151
|
Inoue M, Tokusumi Y, Ban H, Shirakura M, Kanaya T, Yoshizaki M, Hironaka T, Nagai Y, Iida A, Hasegawa M. Recombinant Sendai virus vectors deleted in both the matrix and the fusion genes: efficient gene transfer with preferable properties. J Gene Med 2005; 6:1069-81. [PMID: 15386740 DOI: 10.1002/jgm.597] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Sendai virus (SeV) is a new type of cytoplasmic RNA vector, which infects and replicates in most mammalian cells, directs high-level expression of the genes on its genome and is free from genotoxicity. In order to improve this vector, both the matrix (M) and fusion (F) genes were deleted from its genome. METHODS For the recovery of the M and F genes-deleted SeV (SeV/DeltaMDeltaF), the packaging cell line was established by using a Cre/loxP induction system. SeV/DeltaMDeltaF was characterized and compared with wild-type and F or M gene-deleted SeV vectors in terms of transduction ability, particle formation, transmissible property and cytotoxicity. RESULTS SeV/DeltaMDeltaF was propagated in high titers from the packaging cell line. When this vector was administered into the lateral ventricle and the respiratory tissue, many of the ependymal and epithelial cells were transduced, respectively, as in the case of wild-type SeV. F gene-deletion made the SeV vector non-transmissible, and M gene-deletion worked well to inhibit formation of the particles from infected cells. Simultaneous deletions of these two genes in the same genome resulted in combining both advantages. That is, both virus maturation into particles and transmissible property were almost completely abolished in cells infected with SeV/DeltaMDeltaF. Further, the cytopathic effect of SeV/DeltaMDeltaF was significantly attenuated rather than that of wild type in vitro and in vivo. CONCLUSIONS SeV/DeltaMDeltaF is an advanced type of cytoplasmic RNA vector, which retains efficient gene transfer, gains non-transmissible properties and loses particle formation with less cytopathic effect.
Collapse
Affiliation(s)
- Makoto Inoue
- DNAVEC Research Inc., 1-25-11 Kannondai, Tsukuba-shi, Ibaraki 305-0856, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Choksy S, Pockley AG, Wajeh YE, Chan P. VEGF and VEGF receptor expression in human chronic critical limb ischaemia. Eur J Vasc Endovasc Surg 2004; 28:660-9. [PMID: 15531204 DOI: 10.1016/j.ejvs.2004.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE This study quantified endogenous VEGF and VEGF receptor expression in limbs of patients with chronic critical limb ischaemia (CLI). METHODS Skin and muscle biopsies were obtained from the legs of 25 patients undergoing limb amputation for CLI. Samples were obtained at the amputation level (thigh or calf) and, distally, from the foot and in the vicinity of ischaemic ulcers and gangrene. Control biopsies were obtained from patients undergoing amputation for non-arterial reasons or knee arthroplasty (n=7). VEGF protein levels in tissue lysates were measured by ELISA, and VEGF and KDR mRNA levels were determined using quantitative PCR. RESULTS At the amputation level, VEGF protein and VEGF and KDR mRNA levels in CLI limbs were similar to those in controls. In the foot VEGF mRNA in skin (P=0.005) and VEGF protein levels in muscle (P=0.02) were elevated compared to levels in a proximal biopsy from the same limb. VEGF and KDR mRNA levels in the vicinity of gangrene/ulcers (VEGF P=0.01, KDR P=0.03) also were elevated. CONCLUSIONS VEGF expression is not deficient in CLI. Indeed, it is elevated at distal sites in the ischaemic limb. These findings question the rationale for VEGF supplementation in CLI.
Collapse
Affiliation(s)
- S Choksy
- Division of Clinical Sciences (North), University of Sheffield, Clinical Sciences Centre, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK.
| | | | | | | |
Collapse
|
153
|
von Degenfeld G, Banfi A, Springer ML, Blau HM. Myoblast-mediated gene transfer for therapeutic angiogenesis and arteriogenesis. Br J Pharmacol 2004; 140:620-6. [PMID: 14534145 PMCID: PMC1574078 DOI: 10.1038/sj.bjp.0705492] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Therapeutic angiogenesis aims at generating new blood vessels by delivering growth factors such as VEGF and FGF. Clinical trials are underway in patients with peripheral vascular and coronary heart disease. However, increasing evidence indicates that the new vasculature needs to be stabilized to avoid deleterious effects such as edema and hemangioma formation. Moreover, a major challenge is to induce new vessels that persist following cessation of the angiogenic stimulus. Mature vessels may be generated by modulating timing and dosage of growth factor expression, or by combination of 'growth' factors with 'maturation' factors like PDGF-BB, angiopoietin-1 or TGF-beta. Myoblast-mediated gene transfer has unique characteristics that make it a useful tool for studying promising novel approaches to therapeutic angiogenesis. It affords robust and long-lasting expression, and can be considered as a relatively rapid form of 'adult transgenesis' in muscle. The combined insertion of different gene constructs into single myoblasts and their progeny allows the simultaneous expression of different 'growth' and 'maturation' factors within the same cell in vivo. The additional insertion of a reporter gene makes it possible to analyze the phenotype of the vessels surrounding the transgenic muscle fibers into which the myoblasts have fused. The effects of timing and duration of gene expression can be studied by using tetracycline-inducible constructs, and dosage effects by selecting subpopulations consistently expressing distinct levels of growth factors. Finally, the autologous cell-based approach using transduced myoblasts could be an alternative gene delivery system for therapeutic angiogenesis in patients, avoiding the toxicities seen with some viral vectors.
Collapse
Affiliation(s)
- Georges von Degenfeld
- Baxter Laboratory in Genetic Pharmacology, Departments of Molecular Pharmacology and Microbiology and Immunology, Stanford University School of Medicine, 269 Campus Drive, CCSR 4215A, Stanford, CA 94305-5175, U.S.A
| | - Andrea Banfi
- Baxter Laboratory in Genetic Pharmacology, Departments of Molecular Pharmacology and Microbiology and Immunology, Stanford University School of Medicine, 269 Campus Drive, CCSR 4215A, Stanford, CA 94305-5175, U.S.A
| | - Matthew L Springer
- Baxter Laboratory in Genetic Pharmacology, Departments of Molecular Pharmacology and Microbiology and Immunology, Stanford University School of Medicine, 269 Campus Drive, CCSR 4215A, Stanford, CA 94305-5175, U.S.A
| | - Helen M Blau
- Baxter Laboratory in Genetic Pharmacology, Departments of Molecular Pharmacology and Microbiology and Immunology, Stanford University School of Medicine, 269 Campus Drive, CCSR 4215A, Stanford, CA 94305-5175, U.S.A
- Author for correspondence:
| |
Collapse
|
154
|
Abstract
Stimulation of collateral artery growth is an attractive alternative treatment modality for patients with coronary or peripheral artery disease. Decades of basic research have led to a reasonable understanding of the mechanisms behind collateral artery growth although 'bench research' is still absolutely warranted for better understanding. It is some 7 years ago that the first clinical trials on therapeutic manipulation of the collateral circulation were published and this field is still relatively new and in large parts unexplored. Arteriogenesis, namely the growth of large collateral conductance arteries, seems to be the best biological substrate candidate for therapeutic manipulation. Future studies in this field will have to cope with problems of substance choice, clinical detection methods and unwanted side-effects.
Collapse
Affiliation(s)
- Niels van Royen
- Department of Cardiology, University of Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
155
|
Niagara MI, Haider HK, Ye L, Koh VSW, Lim YT, Poh KK, Ge R, Sim EKW. Autologous skeletal myoblasts transduced with a new adenoviral bicistronic vector for treatment of hind limb ischemia. J Vasc Surg 2004; 40:774-85. [PMID: 15472608 DOI: 10.1016/j.jvs.2004.07.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We aimed to achieve angiogenic synergism between human vascular endothelial growth factor 165 (VEGF 165 ) and angiopoietin-1 (Ang-1) using a new adenoviral bicistronic vector concurrently with cell therapy to repair an ischemically damaged hind limb in a rabbit model. METHODS Rabbit autologous primary skeletal myoblasts were isolated and labeled with retrovirally transduced LacZreporter gene, 4,6-diamidino-2-phenylindole (DAPI), and 5-bromo-2'-deoxyuridine (BrdU). Hind limb ischemia was created in 48 female New Zealand White rabbits by means of femoral artery ligation at 8 different places, and was assessed at angiography. Animals were randomized to receive intramuscular injection of either Dulbeco's Modified Eagle Medium (DMEM;group 1, n = 8), nontransduced myoblasts (group 2, n = 10), or myoblasts transduced with Ad-Null (group 3, n = 10), Ad-VEGF (group 4, n = 10), or Ad-Bicis (group 5, n = 8). Six weeks after treatment neovascularization in the limb was assessed at angiography. The animals were euthanized, and tissue was harvested for histologic study. RESULTS Extensive transplanted myoblast survival was observed in all cell-transplanted groups, as visualized with DAPI, BrdU, and LacZ staining. Angiographic blood vessel count revealed enhanced neovascularization in group 5 (25.14 +/- 5.14) compared with group 4 (13.62 +/- 4.52), group 3 (6.09 +/- 0.09), group 2 (4.67 +/- 3.49), and group 1 (3.18 +/- 7.76). Immunostaining for von Willebrand factor confirmed significantly increased capillary density ( P < .01) at high-power microscopic field in group 5 (19.04 +/- 1.59) compared with group 4 (15.31 +/- 1.55), group 3 (6.53 +/- 0.97), group 2 (5.69 +/- 0.51), and group 1 (3.03 +/- 0.20). CONCLUSION Simultaneous expression of VEGF and Ang-1 from bicistronic vector transduced skeletal myoblasts potently stimulated enhanced functional neovascularization in a rabbit model of limb ischemia.
Collapse
|
156
|
Celec P, Yonemitsu Y. Vascular endothelial growth factor - basic science and its clinical implications. ACTA ACUST UNITED AC 2004; 11:69-75. [PMID: 15364116 DOI: 10.1016/j.pathophys.2004.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Revised: 01/19/2004] [Accepted: 03/12/2004] [Indexed: 01/19/2023]
Abstract
Vascular endothelial growth factor (VEGF) is the most important signaling molecule involved in the regulation of the formation of new vessels. Results of recent studies have provided new insights into the molecular mechanisms of the VEGF signaling pathways. VEGF local or systemic application represents a new approach in the therapy of ischemic diseases, especially of the coronary artery disease. Inhibition of the VEGF action on various levels is, on the other hand, assumed to be a promising therapeutic concept against cancer. Moreover, VEGF has been recently shown to be associated with some other physiological and pathophysiological processes. In this article we summarize the latest results of VEGF related studies and present the concluding theoretical resource for further research on the role of VEGF in understanding of pathophysiology of diseases and in therapeutic interventions in clinical biomedicine.
Collapse
Affiliation(s)
- Peter Celec
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | |
Collapse
|
157
|
Zhou YF, Stabile E, Walker J, Shou M, Baffour R, Yu Z, Rott D, Yancopoulos GD, Rudge JS, Epstein SE. Effects of gene delivery on collateral development in chronic hypoperfusion: diverse effects of angiopoietin-1 versus vascular endothelial growth factor. J Am Coll Cardiol 2004; 44:897-903. [PMID: 15312878 DOI: 10.1016/j.jacc.2004.05.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 04/27/2004] [Accepted: 05/02/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The aim of this research was to test the effects of vascular endothelial growth factor (VEGF)/angiopoietin-1 (Ang-1) on adult hypoperfused tissues. BACKGROUND Angiopoietin-1 and VEGF act separately and synergistically in vascular development during embryogenesis. However, little is known regarding their relative roles in collateral development after chronic arterial obstruction and tissue ischemia in the adult. METHODS Central and caudal ear arteries of 32 rabbits were ligated to induce ischemia. At two months, when flow was about 65% of pre-ligation values, we injected intradermally 10(9) plaque-forming unit adenovirus with the following transgenes: Ang-1, VEGF, or a combination of both. Ear perfusion was followed up for four weeks, and vessel leakage was assessed by Evens Blue test. RESULTS Before injection, flow was 65% of baseline, and endogenous VEGF levels in ischemic tissue were increased. Adenovirus-encoding VEGF gene (Ad.VEGF) at one week caused a visible inflammatory response associated with a 24% flow increase (p = 0.018). Adenovirus-encoding Ang-1 gene (Ad.Ang-1) increased flow 22% (p = 0.004) with no visible inflammation; Ad.VEGF caused three times as much vessel leakage as Ad.Ang-1 (142.5 +/- 38 vs. 49.5 +/- 9.8 ng Evens Blue/mg tissue; p < 0.001). However, at four weeks, compared with baseline, VEGF decreased flow 18% (p = 0.004), whereas Ang-1 increased tissue perfusion 26% (p < 0.001). This effect was abolished when Ad.Ang-1 was injected with soluble VEGF receptor [Ad.Flt(1-3)-Fc], which blocks VEGF-dependent signaling. Exogenous Ang-1 did not increase perfusion in a normally perfused ear, in which endogenous VEGF is not expressed. CONCLUSIONS Exogenous Ang-1 enhances perfusion in hypoperfused tissues only in the presence of increased levels of endogenous VEGF. Overexpression of VEGF, however, after causing an inflammatory response, does not improve collateral blood flow.
Collapse
Affiliation(s)
- Yi Fu Zhou
- Vascular Biology Laboratory, Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Kinoh H, Inoue M, Washizawa K, Yamamoto T, Fujikawa S, Tokusumi Y, Iida A, Nagai Y, Hasegawa M. Generation of a recombinant Sendai virus that is selectively activated and lyses human tumor cells expressing matrix metalloproteinases. Gene Ther 2004; 11:1137-45. [PMID: 15085175 DOI: 10.1038/sj.gt.3302272] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Malignant tumor cells often express matrix metalloproteinases (MMPs) at a high level to enable their dissemination and metastasis. Sendai virus (SeV), a nonsegmented negative strand RNA virus, spreads in the target tissues in vivo via cleavage activation of the viral fusion glycoprotein by a tissue-specific, trypsin-like enzyme. By deleting the viral matrix protein, we previously generated a recombinant SeV that does not bud to mature virions, but is highly fusogenic and spreads extensively from cell to cell in a trypsin-dependent manner. Here, we changed the tryptic cleavage site of the fusion glycoprotein of this virus to a site susceptible to MMPs. The resulting recombinant virus was no longer activated by trypsin but spread efficiently in cultured cells supplemented with MMP2 or MMP9 and in human tumor cell lines expressing these MMPs. Furthermore, the virus spread extensively in tumor cells xenotrasplanted to nude mice without disseminating to the surrounding normal cells, leading to the inhibition of the tumor growth in the mice. These results demonstrate the selective targeting and killing of human tumor cells by recombinant SeV technology and greatly advance the reemerging concept of oncolytic virotherapy, which currently appears to rely largely upon a natural preference of certain viruses for cancer cells.
Collapse
Affiliation(s)
- H Kinoh
- 1DNAVEC Research Inc., Kannondai, Tsukuba-shi, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Yamauchi A, Ito Y, Morikawa M, Kobune M, Huang J, Sasaki K, Takahashi K, Nakamura K, Dehari H, Niitsu Y, Abe T, Hamada H. Pre-administration of angiopoietin-1 followed by VEGF induces functional and mature vascular formation in a rabbit ischemic model. J Gene Med 2004; 5:994-1004. [PMID: 14601137 DOI: 10.1002/jgm.439] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF) play important roles in vascular formation and maturation, suggesting that the combination of these two would be a promising therapy for ischemia. However, it remains unclear what the best schedule of administration of these cytokines might be. METHODS Six experimental groups were used to prepare the rabbit ischemic hindlimb model following naked plasmid intramuscular administration as follows: empty vector (C), single gene (Ang1, A; VEGF, V), Ang-1 followed by VEGF (A - V), co-administration of Ang1 and VEGF (A + V), and VEGF followed by Ang1 (V - A). RESULTS Thirty days after gene administration, A - V showed a significantly increased blood pressure and blood-flow recovery in the ischemic limb compared with the control group. Histological findings by alpha-smooth muscle-actin (alpha-SMA) staining revealed that the two combination groups had more mature vessels as compared with the control group. Significantly, A - V revealed the highest density of alpha-SMA-positive vessels compared with VEGF alone or Ang1 alone. Angiographic assessment revealed that A - V had a greater increased arterial diameter compared with VEGF alone. Edema, one of the major adverse effects induced by VEGF, was not found in A - V throughout the experiments, while VEGF alone and V - A showed severe edema induced by VEGF. CONCLUSIONS The pre-administration of Ang1 followed by VEGF resulted in an improvement of hemodynamic status, an increased number of vessels covered with alpha-actin-positive mural cells, and prevention of VEGF-mediated edema. Thus, priming by Ang1 gene administration would be beneficial for therapeutic angiogenesis in VEGF gene therapy.
Collapse
Affiliation(s)
- Akihiko Yamauchi
- Department of Molecular Medicine, Sapporo Medical University, S1 W17 Chuo-ku, Sapporo 060-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Nishikage S, Koyama H, Miyata T, Ishii S, Hamada H, Shigematsu H. In vivo electroporation enhances plasmid-based gene transfer of basic fibroblast growth factor for the treatment of ischemic limb. J Surg Res 2004; 120:37-46. [PMID: 15172188 DOI: 10.1016/j.jss.2003.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Indexed: 11/22/2022]
Abstract
BACKGROUND Angiogenic therapy for ischemic tissues using angiogenic growth factors has been reported on an experimental and a clinical level. Electroporation enhances the efficiency of plasmid-based gene transfer in a variety of tissues. The purpose of this study was to evaluate the angiogenic effects of plasmid-based gene transfer using basic fibroblast growth factor (bFGF) in combination with electroporation. MATERIALS AND METHODS The transfection efficiency of in vivo electroporation in rabbit skeletal muscles was evaluated using pCAccluc+ encoding luciferase. To evaluate the angiogenic effects of bFGF gene in ischemic limb, we constructed a plasmid, pCAcchbFGFcs23, containing human bFGF cDNA fused with the secretory signal sequence of interleukin (IL)-2. Then, 500 microg of pCAcchbFGFcs23 or pCAZ3 (control plasmid) was injected into the ischemic thigh muscles in a rabbit model of hind limb ischemia with in vivo electroporation (bFGF-E(+) group and LacZ-E(+) group). Other sets of animals were injected with pCAcchbFGFcs23 (bFGF-E(-) group) or pCAZ3 (LacZ-E(-) group) without electroporation. Then 28 days later, calf blood pressure ratio, angiographic score, in vivo blood flow, and capillary density in the ischemic limb were measured. RESULTS Gene transfer efficiency increased markedly with the increase in voltage up to 100 V. Regarding angiogenic responses, calf blood pressure ratio, in vivo blood flow, and capillary density only in the bFGF-E(+) group were significantly higher than those in LacZ-E(-) group. Angiographic scores in the bFGF-E(+) and bFGF-E(-) groups were significantly higher than that in the LacZ-E(-) group. CONCLUSION These data suggest that in vivo electroporation enhances bFGF gene transfer for the treatment of ischemic limb muscles.
Collapse
Affiliation(s)
- Seiji Nishikage
- Department of Vascular Regeneration, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
161
|
Ziv K, Nevo N, Dafni H, Israely T, Granot D, Brenner O, Neeman M. Longitudinal MRI tracking of the angiogenic response to hind limb ischemic injury in the mouse. Magn Reson Med 2004; 51:304-11. [PMID: 14755656 DOI: 10.1002/mrm.10687] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ischemic injury and revascularization are frequently associated with hyperpermeability. Although extravasation of plasma proteins may promote tissue recovery through the generation of the provisional matrix that supports angiogenesis, edema may also result in progressive damage to the muscle. The aim of this research was to determine the time course of hyperpermeability associated with the angiogenic response induced by ligation of the femoral artery at the right posterior limb in mice. Hyperpermeability was followed noninvasively by MRI using an in-house-built permanent polyethylene catheter that enabled daily intravenous administration of biotin-BSA-Gd-DTPA. The mice were scanned once prior to ligation and five times during the week post-ligation. The MRI data, along with histopathology, indicated that the early hemodynamic compensation over loss of arterial blood supply occurred by angiogenesis and dilation of vessels in the skin and subcutaneous fat, and was accompanied by vascular hyperpermeability around the site of ligation. Functional recovery of the ischemic limb (i.e., regaining the ability to step on the limb), and the color and shape of the toes correlated with regeneration as shown by histopathology and MRI analysis. Thus, MRI provided valuable information on the transient hyperpermeability induced during the early stages of angiogenesis, and its subsequent resolution along with functional recovery from acute hind limb ischemia in mice.
Collapse
Affiliation(s)
- Keren Ziv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
162
|
Hashiya N, Jo N, Aoki M, Matsumoto K, Nakamura T, Sato Y, Ogata N, Ogihara T, Kaneda Y, Morishita R. In vivo evidence of angiogenesis induced by transcription factor Ets-1: Ets-1 is located upstream of angiogenesis cascade. Circulation 2004; 109:3035-41. [PMID: 15173033 DOI: 10.1161/01.cir.0000130643.41587.db] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND A transcription factor, ets-1, regulates the transcription of metalloproteinase genes, the activity of which is necessary for matrix degradation and the migration of endothelial cells. However, no study has demonstrated that ets-1 itself has an angiogenic action in vivo. Thus, we examined (1) the effects of overexpression of the ets-1 gene on angiogenesis in a rat hindlimb ischemia model, and (2) how ets-1 induced angiogenesis. METHODS AND RESULTS In this study, we used the HVJ-liposome method, which is highly effective for transfection, to transfect the human ets-1 gene. At 4 weeks after transfection, the capillary density and blood flow were significantly increased in a hindlimb transfected with the human ets-1 gene compared with control. These data clearly demonstrated that ets-1 has the ability to stimulate angiogenesis in vivo. To elucidate the molecular mechanisms by which ets-1 induced angiogenesis, we focused especially on the expression of hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF), potent angiogenic growth factors, because the promoter regions of both genes contain ets binding sites. Interestingly, overexpression of ets-1 upregulated both tissue HGF and VEGF concentrations in rat hindlimb. More importantly, administration of neutralizing antibody against HGF and VEGF attenuated the increase in blood flow and BrdU-positive cells induced by ets-1. Upregulation of HGF and VEGF by ets-1 was also confirmed by in vitro experiments using human vascular smooth muscle cells. CONCLUSIONS The present study demonstrated that ets-1 regulated angiogenesis through the induction of angiogenic growth factors (VEGF and HGF). Overexpression of ets may provide a new therapeutic strategy to treat peripheral arterial disease.
Collapse
Affiliation(s)
- Naotaka Hashiya
- Division of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Hiasa KI, Ishibashi M, Ohtani K, Inoue S, Zhao Q, Kitamoto S, Sata M, Ichiki T, Takeshita A, Egashira K. Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation 2004; 109:2454-61. [PMID: 15148275 DOI: 10.1161/01.cir.0000128213.96779.61] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Stromal cell-derived factor-1alpha (SDF-1alpha) is implicated as a chemokine for endothelial progenitor cells (EPCs). We therefore hypothesized that SDF-1alpha gene transfer would induce therapeutic neovascularization in vivo by functioning as a chemokine of EPC. METHODS AND RESULTS To examine SDF-1alpha-induced mobilization of EPC, we used bone marrow-transplanted mice whose blood cells ubiquitously express beta-galactosidase (LacZ). We produced unilateral hindlimb ischemia in the mice and transfected them with plasmid DNA encoding SDF-1alpha or empty plasmids into the ischemic muscles. SDF-1alpha gene transfer mobilized EPCs into the peripheral blood, augmented recovery of blood perfusion to the ischemic limb, and increased capillary density associated with partial incorporation of LacZ-positive cells into the capillaries of the ischemic limb, suggesting that SDF-1alpha induced vasculogenesis and angiogenesis. SDF-1alpha gene transfer did not affect ischemia-induced expression of vascular endothelial growth factor (VEGF) but did enhance Akt and endothelial nitric oxide synthase (eNOS) activity. Blockade of VEGF or NOS prevented all such SDF-1alpha-induced effects. CONCLUSIONS SDF-1alpha gene transfer enhanced ischemia-induced vasculogenesis and angiogenesis in vivo through a VEGF/eNOS-related pathway. This strategy might become a novel chemokine therapy for next generation therapeutic neovascularization.
Collapse
Affiliation(s)
- Ken-ichi Hiasa
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Waters RE, Terjung RL, Peters KG, Annex BH. Preclinical models of human peripheral arterial occlusive disease: implications for investigation of therapeutic agents. J Appl Physiol (1985) 2004; 97:773-80. [PMID: 15107408 DOI: 10.1152/japplphysiol.00107.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peripheral arterial occlusive disease (PAOD) is now recognized as a combination of clinical syndromes that are associated with significant morbidity and mortality. The primary pathophysiology of PAOD is impaired perfusion to the lower extremity. Effective pharmacotherapy designed to increase perfusion in PAOD is lacking, and revascularization options are suboptimal. New and more efficacious therapies that improve blood flow are definitely needed, and thus designing, describing, and validating these new therapies in preclinical PAOD models will be essential. This study describes the various preclinical PAOD models presently in use, correlates the models to human PAOD, and reviews the available end points that can be used to detect a response to therapy.
Collapse
Affiliation(s)
- Richard E Waters
- Division of Cardiology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, NC 27705, USA
| | | | | | | |
Collapse
|
165
|
Tsutsumi N, Yonemitsu Y, Shikada Y, Onimaru M, Tanii M, Okano S, Kaneko K, Hasegawa M, Hashizume M, Maehara Y, Sueishi K. Essential role of PDGFRalpha-p70S6K signaling in mesenchymal cells during therapeutic and tumor angiogenesis in vivo: role of PDGFRalpha during angiogenesis. Circ Res 2004; 94:1186-94. [PMID: 15059936 DOI: 10.1161/01.res.0000126925.66005.39] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Discovery of the common and ubiquitous molecular targets for the disruption of angiogenesis, that are independent of the characteristics of malignant tumors, is desired to develop the more effective antitumor drugs. In this study, we propose that the platelet-derived growth factor receptor-alpha (PDGFRalpha)-p70S6K signal transduction pathway in mesenchymal cells, which is required for functional angiogenesis induced by fibroblast growth factor-2, is the potent candidate. Using murine limb ischemia as a tumor-free assay system, we demonstrated that p70S6K inhibitor rapamycin (RAPA) targets mesenchymal cells to shut down the sustained expression of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF), via silencing of the PDGFRalpha-p70S6K pathway. Irrespective of the varied expression profiles of angiogenic factors in each tumor tested, RAPA constantly led the tumors to dormancy and severe ischemia in the time course, even associated with upregulated expression of VEGF from tumors. Because RAPA showed only a minimal effect to hypoxia-related expression of VEGF in culture, these results suggest that RAPA targets the host-vasculature rather than tumor itself in vivo. Thus, our current study indicates that the PDGFRalpha-p70S6K pathway is an essential regulator for FGF-2-mediated therapeutic neovascularization, as well as for the host-derived vasculature but not tumors during tumor angiogenesis, via controlling continuity of expression of multiple angiogenic growth factors.
Collapse
MESH Headings
- Animals
- Carcinoma, Squamous Cell/blood supply
- Carcinoma, Squamous Cell/pathology
- Cell Hypoxia
- Epidermal Growth Factor/biosynthesis
- Epidermal Growth Factor/genetics
- Fibroblast Growth Factor 2/pharmacology
- Gene Expression Regulation/drug effects
- Hepatocyte Growth Factor/biosynthesis
- Hepatocyte Growth Factor/genetics
- Hindlimb/blood supply
- Humans
- Ischemia/physiopathology
- Liver Neoplasms, Experimental/blood supply
- Liver Neoplasms, Experimental/genetics
- Male
- Mesoderm/cytology
- Mesoderm/drug effects
- Mesoderm/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Mouth Neoplasms/pathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/physiopathology
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/physiology
- Platelet-Derived Growth Factor/pharmacology
- Receptor, Platelet-Derived Growth Factor alpha/physiology
- Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors
- Ribosomal Protein S6 Kinases, 70-kDa/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sirolimus/pharmacology
- Stromal Cells/drug effects
- Stromal Cells/metabolism
Collapse
Affiliation(s)
- Norifumi Tsutsumi
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Carr AN, Davis MG, Eby-Wilkens E, Howard BW, Towne BA, Dufresne TE, Peters KG. Tyrosine phosphatase inhibition augments collateral blood flow in a rat model of peripheral vascular disease. Am J Physiol Heart Circ Physiol 2004; 287:H268-76. [PMID: 14988069 DOI: 10.1152/ajpheart.00007.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During embryonic development, the growth of blood vessels requires the coordinated activation of endothelial receptor tyrosine kinases (RTKs) such as vascular endothelial growth factor receptor-2 (VEGFR-2) and Tie-2. Similarly, in adulthood, activation of endothelial RTKs has been shown to enhance development of the collateral circulation and improve blood flow to ischemic tissues. Recent evidence suggests that RTK activation is negatively regulated by protein tyrosine phosphatases (PTPs). In this study, we used the nonselective PTP inhibitor bis(maltolato)oxovanadium IV (BMOV) to test the potential efficacy of PTP inhibition as a means to enhance endothelial RTK activation and improve collateral blood flow. In cultured endothelial cells, pretreatment with BMOV augmented VEGFR-2 and Tie-2 tyrosine phosphorylation and enhanced VEGF- and angiopoietin-1-mediated cell survival. In rat aortic ring explants, BMOV enhanced vessel sprouting, a process that can be influenced by both VEGFR-2 and Tie-2 activation. Moreover, 2 wk of BMOV treatment in a rat model of peripheral vascular disease enhanced collateral blood flow similarly to VEGF, and after 4 wk, BMOV was superior to VEGF. Taken together, these studies provide evidence that PTPs are important regulators of endothelial RTK activation and for the first time demonstrate the potential utility of phosphatase inhibition as a means to promote collateral development and enhance collateral blood flow to ischemic tissue.
Collapse
Affiliation(s)
- Andrew N Carr
- Cardiovascular Research Division, Health Care Research Center, Procter and Gamble Pharmaceuticals, 8700 Mason Montgomery Rd., Box 1064, Mason, OH 45040, USA.
| | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
PURPOSE OF REVIEW Gene therapy utilizes viral and non-viral vectors to transfer genetic material into a host in the hope of treating disease. This article will review the potential applications of gene therapy in the treatment of cardiac and pulmonary diseases. RECENT FINDINGS The results from several phase I and II clinical trials have recently been published. In patients with ischemic heart disease, evidence of coronary revascularization has been observed after the delivery of angiogenic factors. Several trials have demonstrated a reduction in anginal symptoms, increases in exercise tolerance, and objective improvements in myocardial perfusion. Evidence of the transfer of therapeutic genes has been observed in human trials of inherited pulmonary diseases. Unfortunately, there has been little evidence of clinical efficacy in these studies. A variety of gene therapy strategies are being explored in the treatment of thoracic malignancies. Partial antitumor responses have occurred in some of the subjects enrolled in these studies. SUMMARY Significant progress has been made in the field of gene therapy in the past decade. Data from these early animal and human clinical trials will provide important information to guide future studies.
Collapse
Affiliation(s)
- Joseph W Szokol
- Department of Anesthesiology, Evanston Northwestern Healthcare, Evanston and Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60201, USA.
| | | | | | | |
Collapse
|
168
|
Namba T, Koike H, Murakami K, Aoki M, Makino H, Hashiya N, Ogihara T, Kaneda Y, Kohno M, Morishita R. Angiogenesis induced by endothelial nitric oxide synthase gene through vascular endothelial growth factor expression in a rat hindlimb ischemia model. Circulation 2003; 108:2250-7. [PMID: 14568906 DOI: 10.1161/01.cir.0000093190.53478.78] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Because the mechanism of the angiogenic property of nitric oxide (NO) was not fully understood in vivo, we focused on the role of vascular endothelial growth factor (VEGF) in angiogenesis induced by endothelial NO synthase (eNOS) gene transfer. METHODS AND RESULTS After intramuscular injection of eNOS DNA into a rat ischemic hindlimb, transfection of eNOS vector resulted in a significant increase in eNOS protein 1 week after transfection. In addition, tissue concentrations of nitrite and nitrate were significantly increased in rats transfected with the eNOS gene up to 2 weeks after transfection. The increase in tissue nitrite and nitrate concentrations was completely inhibited by NG-nitro-L-arginine methyl ester (L-NAME). In contrast, serum concentrations of nitrite and nitrate and blood pressure were not changed by eNOS gene transfer. Importantly, overexpression of the eNOS gene resulted in a significant increase in peripheral blood flow, whereas L-NAME inhibited the increase in blood flow. Interestingly, basal blood flow was significantly lower in rats treated with L-NAME than in control rats. A significant increase in capillary number was consistently detected in rats transfected with the eNOS gene at 4 weeks after transfection, accompanied by a significant increase in VEGF. Moreover, administration of neutralizing anti-VEGF antibody abolished the increase in blood flow and capillary density induced by eNOS plasmid injection. CONCLUSIONS Overall, intramuscular injection of bovine eNOS plasmid induced therapeutic angiogenesis in a rat ischemic hindlimb model, a potential therapy for peripheral arterial disease. The stimulation of angiogenesis by NO might be due to upregulation of local VEGF expression.
Collapse
Affiliation(s)
- Tsunetatsu Namba
- Division of Clinical Gene Therapy, Osaka University Medical School, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Okano S, Yonemitsu Y, Nagata S, Sata S, Onimaru M, Nakagawa K, Tomita Y, Kishihara K, Hashimoto S, Nakashima Y, Sugimachi K, Hasegawa M, Sueishi K. Recombinant Sendai virus vectors for activated T lymphocytes. Gene Ther 2003; 10:1381-91. [PMID: 12883535 DOI: 10.1038/sj.gt.3301998] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T-lymphocyte-directed gene therapy has potential as a treatment of subjects with immunological disorders. One current limitation of this therapeutic strategy is low gene transfer efficiency, even when complex procedures are used. We report herein that a recombinant Sendai virus vector (SeV) was able to overcome this issue. Using jellyfish enhanced green fluorescent protein gene (EGFP), we found that SeV was able to transduce and express a foreign gene specifically and efficiently in activated murine and human T cells, but not in naive T cells, without centrifugation or reagents including polybrene and protamine sulfate; the present findings were in clear contrast to those demonstrated with the use of retroviruses. The transduction was selective in antigen-activated T cells, while antigen-irrelevant T cells were not transduced, even under bystander activation from specific T-cell responses by antigens ex vivo. Receptor saturation studies suggested a possible mechanism of activated T-cell-specific gene transfer, ie, SeV might attach to naive T cells but might be unable to enter their cytoplasm. We therefore propose that the SeV vector system may prove to be a potentially important alternative in the area of T-cell-directed gene therapy used in the clinical setting.
Collapse
Affiliation(s)
- S Okano
- Division of Pathophygiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Bitzer M, Armeanu S, Lauer UM, Neubert WJ. Sendai virus vectors as an emerging negative-strand RNA viral vector system. J Gene Med 2003; 5:543-53. [PMID: 12825193 DOI: 10.1002/jgm.426] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The power to manipulate the genome of negative-strand RNA viruses, including the insertion of additional non-viral genes, has led to the development of a new class of viral vectors for gene transfer approaches. The murine parainfluenza virus type I, or Sendai virus (SeV), has emerged as a prototype virus of this vector group, being employed in numerous in vitro as well as animal studies over the last few years. Extraordinary features of SeV are the remarkably brief contact time that is necessary for cellular uptake, a strong but adjustable expression of foreign genes, efficient infection in the respiratory tract despite a mucus layer, transduction of target cells being independent of the cell cycle, and an exclusively cytoplasmic replication cycle without any risk of chromosomal integration. In this review we describe the current knowledge of Sendai virus vector (SeVV) development as well as the results of first-generation vector applications under both in vitro and in vivo conditions. So far, Sendai virus vectors have been identified to be a highly efficient transduction tool for a broad range of different tissues and applications. Future directions in vector design and development are discussed.
Collapse
Affiliation(s)
- Michael Bitzer
- Internal Medicine I, Medical University Clinic Tübingen, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
171
|
Shoji T, Yonemitsu Y, Komori K, Tanii M, Itoh H, Sata S, Shimokawa H, Hasegawa M, Sueishi K, Maehara Y. Intramuscular gene transfer of FGF-2 attenuates endothelial dysfunction and inhibits intimal hyperplasia of vein grafts in poor-runoff limbs of rabbit. Am J Physiol Heart Circ Physiol 2003; 285:H173-82. [PMID: 12623787 DOI: 10.1152/ajpheart.00996.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We previously demonstrated that sustained disturbance of endothelium-dependent vasorelaxation and poor distal runoff in ischemic limbs were critical factors affecting the neointimal development of autologous vein grafts (VGs). Also, we recently showed the superior therapeutic potential of basic fibroblast growth factor (bFGF/FGF-2) boosted by the recombinant Sendai virus (SeV) for severe limb ischemia compared with that of vascular endothelial growth factor. Here, the effect of FGF-2 on neointimal hyperplasia of VGs was examined in a rabbit model of poor-runoff limbs. Two weeks after initial surgery for the induction of poor-runoff, SeV-expressing human FGF-2 (SeV-hFGF2) or that encoding firefly luciferase (109 plaque-forming units/head) was injected into the thigh and calf muscle. At that time, the femoral vein was implanted in the femoral artery in an end-to-end manner in some groups. FGF-2 gene-transferred limbs demonstrated significantly increased blood flow assessed not only by laser Doppler flow image but also by ultrasonic transit-time flowmeter (USTF). USTF also showed a significant increase in the blood flow ratio of the deep femoral artery to external iliac artery, indicating that collateral flow was significantly restored in the thigh muscles (P < 0.01). Reduction of neointimal hyperplasia was also observed in the VGs treated by SeV-hFGF2; these grafts demonstrated significant restoration of endothelium-dependent vasorelaxation. These findings thus extend the indications of therapeutic angiogenesis using SeV-hFGF2 to include not only limb salvage but also prevention of late graft failure.
Collapse
Affiliation(s)
- Tetsuya Shoji
- Department of Surgery and Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 2003; 65:489-97. [PMID: 12761840 DOI: 10.1002/jbm.a.10542] [Citation(s) in RCA: 300] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Site-specific delivery of angiogenic growth factors from tissue-engineered devices should provide an efficient means of stimulating localized vessel recruitment to the cell transplants and would ensure cell survival and function. In the present article, we describe the construction of a novel porous alginate scaffold that incorporates tiny poly (lactic-co-glycolic acid) microspheres capable of controlling the release of angiogenic factors, such as basic fibroblast growth factor (bFGF). The microspheres are an integral part of the solid alginate matrix, and their incorporation does not affect the scaffold porosity or pore size. In vitro, bFGF was released from the porous composite scaffolds in a controlled manner and it was biologically active as assessed by its ability to induce the proliferation of cardiac fibroblasts. The controlled delivery of bFGF from the three-dimensional scaffolds accelerated the matrix vascularization after implantation on the mesenteric membrane in rat peritoneum. The number of penetrating capillaries into the bFGF-releasing scaffolds was nearly fourfold higher than into the control scaffolds (those incorporating microspheric BSA and heparin but not bFGF). At day 10 posttransplantation, capillary density in the composite scaffolds was 45 +/- 3/mm(2) and it increased to 70 +/- 7/mm(2) by day 21. The released bFGF induced the formation of large and matured blood vessels, as judged by the massive layer of mural cells surrounding the endothelial cells. The control over bFGF delivery and localizing its effects to areas of need, may aid in the wider application of bFGF in therapeutic angiogenesis as well as in tissue engineering.
Collapse
Affiliation(s)
- Anat Perets
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | |
Collapse
|
173
|
Inoue M, Tokusumi Y, Ban H, Kanaya T, Shirakura M, Tokusumi T, Hirata T, Nagai Y, Iida A, Hasegawa M. A new Sendai virus vector deficient in the matrix gene does not form virus particles and shows extensive cell-to-cell spreading. J Virol 2003; 77:6419-29. [PMID: 12743299 PMCID: PMC155001 DOI: 10.1128/jvi.77.11.6419-6429.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new recombinant Sendai virus vector (SeV/DeltaM), in which the gene encoding matrix (M) protein was deleted, was recovered from cDNA and propagated in a packaging cell line expressing M protein by using a Cre/loxP induction system. The titer of SeV/DeltaM carrying the enhanced green fluorescent protein gene in place of the M gene was 7 x 10(7) cell infectious units/ml or more. The new vector showed high levels of infectivity and gene expression, similar to those of wild-type SeV vector, in vitro and in vivo. Virus maturation into a particle was almost completely abolished in cells infected with SeV/DeltaM. Instead, SeV/DeltaM infection brought about a significant increase of syncytium formation under conditions in which the fusion protein was proteolytically cleaved and activated by trypsin-like protease. This shows that SeV/DeltaM spreads markedly to neighboring cells in a cell-to-cell manner, because both hemagglutinin-neuraminidase and active fusion proteins are present at very high levels on the surface of cells infected with SeV/DeltaM. Thus, SeV/DeltaM is a novel type of vector with the characteristic features of loss of virus particle formation and gain of cell-to-cell spreading via a mechanism dependent on the activation of the fusion protein.
Collapse
Affiliation(s)
- Makoto Inoue
- DNAVEC Research Inc., Tsukuba-shi, Ibaraki 305-0856, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Shirakura M, Fukumura M, Inoue M, Fujikawa S, Maeda M, Watabe K, Kyuwa S, Yoshikawa Y, Hasegawa M. Sendai virus vector-mediated gene transfer of glial cell line-derived neurotrophic factor prevents delayed neuronal death after transient global ischemia in gerbils. Exp Anim 2003; 52:119-27. [PMID: 12806886 DOI: 10.1538/expanim.52.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We have developed a cytoplasmic replicating virus vector of Sendai virus (SeV) that infects and replicates in most mammalian cells, including neurons, and directs high-level gene expression. To investigate the protective effect of SeV vector-mediated gene transfer of glial cell line-derived neurotrophic factor (GDNF) on the delayed neuronal death caused by transient global ischemia in gerbils, SeV vectors carrying either GDNF (SeV/GDNF) or enhanced green fluorescent protein gene (SeV/GFP) were stereotaxically microinjected into the lateral ventricle. Four days after injection, occlusion of the bilateral common carotid arteries for 5 min produced transient global forebrain ischemia. Treatment with SeV/GDNF significantly decreased the delayed neuronal death of the hippocampal CA1 pyramidal neurons observed 6 days after the operation. TUNEL staining demonstrated that SeV/GDNF treatment markedly reduced the number of apoptotic cells in the hippocampal CA1 neurons, indicating that SeV/GDNF treatment prevented apoptosis. Furthermore, delayed neuronal death on the contralateral side of the hippocampal CA1 was also prevented to a similar extent as that on the ipsilateral side. These results suggest that SeV/GDNF prevents the delayed neuronal death induced by ischemia and is potentially useful for gene therapy for stroke.
Collapse
Affiliation(s)
- Masayuki Shirakura
- DNAVEC Research Inc., 1-25-11 Kannondai, Tsukuba-shi, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Jozkowicz A, Fügl A, Nanobashvili J, Neumayer C, Dulak J, Valentini D, Funovics P, Polterauer P, Redl H, Huk I. Delivery of high dose VEGF plasmid using fibrin carrier does not influence its angiogenic potency. Int J Artif Organs 2003; 26:161-9. [PMID: 12653351 DOI: 10.1177/039139880302600211] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Delivery of DNA mixed with a degradable matrix carrier was supposed to improve transgene expression. Using a rabbit hind-limb ischemia model, we tested the angiogenic potency of plasmid encoding human vascular endothelial growth factor (pSG5-VEGF165) entrapped in fibrin sealant. Animals were injected intramuscularly with 500 microg of pSG5-VEGF165 or control plasmid, dissolved in saline (PBS) or fibrin glue. After 14 days, presence of delivered constructs and expression of transgene was confirmed in injected muscles of all animals. There were no significant differences in the levels of human VEGF mRNA and protein between VEGF-PBS and VEGF-fibrin groups (Mann-Whitney test). Accordingly, pSG5-VEGF165 regardless of the way of delivery, induced similar increases in capillary density within treated muscles (ANOVA). Control plasmid did not show any effects. In conclusion, injection of pSG5-VEGF165 into ischemic adductor muscle leads to synthesis of human VEGF and increases the number of capillaries. Fibrin carrier does not influence its angiogenic potential.
Collapse
Affiliation(s)
- A Jozkowicz
- Department of Vascular Surgery, University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Chang DS, Su H, Tang GL, Brevetti LS, Sarkar R, Wang R, Kan YW, Messina LM. Adeno-associated viral vector-mediated gene transfer of VEGF normalizes skeletal muscle oxygen tension and induces arteriogenesis in ischemic rat hindlimb. Mol Ther 2003; 7:44-51. [PMID: 12573617 DOI: 10.1016/s1525-0016(02)00035-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Critical limb ischemia is an important clinical problem that often leads to disability and limb loss. Vascular endothelial growth factor (VEGF), delivered either as recombinant protein or as gene therapy, has been shown to promote both collateral artery formation (arteriogenesis) and capillary angiogenesis in animal models of hindlimb ischemia. However, none of the previous studies has demonstrated an improvement in tissue hypoxia, the condition that drives the molecular response to ischemia. Furthermore, the optimal vector and route of gene delivery have not been determined. Recently, adeno-associated viral (AAV) vectors, which efficiently transduce skeletal muscle and produce sustained transgene expression, have been used as gene therapy vectors. We asked whether an intra-arterial injection of AAV-VEGF(165) normalizes muscle oxygen tension by increasing skeletal muscle oxygen tension, and promotes arteriogenesis and angiogenesis in a rat model of severe hindlimb ischemia. We found that AAV-VEGF treatment normalized muscle oxygen tension in the ischemic limb. In contrast, vehicle and AAV-lacZ-treated limbs remained ischemic. Collateral arteries were more numerous in AAV-VEGF-treated rats, but, surprisingly, capillaries were not. We conclude that intra-arterial AAV-mediated gene transfer of AAV-VEGF(165) normalizes muscle oxygen tension and leads to arteriogenesis in rats with severe hindlimb ischemia.
Collapse
Affiliation(s)
- David S Chang
- Pacific Vascular Research Laboratory, Division of Vascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Onimaru M, Yonemitsu Y, Tanii M, Nakagawa K, Masaki I, Okano S, Ishibashi H, Shirasuna K, Hasegawa M, Sueishi K. Fibroblast growth factor-2 gene transfer can stimulate hepatocyte growth factor expression irrespective of hypoxia-mediated downregulation in ischemic limbs. Circ Res 2002; 91:923-30. [PMID: 12433837 DOI: 10.1161/01.res.0000043281.66969.32] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocyte growth factor (HGF) is a potent angiogenic polypeptide that stimulates angiogenesis. Transcriptional regulation of HGF, however, has not been fully defined, with the exception of the hypoxia-mediated downregulation in cultured cells. In the present study, we report that angiogenic growth factors, including HGF, were upregulated in a murine model of critical limb ischemia in vivo, a finding that was in conflict with previous in vitro data. Mice deficient in basic fibroblast growth factor-2 (FGF-2) showed reduced induction of HGF protein in ischemic muscles, and overexpression of FGF-2 via gene transfer stimulated endogenous HGF, irrespective of the presence of ischemia. In culture, FGF-2 rapidly stimulated HGF mRNA, and a sustained expression was evident in the time course in vascular smooth muscle cells and fibroblasts. FGF-2-mediated induction of HGF was fully dependent on the mitogen-activated protein kinase pathway yet was not affected by either hypoxia or a protein kinase A inhibitor. In the early expression, FGF-2 directly stimulated HGF mRNA without the requirement of new protein synthesis, whereas sustained induction of HGF in the later phase was partly mediated by platelet-derived growth factor-AA. Furthermore, in vivo overexpression of FGF-2 significantly improved the blood perfusion, and the effect was abolished by systemic blockade of HGF in ischemic limbs. This is the first demonstration of a regulational mechanism of HGF expression via FGF-2 that was independent of the presence of hypoxia. The harmonized therapeutic effects of FGF-2, accompanied with the activity of endogenous HGF, may provide a beneficial effect for the treatment of limb ischemia.
Collapse
MESH Headings
- Animals
- Blood Flow Velocity/drug effects
- Cell Line
- Disease Models, Animal
- Fibroblast Growth Factor 2/biosynthesis
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/pharmacology
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Expression Regulation/drug effects
- Gene Transfer Techniques
- Growth Substances/metabolism
- Hepatocyte Growth Factor/genetics
- Hepatocyte Growth Factor/metabolism
- Hindlimb/blood supply
- Hindlimb/physiopathology
- Humans
- Ischemia/pathology
- Ischemia/physiopathology
- Laser-Doppler Flowmetry
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Microcirculation/drug effects
- Microcirculation/physiopathology
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Platelet-Derived Growth Factor/metabolism
- RNA, Messenger/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Mitsuho Onimaru
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|