151
|
Streeter J, Thiel W, Brieger K, Miller Jr. FJ. Opportunity Nox: The Future of NADPH Oxidases as Therapeutic Targets in Cardiovascular Disease. Cardiovasc Ther 2012; 31:125-37. [DOI: 10.1111/j.1755-5922.2011.00310.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
152
|
Hsu YH, Chen YC, Chen TH, Sue YM, Cheng TH, Chen JR, Chen CH. Far-infrared therapy induces the nuclear translocation of PLZF which inhibits VEGF-induced proliferation in human umbilical vein endothelial cells. PLoS One 2012; 7:e30674. [PMID: 22292015 PMCID: PMC3264594 DOI: 10.1371/journal.pone.0030674] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/20/2011] [Indexed: 11/21/2022] Open
Abstract
Many studies suggest that far-infrared (FIR) therapy can reduce the frequency of some vascular-related diseases. The non-thermal effect of FIR was recently found to play a role in the long-term protective effect on vascular function, but its molecular mechanism is still unknown. In the present study, we evaluated the biological effect of FIR on vascular endothelial growth factor (VEGF)-induced proliferation in human umbilical vein endothelial cells (HUVECs). We found that FIR ranging 3∼10 µm significantly inhibited VEGF-induced proliferation in HUVECs. According to intensity and time course analyses, the inhibitory effect of FIR peaked at an effective intensity of 0.13 mW/cm2 at 30 min. On the other hand, a thermal effect did not inhibit VEGF-induced proliferation in HUVECs. FIR exposure also inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinases in HUVECs. FIR exposure further induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO generation in VEGF-treated HUVECs. Both VEGF-induced NO and reactive oxygen species generation was involved in the inhibitory effect of FIR. Nitrotyrosine formation significantly increased in HUVECs treated with VEGF and FIR together. Inhibition of phosphoinositide 3-kinase (PI3K) by wortmannin abolished the FIR-induced phosphorylation of eNOS and Akt in HUVECs. FIR exposure upregulated the expression of PI3K p85 at the transcriptional level. We further found that FIR exposure induced the nuclear translocation of promyelocytic leukemia zinc finger protein (PLZF) in HUVECs. This induction was independent of a thermal effect. The small interfering RNA transfection of PLZF blocked FIR-increased PI3K levels and the inhibitory effect of FIR. These data suggest that FIR induces the nuclear translocation of PLZF which inhibits VEGF-induced proliferation in HUVECs.
Collapse
Affiliation(s)
- Yung-Ho Hsu
- Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yen-Cheng Chen
- Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Tso-Hsiao Chen
- Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Yuh-Mou Sue
- Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Jia-Rung Chen
- Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Cheng-Hsien Chen
- Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
153
|
Laughlin MH, Bowles DK, Duncker DJ. The coronary circulation in exercise training. Am J Physiol Heart Circ Physiol 2012; 302:H10-23. [PMID: 21984538 PMCID: PMC3334245 DOI: 10.1152/ajpheart.00574.2011] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/29/2011] [Indexed: 12/26/2022]
Abstract
Exercise training (EX) induces increases in coronary transport capacity through adaptations in the coronary microcirculation including increased arteriolar diameters and/or densities and changes in the vasomotor reactivity of coronary resistance arteries. In large animals, EX increases capillary exchange capacity through angiogenesis of new capillaries at a rate matched to EX-induced cardiac hypertrophy so that capillary density remains normal. However, after EX coronary capillary exchange area is greater (i.e., capillary permeability surface area product is greater) at any given blood flow because of altered coronary vascular resistance and matching of exchange surface area and blood flow distribution. The improved coronary capillary blood flow distribution appears to be the result of structural changes in the coronary tree and alterations in vasoreactivity of coronary resistance arteries. EX also alters vasomotor reactivity of conduit coronary arteries in that after EX, α-adrenergic receptor responsiveness is blunted. Of interest, α- and β-adrenergic tone appears to be maintained in the coronary microcirculation in the presence of lower circulating catecholamine levels because of increased receptor responsiveness to adrenergic stimulation. EX also alters other vasomotor control processes of coronary resistance vessels. For example, coronary arterioles exhibit increased myogenic tone after EX, likely because of a calcium-dependent PKC signaling-mediated alteration in voltage-gated calcium channel activity in response to stretch. Conversely, EX augments endothelium-dependent vasodilation throughout the coronary arteriolar network and in the conduit arteries in coronary artery disease (CAD). The enhanced endothelium-dependent dilation appears to result from increased nitric oxide bioavailability because of changes in nitric oxide synthase expression/activity and decreased oxidant stress. EX also decreases extravascular compressive forces in the myocardium at rest and at comparable levels of exercise, mainly because of decreases in heart rate and duration of systole. EX does not stimulate growth of coronary collateral vessels in the normal heart. However, if exercise produces ischemia, which would be absent or minimal under resting conditions, there is evidence that collateral growth can be enhanced. While there is evidence that EX can decrease the progression of atherosclerotic lesions or even induce the regression of atherosclerotic lesions in humans, the evidence of this is not strong due to the fact that most prospective trials conducted to date have included other lifestyle changes and treatment strategies by necessity. The literature from large animal models of CAD also presents a cloudy picture concerning whether EX can induce the regression of or slow the progression of atherosclerotic lesions. Thus, while evidence from research using humans with CAD and animal models of CAD indicates that EX increases endothelium-dependent dilation throughout the coronary vascular tree, evidence that EX reverses or slows the progression of lesion development in CAD is not conclusive at this time. This suggests that the beneficial effects of EX in CAD may not be the result of direct effects on the coronary artery wall. If this suggestion is true, it is important to determine the mechanisms involved in these beneficial effects.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Biomedical Sciences, University of Missouri, Columbia, 65211, USA.
| | | | | |
Collapse
|
154
|
Jagadeesha DK, Takapoo M, Banfi B, Bhalla RC, Miller FJ. Nox1 transactivation of epidermal growth factor receptor promotes N-cadherin shedding and smooth muscle cell migration. Cardiovasc Res 2011; 93:406-13. [PMID: 22102727 DOI: 10.1093/cvr/cvr308] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIMS In atherosclerosis and restenosis, vascular smooth muscle cells (SMCs) migrate into the subendothelial space and proliferate, contributing to neointimal formation. The goal of this study was to define the signalling pathway by which Nox1 NAPDH oxidase mediates SMC migration. METHODS AND RESULTS SMCs were cultured from thoracic aorta from Nox1(-/y) (Nox1 knockout, KO) and wild-type (WT) mice. In response to thrombin, WT but not Nox1 KO SMCs generated increased levels of reactive oxygen species (ROS). Deficiency of Nox1 prevented thrombin-induced phosphorylation of Src and the subsequent transactivation of the epidermal growth factor receptor (EGFR) at multiple tyrosine residues. Next, activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and matrix metalloproteinase-9 (MMP-9) by thrombin was inhibited by the EGFR inhibitor AG1478 and in Nox1 KO SMCs. Thrombin-induced shedding of N-cadherin from the plasma membrane was dependent on the presence of Nox1 and was blocked by AG1478 and an inhibitor of metalloproteinases. Migration of SMCs to thrombin was impaired in the Nox1 KO SMCs and was restored by expression of Nox1. Finally, treatment of WT SMCs with AG1478 abrogated Nox1-dependent SMC migration. CONCLUSIONS The Nox1 NADPH oxidase signals through EGFR to activate MMP-9 and promote the shedding of N-cadherin, thereby contributing to SMC migration.
Collapse
|
155
|
In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid-polymeric nanoparticles. Proc Natl Acad Sci U S A 2011; 108:19347-52. [PMID: 22087004 DOI: 10.1073/pnas.1115945108] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Following recent successes with percutaneous coronary intervention (PCI) for treating coronary artery disease (CAD), many challenges remain. In particular, mechanical injury from the procedure results in extensive endothelial denudation, exposing the underlying collagen IV-rich basal lamina, which promotes both intravascular thrombosis and smooth muscle proliferation. Previously, we reported the engineering of collagen IV-targeting nanoparticles (NPs) and demonstrated their preferential localization to sites of arterial injury. Here, we develop a systemically administered, targeted NP system to deliver an antiproliferative agent to injured vasculature. Approximately 60-nm lipid-polymeric NPs were surface functionalized with collagen IV-targeting peptides and loaded with paclitaxel. In safety studies, the targeted NPs showed no signs of toxicity and a ≥3.5-fold improved maximum tolerated dose versus paclitaxel. In efficacy studies using a rat carotid injury model, paclitaxel (0.3 mg/kg or 1 mg/kg) was i.v. administered postprocedure on days 0 and 5. The targeted NP group resulted in lower neointima-to-media (N/M) scores at 2 wk versus control groups of saline, paclitaxel, or nontargeted NPs. Compared with sham-injury groups, an ∼50% reduction in arterial stenosis was observed with targeted NP treatment. The combination of improved tolerability, sustained release, and vascular targeting could potentially provide a safe and efficacious option in the management of CAD.
Collapse
|
156
|
Koon CM, Woo KS, Leung PC, Fung KP. Salviae Miltiorrhizae Radix and Puerariae Lobatae Radix herbal formula mediates anti-atherosclerosis by modulating key atherogenic events both in vascular smooth muscle cells and endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:175-183. [PMID: 21924338 DOI: 10.1016/j.jep.2011.08.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/03/2011] [Accepted: 08/31/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salviae Miltiorrhizae Radix (Danshen) and Puerariae Lobatae Radix (Gegen) are principal herbs have long been used in combination for treating cardiovascular disease. AIMS OF STUDY Danshen and Gegen in the ratio of 7:3 (DGW) have significantly reduced the carotid intimal-media thickening (IMT) in patients in our previous clinical study. In the present study, we have demonstrated the mechanisms on IMT reduction by investigating its key processes on both vascular smooth muscle cell (vSMC) and endothelial cells. MATERIALS AND METHODS The anti-proliferative effects of DGW on platelet-derived growth factor (PDGF) induced vSMC proliferation were studied by cell proliferation, cell cycle distribution, p-ERK and cyclin D expression level. The anti-migratory effect of DGW was investigated by using transwell apparatus. For human umbilical endothelial cells (HUVEC), the inhibitory effects of DGW on TNF-alpha induced cell adhesion, cell adhesion molecules expression, MCP-1 and IL-6 production were investigated. RESULTS DGW significantly inhibited A7r5 proliferation and exhibited G1/S cell cycle arrest by suppressing both p-ERK and cyclin D expression. Moreover, DGW showed anti-migratory effect against PDGF-induced A7r5 migration. In addition, DGW inhibited the cell adhesion as well as the expression of ICAM-1 and VCAM-1, the production of MCP-1 but not IL-6 in TNF-α stimulated HUVECs. CONCLUSIONS Our study provided strong scientific evidence on IMT reduction in patients by modulating the key atherogenic events in both vSMC and endothelial cells.
Collapse
MESH Headings
- Atherosclerosis/metabolism
- Atherosclerosis/prevention & control
- Cell Physiological Phenomena/drug effects
- Cell Proliferation/drug effects
- Chemokine CCL2/metabolism
- Cyclin D/metabolism
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Human Umbilical Vein Endothelial Cells
- Humans
- Intercellular Adhesion Molecule-1/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phytotherapy
- Plant Roots
- Pueraria
- Salvia miltiorrhiza
- Tunica Intima/cytology
- Tunica Intima/drug effects
- Tunica Intima/metabolism
- Tunica Media/cytology
- Tunica Media/drug effects
- Tunica Media/metabolism
- Vascular Cell Adhesion Molecule-1/metabolism
Collapse
Affiliation(s)
- C M Koon
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | | | | | |
Collapse
|
157
|
Majesky MW, Dong XR, Hoglund V, Daum G, Mahoney WM. The adventitia: a progenitor cell niche for the vessel wall. Cells Tissues Organs 2011; 195:73-81. [PMID: 22005572 DOI: 10.1159/000331413] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent observations suggest that the adventitial layer of blood vessels exhibits properties resembling a stem/progenitor cell niche. Progenitor cells have been isolated from the adventitia of both murine and human blood vessels with the potential to form endothelial cells, mural cells, osteogenic cells, and adipocytes. These progenitors appear to cluster at or near the border zone between the outer media and inner adventitia. In the mouse, this border zone region corresponds to a localized site of sonic hedgehog signaling in the artery wall. This brief review will discuss the emerging evidence that the tunica adventitia may provide a niche-like signaling environment for resident progenitor cells and will address the role of the adventitia in growth, remodeling, and repair of the artery wall.
Collapse
Affiliation(s)
- Mark W Majesky
- Seattle Children's Research Institute, University of Washington, Seattle, Wash., USA.
| | | | | | | | | |
Collapse
|
158
|
Esteban V, Méndez-Barbero N, Jiménez-Borreguero LJ, Roqué M, Novensá L, García-Redondo AB, Salaices M, Vila L, Arbonés ML, Campanero MR, Redondo JM. Regulator of calcineurin 1 mediates pathological vascular wall remodeling. ACTA ACUST UNITED AC 2011; 208:2125-39. [PMID: 21930771 PMCID: PMC3182048 DOI: 10.1084/jem.20110503] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Angiotensin-II–driven calcineurin activation and regulator of calcineurin-1 (Rcan-1) expression is required for pathological vascular remodeling in mice. Artery wall remodeling, a major feature of diseases such as hypertension, restenosis, atherosclerosis, and aneurysm, involves changes in the tunica media mass that reduce or increase the vessel lumen. The identification of molecules involved in vessel remodeling could aid the development of improved treatments for these pathologies. Angiotensin II (AngII) is a key effector of aortic wall remodeling that contributes to aneurysm formation and restenosis through incompletely defined signaling pathways. We show that AngII induces vascular smooth muscle cell (VSMC) migration and vessel remodeling in mouse models of restenosis and aneurysm. These effects were prevented by pharmacological inhibition of calcineurin (CN) or lentiviral delivery of CN-inhibitory peptides. Whole-genome analysis revealed >1,500 AngII-regulated genes in VSMCs, with just 11 of them requiring CN activation. Of these, the most sensitive to CN activation was regulator of CN 1 (Rcan1). Rcan1 was strongly activated by AngII in vitro and in vivo and was required for AngII-induced VSMC migration. Remarkably, Rcan1−/− mice were resistant to AngII-induced aneurysm and restenosis. Our results indicate that aneurysm formation and restenosis share mechanistic elements and identify Rcan1 as a potential therapeutic target for prevention of aneurysm and restenosis progression.
Collapse
Affiliation(s)
- Vanesa Esteban
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Lee T, Wadehra D. Genetic causation of neointimal hyperplasia in hemodialysis vascular access dysfunction. Semin Dial 2011; 25:65-73. [PMID: 21917012 DOI: 10.1111/j.1525-139x.2011.00967.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The major cause of hemodialysis vascular access failure is venous stenosis resulting from neointimal hyperplasia. Genetic factors have been shown to be associated with cardiovascular disease and peripheral vascular disease (PVD) in the general population. Genetic factors may also play an important role in vascular access stenosis and development of neointimal hyperplasia by affecting pathways that lead to inflammation, endothelial function, oxidative stress, and vascular smooth muscle proliferation. This review will discuss the role of genetics in understanding neointimal hyperplasia development in hemodialysis vascular access dysfunction and other disease processes with similar neointimal hyperplasia development such as coronary artery disease and PVD.
Collapse
Affiliation(s)
- Timmy Lee
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Cincinnati, Cincinnati, Ohio 45267-0585, USA.
| | | |
Collapse
|
160
|
Vascular anastomosis using controlled phase transitions in poloxamer gels. Nat Med 2011; 17:1147-52. [PMID: 21873986 DOI: 10.1038/nm.2424] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/01/2011] [Indexed: 11/08/2022]
Abstract
Vascular anastomosis is the cornerstone of vascular, cardiovascular and transplant surgery. Most anastomoses are performed with sutures, which are technically challenging and can lead to failure from intimal hyperplasia and foreign body reaction. Numerous alternatives to sutures have been proposed, but none has proven superior, particularly in small or atherosclerotic vessels. We have developed a new method of sutureless and atraumatic vascular anastomosis that uses US Food and Drug Administration (FDA)-approved thermoreversible tri-block polymers to temporarily maintain an open lumen for precise approximation with commercially available glues. We performed end-to-end anastomoses five times more rapidly than we performed hand-sewn controls, and vessels that were too small (<1.0 mm) to sew were successfully reconstructed with this sutureless approach. Imaging of reconstructed rat aorta confirmed equivalent patency, flow and burst strength, and histological analysis demonstrated decreased inflammation and fibrosis at up to 2 years after the procedure. This new technology has potential for improving efficiency and outcomes in the surgical treatment of cardiovascular disease.
Collapse
|
161
|
Majesky MW, Dong XR, Hoglund V, Mahoney WM, Daum G. The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol 2011; 31:1530-9. [PMID: 21677296 DOI: 10.1161/atvbaha.110.221549] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Conventional views of the tunica adventitia as a poorly organized layer of vessel wall composed of fibroblasts, connective tissue, and perivascular nerves are undergoing revision. Recent studies suggest that the adventitia has properties of a stem/progenitor cell niche in the artery wall that may be poised to respond to arterial injury. It is also a major site of immune surveillance and inflammatory cell trafficking and harbors a dynamic microvasculature, the vasa vasorum, that maintains the medial layer and provides an important gateway for macrophage and leukocyte migration into the intima. In addition, the adventitia is in contact with tissue that surrounds the vessel and may actively participate in exchange of signals and cells between the vessel wall and the tissue in which it resides. This brief review highlights recent advances in our understanding of the adventitia and its resident progenitor cells and discusses progress toward an integrated view of adventitial function in vascular development, repair, and disease.
Collapse
Affiliation(s)
- Mark W Majesky
- Seattle Children’s Research Institute, Departments of Pediatric, Center for Cardiovascular Biology, and the Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98101, USA.
| | | | | | | | | |
Collapse
|
162
|
Bobryshev YV, Andreeva ER, Mikhailova IA, Andrianova IV, Moisenovich MM, Khapchaev S, Agapov II, Sobenin IA, Lusta KA, Orekhov AN. Correlation between lipid deposition, immune-inflammatory cell content and MHC class II expression in diffuse intimal thickening of the human aorta. Atherosclerosis 2011; 219:171-83. [PMID: 21831373 DOI: 10.1016/j.atherosclerosis.2011.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/27/2011] [Accepted: 07/05/2011] [Indexed: 02/08/2023]
Abstract
Inflammatory reactions driven by an accumulation in the intima of immune-inflammatory cells and focal lipid depositions are the hallmarks of atherogenesis. It is commonly accepted that immune-inflammatory cell accumulation and lipid deposition are associated with the very earlier stage of atherosclerosis but no study has yet focused on the determination of quantitative values of this association. The present study examined correlations between lipid deposition, immune-inflammatory cell content and major histocompatibility complex (MHC) class II molecule HLA-DR expression in diffuse intimal thickening (DIT), which is thought to represent the earliest macroscopic manifestation of atherosclerosis. In parallel consecutive tissue sections of DIT, lipids were examined by chromatographic analysis (including triglycerides, cholesteryl esters, free cholesterol and phospholipids), histochemically, using Oil Red O staining, and by electron microscopy. Immune-inflammatory cells and HLA-DR expression were examined immunohistochemically in consecutive sections of the same tissue specimens. The study revealed that lipids exhibited a non-uniform distribution throughout the intima. In the juxtaluminal sublayer, lipids were localized both intracellularly and extracellularly, whereas in the juxtamedial musculoelastic sublayer, lipids were present predominantly along elastic fibers. Lipid deposits were found to positively correlate with HLA-DR expression (r=0.79; p<0.001). The study also identified a positive correlation between lipid deposition and immune-inflammatory cell content but the correlation values varied between different sublayers of the tunica intima. The correlation between lipid deposition and immune-inflammatory cell content in the juxtaluminal sublayer of the intima was notably stronger (r=0.69; p<0.001) than in the juxtamedial musculoelastic layer (r=0.28; p<0.001). The findings of the present study support a view that lipid accumulation in the intima plays a role in the initiation of inflammatory reaction and that at the pre-lesional stage in the development of atherosclerosis, lipid-associated immune cell activation might occur primarily in the juxtaluminal portion of the intima.
Collapse
Affiliation(s)
- Yuri V Bobryshev
- Institute for Atherosclerosis Research, Russian Academy of Natural Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Comparison of Clipping Versus Ligation of Side-Branches During Saphenous Vein Graft Harvesting: Which Method Is Superior? Ann Vasc Surg 2011; 25:669-74. [DOI: 10.1016/j.avsg.2010.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/21/2010] [Accepted: 11/22/2010] [Indexed: 11/21/2022]
|
164
|
Bowles DK, Laughlin MH. Mechanism of beneficial effects of physical activity on atherosclerosis and coronary heart disease. J Appl Physiol (1985) 2011; 111:308-10. [PMID: 21617083 DOI: 10.1152/japplphysiol.00634.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- D K Bowles
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
165
|
Zou J, Zhang X, Yang H, Zhu Y, Ma H, Wang S. Rapamycin-loaded nanoparticles for inhibition of neointimal hyperplasia in experimental vein grafts. J Cardiothorac Surg 2011; 6:69. [PMID: 21569412 PMCID: PMC3115851 DOI: 10.1186/1749-8090-6-69] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 05/12/2011] [Indexed: 11/26/2022] Open
Abstract
Background Nanoparticles possess several advantages as a carrier system for intracellular delivery of therapeutic agents. Rapamycin is an immunosuppressive agent which also exhibits marked antiproliferative properties. We investigated whether rapamycin-loaded nanoparticles(NPs) can reduce neointima formation in a rat model of vein graft disease. Methods Poly(lactic-co-glycolic acid) (PLGA) NPs containing rapamycin was prepared using an oil/water solvent evaporation technique. Nanoparticle size and morphology were determined by dynamic light scattering methodology and electron microscopy. In vitro cytotoxicity of blank, rapamycin-loaded PLGA (RPLGA) NPs was studied using MTT Assay. Excised rat jugular vein was treated ex vivo with blank-NPs, or rapamycin-loaded NPs, then interposed back into the carotid artery position using a cuff technique. Grafts were harvested at 21 days and underwent morphometric analysis as well as immunohistochemical analysis. Results Rapamycin was efficiently loaded in PLGA nanoparticles with an encapsulation efficiency was 87.6%. The average diameter of NPs was 180.3 nm. The NPs-containing rapamycin at 1 ng/ml significantly inhibited vascular smooth muscular cells proliferation. Measurement of rapamycin levels in vein grafts shown that the concentration of rapamycin in vein grafts at 3 weeks after grafting were 0.9 ± 0.1 μg/g. In grafted veins without treatment intima-media thickness was 300.4 ±181.5 μm after grafting 21 days. Whereas, Veins treated with rapamycin-loaded NPs showed a reduction of intimal-media thickness of 150.2 ± 62.5 μm (p = 0.001). CD-31 staining was used to measure luminal endothelial coverage in grafts and indicated a high level of endothelialization in 21 days vein grafts with no significant effect of blank or rapamycin-loaded NPs group. Conclusions We conclude that sustained-release rapamycin from rapymycin loaded NPs inhibits vein graft thickening without affecting the reendothelialization in rat carotid vein-to-artery interposition grafts and this may be a promising therapy for the treatment of vein graft disease.
Collapse
Affiliation(s)
- Junjie Zou
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjng, Jiangsu province, China
| | | | | | | | | | | |
Collapse
|
166
|
Singh NK, Wang D, Kundumani-Sridharan V, Van Quyen D, Niu J, Rao GN. 15-Lipoxygenase-1-enhanced Src-Janus kinase 2-signal transducer and activator of transcription 3 stimulation and monocyte chemoattractant protein-1 expression require redox-sensitive activation of epidermal growth factor receptor in vascular wall remodeling. J Biol Chem 2011; 286:22478-88. [PMID: 21536676 DOI: 10.1074/jbc.m111.225060] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the mechanisms by which 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) activates signal transducer and activator of transcription 3 (STAT3), we studied the role of epidermal growth factor receptor (EGFR). 15(S)-HETE stimulated tyrosine phosphorylation of EGFR in a time-dependent manner in vascular smooth muscle cells (VSMCs). Interference with EGFR activation blocked 15(S)-HETE-induced Src and STAT3 tyrosine phosphorylation, monocyte chemoattractant protein-1 (MCP-1) expression and VSMC migration. 15(S)-HETE also induced tyrosine phosphorylation of Janus kinase 2 (Jak2) in VSMCs, and its inhibition substantially reduced STAT3 phosphorylation, MCP-1 expression, and VSMC migration. In addition, Src formed a complex with EGFR and Jak2, and its inhibition completely blocked Jak2 and STAT3 phosphorylation, MCP-1 expression, and VSMC migration. 15(S)-HETE induced the production of H(2)O(2) via an NADPH oxidase-dependent manner and its scavengers, N-acetyl cysteine (NAC) and catalase suppressed 15(S)-HETE-stimulated EGFR, Src, Jak2, and STAT3 phosphorylation and MCP-1 expression. Balloon injury (BI) induced EGFR, Src, Jak2, and STAT3 phosphorylation, and inhibition of these signaling molecules attenuated BI-induced MCP-1 expression and smooth muscle cell migration from the medial to the luminal surface resulting in reduced neointima formation. In addition, inhibition of EGFR blocked BI-induced Src, Jak2, and STAT3 phosphorylation. Similarly, interference with Src activation suppressed BI-induced Jak2 and STAT3 phosphorylation. Furthermore, adenovirus-mediated expression of dnJak2 also blocked BI-induced STAT3 phosphorylation. Consistent with the effects of 15(S)-HETE on the activation of EGFR-Src-Jak2-STAT3 signaling in VSMCs in vitro, adenovirus-mediated expression of 15-lipoxygenase 1 (15-Lox1) enhanced BI-induced EGFR, Src, Jak2, and STAT3 phosphorylation leading to enhanced MCP-1 expression in vivo. Blockade of Src or Jak2 suppressed BI-induced 15-Lox1-enhanced STAT3 phosphorylation, MCP-1 expression, and neointima formation. In addition, whereas dominant negative Src blocked BI-induced 15-Lox1-enhanced Jak2 phosphorylation, dnJak2 had no effect on Src phosphorylation. Together, these observations demonstrate for the first time that the 15-Lox1-15(S)-HETE axis activates EGFR via redox-sensitive manner, which in turn mediates Src-Jak2-STAT3-dependent MCP-1 expression leading to vascular wall remodeling.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|
167
|
Rapamycin-Loaded Nanoparticles for Inhibition of Neointimal Hyperplasia in Experimental Vein Grafts. Ann Vasc Surg 2011; 25:538-46. [PMID: 21549923 DOI: 10.1016/j.avsg.2011.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/22/2011] [Accepted: 01/26/2011] [Indexed: 11/21/2022]
|
168
|
Widespread distribution of HLA-DR-expressing cells in macroscopically undiseased intima of the human aorta: a possible role in surveillance and maintenance of vascular homeostasis. Immunobiology 2011; 217:558-68. [PMID: 21601938 DOI: 10.1016/j.imbio.2011.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/28/2011] [Accepted: 03/30/2011] [Indexed: 12/21/2022]
Abstract
The architectonics and cell composition of the human large arteries are not sufficiently understood. The present study is the first to undertake an analysis of the distribution and quantities of HLA-DR-expressing cells in grossly undiseased human intima using immunohistochemical and immunofluorescent analysis, complemented by the advantages of confocal microscopy. The study revealed a widespread distribution of HLA-DR-expressing cells throughout the intimal space where the cells were integrated into continuous networks via long cell processes. Numbers of HLA-DR+ cells were found to be significantly larger in the middle third of the intima than in the superficial and deep intimal portions. We speculate that a widespread distribution of HLA-DR-expressing cells in the intima of normal human aorta might play a role in the surveillance and maintenance of vascular homeostasis.
Collapse
|
169
|
Okabe T, Hoshiga M, Negoro N, Nakakoji T, Arishiro K, Ishihara T, Ueno H, Hanafusa T. Rabbit plaque models closely resembling lesions in human coronary artery disease. Int J Cardiol 2011; 147:271-7. [DOI: 10.1016/j.ijcard.2009.09.528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 08/31/2009] [Accepted: 09/10/2009] [Indexed: 11/28/2022]
|
170
|
Does atorvastatin induce aortic smooth muscle cell apoptosis in vivo? Vascul Pharmacol 2011; 54:5-12. [DOI: 10.1016/j.vph.2010.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/30/2010] [Accepted: 10/07/2010] [Indexed: 01/12/2023]
|
171
|
SERCA2a controls the mode of agonist-induced intracellular Ca2+ signal, transcription factor NFAT and proliferation in human vascular smooth muscle cells. J Mol Cell Cardiol 2010; 50:621-33. [PMID: 21195084 DOI: 10.1016/j.yjmcc.2010.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/23/2010] [Accepted: 12/21/2010] [Indexed: 01/05/2023]
Abstract
In blood vessels, tone is maintained by agonist-induced cytosolic Ca(2+) oscillations of quiescent/contractile vascular smooth muscle cells (VSMCs). However, in synthetic/proliferative VSMCs, Gq/phosphoinositide receptor-coupled agonists trigger a steady-state increase in cytosolic Ca(2+) followed by a Store Operated Calcium Entry (SOCE) which translates into activation of the proliferation-associated transcription factor NFAT. Here, we report that in human coronary artery smooth muscle cells (hCASMCs), the sarco/endoplasmic reticulum calcium ATPase type 2a (SERCA2a) expressed in the contractile form of the hCASMCs, controls the nature of the agonist-induced Ca(2+) transient and the resulting down-stream signaling pathway. Indeed, restoring SERCA2a expression by gene transfer in synthetic hCASMCs 1) increased Ca(2+) storage capacity; 2) modified agonist-induced IP(3)R Ca(2+) release from steady-state to oscillatory mode (the frequency of agonist-induced IP(3)R Ca(2+) signal was 11.66 ± 1.40/100 s in SERCA2a-expressing cells (n=39) vs 1.37 ± 0.20/100 s in control cells (n=45), p<0.01); 3) suppressed SOCE by preventing interactions between SR calcium sensor STIM1 and pore forming unit ORAI1; 4) inhibited calcium regulated transcription factor NFAT and its down-stream physiological function such as proliferation and migration. This study provides evidence for the first time that oscillatory and steady-state patterns of Ca(2+) transients have different effects on calcium-dependent physiological functions in smooth muscle cells.
Collapse
|
172
|
Jeong JO, Kim JH, Ahn KT, Park HS, Jang WI, Park JH, Lee JH, Choi SW, Kim JM, Seong IW. Tumor Suppressor Serine/Threonine Kinase LKB1 Expression, Not Kinase Activity, Increased in the Vascular Smooth Muscle Cells and Neointima in the Rat Carotid Artery Injury Model. Korean Circ J 2010; 40:552-7. [PMID: 21217931 PMCID: PMC3008825 DOI: 10.4070/kcj.2010.40.11.552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 04/29/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Vascular smooth muscle cell (VSMC) proliferation is responsible for the restenosis of previously inserted coronary stents. Angiotensin II (Ang II) is known to regulate VSMC proliferation. LKB1, a serine/threonine kinase, interacts with the p53 pathway and acts as a tumor suppressor. MATERIALS AND METHODS We assessed the association of Ang II and the expression of LKB1 in primary cultured murine VSMCs and neointima of the Sprague Dawley rat carotid artery injury model. We created carotid balloon injuries and harvested the injured carotid arteries 14 days after the procedure. RESULTS Ang II increased LKB1 expression in a time-dependent manner and peaked at an Ang II concentration of 10(-7) mole/L in VSMCs. In the animal experiment, neointima was markedly increased after balloon injury compared to the control group. Immunohistochemical studies showed that LKB1 expression increased according to neointima thickness. Ang II augmented LKB1 expression after the injury. Western blot analysis of LKB1 with carotid artery lysate revealed the same pattern as LKB1 immunohistochemistry. Increased LKB1 expression started at 5 days after the balloon injury, and peaked at 14 days after the injury. Although LKB1 expression was increased after the injury, LKB1 kinase activity was not increased. Ang II or balloon-injury increased the expression of LKB1 although the LKB1 activity was reduced. CONCLUSION Ang II increased LKB1 expression in VSMCs and neointima. These findings were not kinase dependant.
Collapse
Affiliation(s)
- Jin-Ok Jeong
- Division of Cardiology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Chu X, Filali M, Stanic B, Takapoo M, Sheehan A, Bhalla R, Lamb FS, Miller FJ. A critical role for chloride channel-3 (CIC-3) in smooth muscle cell activation and neointima formation. Arterioscler Thromb Vasc Biol 2010; 31:345-51. [PMID: 21071705 DOI: 10.1161/atvbaha.110.217604] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We have shown that the chloride-proton antiporter chloride channel-3 (ClC-3) is required for endosome-dependent signaling by the Nox1 NADPH oxidase in SMCs. In this study, we tested the hypothesis that ClC-3 is necessary for proliferation of smooth muscle cells (SMCs) and contributes to neointimal hyperplasia following vascular injury. METHODS AND RESULTS Studies were performed in SMCs isolated from the aorta of ClC-3-null and littermate control (wild-type [WT]) mice. Thrombin and tumor necrosis factor-α (TNF-α) each caused activation of both mitogen activated protein kinase extracellular signal-regulated kinases 1 and 2 and the matrix-degrading enzyme matrix metalloproteinase-9 and cell proliferation of WT SMCs. Whereas responses to thrombin were preserved in ClC-3-null SMCs, the responses to TNF-α were markedly impaired. These defects normalized following gene transfer of ClC-3. Carotid injury increased vascular ClC-3 expression, and compared with WT mice, ClC-3-null mice exhibited a reduction in neointimal area of the carotid artery 28 days after injury. CONCLUSIONS ClC-3 is necessary for the activation of SMCs by TNF-α but not thrombin. Deficiency of ClC-3 markedly reduces neointimal hyperplasia following vascular injury. In view of our previous findings, this observation is consistent with a role for ClC-3 in endosomal Nox1-dependent signaling. These findings identify ClC-3 as a novel target for the prevention of inflammatory and proliferative vascular diseases.
Collapse
Affiliation(s)
- Xi Chu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
174
|
|
175
|
Brewster LP, Ucuzian AA, Brey EM, Liwanag M, Samarel AM, Greisler HP. FRNK overexpression limits the depth and frequency of vascular smooth muscle cell invasion in a three-dimensional fibrin matrix. J Cell Physiol 2010; 225:562-8. [PMID: 20506497 DOI: 10.1002/jcp.22239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pathological vascular smooth muscle cell (VSMC) behavior after vascular interventions such as angioplasty or bypass is initiated within the 3D environment of the vessel media. Here VSMCs proliferate, invade the surrounding matrix, migrate adluminally, and deposit substantial amounts of matrix, leading to myointimal hyperplasia and decreased blood flow to critical organs and tissue. Since focal adhesion kinase (FAK) mediates many of the VSMC responses to these pathologic events, it provides a reasonable pharmacologic target to limit this invasive VSMC behavior and to better understand the cellular pathophysiology of this disease. Here we quantified the effectiveness of disabling FAK in VSMCs with its dominant-negative inhibitor, FAK-related nonkinase (FRNK), in a clinically relevant 3D assay. We found that FRNK overexpression decreased VSMC invasion (both the length and frequency) in this matrix. These effects were demonstrated in the presence and absence of chemical mitotic inhibition, suggesting that FAK's effect on cellular matrix invasion, migration, and proliferation utilize separate and/or redundant signaling cascades. Mechanistically, FAK inhibition decreased its localization to focal adhesions which led to a significant decrease in FAK autophosphorylation and the phosphorylation of the serine/threonine kinase, AKT. Together these findings suggest that disruption of FAK signaling may provide a pharmaceutical tool that limits pathological VSMC cell behavior.
Collapse
Affiliation(s)
- L P Brewster
- Department of Surgery, Loyola University Medical Center, Maywood, Illinois, USA
| | | | | | | | | | | |
Collapse
|
176
|
Gur S, Kadowitz PJ, Hellstrom WJ. A Protein Tyrosine Kinase Inhibitor, Imatinib Mesylate (Gleevec), Improves Erectile and Vascular Function Secondary to a Reduction of Hyperglycemia in Diabetic Rats. J Sex Med 2010; 7:3341-50. [DOI: 10.1111/j.1743-6109.2010.01922.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
177
|
Pereira AC, Olivon VC, de Oliveira AM. Impaired calcium influx despite hyper-reactivity in contralateral carotid following balloon injury: eNOS involvement. Eur J Pharmacol 2010; 642:121-7. [DOI: 10.1016/j.ejphar.2010.05.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 03/25/2010] [Accepted: 05/06/2010] [Indexed: 11/24/2022]
|
178
|
Weaver JD, Ku DN. Mechanical Evaluation of Polyvinyl Alcohol Cryogels for Covered Stents. J Med Device 2010. [DOI: 10.1115/1.4001863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Covered stents could reduce restenosis rates by preventing cellular migration with a physical barrier and may have reduced thrombotic complications if an appropriate material is selected. Previous Dacron™ or poly(tetrafluoroethylene) (PTFE) covered stents have had mixed clinical results in part because they are too thick and too thrombogenic at small diameters. Ideally, the covering should be as thin as a stent strut, mechanically able to expand as much as a stent, and durable enough to withstand deployment. As an alternative to PTFE, thin polyvinyl alcohol (PVA) cryogel membranes were tested for their ability to stretch with uniaxial tension tests and for puncture strength with a modified ASTM method. Additionally, PVA cryogel covered stents were made by coating expanded bare metal stents. These covered stents were then hand-crimped onto a balloon catheter and expanded. PVA cryogel membranes were made as thin as 100 μm—thinner than some stent struts—and stretched to approximately 3.0 times their original diameter (similar to a stent during deployment). PVA cryogel membranes resisted puncture well with an average push-through displacement of 4.77 mm—allowing for safe deployment in vessels of up to 9 mm in diameter. Push-through displacement did not depend on membrane thickness in the range tested—a trait that could reduce stent profile without increased risk of puncture. All the PVA cryogel covered stents tolerated the crimping and expansion process well and there was little to no visible membrane damage. In conclusion, based on the results of these mechanical tests, PVA cryogels are mechanically suitable for covered stent membranes. This work represents a first step toward the creation of a new class of covered stent, which could prevent complications from both restenosis and thrombosis.
Collapse
Affiliation(s)
- Jason D. Weaver
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Suite 2127, Atlanta, GA 30332
| | - David N. Ku
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332
| |
Collapse
|
179
|
Winkelmann BR, von Holt K, Unverdorben M. Smoking and atherosclerotic cardiovascular disease: Part I: atherosclerotic disease process. Biomark Med 2010; 3:411-28. [PMID: 20477486 DOI: 10.2217/bmm.09.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The normal endothelium inhibits platelet and leukocyte adhesion to the vascular surface maintaining a balance of profibrinolytic and prothrombotic activity. Endothelial function is assessed largely as endothelium-dependent vasomotion, partly based on the assumption that impaired endothelium-dependent vasodilation reflects the alteration of important endothelial functions. Atherosclerotic risk factors, such as hypercholesterolemia, hypertension, diabetes and smoking, are associated with endothelial dysfunction. In the diseased endothelium, the balance between pro- and antithrombotic, pro- and anti-inflammatory, pro- and antiadhesive or pro- and antioxidant effects shifts towards a proinflammatory, prothrombotic, pro-oxidative and proadhesive phenotype of the endothelium. A common mechanism underlying endothelial dysfunction is related to the increased vascular production of reactive oxygen species. Recent studies suggest that inflammation per se, and C-reactive protein in particular, may contribute directly to endothelial dysfunction. The loss of endothelial integrity is a hallmark of atherosclerosis and the causal possible link between each individual risk factor, the development of atherosclerosis and the subsequent clinical events, such as myocardial infarction or stroke.
Collapse
|
180
|
Orlandi A, Bennett M. Progenitor cell-derived smooth muscle cells in vascular disease. Biochem Pharmacol 2010; 79:1706-13. [DOI: 10.1016/j.bcp.2010.01.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/18/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
|
181
|
Desai M, Mirzay-Razzaz J, von Delft D, Sarkar S, Hamilton G, Seifalian AM. Inhibition of neointimal formation and hyperplasia in vein grafts by external stent/sheath. Vasc Med 2010; 15:287-97. [DOI: 10.1177/1358863x10366479] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Synthetic and to a lesser extent vein graft failure is still a major problem in the treatment of peripheral arterial disease, with neointimal hyperplasia being the main cause for graft occlusion in the medium and long term. This review aims to establish the current status of external stents or sheaths in the prevention of intimal hyperplasia in small diameter (< 6 mm) vein grafts.
Collapse
Affiliation(s)
- Mital Desai
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK, Cardiovascular Haemodynamic Group, University College London, London, UK
| | - Jalaledin Mirzay-Razzaz
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK, Cardiovascular Haemodynamic Group, University College London, London, UK
| | - Dirk von Delft
- Christiaan Barnard Division of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| | - Sandip Sarkar
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - George Hamilton
- Vascular Unit, Royal Free Hampstead NHS Trust Hospital, London, UK
| | - Alexander M Seifalian
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK, Cardiovascular Haemodynamic Group, University College London, London, UK,
| |
Collapse
|
182
|
Geng YJ, Yang YJ, Casscells SW, Willerson JT. Vascular stem cells: a new concept in the pathogenesis of atherosclerosis and interventions for coronary heart disease. Future Cardiol 2010; 2:585-92. [PMID: 19804196 DOI: 10.2217/14796678.2.5.585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vascular stem cells are undifferentiated, oligopotent progenitor cells that are capable of giving rise to mature, functional cells in the vascular wall. Several types of vascular progenitor cells have been identified and characterized from embryonic and adult tissues, including progenitors with the potential to differentiate into endothelial and smooth muscle cells. The progenitors for endothelial and smooth muscle cells reside in atherosclerotic or restenotic lesions and circulate in the bloodstream. These stem cells may malfunction under the influence of the risk factors for atherosclerosis, as well as by medical interventions. The biological activities of these stem cells contribute to the regeneration, repair and remodeling of arterial walls injured by atherosclerosis. Hypercholesterolemia, inflammation, mechanical stress and genetic defects may interact in regulating the vascular stem cell response to atherogenic stimulation. Stem cell production, potency, growth and differentiation may decline as people age. Clarifying the cellular and molecular pathways that govern stem cell growth, differentiation and apoptosis should help clinical scientists to understand the pathogenesis of atherosclerosis and to develop novel therapeutic strategies for coronary heart disease. Recent clinical trials demonstrate encouraging outcomes of stem cell therapies.
Collapse
Affiliation(s)
- Yong-Jian Geng
- Center for Cardiovascular Biology & Atherosclerosis Research, Department of Internal Medicine, School of Medicine, University of Texas Health Science Center at Houston & the Laboratory of Heart Failure & Stem Cell Research, Texas Heart Institute, Houston, TX, USA.
| | | | | | | |
Collapse
|
183
|
Fang B, Li Y, Song Y, Li N. Isolation and characterization of multipotent progenitor cells from the human fetal aorta wall. Exp Biol Med (Maywood) 2010; 235:130-8. [PMID: 20404027 DOI: 10.1258/ebm.2009.009178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent evidence indicates that vascular progenitor cells may be the source of smooth muscle cells (SMCs) and endothelial cells (ECs). In the present study we isolated CD105(+), CD34(-) and fetal liver kinase(+) (Flk1(+)) cells from the human fetal arterial wall and demonstrated that they were vascular progenitors for both ECs and SMCs. In vitro, these cells cultured with vascular endothelial growth factor could differentiate into cells that expressed endothelial markers. Meanwhile, cells cultured with platelet-derived growth factor-BB could differentiate into cells that expressed smooth muscle markers. When transplanted into NOD/SCID mice, they contributed to neoangiogenesis in vivo during wound healing. These cells could also differentiate into osteogenic and adipogenic lineages in vitro. Hence multipotent vascular progenitor cells do exist in the arterial wall and they may have implications in the physical and pathological conditions of the vessel. Because these cells can be expanded in culture without obvious senescence for more than 30 population doublings, they may be an important source of ECs for cellular pro- or anti-angiogenic therapies.
Collapse
Affiliation(s)
- Baijun Fang
- Center of Excellence in Tissue Engineering, Henan Institute of Haematology, Henan Tumor Hospital, Zhengzhou University, Zhengzhou, China
| | | | | | | |
Collapse
|
184
|
Wang L, Gong F, Dong X, Zhou W, Zeng Q. Regulation of vascular smooth muscle cell proliferation by nuclear orphan receptor Nur77. Mol Cell Biochem 2010; 341:159-66. [DOI: 10.1007/s11010-010-0447-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/17/2010] [Indexed: 12/11/2022]
|
185
|
Allahverdian S, Francis GA. Cholesterol Homeostasis and High-Density Lipoprotein Formation in Arterial Smooth Muscle Cells. Trends Cardiovasc Med 2010; 20:96-102. [DOI: 10.1016/j.tcm.2010.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2010] [Indexed: 01/24/2023]
|
186
|
Chan KC, Ho HH, Peng CH, Lan KP, Lin MC, Chen HM, Wang CJ. Polyphenol-rich extract from mulberry leaf inhibits vascular smooth muscle cell proliferation involving upregulation of p53 and inhibition of cyclin-dependent kinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:2536-2542. [PMID: 20070102 DOI: 10.1021/jf904293p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study was carried out to investigate the impact of polyphenol-rich extract from mulberry leaf on the proliferation of vascular smooth muscle cell (VSMC) and verify its mechanism in vitro. VSMC proliferation is an important pathophysiological process in the development of atherosclerosis, which is the major cause of coronary artery disease (CAD). Polyphenol-rich foods, such as mulberry leaf, have been reported to reduce the risk of CAD. The effect of mulberry leaf extract (MLE) on cell growth was measured by a growth curve assay, on distribution of cells in the cell cycle by flow cytometry, and on cyclin-dependent kinase (CDK) activity and cell-cycle regulatory proteins by Western blot, immunoblotting, and immunoprecipitation analyses. The results showed that MLE induced phosphorylation of p53, promoted expression of p21 and p27, decreased CDK2/4 activity, inhibited phosphorylation of Rb, and thereby blocked the G1 to S transition in the cell cycle.
Collapse
Affiliation(s)
- Kuei-Chuan Chan
- Department of Internal Medicine, Chung Shan Medical University Hospital, School of Medicine
| | | | | | | | | | | | | |
Collapse
|
187
|
Werth D, Grassi G, Konjer N, Dapas B, Farra R, Giansante C, Kandolf R, Guarnieri G, Nordheim A, Heidenreich O. Proliferation of human primary vascular smooth muscle cells depends on serum response factor. Eur J Cell Biol 2010; 89:216-24. [PMID: 20096952 DOI: 10.1016/j.ejcb.2009.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Smooth muscle cells (SMCs) can switch between a differentiated/contractile and an alternative proliferative phenotype. The transcription factor serum response factor (SRF) has been implicated in the regulation of gene expression profiles determining both phenotypes. Whereas strong evidence exists for a role of SRF in SMC differentiation, the contribution of SRF to SMC proliferation is less well defined. For primary human vascular SMCs in particular, existing data are non-conclusive. To study SRF functions in primary human vascular SMCs, we used an siRNA approach. siRNA-mediated SRF suppression affected the expression of established SRF target genes such as smooth muscle alpha-actin (ACTA2) or SM22alpha (TAGLN) and decreased both F-actin formation and cell migration. Furthermore, SRF knockdown caused a cell-cycle arrest in G1 associated with reduced hyperphosphorylated pRB, cyclin A and SKP2 levels, and increased p27(kip1) (CDKN1B) protein levels. SRF-depleted cells expressed senescence-associated beta-galactosidase indicating an irreversible G1 arrest. siRNA-mediated suppression of SKP2 triggered senescence to a similar extent as SRF depletion, indicating that SRF knockdown-induced senescence may be dependent on a decrease in SKP2. Thus, SRF is an essential regulator of primary human vascular SMC proliferation and senescence. Interfering with SRF function may therefore be a promising strategy for the treatment of hyperproliferative SMC disorders such as atherosclerosis and in-stent restenosis.
Collapse
Affiliation(s)
- Daniela Werth
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard Karls University of Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Lilly B, Clark KA, Yoshigi M, Pronovost S, Wu ML, Periasamy M, Chi M, Paul RJ, Yet SF, Beckerle MC. Loss of the serum response factor cofactor, cysteine-rich protein 1, attenuates neointima formation in the mouse. Arterioscler Thromb Vasc Biol 2010; 30:694-701. [PMID: 20056913 DOI: 10.1161/atvbaha.109.200741] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Cysteine-rich protein (CRP) 1 and 2 are cytoskeletal lin-11 isl-1 mec-3 (LIM)-domain proteins thought to be critical for smooth muscle differentiation. Loss of murine CRP2 does not overtly affect smooth muscle differentiation or vascular function but does exacerbate neointima formation in response to vascular injury. Because CRPs 1 and 2 are coexpressed in the vasculature, we hypothesize that CRPs 1 and 2 act redundantly in smooth muscle differentiation. METHODS AND RESULTS We generated Csrp1 (gene name for CRP1) null mice by genetic ablation of the Csrp1 gene and found that mice lacking CRP1 are viable and fertile. Smooth muscle-containing tissues from Csrp1-null mice are morphologically indistinguishable from wild-type mice and have normal contractile properties. Mice lacking CRPs 1 and 2 are viable and fertile, ruling out functional redundancy between these 2 highly related proteins as a cause for the lack of an overt phenotype in the Csrp1-null mice. Csrp1-null mice challenged by wire-induced arterial injury display reduced neointima formation, opposite to that seen in Csrp2-null mice, whereas Csrp1/Csrp2 double-null mice produce a wild-type response. CONCLUSIONS Smooth muscle CRPs are not essential for normal smooth muscle differentiation during development, but may act antagonistically to modulate the smooth muscle response to pathophysiological stress.
Collapse
Affiliation(s)
- Brenda Lilly
- Huntsman Cancer Institute, Department of Biology, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Arakawa K, Ishibashi-Ueda H, Hao H, Ikeda Y, Kawamura A. Plaque Tissue Components Obtained from De Novo Lesions may Predict Restenosis after Directional Coronary Atherectomy. Ann Vasc Dis 2010. [DOI: 10.3400/avd.oa09008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
190
|
Arakawa K, Ishibashi-Ueda H, Hao H, Ikeda Y, Kawamura A. Plaque Tissue Components Obtained from De Novo Lesions may Predict Restenosis after Directional Coronary Atherectomy. Ann Vasc Dis 2010; 3:52-9. [PMID: 23555388 DOI: 10.3400/avd.avdoa09009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 05/11/2010] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A part of coronary stenotic lesions treated with directional coronary atherectomy (DCA) occur restenosis several months later. Specimens obtained by first DCA, present the histology of culplit lesions and may predict restenosis after PCI. METHODS The study group comprised 76 patients (male/female 65/11, age 61 ± 11 years). Restenosis, defined as > 50% stenosis diameter by quantitative cineangiography, was present in 26 patients. The other 50 patients (< 50% stenosis) constitute the "no restenosis" group. Inflammatory cells and other atheroma components were planimetrically quantified as a percentage of total tissue area. RESULTS As regards lymphocytes, neutrophils and smooth muscle cells, the grade of amount of cells did not differ between restenosis group and no restenosis group. The amount of obtained arterial media was similar, too. However, the area occupied by macrophages or calcified fragments was significantly larger in restenosis group than no restenosis group. And there was a tendency toward larger area occupied by cholesterol gruel, thrombus and myxomatous extracellular matrix (ECM) in restenosis group. CONCLUSION Rich macrophages infiltration, calcified fragments, cholesterol rich gruel and myxomatous ECM from primary lesions can be predictors of restenosis after DCA, suggesting a possible role in restenotic process after PCI.
Collapse
Affiliation(s)
- Kentaro Arakawa
- Division of Cardiology, Department of Internal Medicine, National Cardiovascular Center, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
191
|
Sarsour EH, Kumar MG, Chaudhuri L, Kalen AL, Goswami PC. Redox control of the cell cycle in health and disease. Antioxid Redox Signal 2009; 11:2985-3011. [PMID: 19505186 PMCID: PMC2783918 DOI: 10.1089/ars.2009.2513] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cellular oxidation and reduction (redox) environment is influenced by the production and removal of reactive oxygen species (ROS). In recent years, several reports support the hypothesis that cellular ROS levels could function as ''second messengers'' regulating numerous cellular processes, including proliferation. Periodic oscillations in the cellular redox environment, a redox cycle, regulate cell-cycle progression from quiescence (G(0)) to proliferation (G(1), S, G(2), and M) and back to quiescence. A loss in the redox control of the cell cycle could lead to aberrant proliferation, a hallmark of various human pathologies. This review discusses the literature that supports the concept of a redox cycle controlling the mammalian cell cycle, with an emphasis on how this control relates to proliferative disorders including cancer, wound healing, fibrosis, cardiovascular diseases, diabetes, and neurodegenerative diseases. We hypothesize that reestablishing the redox control of the cell cycle by manipulating the cellular redox environment could improve many aspects of the proliferative disorders.
Collapse
Affiliation(s)
- Ehab H Sarsour
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa , Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
192
|
Wu L, Li X, Li Y, Wang L, Tang Y, Xue M. Proliferative inhibition of danxiongfang and its active ingredients on rat vascular smooth muscle cell and protective effect on the VSMC damage induced by hydrogen peroxide. JOURNAL OF ETHNOPHARMACOLOGY 2009; 126:197-206. [PMID: 19735709 DOI: 10.1016/j.jep.2009.08.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 08/25/2009] [Accepted: 08/30/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY Danxiongfang (DF) is a new Chinese medicine formula used to treat atherosclerosis and vascular restenosis. The active ingredients in DF are danshensu (DSS), tanshinones (cryptotanshinone, CT) and ferulic acid (FA). The aim of present study was to evaluate the inhibitory effects of DF and its active ingredients on cell proliferation and protection against hydrogen peroxide (H(2)O(2))-induced injury in rat vascular smooth muscle cells (VSMC) in vitro. METHODS VSMC proliferation was assayed by cell counting and measurement of cell viability using the 3-(4, 5-dimethylthiazol -2yl)-2, 5-diphenyltetrazolium bromide (MTT) method and protein content was measured by the Bradford method. The nitric oxide (NO) level was detected by an assay kit. The endothelin-1 (ET-1) level was measured by ELISA. The protective effects of DF and its active ingredients on H(2)O(2)-induced cell injury was evaluated in terms of cell viability (MTT assay), superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels. Hydroxyl free radicals generated by the Fenton reaction was detected with the spin-trapping technique on an electron spin resonance spectrometer. RESULTS The results suggest that DSS, CT, FA and DF inhibited VSMC proliferation by increasing the NO level and decreasing the ET-1 content. In rat VSMCs exposed to H(2)O(2), FA, DSS, CT and the six formulations of DF increased cell viability and SOD activity, and reduced the levels of MDA and hydroxyl free radicals. These effects of FA, DSS and CT occurred in a dose-dependent manner. Of the six formulas, DF 4 and DF 5 had the more significant activities. The effects of DF were much greater than those of the individual ingredients, even though the concentrations of these ingredients in the DF formulas were much lower than the doses of the individual ingredients used in each study, indicating markedly synergistic effects of DSS, CT and FA in DF on rat VSMCs. CONCLUSIONS these findings provide a pharmacological foundation for the clinical use of DF in the prevention and treatment of hyperlipidemia and atherosclerosis relevant to endothelial cell proliferation and damage.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Aorta
- Cardiotonic Agents/pharmacology
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Coumaric Acids/pharmacology
- Dose-Response Relationship, Drug
- Drug Synergism
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Endothelin-1/metabolism
- Hydrogen Peroxide
- Hydroxyl Radical/metabolism
- Lactates/pharmacology
- Male
- Malondialdehyde/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Nitric Oxide/metabolism
- Phenanthrenes/pharmacology
- Rats
- Rats, Sprague-Dawley
- Superoxide Dismutase/metabolism
Collapse
Affiliation(s)
- Li Wu
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | |
Collapse
|
193
|
Xu S, Fu J, Chen J, Xiao P, Lan T, Le K, Cheng F, He L, Shen X, Huang H, Liu P. Development of an optimized protocol for primary culture of smooth muscle cells from rat thoracic aortas. Cytotechnology 2009; 61:65-72. [PMID: 19898948 DOI: 10.1007/s10616-009-9236-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 10/15/2009] [Indexed: 01/09/2023] Open
Abstract
Primary culture of smooth muscle cells has been widely used as a valuable tool to study the molecular mechanisms underlying atherosclerosis and restenosis. Currently, tissue explants and enzymatic digestion methods are frequently applied to produce smooth muscle cells. Explants method is time consuming, usually taking several weeks. The enzymatic digestion method requires large amounts of proteolytic enzymes to generate enough cells for cardiovascular research. The present study reports an optimized method by combining both techniques to obtain high purity smooth muscle cells. The cultured cells exhibited the characteristic "hills and valleys" growth pattern as observed by phase contrast microscopy and showed alpha-SM-actin positive staining by indirect immunocytochemistry and immunofluorescence. Purity of the cells is guaranteed by the lack of von Willebrand Factor immunoreactivity. Finally, the cultured cells well proliferate on oxidized-LDL stimulation, suggesting the practical utility of this new method.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, East of Waihuan Road 132, High Education Mega Center, 510006, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Fogelstrand P, Féral CC, Zargham R, Ginsberg MH. Dependence of proliferative vascular smooth muscle cells on CD98hc (4F2hc, SLC3A2). ACTA ACUST UNITED AC 2009; 206:2397-406. [PMID: 19841087 PMCID: PMC2768859 DOI: 10.1084/jem.20082845] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Activation of vascular smooth muscle cells (VSMCs) to migrate and proliferate is essential for the formation of intimal hyperplasia. Hence, selectively targeting activated VSMCs is a potential strategy against vaso-occlusive disorders such as in-stent restenosis, vein-graft stenosis, and transplant vasculopathy. We show that CD98 heavy chain (CD98hc) is markedly up-regulated in neointimal and cultured VSMCs, and that activated but not quiescent VSMCs require CD98hc for survival. CD98hc mediates integrin signaling and localizes amino acid transporters to the plasma membrane. SMC-specific deletion of CD98hc did not affect normal vessel morphology, indicating that CD98hc was not required for the maintenance of resident quiescent VSMCs; however, CD98hc deletion reduced intimal hyperplasia after arterial injury. Ex vivo and in vitro, loss of CD98hc suppressed proliferation and induced apoptosis in VSMCs. Furthermore, reconstitution with CD98hc mutants showed that CD98hc interaction with integrins was necessary for the survival of VSMCs. These studies establish the importance of CD98hc in VSMC proliferation and survival. Furthermore, loss of CD98hc was selectively deleterious to activated VSMCs while sparing resident quiescent VSMCs, suggesting that activated VSMCs are physiologically dependent on CD98hc, and hence, CD98hc is a potential therapeutic target in vaso-occlusive disorders.
Collapse
Affiliation(s)
- Per Fogelstrand
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
195
|
TW96, a synthetic 1,4-naphthoquinone, differentially regulates vascular and endothelial cells survival. Vascul Pharmacol 2009; 51:225-35. [DOI: 10.1016/j.vph.2009.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 04/22/2009] [Accepted: 06/18/2009] [Indexed: 11/16/2022]
|
196
|
Curci JA. Digging in the "soil" of the aorta to understand the growth of abdominal aortic aneurysms. Vascular 2009; 17 Suppl 1:S21-9. [PMID: 19426606 DOI: 10.2310/6670.2008.00085] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extensive studies into the etiology of aortic aneurysm disease have focused on the characteristic and unique inflammatory infiltration and elaboration of products of inflammatory cells which can result in matrix degradation. While these changes clearly have a significant impact on the development of aneurysm disease, little attention has been paid to the changes in the parenchymal cells of the aorta. Under normal conditions, the vascular smooth muscle cells which populate the aortic wall are responsible for the maintenance of the matrix components of the media, particularly the elastic fibers. As our understanding of the mechanisms of aneurysm formation and normal arterial anatomy become more sophisticated, it is clear that specific changes to these smooth muscle cells make them active participants in the medial matrix destruction characteristic of aneurysm disease. As others have described for intimal arterial disease, this is the "soil" from which aortic aneurysms grow.
Collapse
Affiliation(s)
- John A Curci
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
197
|
Lü JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 2009; 9:325-41. [PMID: 19435455 DOI: 10.1586/erm.09.15] [Citation(s) in RCA: 568] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Co-polymer poly(lactic-co-glycolic acid) (PLGA) nanotechnology has been developed for many years and has been approved by the US FDA for the use of drug delivery, diagnostics and other applications of clinical and basic science research, including cardiovascular disease, cancer, vaccine and tissue engineering. This article presents the more recent successes of applying PLGA-based nanotechnologies and tools in these medicine-related applications. It focuses on the possible mechanisms, diagnosis and treatment effects of PLGA preparations and devices. This updated information will benefit to both new and established research scientists and clinical physicians who are interested in the development and application of PLGA nanotechnology as new therapeutic and diagnostic strategies for many diseases.
Collapse
Affiliation(s)
- Jian-Ming Lü
- Michael E DeBakey Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
198
|
Potula HSK, Wang D, Quyen DV, Singh NK, Kundumani-Sridharan V, Karpurapu M, Park EA, Glasgow WC, Rao GN. Src-dependent STAT-3-mediated expression of monocyte chemoattractant protein-1 is required for 15(S)-hydroxyeicosatetraenoic acid-induced vascular smooth muscle cell migration. J Biol Chem 2009; 284:31142-55. [PMID: 19736311 DOI: 10.1074/jbc.m109.012526] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To understand the role of human 15-lipoxygenase 1 (15-LOX1) in vascular wall remodeling, we have studied the effect of the major 15-LOX1 metabolite of arachidonic acid, 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), on vascular smooth muscle cell (VSMC) migration both in vitro and in vivo. Among 5(S)-HETE, 12(S)-HETE, and 15(S)-HETE, 15(S)-HETE potentially stimulated more vascular smooth muscle cell (VSMC) migration. In addition, 15(S)-HETE-induced VSMC migration was dependent on Src-mediated activation of signal transducer and activator of transcription-3 (STAT-3). 15(S)-HETE also induced monocyte chemoattractant protein-1 (MCP-1) expression via Src-STAT-3 signaling, and neutralizing anti-MCP-1 antibodies completely negated 15(S)-HETE-induced VSMC migration. Cloning and characterization of a 2.6-kb MCP-1 promoter revealed the presence of four putative STAT-binding sites, and the site that is proximal to the transcription start site was found to be essential for 15(S)-HETE-induced Src-STAT-3-mediated MCP-1 expression. Rat carotid arteries that were subjected to balloon injury and transduced with Ad-15-LOX1 upon exposure to [(3)H]arachidonic acid ex vivo produced 15-HETE as a major eicosanoid and enhanced balloon injury-induced expression of MCP-1 in smooth muscle cells in Src and STAT-3-dependent manner in vivo. Adenovirus-mediated delivery of 15-LOX1 into rat carotid artery also led to recruitment and homing of macrophages to medial region in response to injury. In addition, transduction of Ad-15-LOX1 into arteries enhanced balloon injury-induced smooth muscle cell migration from media to intima and neointima formation. These results show for the first time that 15-LOX1-15(S)-HETE axis plays a major role in vascular wall remodeling after balloon angioplasty.
Collapse
Affiliation(s)
- Harihara S K Potula
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Effect of oxysterol-induced apoptosis of vascular smooth muscle cells on experimental hypercholesterolemia. J Biomed Biotechnol 2009; 2009:456208. [PMID: 19727411 PMCID: PMC2734998 DOI: 10.1155/2009/456208] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/24/2009] [Accepted: 07/07/2009] [Indexed: 01/06/2023] Open
Abstract
Smooth muscle cells (SMCs) undergo changes related to proliferation and apoptosis in the physiological remodeling of vessels and in diseases such as atherosclerosis and restenosis. Recent studies also have demonstrated the vascular cell proliferation and programmed cell death contribute to changes in vascular architecture in normal development and in disease. The present study was designed to investigate the apoptotic pathways induced by 25-hydroxycholesterol in SMCs cultures, using an in vivo/in vitro cell model in which SMCs were isolated and culture from chicken exposed to an atherogenic cholesterol-rich diet (SMC-Ch) and/or an antiatherogenic fish oil-rich diet (SMC-Ch-FO). Cells were exposed in vitro to 25-hydroxycholesterol to study levels of apoptosis and apoptotic proteins Bcl-2, Bcl-X(L) and Bax and the expression of bcl-2 and bcl-x(L), genes. The quantitative real-time reverse transcriptase-polymerase chain reaction and the Immunoblotting western blot analysis showed that 25-hydroxycholesterol produces apoptosis in SMCs, mediated by a high increase in Bax protein and Bax gene expression. These changes were more marked in SMC-Ch than in SMC-Ch-FO, indicating that dietary cholesterol produces changes in SMCs that make them more susceptible to 25-hydroxycholesterol-mediated apoptosis. Our results suggest that the replacement of a cholesterol-rich diet with a fish oil-rich diet produces some reversal of cholesterol-induced changes in the apoptotic pathways induced by 25-hydroxycholesterol in SMCs cultures, making SMCs more resistant to apoptosis.
Collapse
|
200
|
Khadim G, Nanjundappa A, Dieter RS. Intravascular MRI. CURRENT CARDIOVASCULAR IMAGING REPORTS 2009. [DOI: 10.1007/s12410-009-0034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|