|
Snell D, Gunde T, Warmuth S, Chatterjee B, Brock M, Hess C, Johansson M, Simonin A, Spiga FM, Weinert C, Kirk N, Bassler N, Campos Carrascosa L, Flückiger N, Heiz R, Wagen S, Giezendanner N, Alberti A, Yaman Y, Mahler D, Diem D, Lichtlen P, Urech D. An engineered T-cell engager with selectivity for high mesothelin-expressing cells and activity in the presence of soluble mesothelin. Oncoimmunology 2023; 12:2233401. [PMID: 37456982 PMCID: PMC10339761 DOI: 10.1080/2162402x.2023.2233401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/13/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
Mesothelin (MSLN) is an attractive immuno-oncology target, but the development of MSLN-targeting therapies has been impeded by tumor shedding of soluble MSLN (sMSLN), on-target off-tumor activity, and an immunosuppressive tumor microenvironment. We sought to engineer an antibody-based, MSLN-targeted T-cell engager (αMSLN/αCD3) with enhanced ability to discriminate high MSLN-expressing tumors from normal tissue, and activity in the presence of sMSLN. We also studied the in vivo antitumor efficacy of this molecule (NM28-2746) alone and in combination with the multifunctional checkpoint inhibitor/T-cell co-activator NM21-1480 (αPD-L1/α4-1BB). Cytotoxicity and T-cell activation induced by NM28-2746 were studied in co-cultures of peripheral blood mononuclear cells and cell lines exhibiting different levels of MSLN expression, including in the presence of soluble MSLN. Xenotransplant models of human pancreatic cancer were used to study the inhibition of tumor growth and stimulation of T-cell infiltration into tumors induced by NM28-2746 alone and in combination with NM21-1480. The bivalent αMSLN T-cell engager NM28-2746 potently induced T-cell activation and T-cell mediated cytotoxicity of high MSLN-expressing cells but had much lower potency against low MSLN-expressing cells. A monovalent counterpart of NM28-2746 had much lower ability to discriminate high MSLN-expressing from low MSLN-expressing cells. The bivalent molecule retained this discriminant ability in the presence of high concentrations of sMSLN. In xenograft models, NM28-2746 exhibited significant tumor suppressing activity, which was significantly enhanced by combination therapy with NM21-1480. NM28-2746, alone or in combination with NM21-1480, may overcome shortcomings of previous MSLN-targeted immuno-oncology drugs, exhibiting enhanced discrimination of high MSLN-expressing cell activity in the presence of sMSLN.
Collapse
Affiliation(s)
| | - Tea Gunde
- Numab Therapeutics AG, Horgen, Switzerland
| | | | | | | | | | | | | | | | | | - Niels Kirk
- Numab Therapeutics AG, Horgen, Switzerland
| | | | | | | | - Robin Heiz
- Numab Therapeutics AG, Horgen, Switzerland
| | | | | | | | | | | | - Dania Diem
- Numab Therapeutics AG, Horgen, Switzerland
| | | | | |
Collapse
|
168
|
Kheyrolahzadeh K, Tohidkia MR, Tarighatnia A, Shahabi P, Nader ND, Aghanejad A. Theranostic chimeric antigen receptor (CAR)-T cells: Insight into recent trends and challenges in solid tumors. Life Sci 2023; 328:121917. [PMID: 37422069 DOI: 10.1016/j.lfs.2023.121917] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/15/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Cell therapy has reached significant milestones in various life-threatening diseases, including cancer. Cell therapy using fluorescent and radiolabeled chimeric antigen receptor (CAR)-T cell is a successful strategy for diagnosing or treating malignancies. Since cell therapy approaches have different results in cancers, the success of hematological cancers has yet to transfer to solid tumor therapy, leading to more casualties. Therefore, there are many areas for improvement in the cell therapy platform. Understanding the therapeutic barriers associated with solid cancers through cell tracking and molecular imaging may provide a platform for effectively delivering CAR-T cells into solid tumors. This review describes CAR-T cells' role in treating solid and non-solid tumors and recent advances. Furthermore, we discuss the main obstacles, mechanism of action, novel strategies and solutions to overcome the challenges from molecular imaging and cell tracking perspectives.
Collapse
Affiliation(s)
- Keyvan Kheyrolahzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighatnia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
169
|
Zheng Z, Li S, Liu M, Chen C, Zhang L, Zhou D. Fine-Tuning through Generations: Advances in Structure and Production of CAR-T Therapy. Cancers (Basel) 2023; 15:3476. [PMID: 37444586 DOI: 10.3390/cancers15133476] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a promising form of immunotherapy that has seen significant advancements in the past few decades. It involves genetically modifying T cells to target cancer cells expressing specific antigens, providing a novel approach to treating various types of cancer. However, the initial success of first-generation CAR-T cells was limited due to inadequate proliferation and undesirable outcomes. Nonetheless, significant progress has been made in CAR-T cell engineering, leading to the development of the latest fifth-generation CAR-T cells that can target multiple antigens and overcome individual limitations. Despite these advancements, some shortcomings prevent the widespread use of CAR-T therapy, including life-threatening toxicities, T-cell exhaustion, and inadequate infiltration for solid tumors. Researchers have made considerable efforts to address these issues by developing new strategies for improving CAR-T cell function and reducing toxicities. This review provides an overview of the path of CAR-T cell development and highlights some of the prominent advances in its structure and manufacturing process, which include the strategies to improve antigen recognition, enhance T-cell activation and persistence, and overcome immune escape. Finally, the review briefly covers other immune cells for cancer therapy and ends with the discussion on the broad prospects of CAR-T in the treatment of various diseases, not just hematological tumors, and the challenges that need to be addressed for the widespread clinical application of CAR-T cell therapies.
Collapse
Affiliation(s)
- Zhibo Zheng
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Siyuan Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mohan Liu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chuyan Chen
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100730, China
| | - Lu Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
170
|
Maher J. Chimeric Antigen Receptor (CAR) T-Cell Therapy for Patients with Lung Cancer: Current Perspectives. Onco Targets Ther 2023; 16:515-532. [PMID: 37425981 PMCID: PMC10327905 DOI: 10.2147/ott.s341179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Immunotherapy using chimeric antigen receptor (CAR)-engineered T-cells has achieved unprecedented efficacy in selected hematological cancers. However, solid tumors such as lung cancer impose several additional challenges to the attainment of clinical success using this emerging therapeutic modality. Lung cancer is the biggest cause of cancer-related mortality worldwide, accounting for approximately 1.8 million deaths worldwide each year. Obstacles to the development of CAR T-cell immunotherapy for lung cancer include the selection of safe tumor-selective targets, accounting for the large number of candidates that have been evaluated thus far. Tumor heterogeneity is also a key hurdle, meaning that single target-based approaches are susceptible to therapeutic failure through the emergence of antigen null cancers. There is also a need to enable CAR T-cells to traffic efficiently to sites of disease, to infiltrate tumor deposits and to operate within the hostile tumor microenvironment formed by solid tumors, resisting the onset of exhaustion. Multiple immune, metabolic, physical and chemical barriers operate at the core of malignant lesions, with potential for further heterogeneity and evolution in the face of selective therapeutic pressures. Although the extraordinarily adaptable nature of lung cancers has recently been unmasked, immunotherapy using immune checkpoint blockade can achieve long-term disease control in a small number of patients, establishing clinical proof of concept that immunotherapies can control advanced lung carcinomas. This review summarizes pre-clinical CAR T-cell research that is specifically focused on lung cancer in addition to published and ongoing clinical trial activity. A number of advanced engineering strategies are also described which are designed to bridge the gap to the attainment of meaningful efficacy using genetically engineered T-cells.
Collapse
Affiliation(s)
- John Maher
- King’s College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, Guy’s Cancer Centre, Great Maze Pond, London, SE1 9RT, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London, SE1 9RT, UK
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne, East Sussex, BN21 2UD, UK
| |
Collapse
|
171
|
Yin L, Wan Z, Sun P, Shuai P, Liu Y. Time to abandon CAR-T monotherapy for solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188930. [PMID: 37286147 DOI: 10.1016/j.bbcan.2023.188930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
In recent decades, chimeric antigen receptor T (CAR-T) cell therapy has achieved dramatic success in patients with hematological malignancies. However, CAR-T cell therapy failed to effectively treat solid tumors as a monotherapy. By summarizing the challenges of CAR-T cell monotherapy for solid tumors and analyzing the underlying mechanisms of combinatorial strategies to counteract these hurdles, we found that complementary therapeutics are needed to improve the scant and transient responses of CAR-T cell monotherapy in solid tumors. Further data, especially data from multicenter clinical trials regarding efficacy, toxicity, and predictive biomarkers are required before the CAR-T combination therapy can be translated into clinical settings.
Collapse
Affiliation(s)
- Limei Yin
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zhengwei Wan
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ping Sun
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ping Shuai
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Yuping Liu
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| |
Collapse
|
172
|
Assié JB, Jean D. Pleural mesothelioma: a snapshot of emerging drug targets and opportunities for non-surgical therapeutic advancement. Expert Opin Ther Targets 2023; 27:1059-1069. [PMID: 37902459 DOI: 10.1080/14728222.2023.2277224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/26/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Pleural mesothelioma is a rare and aggressive cancer originating in the pleura, with a devastating prognosis and limited treatment options. There have been significant advancements in the management of this disease in recent years. Since 2021, nivolumab and ipilimumab immune checkpoint inhibitors have become the new standard of care for first-line treatment of pleural mesothelioma. AREAS COVERED While a combination of chemotherapy and immune checkpoint inhibitors appears to be the next step, targeted therapies are emerging thanks to our understanding of the oncogenesis of pleural mesothelioma. Moreover, several new strategies are currently being investigated, including viral therapy, antibody-drug conjugates, and even cell therapies with CAR-T cells or dendritic cells. In this review, we will explore the various future opportunities that could potentially transform patients' lives in light of the clinical trials that have been conducted. EXPERT OPINION Future clinical studies aim to rebiopsy patients after disease progression to identify new molecular alterations and to be associated with ancillary studies, guiding subsequent therapy decisions. Predicting and investigating treatment resistance mechanisms will lead to innovative approaches and improved treatment outcomes.
Collapse
Affiliation(s)
- Jean-Baptiste Assié
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Functional Genomics of Solid Tumors Laboratory, Paris, France
- GRC OncoThoParisEst, Service de Pneumologie, Centre Hospitalier IntercommunaI, UPEC, Créteil, France
| | - Didier Jean
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Functional Genomics of Solid Tumors Laboratory, Paris, France
| |
Collapse
|
173
|
Xiong Y, Taleb M, Misawa K, Hou Z, Banerjee S, Amador-Molina A, Jones DR, Chintala NK, Adusumilli PS. c-Kit signaling potentiates CAR T cell efficacy in solid tumors by CD28- and IL-2-independent co-stimulation. NATURE CANCER 2023; 4:1001-1015. [PMID: 37336986 PMCID: PMC10765546 DOI: 10.1038/s43018-023-00573-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/08/2023] [Indexed: 06/21/2023]
Abstract
The limited efficacy of chimeric antigen receptor (CAR) T cell therapy for solid tumors necessitates engineering strategies that promote functional persistence in an immunosuppressive environment. Herein, we use c-Kit signaling, a physiological pathway associated with stemness in hematopoietic progenitor cells (T cells lose expression of c-Kit during differentiation). CAR T cells with intracellular expression, but no cell-surface receptor expression, of the c-Kit D816V mutation (KITv) have upregulated STAT phosphorylation, antigen activation-dependent proliferation and CD28- and interleukin-2-independent and interferon-γ-mediated co-stimulation, augmenting the cytotoxicity of first-generation CAR T cells. This translates to enhanced survival, including in transforming growth factor-β-rich and low-antigen-expressing solid tumor models. KITv CAR T cells have equivalent or better in vivo efficacy than second-generation CAR T cells and are susceptible to tyrosine kinase inhibitors (safety switch). When combined with CD28 co-stimulation, KITv co-stimulation functions as a third signal, enhancing efficacy and providing a potent approach to treat solid tumors.
Collapse
Affiliation(s)
- Yuquan Xiong
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meriem Taleb
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kyohei Misawa
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhaohua Hou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Srijita Banerjee
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alfredo Amador-Molina
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Navin K Chintala
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
174
|
Hu C, Liu M, Li Y, Zhao Y, Sharma A, Liu H, Schmidt-Wolf IGH. Recent advances and future perspectives of CAR-T cell therapy in head and neck cancer. Front Immunol 2023; 14:1213716. [PMID: 37457699 PMCID: PMC10346844 DOI: 10.3389/fimmu.2023.1213716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Head and neck cancer (HNC) ranks as the sixth most prevalent type of cancer globally and accounts for about 4% of all types of cancer. Among all HNC, most are head and neck squamous cell carcinoma (HNSCC) with clinical therapies that include surgery, radiation therapy, chemotherapy, immunotherapy, targeted therapy, and multimodal treatments. In recent years, chimeric antigen receptor (CAR)-T cell immunotherapy has significantly transformed the therapeutic approaches for leukemia and lymphoma and has garnered increased attention as a potential treatment for a wide range of cancers. However, CAR-T immunotherapy in solid tumors, especially HNSCCs, lags significantly behind due to the paucity of tumor-specific antigens, high levels of tumor heterogeneity, immunosuppressive tumor microenvironment, the risk of treatment-related toxicities and off-target adverse events in HNSCCs. The objective of this review is to explore the advancement of CAR-T cell therapy in the treatment of HNSCCs. We aim to outline the targeted antigens in HNSCCs, highlight the challenges and potential solutions, and discuss the relevant combination therapies. Our review presents a comprehensive overview of the recent developments in CAR-T cell therapy for HNSCCs, and provides valuable insights into future research avenues.
Collapse
Affiliation(s)
- Chunmei Hu
- Department of Otolaryngology-Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Liu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yutao Li
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Yi Zhao
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Haotian Liu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| |
Collapse
|
175
|
Deiana C, Fabbri F, Tavolari S, Palloni A, Brandi G. Improvements in Systemic Therapies for Advanced Malignant Mesothelioma. Int J Mol Sci 2023; 24:10415. [PMID: 37445594 DOI: 10.3390/ijms241310415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignancy associated with poor prognosis and a 5-year survival rate of 12%. Many drugs have been tested over the years with conflicting results. The aim of this review is to provide an overview of current therapies in MPM and how to best interpret the data available on these drugs. Furthermore, we focused on promising treatments under investigation, such as immunotherapy with targets different from anti-PD-1/PD-L1 inhibitors, vaccines, target therapies, and metabolism-based strategies.
Collapse
Affiliation(s)
- Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliera, Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Francesca Fabbri
- Medical Oncology, IRCCS Azienda Ospedaliera, Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliera, Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Andrea Palloni
- Medical Oncology, IRCCS Azienda Ospedaliera, Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliera, Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
176
|
A co-stimulatory domain increases CAR T cell therapy efficacy in mice with solid tumors. NATURE CANCER 2023:10.1038/s43018-023-00574-3. [PMID: 37336987 DOI: 10.1038/s43018-023-00574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
|
177
|
Agrawal A, Chaddha U, Shojaee S, Maldonado F. Intrapleural Anticancer Therapy for Malignant Pleural Diseases: Facts or Fiction? Semin Respir Crit Care Med 2023. [PMID: 37308112 DOI: 10.1055/s-0043-1769094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Malignant pleural diseases involves both primary pleural malignancies (e.g., mesothelioma) as well as metastatic disease involving the pleura. The management of primary pleural malignancies remains a challenge, given their limited response to conventional treatments such as surgery, systemic chemotherapy, and immunotherapy. In this article, we aimed to review the management of primary pleural malignancy as well as malignant pleural effusion and assess the current state of intrapleural anticancer therapies. We review the role intrapleural chemotherapy, immunotherapy, and immunogene therapy, as well as oncolytic viral, therapy and intrapleural drug device combination. We further discuss that while the pleural space offers a unique opportunity for local therapy as an adjuvant option to systemic therapy and may help decrease some of the systemic side effects, further patient outcome-oriented research is needed to determine the exact role of these treatments within the armamentarium of currently available options.
Collapse
Affiliation(s)
- Abhinav Agrawal
- Division of Pulmonary, Critical Care and Sleep Medicine, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Udit Chaddha
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samira Shojaee
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Fabien Maldonado
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
178
|
Shin MH, Oh E, Kim Y, Nam DH, Jeon SY, Yu JH, Minn D. Recent Advances in CAR-Based Solid Tumor Immunotherapy. Cells 2023; 12:1606. [PMID: 37371075 DOI: 10.3390/cells12121606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Adoptive cell therapy using chimeric antigen receptor (CAR) technology is one of the most advanced engineering platforms for cancer immunotherapy. CAR-T cells have shown remarkable efficacy in the treatment of hematological malignancies. However, their limitations in solid tumors include an immunosuppressive tumor microenvironment (TME), insufficient tumor infiltration, toxicity, and the absence of tumor-specific antigens. Although recent advances in CAR-T cell design-such as the incorporation of co-stimulatory domains and the development of armored CAR-T cells-have shown promising results in treating solid tumors, there are still challenges that need to be addressed. To overcome these limitations, other immune cells, such as natural killer (NK) cells and macrophages (M), have been developed as attractive options for efficient cancer immunotherapy of solid tumors. CAR-NK cells exhibit substantial clinical improvements with "off-the-shelf" availability and low toxicity. CAR-M cells have promising therapeutic potential because macrophages can infiltrate the TME of solid tumors. Here, we review the recent advances and future perspectives associated with engineered immune cell-based cancer immunotherapies for solid tumors. We also summarize ongoing clinical trials investigating the safety and efficacy of engineered immune cells, such as CAR-T, CAR-NK, and CAR-M, for targeting solid tumors.
Collapse
Affiliation(s)
- Min Hwa Shin
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Eunha Oh
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Yunjeong Kim
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Dae-Hwan Nam
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - So Young Jeon
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Jin Hyuk Yu
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Dohsik Minn
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Republic of Korea
- Department of Diagnostic Immunology, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| |
Collapse
|
179
|
Tang HKC, Wang B, Tan HX, Sarwar MA, Baraka B, Shafiq T, Rao AR. CAR T-Cell Therapy for Cancer: Latest Updates and Challenges, with a Focus on B-Lymphoid Malignancies and Selected Solid Tumours. Cells 2023; 12:1586. [PMID: 37371056 DOI: 10.3390/cells12121586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Although exponential progress in treating advanced malignancy has been made in the modern era with immune checkpoint blockade, survival outcomes remain suboptimal. Cellular immunotherapy, such as chimeric antigen receptor T cells, has the potential to improve this. CAR T cells combine the antigen specificity of a monoclonal antibody with the cytotoxic 'power' of T-lymphocytes through expression of a transgene encoding the scFv domain, CD3 activation molecule, and co-stimulatory domains. Although, very rarely, fatal cytokine-release syndrome may occur, CAR T-cell therapy gives patients with refractory CD19-positive B-lymphoid malignancies an important further therapeutic option. However, low-level expression of epithelial tumour-associated-antigens on non-malignant cells makes the application of CAR T-cell technology to common solid cancers challenging, as does the potentially limited ability of CAR T cells to traffic outside the blood/lymphoid microenvironment into metastatic lesions. Despite this, in advanced neuroblastoma refractory to standard therapy, 60% long-term overall survival and an objective response in 63% was achieved with anti GD2-specific CAR T cells.
Collapse
Affiliation(s)
| | - Bo Wang
- University of Cambridge, Trinity Hall, Cambridge CB3 9DP, UK
| | - Hui Xian Tan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | | | - Bahaaeldin Baraka
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Tahir Shafiq
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Ankit R Rao
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| |
Collapse
|
180
|
Restle D, Dux J, Li X, Byun AJ, Choe JK, Li Y, Vaghjiani RG, Thomas C, Misawa K, Tan KS, Jones DR, Chintala NK, Adusumilli PS. Organ-specific heterogeneity in tumor-infiltrating immune cells and cancer antigen expression in primary and autologous metastatic lung adenocarcinoma. J Immunother Cancer 2023; 11:e006609. [PMID: 37349126 PMCID: PMC10314697 DOI: 10.1136/jitc-2022-006609] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Tumor immune microenvironment (TIME) and cancer antigen expression, key factors for the development of immunotherapies, are usually based on the data from primary tumors due to availability of tissue for analysis; data from metastatic sites and their concordance with primary tumor are lacking. Although of the same origin from primary tumor, organ-specific differences in the TIME in metastases may contribute to discordant responses to immune checkpoint inhibitor agents. In immunologically 'cold' tumors, cancer antigen-targeted chimeric antigen receptor (CAR) T-cell therapy can promote tumor-infiltrating lymphocytes; however, data on distribution and intensity of cancer antigen expression in primary tumor and matched metastases are unavailable. METHODS We performed a retrospective review of a prospectively maintained database of patients who had undergone curative resection of pathological stage I-III primary lung adenocarcinoma from January 1995 to December 2012 followed by metastatic recurrence and resection of metastatic tumor (n=87). We investigated the relationship between the primary tumor and metastasis TIME (ie, tumor-infiltrating lymphocytes, tumor-associated macrophages, and programmed death-ligand 1 (PD-L1)) and cancer antigen expression (ie, mesothelin, CA125, and CEACAM6) using multiplex immunofluorescence. RESULTS Brain metastases (n=36) were observed to have fewer tumor-infiltrating lymphocytes and greater PD-L1-negative tumor-associated macrophages compared with the primary tumor (p<0.0001); this relatively inhibitory TIME was not observed in other metastatic sites. In one in three patients, expression of PD-L1 is discordant between primary and metastases. Effector-to-suppressor (E:S) cell ratio, median effector cells (CD20+ and CD3+) to suppressor cells (CD68/CD163+) ratio, in metastases was not significantly different between patients with varying E:S ratios in primary tumors. Cancer antigen distribution was comparable between primary and metastases; among patients with mesothelin, cancer antigen 125, or carcinoembryonic antigen adhesion molecule 6 expression in the primary tumor, the majority (51%-75%) had antigen expression in the metastases; however, antigen-expression intensity was heterogenous. CONCLUSIONS In patients with lung adenocarcinoma, brain metastases, but not other sites of metastases, exhibited a relatively immune-suppressive TIME; this should be considered in the context of differential response to immunotherapy in brain metastases. Among patients with cancer antigen expression in the primary tumor, the majority had antigen expression in metastases; these data can inform the selection of antigen-targeted CARs to treat patients with metastatic lung adenocarcinoma.
Collapse
Affiliation(s)
- David Restle
- Thoracic Service, Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Joseph Dux
- Surgery, Sheba Medical Center at Tel Hashomer, Tel Hashomer, Tel Aviv, Israel
| | - Xiaoyu Li
- Thoracic Service, Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Thoracic Oncology, West China Hospital of Medicine, Chengdu, Sichuan, China
| | - Alexander J Byun
- Thoracic Service, Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jennie K Choe
- Thoracic Service, Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yan Li
- Thoracic Service, Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Pathology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Raj G Vaghjiani
- Thoracic Service, Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Carlos Thomas
- Thoracic Service, Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kyohei Misawa
- Thoracic Service, Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kay See Tan
- Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David R Jones
- Thoracic Service, Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Navin K Chintala
- Thoracic Service, Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Prasad S Adusumilli
- Thoracic Service, Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
181
|
Hu Y, Zu C, Zhang M, Wei G, Li W, Fu S, Hong R, Zhou L, Wu W, Cui J, Wang D, Du B, Liu M, Zhang J, Huang H. Safety and efficacy of CRISPR-based non-viral PD1 locus specifically integrated anti-CD19 CAR-T cells in patients with relapsed or refractory Non-Hodgkin's lymphoma: a first-in-human phase I study. EClinicalMedicine 2023; 60:102010. [PMID: 37251628 PMCID: PMC10209187 DOI: 10.1016/j.eclinm.2023.102010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Background Thus far, all approved chimeric antigen receptor (CAR)-T products are manufactured using modified viruses, which increases the risk of tumorigenesis, costs and production time. We aimed to evaluate the safety and efficacy of a kind of virus-free CAR-T cells (PD1-19bbz), in which an anti-CD19 CAR sequence is specifically integrated at the PD1 locus using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, in adults with relapsed/refractory (r/r) B cell non-Hodgkin's lymphoma (B-NHL). Methods This single-arm phase I dose-escalation clinical trial evaluated PD1-19bbz in adult patients with r/r B-NHL from May 3rd 2020 to August 10th 2021. The patients were recruited and treated at the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. Patients underwent leukapheresis and lymphodepleting chemotherapy before PD1-19bbz infusion. After the dose-escalation phase including three cohorts: 2 × 106/kg, 4 × 106/kg, 6 × 106/kg with three patients at each dose level, the optimal biological dose was determined to be 2 × 106/kg, which was then applied to an extended cohort of nine patients. The primary endpoint was the incidence of dose-limiting toxicities (DLT). The secondary endpoint was the response and survival. This trial was registered at www.clinicaltrials.gov as #NCT04213469. Findings Twenty-one patients received PD1-19bbz infusion. Among all treated patients, 19 (90%) patients were diagnosed with stage III or IV disease. Meanwhile, 19 (90%) were stratified as intermediate risk or worse. Of note, four participants had >50% programmed death ligand-1 (PD-L1) expression in pre-treatment tumour sample, including two with extremely high levels (∼80%). There was no DLT identified. Fourteen patients had low-grade (1-2) cytokine release syndrome and two patients received tocilizumab. Four patients experienced immune effector cell-associated neurotoxicity syndrome of grade 1-2. The most common adverse events were hematologic toxicities, including anaemia (n = 6), lymphocyte count decreased (n = 19), neutrophil count decreased (n = 17), white blood cell count decreased (n = 10), and platelet count decreased (n = 2). All patients had objective response and 18 patients reached complete response. At a median follow-up of 19.2 months, nine patients remained in remission, and the estimated median progression-free survival duration was 19.5 months (95% confidence interval: 9.9-infinity), with the median overall survival not reached. Interpretation In this first-in-human study of non-viral specifically integrated CAR-T products, PD1-19bbz exhibited promising efficacy with a manageable toxicity profile. A phase I/II trial of PD1-19bbz in a larger patient cohort is underway. Funding National Key R&D Program of China, National Natural Science Foundation of China, Key Project of Science and Technology Department of Zhejiang Province, Shanghai Zhangjiang National Independent Innovation Demonstration Area, Key Projects of Special Development Funds.
Collapse
Affiliation(s)
- Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Cheng Zu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Wei Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- BRL Medicine Inc., Shanghai, China
| | - Shan Fu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Ruimin Hong
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Linghui Zhou
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Dongrui Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- BRL Medicine Inc., Shanghai, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- BRL Medicine Inc., Shanghai, China
| | - Jiqin Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- BRL Medicine Inc., Shanghai, China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| |
Collapse
|
182
|
Desai AP, Kosari F, Disselhorst M, Yin J, Agahi A, Peikert T, Udell J, Johnson SH, Smadbeck J, Murphy S, Karagouga G, McCune A, Schaefer-Klein J, Borad MJ, Cheville J, Vasmatzis G, Baas P, Mansfield A. Dynamics and survival associations of T cell receptor clusters in patients with pleural mesothelioma treated with immunotherapy. J Immunother Cancer 2023; 11:e006035. [PMID: 37279993 PMCID: PMC10255162 DOI: 10.1136/jitc-2022-006035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are now a first-line treatment option for patients with pleural mesothelioma with the recent approval of ipilimumab and nivolumab. Mesothelioma has a low tumor mutation burden and no robust predictors of survival with ICI. Since ICIs enable adaptive antitumor immune responses, we investigated T-cell receptor (TCR) associations with survival in participants from two clinical trials treated with ICI. METHODS We included patients with pleural mesothelioma who were treated with nivolumab (NivoMes, NCT02497508) or nivolumab and ipilimumab (INITIATE, NCT03048474) after first-line therapy. TCR sequencing was performed with the ImmunoSEQ assay in 49 and 39 pretreatment and post-treatment patient peripheral blood mononuclear cell (PBMC) samples. These data were integrated with TCR sequences found in bulk RNAseq data by TRUST4 program in 45 and 35 pretreatment and post-treatment tumor biopsy samples and TCR sequences from over 600 healthy controls. The TCR sequences were clustered into groups of shared antigen specificity using GIANA. Associations of TCR clusters with overall survival were determined by cox proportional hazard analysis. RESULTS We identified 4.2 million and 12 thousand complementarity-determining region 3 (CDR3) sequences from PBMCs and tumors, respectively, in patients treated with ICI. These CDR3 sequences were integrated with 2.1 million publically available CDR3 sequences from healthy controls and clustered. ICI-enhanced T-cell infiltration and expanded T cell diversity in tumors. Cases with TCR clones in the top tertile in the pretreatment tissue or in circulation had significantly better survival than the bottom two tertiles (p<0.04). Furthermore, a high number of shared TCR clones between pretreatment tissue and in circulation was associated with improved survival (p=0.01). To potentially select antitumor clusters, we filtered for clusters that were (1) not found in healthy controls, (2) recurrent in multiple patients with mesothelioma, and (3) more prevalent in post-treatment than pretreatment samples. The detection of two-specific TCR clusters provided significant survival benefit compared with detection of 1 cluster (HR<0.001, p=0.026) or the detection of no TCR clusters (HR=0.10, p=0.002). These two clusters were not found in bulk tissue RNA-seq data and have not been reported in public CDR3 databases. CONCLUSIONS We identified two unique TCR clusters that were associated with survival on treatment with ICI in patients with pleural mesothelioma. These clusters may enable approaches for antigen discovery and inform future targets for design of adoptive T cell therapies.
Collapse
Affiliation(s)
- Aakash P Desai
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Farhad Kosari
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria Disselhorst
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jun Yin
- Quantitative Health Sciences, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Alireza Agahi
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Tobias Peikert
- Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Julia Udell
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Sarah H Johnson
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - James Smadbeck
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Stephen Murphy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Giannoula Karagouga
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Alexa McCune
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Janet Schaefer-Klein
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Mitesh J Borad
- Hematology/Medical Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - John Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - George Vasmatzis
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul Baas
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aaron Mansfield
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
183
|
Offin M, Fitzgerald B, Zauderer MG, Doroshow D. The past, present, and future of targeted therapeutic approaches in patients with diffuse pleural mesotheliomas. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:21. [PMID: 38895597 PMCID: PMC11185317 DOI: 10.20517/2394-4722.2022.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Despite our growing understanding of the genomic landscape of diffuse pleural mesotheliomas (DPM), there has been limited success in targeted therapeutic strategies for the disease. This review summarizes attempts to develop targeted therapies in DPM, focusing on the following targets being clinically explored in recent and ongoing clinical trials: vascular endothelial growth factor, mesothelin, BRCA1-associated protein 1, Wilms tumor 1 protein, NF2/YAP/TAZ, CDKN2, methylthioadenosine phosphorylase, v-domain Ig suppressor T-cell activation, and argininosuccinate synthetase 1. Although preclinical data for these targets are promising, few have efficaciously translated to benefit our patients. Future efforts should seek to expand the availability of preclinical models that faithfully recapitulate DPM biology, develop clinically relevant biomarkers, and refine patient selection criteria for clinical trials.
Collapse
Affiliation(s)
- Michael Offin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bailey Fitzgerald
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marjorie G. Zauderer
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Deborah Doroshow
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
184
|
Rondon L, Fu R, Patel MR. Success of Checkpoint Blockade Paves the Way for Novel Immune Therapy in Malignant Pleural Mesothelioma. Cancers (Basel) 2023; 15:2940. [PMID: 37296902 PMCID: PMC10251855 DOI: 10.3390/cancers15112940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a malignancy associated with asbestos exposure and is typically categorized as an orphan disease. Recent developments in immunotherapy with anti-PD-1 and anti-CTLA-4 antibodies, specifically with agents nivolumab and ipilimumab, have demonstrated an improvement in overall survival over the previous standard chemotherapy leading to their FDA-approval as first-line therapy for unresectable disease. For quite some time, it has been known that these proteins are not the only ones that function as immune checkpoints in human biology, and the hypothesis that MPM is an immunogenic disease has led to an expanding number of studies investigating alternative checkpoint inhibitors and novel immunotherapy for this malignancy. Early trials are also supporting the notion that therapies that target biological molecules on T cells, cancer cells, or that trigger the antitumor activity of other immune cells may represent the future of MPM treatment. Moreover, mesothelin-targeted therapies are thriving in the field, with forthcoming results from multiple trials signaling an improvement in overall survival when combined with other immunotherapy agents. The following manuscript will review the current state of immune therapy for MPM, explore the knowledge gaps in the field, and discuss ongoing novel immunotherapeutic research in early clinical trials.
Collapse
Affiliation(s)
- Lizbeth Rondon
- Department of Medicine, Hennepin County Medical Center, Minneapolis, MN 55404, USA; (L.R.); (R.F.)
| | - Roberto Fu
- Department of Medicine, Hennepin County Medical Center, Minneapolis, MN 55404, USA; (L.R.); (R.F.)
| | - Manish R. Patel
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
185
|
Mucha SR, Rajendram P. Management and Prevention of Cellular-Therapy-Related Toxicity: Early and Late Complications. Curr Oncol 2023; 30:5003-5023. [PMID: 37232836 DOI: 10.3390/curroncol30050378] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Chimeric Antigen Receptor T (CAR-T) cell therapy has dramatically changed prognosis and treatment of relapsed and refractory hematologic malignancies. Currently the 6 FDA approved products target various surface antigens. While CAR-T therapy achieves good response, life-threatening toxicities have been reported. Mechanistically, can be divided into two categories: (1) toxicities related to T-cell activation and release of high levels of cytokines: or (2) toxicities resulting from interaction between CAR and CAR targeted antigen expressed on non-malignant cells (i.e., on-target, off-tumor effects). Variations in conditioning therapies, co-stimulatory domains, CAR T-cell dose and anti-cytokine administration, pose a challenge in distinguishing cytokine mediated related toxicities from on-target, off-tumor toxicities. Timing, frequency, severity, as well as optimal management of CAR T-cell-related toxicities vary significantly between products and are likely to change as newer therapies become available. Currently the FDA approved CARs are targeted towards the B-cell malignancies however the future holds promise of expanding the target to solid tumor malignancies. Further highlighting the importance of early recognition and intervention for early and late onset CAR-T related toxicity. This contemporary review aims to describe presentation, grading and management of commonly encountered toxicities, short- and long-term complications, discuss preventive strategies and resource utilization.
Collapse
Affiliation(s)
- Simon R Mucha
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Prabalini Rajendram
- Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
186
|
Das S, Valton J, Duchateau P, Poirot L. Stromal depletion by TALEN-edited universal hypoimmunogenic FAP-CAR T cells enables infiltration and anti-tumor cytotoxicity of tumor antigen-targeted CAR-T immunotherapy. Front Immunol 2023; 14:1172681. [PMID: 37251405 PMCID: PMC10213512 DOI: 10.3389/fimmu.2023.1172681] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Adoptive cell therapy based on chimeric antigen receptor (CAR)-engineered T-cells has proven to be lifesaving for many cancer patients. However, its therapeutic efficacy has so far been restricted to only a few malignancies, with solid tumors proving to be especially recalcitrant to efficient therapy. Poor intra-tumor infiltration by T cells and T cell dysfunction due to a desmoplastic, immunosuppressive microenvironment are key barriers for CAR T-cell success against solid tumors. Cancer-associated fibroblasts (CAFs) are critical components of the tumor stroma, evolving specifically within the tumor microenvironment (TME) in response to tumor cell cues. The CAF secretome is a significant contributor to the extracellular matrix and a plethora of cytokines and growth factors that induce immune suppression. Together they form a physical and chemical barrier which induces a T cell-excluding 'cold' TME. CAF depletion in stroma rich solid tumors can thus provide an opportunity to convert immune evasive tumors susceptible to tumor-antigen CAR T-cell cytotoxicity. Using our TALEN-based gene editing platform we engineered non-alloreactive, immune evasive CAR T-cells (termed UCAR T-cells) targeting the unique CAF marker Fibroblast Activation Protein, alpha (FAP). In an orthotopic mouse model of triple-negative breast cancer (TNBC) composed of patient derived-CAFs and tumor cells, we demonstrate the efficacy of our engineered FAP UCAR T-cells in CAF depletion, reduction of desmoplasia and successful tumor infiltration. Furthermore, while previously resistant, pre-treatment with FAP UCAR T-cells now sensitized these tumors to Mesothelin (Meso) UCAR T-cell infiltration and anti-tumor cytotoxicity. Combination therapy of FAP UCAR, Meso UCAR T cells and the checkpoint inhibitor anti-PD-1 significantly reduced tumor burden and prolonged mice survival. Our study thus proposes a novel treatment paradigm for successful CAR T-cell immunotherapy against stroma-rich solid tumors.
Collapse
Affiliation(s)
- Shipra Das
- Cellectis Inc, New York, NY, United States
| | | | | | | |
Collapse
|
187
|
Krishnan N, Peng FX, Mohapatra A, Fang RH, Zhang L. Genetically engineered cellular nanoparticles for biomedical applications. Biomaterials 2023; 296:122065. [PMID: 36841215 PMCID: PMC10542936 DOI: 10.1016/j.biomaterials.2023.122065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
In recent years, nanoparticles derived from cellular membranes have been increasingly explored for the prevention and treatment of human disease. With their flexible design and ability to interface effectively with the surrounding environment, these biomimetic nanoparticles can outperform their traditional synthetic counterparts. As their popularity has increased, researchers have developed novel ways to modify the nanoparticle surface to introduce new or enhanced capabilities. Moving beyond naturally occurring materials derived from wild-type cells, genetic manipulation has proven to be a robust and flexible method by which nanoformulations with augmented functionalities can be generated. In this review, an overview of genetic engineering approaches to express novel surface proteins is provided, followed by a discussion on the various biomedical applications of genetically modified cellular nanoparticles.
Collapse
Affiliation(s)
- Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Fei-Xing Peng
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Animesh Mohapatra
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
188
|
Gibney BC, Detterbeck FC. Cancer-Directed Surgery for Mesothelioma: A Team Sport. Chest 2023; 163:1018-1019. [PMID: 37164573 DOI: 10.1016/j.chest.2023.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 05/12/2023] Open
Affiliation(s)
- Barry C Gibney
- Division of Cardiothoracic Surgery, Department of Surgery (B. C. G.), Medical University of South Carolina, Charleston, SC.
| | - Frank C Detterbeck
- Division of Thoracic Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
189
|
Sah VR, Jespersen H, Karlsson J, Nilsson LM, Bergqvist M, Johansson I, Carneiro A, Helgadottir H, Levin M, Ullenhag G, Ståhlberg A, Olofsson Bagge R, Nilsson JA, Ny L. Chemokine Analysis in Patients with Metastatic Uveal Melanoma Suggests a Role for CCL21 Signaling in Combined Epigenetic Therapy and Checkpoint Immunotherapy. CANCER RESEARCH COMMUNICATIONS 2023; 3:884-895. [PMID: 37377898 PMCID: PMC10194136 DOI: 10.1158/2767-9764.crc-22-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/29/2023]
Abstract
Purpose Patients with metastatic uveal melanoma have limited therapeutic options and high mortality rate so new treatment options are needed. Patients and Methods We previously reported that patients treated with the PD-1 inhibitor pembrolizumab and the histone deacetylase inhibitor entinostat in the PEMDAC trial, experienced clinical benefits if their tumor originated from iris or was wildtype for BAP1 tumor suppressor gene. Here we present the 2-year follow-up of the patients in the PEMDAC trial and identify additional factors that correlate with response or survival. Results Durable responses were observed in 4 patients, with additional 8 patients exhibiting a stable disease. The median overall survival was 13.7 months. Grade 3 adverse events were reported in 62% of the patients, but they were all manageable. No fatal toxicity was observed. Activity of thymidine kinase 1 in plasma was higher in patients with stable disease or who progressed on treatment, compared with those with partial response. Chemokines and cytokines were analyzed in plasma. Three chemokines were significantly different when comparing patients with and without response. One of the factors, CCL21, was higher in the plasma of responding patients before treatment initiation but decreased in the same patients upon treatment. In tumors, CCL21 was expressed in areas resembling tertiary lymphoid structures (TLS). High plasma levels of CCL21 and presence of TLS-like regions in the tumor correlated with longer survival. Conclusions This study provides insight into durable responses in the PEMDAC trial, and describes dynamic changes of chemokines and cytokines in the blood of these patients. Significance The most significant finding from the 2-year follow-up study of the PEMDAC trial was that high CCL21 levels in blood was associated with response and survival. CCL21 was also expressed in TLS-like regions and presence of these regions was associated with longer survival. These analyses of soluble and tumor markers can inform on predictive biomarkers needing validation and become hypothesis generating for experimental research.
Collapse
Affiliation(s)
- Vasu R. Sah
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Jespersen
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Joakim Karlsson
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, Western Australia, Australia
| | - Lisa M. Nilsson
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, Western Australia, Australia
| | | | - Iva Johansson
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ana Carneiro
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Hildur Helgadottir
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Max Levin
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gustav Ullenhag
- Department of Radiology, Oncology and Radiation Science, Section of Oncology, Uppsala University, Uppsala, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jonas A. Nilsson
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, Western Australia, Australia
| | - Lars Ny
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
190
|
Brito-Orama S, Sheth RA. The Contemporary Landscape and Future Directions of Intratumoral Immunotherapy. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2023; 6:84-90. [PMID: 37214205 PMCID: PMC10195020 DOI: 10.36401/jipo-22-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 05/24/2023]
Abstract
Systemically administered immunotherapies have revolutionized the care of patients with cancer; however, for many cancer types, most patients do not exhibit objective responses. Intratumoral immunotherapy is a burgeoning strategy that is designed to boost the effectiveness of cancer immunotherapies across the spectrum of malignancies. By locally administering immune-activating therapies into the tumor itself, immunosuppressive barriers in the tumor microenvironment can be broken. Moreover, therapies too potent for systemic delivery can be safely administered to target location to maximize efficacy and minimize toxicity. In order for these therapies to be effective, though, they must be effectively delivered into the target tumor lesion. In this review, we summarize the current landscape of intratumoral immunotherapies and highlight key concepts that influence intratumoral delivery, and by extension, efficacy. We also provide an overview of the breadth and depth of approved minimally invasive delivery devices that can be considered to improve delivery of intratumoral therapies.
Collapse
Affiliation(s)
- Sebastian Brito-Orama
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
191
|
Lim JU, Lee E, Lee SY, Cho HJ, Ahn DH, Hwang Y, Choi JY, Yeo CD, Park CK, Kim SJ. Current literature review on the tumor immune micro-environment, its heterogeneity and future perspectives in treatment of advanced non-small cell lung cancer. Transl Lung Cancer Res 2023; 12:857-876. [PMID: 37197639 PMCID: PMC10183402 DOI: 10.21037/tlcr-22-633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/07/2023] [Indexed: 03/21/2023]
Abstract
Background and Objective Immune checkpoint inhibitors (ICI) were a major clinical advancement that provided an opportunity to improve the prognosis of patients with non-small cell lung cancer (NSCLC). However, programmed death-ligand-1 (PD-L1) expression does not sufficiently predict ICI efficacy in NSCLC patients. In recent studies, the tumor immune microenvironment (TIME) was shown to have a central role in lung cancer progression and to affect clinical outcome of patients diagnosed with lung cancer. As development of new therapeutic targets to overcome ICI resistance is a priority, understanding the TIME is important. Recently, a series of studies was conducted to target each component of TIME to improve efficacy of cancer treatment. In this review, important features related to TIME, its heterogeneity and current trends in treatment targeting the component of TIME are discussed. Methods PubMed and PMC were searched from January 1st, 2012 to August 16th, 2022 using the following key words: "NSCLC", "Tumor microenvironment", "Immune", "Metastasis" and "Heterogeneity". Key Content and Findings Heterogeneity in the TIME can be either spatial or temporal. Subsequent to heterogeneous changes in the TIME, treatment of lung cancer can be more challenging because drug resistance is more likely to occur. In terms of the TIME, the main concept for increasing the chance of successful NSCLC treatment is to activate immune responses against tumor cells and inhibit immunosuppressive activities. In addition, relevant research is focused on normalizing an otherwise aberrant TIME in NSCLC patients. Potential therapeutic targets include immune cells, cytokine interactions, and non-immune cells such as fibroblasts or vessels. Conclusions In management of lung cancer, understanding TIME and its heterogeneity is significant to treatment outcomes. Ongoing trials including various treatment modalities such as radiotherapy, cytotoxic chemotherapy, and anti-angiogenic treatment and regimens inhibiting other immunoinhibitory molecules are promising.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunyoung Lee
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Hyeong Jun Cho
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Hyuck Ahn
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yongki Hwang
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
192
|
Abstract
The long-term benefits demonstrated by immunotherapy in select tumors have failed to generalize to most nonhematologic solid tumors. Adoptive cell therapy (ACT)-a treatment on the basis of the isolation and engineering of living T cells and other immune cells-has shown early clinical advances. ACT, through tumor-infiltrating lymphocyte therapy, has shown activity in traditionally immunogenic tumors such as melanoma and cervical cancers, and has the potential to improve immune reactivity in these tumor types where traditional therapies have failed. Engineered T-cell receptor and chimeric antigen receptor T-cell therapies have also shown activity in select nonhematologic solid tumors. Through receptor engineering, and improved understanding of tumor antigens, these therapies have the potential to target poorly immunogenic tumors to deliver long-lasting responses. Additionally, non-T-cell therapies such as natural killer-cell therapy may allow for allogeneic forms of ACT. Each form of ACT has trade-offs that will likely limit their application to specific clinical settings. Key challenges with ACT include the logistical challenges of manufacturing, accurate antigen identification, and the risk of on-target, off-tumor toxicity. The successes of ACT are built on decades of advances in cancer immunology, antigen identification, and cell engineering. With continued refinements in these processes, ACT may extend the benefits of immunotherapy to more patients with advanced nonhematologic solid tumors. Herein, we review the major forms of ACT, their successes, and strategies to overcome the trade-offs of current ACTs.
Collapse
Affiliation(s)
- Daniel J Olson
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| |
Collapse
|
193
|
Manduca N, Maccafeo E, De Maria R, Sistigu A, Musella M. 3D cancer models: One step closer to in vitro human studies. Front Immunol 2023; 14:1175503. [PMID: 37114038 PMCID: PMC10126361 DOI: 10.3389/fimmu.2023.1175503] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer immunotherapy is the great breakthrough in cancer treatment as it displayed prolonged progression-free survival over conventional therapies, yet, to date, in only a minority of patients. In order to broad cancer immunotherapy clinical applicability some roadblocks need to be overcome, first among all the lack of preclinical models that faithfully depict the local tumor microenvironment (TME), which is known to dramatically affect disease onset, progression and response to therapy. In this review, we provide the reader with a detailed overview of current 3D models developed to mimick the complexity and the dynamics of the TME, with a focus on understanding why the TME is a major target in anticancer therapy. We highlight the advantages and translational potentials of tumor spheroids, organoids and immune Tumor-on-a-Chip models in disease modeling and therapeutic response, while outlining pending challenges and limitations. Thinking forward, we focus on the possibility to integrate the know-hows of micro-engineers, cancer immunologists, pharmaceutical researchers and bioinformaticians to meet the needs of cancer researchers and clinicians interested in using these platforms with high fidelity for patient-tailored disease modeling and drug discovery.
Collapse
Affiliation(s)
- Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ester Maccafeo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario ‘A. Gemelli’ - Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
194
|
Bhokisham N, Laudermilch E, Traeger LL, Bonilla TD, Ruiz-Estevez M, Becker JR. CRISPR-Cas System: The Current and Emerging Translational Landscape. Cells 2023; 12:cells12081103. [PMID: 37190012 DOI: 10.3390/cells12081103] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
CRISPR-Cas technology has rapidly changed life science research and human medicine. The ability to add, remove, or edit human DNA sequences has transformative potential for treating congenital and acquired human diseases. The timely maturation of the cell and gene therapy ecosystem and its seamless integration with CRISPR-Cas technologies has enabled the development of therapies that could potentially cure not only monogenic diseases such as sickle cell anemia and muscular dystrophy, but also complex heterogenous diseases such as cancer and diabetes. Here, we review the current landscape of clinical trials involving the use of various CRISPR-Cas systems as therapeutics for human diseases, discuss challenges, and explore new CRISPR-Cas-based tools such as base editing, prime editing, CRISPR-based transcriptional regulation, CRISPR-based epigenome editing, and RNA editing, each promising new functionality and broadening therapeutic potential. Finally, we discuss how the CRISPR-Cas system is being used to understand the biology of human diseases through the generation of large animal disease models used for preclinical testing of emerging therapeutics.
Collapse
Affiliation(s)
| | - Ethan Laudermilch
- Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA
| | - Lindsay L Traeger
- Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA
| | - Tonya D Bonilla
- Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA
| | | | - Jordan R Becker
- Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA
| |
Collapse
|
195
|
Xie L, Meng Z. Immunomodulatory effect of locoregional therapy in the tumor microenvironment. Mol Ther 2023; 31:951-969. [PMID: 36694462 PMCID: PMC10124087 DOI: 10.1016/j.ymthe.2023.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/15/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Cancer immunotherapy appears to be a promising treatment option; however, only a subset of patients with cancer responds favorably to treatment. Locoregional therapy initiates a local antitumor immune response by disrupting immunosuppressive components, releasing immunostimulatory damage-associated molecular patterns, recruiting immune effectors, and remodeling the tumor microenvironment. Many studies have shown that locoregional therapy can produce specific antitumor immunity alone; nevertheless, the effect is relatively weak and transient. Furthermore, increasing research efforts have explored the potential synergy between locoregional therapy and immunotherapy to enhance the long-term systemic antitumor immune effect and improve survival. Therefore, further research is needed into the immunomodulatory effects of locoregional therapy and immunotherapy to augment antitumor effects. This review article summarizes the key components of the tumor microenvironment, discusses the immunomodulatory role of locoregional therapy in the tumor microenvironment, and emphasizes the therapeutic potential of locoregional therapy in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lin Xie
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhiqiang Meng
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China.
| |
Collapse
|
196
|
Meyran D, Zhu JJ, Butler J, Tantalo D, MacDonald S, Nguyen TN, Wang M, Thio N, D'Souza C, Qin VM, Slaney C, Harrison A, Sek K, Petrone P, Thia K, Giuffrida L, Scott AM, Terry RL, Tran B, Desai J, Prince HM, Harrison SJ, Beavis PA, Kershaw MH, Solomon B, Ekert PG, Trapani JA, Darcy PK, Neeson PJ. T STEM-like CAR-T cells exhibit improved persistence and tumor control compared with conventional CAR-T cells in preclinical models. Sci Transl Med 2023; 15:eabk1900. [PMID: 37018415 DOI: 10.1126/scitranslmed.abk1900] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Patients who receive chimeric antigen receptor (CAR)-T cells that are enriched in memory T cells exhibit better disease control as a result of increased expansion and persistence of the CAR-T cells. Human memory T cells include stem-like CD8+ memory T cell progenitors that can become either functional stem-like T (TSTEM) cells or dysfunctional T progenitor exhausted (TPEX) cells. To that end, we demonstrated that TSTEM cells were less abundant in infused CAR-T cell products in a phase 1 clinical trial testing Lewis Y-CAR-T cells (NCT03851146), and the infused CAR-T cells displayed poor persistence in patients. To address this issue, we developed a production protocol to generate TSTEM-like CAR-T cells enriched for expression of genes in cell replication pathways. Compared with conventional CAR-T cells, TSTEM-like CAR-T cells had enhanced proliferative capacity and increased cytokine secretion after CAR stimulation, including after chronic CAR stimulation in vitro. These responses were dependent on the presence of CD4+ T cells during TSTEM-like CAR-T cell production. Adoptive transfer of TSTEM-like CAR-T cells induced better control of established tumors and resistance to tumor rechallenge in preclinical models. These more favorable outcomes were associated with increased persistence of TSTEM-like CAR-T cells and an increased memory T cell pool. Last, TSTEM-like CAR-T cells and anti-programmed cell death protein 1 (PD-1) treatment eradicated established tumors, and this was associated with increased tumor-infiltrating CD8+CAR+ T cells producing interferon-γ. In conclusion, our CAR-T cell protocol generated TSTEM-like CAR-T cells with enhanced therapeutic efficacy, resulting in increased proliferative capacity and persistence in vivo.
Collapse
Affiliation(s)
- Deborah Meyran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Université de Paris, Inserm, U976 HIPI Unit, Institut de Recherche Saint-Louis, Paris F-75010, France
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Joe Jiang Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Jeanne Butler
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Daniela Tantalo
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Sean MacDonald
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Thu Ngoc Nguyen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Minyu Wang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Niko Thio
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Criselle D'Souza
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Vicky Mengfei Qin
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Clare Slaney
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Aaron Harrison
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Pasquale Petrone
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Kevin Thia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Lauren Giuffrida
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Andrew M Scott
- Tumor Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rachael L Terry
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 1466, Australia
| | - Ben Tran
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jayesh Desai
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - H Miles Prince
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Simon J Harrison
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Ben Solomon
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Paul G Ekert
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 1466, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW 1466, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW 2031, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
197
|
Yang J, Chen Y, Jing Y, Green MR, Han L. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol 2023; 20:211-228. [PMID: 36721024 PMCID: PMC11734589 DOI: 10.1038/s41571-023-00729-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Despite the notable success of chimeric antigen receptor (CAR) T cell therapies in the treatment of certain haematological malignancies, challenges remain in optimizing CAR designs and cell products, improving response rates, extending the durability of remissions, reducing toxicity and broadening the utility of this therapeutic modality to other cancer types. Data from multidimensional omics analyses, including genomics, epigenomics, transcriptomics, T cell receptor-repertoire profiling, proteomics, metabolomics and/or microbiomics, provide unique opportunities to dissect the complex and dynamic multifactorial phenotypes, processes and responses of CAR T cells as well as to discover novel tumour targets and pathways of resistance. In this Review, we summarize the multidimensional cellular and molecular profiling technologies that have been used to advance our mechanistic understanding of CAR T cell therapies. In addition, we discuss current applications and potential strategies leveraging multi-omics data to identify optimal target antigens and other molecular features that could be exploited to enhance the antitumour activity and minimize the toxicity of CAR T cell therapy. Indeed, fully utilizing multi-omics data will provide new insights into the biology of CAR T cell therapy, further accelerate the development of products with improved efficacy and safety profiles, and enable clinicians to better predict and monitor patient responses.
Collapse
Affiliation(s)
- Jingwen Yang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yamei Chen
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Ying Jing
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Michael R Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
198
|
Alaklabi S, Roy AM, Skitzki JJ, Iyer R. Immunotherapy in malignant peritoneal mesothelioma (Review). Mol Clin Oncol 2023; 18:31. [PMID: 36908980 PMCID: PMC9995593 DOI: 10.3892/mco.2023.2627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/05/2023] [Indexed: 02/25/2023] Open
Abstract
Over the last decade, there has been a movement in cancer treatment away from cytotoxic therapies toward strategies that enhance the immune system against cancer. Immune checkpoint inhibitors (ICIs) have been incorporated into the treatment regimens for patients with various solid tumors. Mesothelioma trials revealed encouraging efficacy; however, patients with peritoneal mesothelioma are usually excluded, slowing the progress of improving the treatment of this aggressive cancer and compelling oncologist to rely on retrospective studies despite their flaws and limitations. Currently, there is no consensus on the role of ICIs in the treatment of malignant peritoneal mesothelioma (MPeM). The present review discusses data from clinical studies that examined immunotherapy in MPeM and evaluates what is known about the relevance of the tumor microenvironment and clinically validated biomarkers for ICIs efficacy. Furthermore, a proposed strategy for utilizing immunotherapy in treating MPeM is discussed.
Collapse
Affiliation(s)
- Sabah Alaklabi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Arya Mariam Roy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Joseph J Skitzki
- Department of Surgical Oncology/Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
199
|
Zhang Q, Sun X, Hou Y, Gao X, Shen K, Qin X. New insight on the correlation of immune landscapes with immune markers expression in different risk classification of gastrointestinal stromal tumors. J Gastroenterol 2023; 58:527-539. [PMID: 36961557 DOI: 10.1007/s00535-023-01981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND The immune landscapes of gastrointestinal stromal tumors (GISTs) are still unclear. We aimed to explore the immune status of GISTs with different recurrence risks and sought potential immunotherapeutic targets. METHODS Immune cell infiltration and the expression of 93 tumor markers of 65 GISTs with different recurrence risks from public datasets were analyzed via bioinformatic methods. Infiltrating immune cell and OX40L expression of 417 patients from the Zhongshan cohort were analyzed by immunohistochemistry and immunofluorescence. The clinicopathological data of the patients were collected and the prognostic factors were analyzed by univariate and multivariate methods. RESULTS Macrophages, T cells and NK cells were the most abundant immune cells in tumor microenvironment. OX40L was the only differentially expressed marker in high- and low-risk patients, as well as in patients with primary and recurrent GIST. The positive rate of OX40L in GIST was 54%. OX40L was highly expressed in patients with no metastasis, low mitotic index and relapse risk. The amount of CD68 + macrophages was the independent factor of OX40L expression. The OX40L expression was positively correlated with M2 and resting mast cells. OX40L co-located with CD4 + T cells, M2 and activated mast cells. Patients with high OX40L levels experienced more prolonged relapse-free survival (RFS). CONCLUSIONS We first reported that GIST cells could express OX40L, patients with high OX40L experienced longer RFS. The colocalization of OX40L with immune cells indicates that OX40L could be a promising potential target for immunotherapy in GIST.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang Affiliated to Kangda College, Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Xiangfei Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Xiaodong Gao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Kuntang Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Xinyu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
200
|
Olivera I, Bolaños E, Gonzalez-Gomariz J, Hervas-Stubbs S, Mariño KV, Luri-Rey C, Etxeberria I, Cirella A, Egea J, Glez-Vaz J, Garasa S, Alvarez M, Eguren-Santamaria I, Guedan S, Sanmamed MF, Berraondo P, Rabinovich GA, Teijeira A, Melero I. mRNAs encoding IL-12 and a decoy-resistant variant of IL-18 synergize to engineer T cells for efficacious intratumoral adoptive immunotherapy. Cell Rep Med 2023; 4:100978. [PMID: 36933554 PMCID: PMC10040457 DOI: 10.1016/j.xcrm.2023.100978] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/19/2023]
Abstract
Interleukin-12 (IL-12) gene transfer enhances the therapeutic potency of adoptive T cell therapies. We previously reported that transient engineering of tumor-specific CD8 T cells with IL-12 mRNA enhanced their systemic therapeutic efficacy when delivered intratumorally. Here, we mix T cells engineered with mRNAs to express either single-chain IL-12 (scIL-12) or an IL-18 decoy-resistant variant (DRIL18) that is not functionally hampered by IL-18 binding protein (IL-18BP). These mRNA-engineered T cell mixtures are repeatedly injected into mouse tumors. Pmel-1 T cell receptor (TCR)-transgenic T cells electroporated with scIL-12 or DRIL18 mRNAs exert powerful therapeutic effects in local and distant melanoma lesions. These effects are associated with T cell metabolic fitness, enhanced miR-155 control on immunosuppressive target genes, enhanced expression of various cytokines, and changes in the glycosylation profile of surface proteins, enabling adhesiveness to E-selectin. Efficacy of this intratumoral immunotherapeutic strategy is recapitulated in cultures of tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T cells on IL-12 and DRIL18 mRNA electroporation.
Collapse
Affiliation(s)
- Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Jose Gonzalez-Gomariz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Josune Egea
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina
| | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|