151
|
Lopes LR, Zekavati A, Syrris P, Hubank M, Giambartolomei C, Dalageorgou C, Jenkins S, McKenna W, Plagnol V, Elliott PM. Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J Med Genet 2013; 50:228-39. [PMID: 23396983 PMCID: PMC3607113 DOI: 10.1136/jmedgenet-2012-101270] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Clinical interpretation of the large number of rare variants identified by high throughput sequencing (HTS) technologies is challenging. The aim of this study was to explore the clinical implications of a HTS strategy for patients with hypertrophic cardiomyopathy (HCM) using a targeted HTS methodology and workflow developed for patients with a range of inherited cardiovascular diseases. By comparing the sequencing results with published findings and with sequence data from a large-scale exome sequencing screen of UK individuals, we sought to quantify the strength of the evidence supporting causality for detected candidate variants. Methods and results 223 unrelated patients with HCM (46±15 years at diagnosis, 74% males) were studied. In order to analyse coding, intronic and regulatory regions of 41 cardiovascular genes, we used solution-based sequence capture followed by massive parallel resequencing on Illumina GAIIx. Average read-depth in the 2.1 Mb target region was 120. Rare (frequency<0.5%) non-synonymous, loss-of-function and splice-site variants were defined as candidates. Excluding titin, we identified 152 distinct candidate variants in sarcomeric or associated genes (89 novel) in 143 patients (64%). Four sarcomeric genes (MYH7, MYBPC3, TNNI3, TNNT2) showed an excess of rare single non-synonymous single-nucleotide polymorphisms (nsSNPs) in cases compared to controls. The estimated probability that a nsSNP in these genes is pathogenic varied between 57% and near certainty depending on the location. We detected an additional 94 candidate variants (73 novel) in desmosomal, and ion-channel genes in 96 patients (43%). Conclusions This study provides the first large-scale quantitative analysis of the prevalence of sarcomere protein gene variants in patients with HCM using HTS technology. Inclusion of other genes implicated in inherited cardiac disease identifies a large number of non-synonymous rare variants of unknown clinical significance.
Collapse
Affiliation(s)
- Luis R Lopes
- The Heart Hospital, 16-18 Westmoreland Street, London W1G 8PH, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Whittaker JW. Cell-free protein synthesis: the state of the art. Biotechnol Lett 2013; 35:143-52. [PMID: 23086573 PMCID: PMC3553302 DOI: 10.1007/s10529-012-1075-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
Cell-free protein synthesis harnesses the synthetic power of biology, programming the ribosomal translational machinery of the cell to create macromolecular products. Like PCR, which uses cellular replication machinery to create a DNA amplifier, cell-free protein synthesis is emerging as a transformative technology with broad applications in protein engineering, biopharmaceutical development, and post-genomic research. By breaking free from the constraints of cell-based systems, it takes the next step towards synthetic biology. Recent advances in reconstituted cell-free protein synthesis (Protein synthesis Using Recombinant Elements expression systems) are creating new opportunities to tailor the reactions for specialized applications including in vitro protein evolution, printing protein microarrays, isotopic labeling, and incorporating nonnatural amino acids.
Collapse
Affiliation(s)
- James W Whittaker
- Division of Environmental and Biomolecular Systems, Institute for Environmental Health, Oregon Health and Science University, 20000 N.W. Walker Road, Beaverton, OR 97006-8921, USA.
| |
Collapse
|
153
|
Anderson BR, Bogomolovas J, Labeit S, Granzier H. Single molecule force spectroscopy on titin implicates immunoglobulin domain stability as a cardiac disease mechanism. J Biol Chem 2013; 288:5303-15. [PMID: 23297410 DOI: 10.1074/jbc.m112.401372] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Titin plays crucial roles in sarcomere organization and cardiac elasticity by acting as an intrasarcomeric molecular spring. A mutation in the tenth Ig-like domain of titin's spring region is associated with arrhythmogenic cardiomyopathy, a disease characterized by ventricular arrhythmias leading to cardiac arrest and sudden death. Titin is the first sarcomeric protein linked to arrhythmogenic cardiomyopathy. To characterize the disease mechanism, we have used atomic force microscopy to directly measure the effects that the disease-linked point mutation (T16I) has on the mechanical and kinetic stability of Ig10 at the single molecule level. The mutation decreases the force needed to unfold Ig10 and increases its rate of unfolding 4-fold. We also found that T16I Ig10 is more prone to degradation, presumably due to compromised local protein structure. Overall, the disease-linked mutation weakens the structural integrity of titin's Ig10 domain and suggests an Ig domain disease mechanism.
Collapse
Affiliation(s)
- Brian R Anderson
- Department of Physics, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
154
|
Hamdani N, Krysiak J, Kreusser MM, Neef S, Dos Remedios CG, Maier LS, Krüger M, Backs J, Linke WA. Crucial role for Ca2(+)/calmodulin-dependent protein kinase-II in regulating diastolic stress of normal and failing hearts via titin phosphorylation. Circ Res 2013; 112:664-74. [PMID: 23283722 DOI: 10.1161/circresaha.111.300105] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE Myocardial diastolic stiffness and cardiomyocyte passive force (F(passive)) depend in part on titin isoform composition and phosphorylation. Ca(2+)/calmodulin-dependent protein kinase-II (CaMKII) phosphorylates ion channels, Ca(2+)-handling proteins, and chromatin-modifying enzymes in the heart, but has not been known to target titin. OBJECTIVE To elucidate whether CaMKII phosphorylates titin and modulates F(passive) in normal and failing myocardium. METHODS AND RESULTS Titin phosphorylation was assessed in CaMKIIδ/γ double-knockout (DKO) mouse, transgenic CaMKIIδC-overexpressing mouse, and human hearts, by Pro-Q-Diamond/Sypro-Ruby staining, autoradiography, and immunoblotting using phosphoserine-specific titin-antibodies. CaMKII-dependent site-specific titin phosphorylation was quantified in vivo by mass spectrometry using stable isotope labeling by amino acids in cell culture mouse heart mixed with wild-type (WT) or DKO heart. F(passive) of single permeabilized cardiomyocytes was recorded before and after CaMKII-administration. All-titin phosphorylation was reduced by >50% in DKO but increased by up to ≈100% in transgenic versus WT hearts. Conserved CaMKII-dependent phosphosites were identified within the PEVK-domain of titin by quantitative mass spectrometry and confirmed in recombinant human PEVK-fragments. CaMKII also phosphorylated the cardiac titin N2B-unique sequence. Phosphorylation at specific PEVK/titin N2B-unique sequence sites was decreased in DKO and amplified in transgenic versus WT hearts. F(passive) was elevated in DKO and reduced in transgenic compared with WT cardiomyocytes. CaMKII-administration lowered F(passive) of WT and DKO cardiomyocytes, an effect blunted by titin antibody pretreatment. Human end-stage failing hearts revealed higher CaMKII expression/activity and phosphorylation at PEVK/titin N2B-unique sequence sites than nonfailing donor hearts. CONCLUSIONS CaMKII phosphorylates the titin springs at conserved serines/threonines, thereby lowering F(passive). Deranged CaMKII-dependent titin phosphorylation occurs in heart failure and contributes to altered diastolic stress.
Collapse
Affiliation(s)
- Nazha Hamdani
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes-prkg1 and prkg2-code for cGKs, namely, cGKI and cGKII. In mammals, two isozymes, cGKIα and cGKIβ, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxtaglomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all, signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondral bone growth. This chapter focuses on the involvement of cGKs in cardiovascular and non-cardiovascular processes including cell growth and metabolism.
Collapse
Affiliation(s)
- Franz Hofmann
- FOR 923, Institut für Pharmakologie und Toxikologie, der Technischen Universität München, Munich, Germany
| | | |
Collapse
|
156
|
Abstract
Of all the myosin filaments in muscle, the most important in terms of human health, and so far the least studied, are those in the human heart. Here we report a 3D single-particle analysis of electron micrograph images of negatively stained myosin filaments isolated from human cardiac muscle in the normal (undiseased) relaxed state. The resulting 28-Å resolution 3D reconstruction shows axial and azimuthal (no radial) myosin head perturbations within the 429-Å axial repeat, with rotations between successive 132 Å-, 148 Å-, and 149 Å-spaced crowns of heads close to 60°, 35°, and 25° (all would be 40° in an unperturbed three-stranded helix). We have defined the myosin head atomic arrangements within the three crown levels and have modeled the organization of myosin subfragment 2 and the possible locations of the 39 Å-spaced domains of titin and the cardiac isoform of myosin-binding protein-C on the surface of the myosin filament backbone. Best fits were obtained with head conformations on all crowns close to the structure of the two-headed myosin molecule of vertebrate chicken smooth muscle in the dephosphorylated relaxed state. Individual crowns show differences in head-pair tilts and subfragment 2 orientations, which, together with the observed perturbations, result in different intercrown head interactions, including one not reported before. Analysis of the interactions between the myosin heads, the cardiac isoform of myosin-binding protein-C, and titin will aid in understanding of the structural effects of mutations in these proteins known to be associated with human cardiomyopathies.
Collapse
|
157
|
Mateja RD, Greaser ML, de Tombe PP. Impact of titin isoform on length dependent activation and cross-bridge cycling kinetics in rat skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:804-11. [PMID: 22951219 DOI: 10.1016/j.bbamcr.2012.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 01/19/2023]
Abstract
The magnitude of length dependent activation in striated muscle has been shown to vary with titin isoform. Recently, a rat that harbors a homozygous autosomal mutation (HM) causing preferential expression of a longer, giant titin isoform was discovered (Greaser et al. 2005). Here, we investigated the impact of titin isoform on myofilament force development and cross-bridge cycling kinetics as function of sarcomere length (SL) in tibialis anterior skeletal muscle isolated from wild type (WT) and HM. Skeletal muscle bundles from HM rats exhibited reductions in passive tension, maximal force development, myofilament calcium sensitivity, maximal ATP consumption, and tension cost at both short and long sarcomere length (SL=2.8μm and SL=3.2μm, respectively). Moreover, the SL-dependent changes in these parameters were attenuated in HM muscles. Additionally, myofilament Ca(2+) activation-relaxation properties were assessed in single isolated myofibrils. Both the rate of tension generation upon Ca(2+) activation (kACT) as well as the rate of tension redevelopment following a length perturbation (kTR) were reduced in HM myofibrils compared to WT, while relaxation kinetics were not affected. We conclude that presence of a long isoform of titin in the striated muscle sarcomere is associated with reduced myofilament force development and cross-bridge cycling kinetics, and a blunting of myofilament length dependent activation. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Ryan D Mateja
- Department of Cell and Molecular Physiology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|
158
|
Mansfield C, West TG, Curtin NA, Ferenczi MA. Stretch of contracting cardiac muscle abruptly decreases the rate of phosphate release at high and low calcium. J Biol Chem 2012; 287:25696-705. [PMID: 22692210 PMCID: PMC3406658 DOI: 10.1074/jbc.m112.373498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/25/2012] [Indexed: 11/06/2022] Open
Abstract
The contractile performance of the heart is linked to the energy that is available to it. Yet, the heart needs to respond quickly to changing demands. During diastole, the heart fills with blood and the heart chambers expand. Upon activation, contraction of cardiac muscle expels blood into the circulation. Early in systole, parts of the left ventricle are being stretched by incoming blood, before contraction causes shrinking of the ventricle. We explore here the effect of stretch of contracting permeabilized cardiac trabeculae of the rat on the rate of inorganic phosphate (P(i)) release resulting from ATP hydrolysis, using a fluorescent sensor for P(i) with millisecond time resolution. Stretch immediately reduces the rate of P(i) release, an effect observed both at full calcium activation (32 μmol/liter of Ca(2+)), and at a physiological activation level of 1 μmol/liter of Ca(2+). The results suggest that stretch redistributes the actomyosin cross-bridges toward their P(i)-containing state. The redistribution means that a greater fraction of cross-bridges will be poised to rapidly produce a force-generating transition and movement, compared with cross-bridges that have not been subjected to stretch. At the same time stretch modifies the P(i) balance in the cytoplasm, which may act as a cytoplasmic signal for energy turnover.
Collapse
Affiliation(s)
- Catherine Mansfield
- From the Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ and
| | - Tim G. West
- the Royal Veterinary College, University of London, Hertfordshire AL9 7TA,United Kingdom
| | - Nancy A. Curtin
- From the Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ and
| | - Michael A. Ferenczi
- From the Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ and
| |
Collapse
|
159
|
Vassiliadis E, Rasmussen LM, Byrjalsen I, Larsen DV, Chaturvedi R, Hosbond S, Saabye L, Diederichsen ACP, Genovese F, Duffin KL, Zheng Q, Chen X, Leeming DJ, Christiansen C, Karsdal MA. Clinical evaluation of a matrix metalloproteinase-12 cleaved fragment of titin as a cardiovascular serological biomarker. J Transl Med 2012; 10:140. [PMID: 22768802 PMCID: PMC3487750 DOI: 10.1186/1479-5876-10-140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 06/15/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Titin is a muscle-specific protein found in cardiac and skeletal muscles which is responsible for restoring passive tension. Levels and functioning of titin have been shown to be affected by cardiac damage. Due to the inherent difficulty of measuring titin levels in vivo in a clinical setting, we aimed to develop an assay that could reliably measure fragments of degraded titin in serum and potentially be used in the assessment of cardiac muscle damage. METHODS A competitive ELISA was developed to specifically measure levels of the titin sequence 12670' NVTVEARLIK 12679', derived by the degradation of titin by matrix metalloproteinase (MMP)-12. Serum samples from 90 individuals were divided into 3 equally sized groups. One group had been diagnosed with acute myocardial infarction (AMI) while the remaining two were asymptomatic individuals either with CT-scan signs of coronary calcium (CT-plusCa) or without coronary calcium (CT-noCa). RESULTS Mean geometric levels of the titin fragment in the CT-noCa group were 506.5 ng/ml (± 43.88). The CT-plusCa group showed 50.6% higher levels of the marker [763 ng/ml (± 90.14)] (P < 0.05). AMI patients showed 56.3% higher levels [792 ng/ml (± 149)] (P < 0.05). CONCLUSIONS The titin-12670 fragment is present in both individuals with undiagnosed and diagnosed CVD. The statistically significant increase in level of the marker in the AMI group is indicative that this neoepitope biomarker may be a useful serological marker in AMI.
Collapse
Affiliation(s)
- Efstathios Vassiliadis
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
- School of Endocrinology, University of Southern Denmark, Odense, Denmark
| | - Lars M Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Inger Byrjalsen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | | | - Rajiv Chaturvedi
- Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Susanne Hosbond
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Lotte Saabye
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | | | - Federica Genovese
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | | | | | | | - Diana J Leeming
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | | | - Morten A Karsdal
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
160
|
Golbus JR, Puckelwartz MJ, Fahrenbach JP, Dellefave-Castillo LM, Wolfgeher D, McNally EM. Population-based variation in cardiomyopathy genes. ACTA ACUST UNITED AC 2012; 5:391-9. [PMID: 22763267 DOI: 10.1161/circgenetics.112.962928] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy and dilated cardiomyopathy arise from mutations in genes encoding sarcomere proteins including MYH7, MYBPC3, and TTN. Genetic diagnosis of cardiomyopathy relies on complete sequencing of the gene coding regions, and most pathogenic variation is rare. The 1000 Genomes Project is an ongoing consortium designed to deliver whole genome sequence information from an ethnically diverse population and, therefore, is a rich source to determine both common and rare genetic variants. METHODS AND RESULTS We queried the 1000 Genomes Project database of 1092 individuals for exonic variants within 3 sarcomere genes MHY7, MYBPC3, and TTN. We focused our analysis on protein-altering variation, including nonsynonymous single nucleotide polymorphisms, insertion/deletion polymorphisms, or splice site altering variants. We identified known and predicted pathogenic variation in MYBPC3 and MYH7 at a higher frequency than what would be expected based on the known prevalence of cardiomyopathy. We also found substantial variation, including protein-disrupting sequences, in TTN. CONCLUSIONS Cardiomyopathy is a genetically heterogeneous disorder caused by mutations in multiple genes. The frequency of predicted pathogenic protein-altering variation in cardiomyopathy genes suggests that many of these variants may be insufficient to cause disease on their own but may modify phenotype in a genetically susceptible host. This is suggested by the high prevalence of TTN insertion/deletions in the 1000 Genomes Project cohort. Given the possibility of additional genetic variants that modify the phenotype of a primary driver mutation, broad-based genetic testing should be employed.
Collapse
Affiliation(s)
- Jessica R Golbus
- Department of Medicine and Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
161
|
Dokholyan NV. Physical microscopic model of proteins under force. J Phys Chem B 2012; 116:6806-9. [PMID: 22375559 DOI: 10.1021/jp212543m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nature has evolved proteins to counteract forces applied on living cells, and has designed proteins that can sense forces. One can appreciate Nature's ingenuity in evolving these proteins to be highly sensitive to force and to have a high dynamic force range at which they operate. To achieve this level of sensitivity, many of these proteins are composed of multiple domains and linking peptides connecting these domains, each of them having their own force response regimes. Here, using a simple model of a protein, we address the question of how each individual domain responds to force. We also ask how multidomain proteins respond to forces. We find that the end-to-end distance of individual domains under force scales linearly with force. In multidomain proteins, we find that the force response has a rich range: at low force, extension is predominantly governed by "weaker" linking peptides or domain intermediates, while at higher force, the extension is governed by unfolding of individual domains. Overall, the force extension curve comprises multiple sigmoidal transitions governed by unfolding of linking peptides and domains. Our study provides a basic framework for the understanding of protein response to force, and allows for interpretation experiments in which force is used to study the mechanical properties of multidomain proteins.
Collapse
Affiliation(s)
- Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
162
|
Horn MA, Graham HK, Richards MA, Clarke JD, Greensmith DJ, Briston SJ, Hall MCS, Dibb KM, Trafford AW. Age-related divergent remodeling of the cardiac extracellular matrix in heart failure: collagen accumulation in the young and loss in the aged. J Mol Cell Cardiol 2012; 53:82-90. [PMID: 22516365 DOI: 10.1016/j.yjmcc.2012.03.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/14/2012] [Accepted: 03/21/2012] [Indexed: 01/03/2023]
Abstract
The incidence of heart failure (HF) increases with age. This study sought to determine whether aging exacerbates structural and functional remodeling of the myocardium in HF. HF was induced in young (~18 months) and aged sheep (>8 years) by right ventricular tachypacing. In non-paced animals, aging was associated with increased left ventricular (LV) end diastolic internal dimensions (EDID, P<0.001), reduced fractional shortening (P<0.01) and an increase in myocardial collagen content (P<0.01). HF increased EDID and reduced fractional shortening in both young and aged animals, although these changes were more pronounced in the aged (P<0.05). Age-associated differences in cardiac extracellular matrix (ECM) remodeling occurred in HF with collagen accumulation in young HF (P<0.001) and depletion in aged HF (P<0.05). MMP-2 activity increased in the aged control and young HF groups (P<0.05). Reduced tissue inhibitor of metalloproteinase (TIMP) expression (TIMPs 3 and 4, P<0.05) was present only in the aged HF group. Secreted protein acidic and rich in cysteine (SPARC) was increased in aged hearts compared to young controls (P<0.05) while serum procollagen type I C-pro peptide (PICP) was increased in both young failing (P<0.05) and aged failing (P<0.01) animals. In conclusion, collagen content of the cardiac ECM changes in both aging and HF although; whether collagen accumulation or depletion occurs depends on age. Changes in TIMP expression in aged failing hearts alongside augmented collagen synthesis in HF provide a potential mechanism for the age-dependent ECM remodeling. Aging should therefore be considered an important factor when elucidating cardiac disease mechanisms.
Collapse
Affiliation(s)
- Margaux A Horn
- Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, 3.08 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Novel therapies in acute and chronic heart failure. Pharmacol Ther 2012; 135:1-17. [PMID: 22475446 DOI: 10.1016/j.pharmthera.2012.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 03/07/2012] [Indexed: 01/10/2023]
Abstract
Despite past advances in the pharmacological management of heart failure, the prognosis of these patients remains poor, and for many, treatment options remain unsatisfactory. Additionally, the treatments and clinical outcomes of patients with acute decompensated heart failure have not changed substantially over the past few decades. Consequently, there is a critical need for new drugs that can improve clinical outcomes. In the setting of acute heart failure, new inotrops such as cardiac myosin activators and new vasodilators such as relaxin have been developed. For chronic heart failure with reduced ejection fraction, there are several new approaches that target multiple pathophysiological mechanism including novel blockers of the renin-angiotensin-aldosterone system (direct renin inhibitors, dual-acting inhibitors of the angiotensin II receptor and neprilysin, aldosterone synthase inhibitors), ryanodine receptor stabilizers, and SERCA activators. Heart failure with preserved ejection fraction represents a substantial therapeutic problem as no therapy has been demonstrated to improve symptoms or outcomes in this condition. Newer treatment strategies target specific structural and functional abnormalities that lead to increased myocardial stiffness. Dicarbonyl-breaking compounds reverse advanced glycation-induced cross-linking of collagen and improve the compliance of aged and/or diabetic myocardium. Modulation of titin-dependent passive tension can be achieved via phosphorylation of a unique sequence on the extensible region of the protein. This review describes the pathophysiological basis, mechanism of action, and available clinical efficacy data of drugs that are currently under development. Finally, new therapies for the treatment of heart failure complications, such as pulmonary hypertension and anemia, are discussed.
Collapse
|
164
|
Soullier C, Obert P, Doucende G, Nottin S, Cade S, Perez-Martin A, Messner-Pellenc P, Schuster I. Exercise response in hypertrophic cardiomyopathy: blunted left ventricular deformational and twisting reserve with altered systolic-diastolic coupling. Circ Cardiovasc Imaging 2012; 5:324-32. [PMID: 22414888 DOI: 10.1161/circimaging.111.968859] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Abnormal left ventricular (LV) deformational mechanics have been demonstrated in patients with hypertrophic cardiomyopathy (HCM) at rest, but there is a lack of information on their adaptation to exercise. The aim of this study was to assess the adaptability of LV strains and torsional mechanics during exercise in HCM patients. METHODS AND RESULTS Twenty nonobstructive HCM patients (age, 48.3±12.3 years; 14 men) and 20 control subjects underwent speckle-tracking echocardiographic measurement of longitudinal, radial, and circumferential strains, systolic twist, and diastolic untwisting rate (UTR) at rest and submaximal exercise. HCM patients showed lower resting longitudinal (-15.7±5.0% versus -19.4±2.6%, P<0.001) and radial (38.1±11.3% versus 44.7±14.4%, P<0.05) strains but higher circumferential strain (-21.9±4.0% versus -18.8±2.3%, P<0.05) and twist (15.7±3.6° versus 9.3±2.6°, P<0.0001) than control subjects. Exercise induced an increase in all strains in control subjects but only a moderate increase in longitudinal strain (to -18.4±5.0%), without significant changes in radial and circumferential strains or twist in HCM patients. Exercise peak UTR was lower (-119.0±31.5°/s versus -137.3±41.1°/s) and occurred later (137±18% versus 125±11% systolic time, P<0.05) in HCM than in control subjects. A significant relationship between twist and UTR was obtained in control subjects (ß=-0.0807, P<0.001) but not in HCM patients (ß=-0.0051, P=0.68). CONCLUSIONS HCM patients had severely limited strain adaptability and no LV twisting reserve at exercise. They had reduced and delayed UTR with reduced systolic-diastolic coupling efficiency by twist-untwist mechanics.
Collapse
|
165
|
Ghosh E, Kovács SJ. Spatio-temporal attributes of left ventricular pressure decay rate during isovolumic relaxation. Am J Physiol Heart Circ Physiol 2012; 302:H1094-101. [DOI: 10.1152/ajpheart.00990.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Global left ventricular (LV) isovolumic relaxation rate has been characterized: 1) via the time constant of isovolumic relaxation τ or 2) via the logistic time constant τ L. An alternate kinematic method, characterizes isovolumic relaxation (IVR) in accordance with Newton's Second Law. The model's parameters, stiffness Ek, and damping/relaxation μ result from best fit of model-predicted pressure to in vivo data. All three models (exponential, logistic, and kinematic) characterize global relaxation in terms of pressure decay rates. However, IVR is inhomogeneous and anisotropic. Apical and basal LV wall segments untwist at different times and rates, and transmural strain and strain rates differ due to the helically variable pitch of myocytes and sheets. Accordingly, we hypothesized that the exponential model (τ) or kinematic model (μ and Ek) parameters will elucidate the spatiotemporal variation of IVR rate. Left ventricular pressures in 20 subjects were recorded using a high-fidelity, multipressure transducer (3 cm apart) catheter. Simultaneous, dual-channel pressure data was plotted in the pressure phase-plane (dP/d t vs. P) and τ, μ, and Ek were computed in 1631 beats (average: 82 beats per subject). Tau differed significantly between the two channels ( P < 0.05) in 16 of 20 subjects, whereas μ and Ek differed significantly ( P < 0.05) in all 20 subjects. These results show that quantifying the relaxation rate from data recorded at a single location has limitations. Moreover, kinematic model based analysis allows characterization of restoring (recoil) forces and resistive (crossbridge uncoupling) forces during IVR and their spatio-temporal dependence, thereby elucidating the relative roles of stiffness vs. relaxation as IVR rate determinants.
Collapse
Affiliation(s)
- Erina Ghosh
- Department of Biomedical Engineering, School of Engineering and Applied Science, Washington University, St. Louis, Missouri
| | - Sándor J. Kovács
- Cardiovascular Biophysics Laboratory, Cardiovascular Division, Department of Internal Medicine, School of Medicine; and
- Department of Biomedical Engineering, School of Engineering and Applied Science, Washington University, St. Louis, Missouri
| |
Collapse
|
166
|
Tomppo L, Ekelund J, Lichtermann D, Veijola J, Järvelin MR, Hennah W. DISC1 conditioned GWAS for psychosis proneness in a large Finnish birth cohort. PLoS One 2012; 7:e30643. [PMID: 22363459 PMCID: PMC3281861 DOI: 10.1371/journal.pone.0030643] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/20/2011] [Indexed: 11/23/2022] Open
Abstract
Background Genetic evidence implicates the DISC1 gene in the etiology of a number of mental illnesses. Previously, we have reported association between DISC1 and measures of psychosis proneness, the Revised Social Anhedonia Scale (RSAS) and Revised Physical Anhedonia Scale (RPAS), in the Northern Finland Birth Cohort 1966 (NFBC66). As part of the studies of this Finnish birth cohort genome-wide association analysis has recently been performed. Methodology In the present study, we re-analyzed the genome-wide association data with regard to these two measures of psychosis proneness, conditioning on our previous DISC1 observation. From the original NFBC66 sample (N = 12 058), 4 561 individuals provided phenotype and genotype data. No markers were significant at the genome-wide level. However, several genes with biological relevance to mental illnesses were highlighted through loci displaying suggestive evidence for association (≥3 SNP with P<10E-4). These included the protein coding genes, CXCL3, KIAA1128, LCT, MED13L, TMCO7, TTN, and the micro RNA MIR620. Conclusions By conditioning a previous genome-wide association study on DISC1, we have been able to identify eight genes as associating to psychosis proneness. Further, these molecules predominantly link to the DISC1 pathway, strengthening the evidence for the role of this gene network in the etiology of mental illness. The use of quantitative measures of psychosis proneness in a large population cohort will make these findings, once verified; more generalized to a broad selection of disorders related to psychoses and psychosis proneness.
Collapse
Affiliation(s)
- Liisa Tomppo
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
167
|
van Hees HWH, Schellekens WJM, Andrade Acuña GL, Linkels M, Hafmans T, Ottenheijm CAC, Granzier HL, Scheffer GJ, van der Hoeven JG, Dekhuijzen PNR, Heunks LMA. Titin and diaphragm dysfunction in mechanically ventilated rats. Intensive Care Med 2012; 38:702-9. [PMID: 22327561 PMCID: PMC3308006 DOI: 10.1007/s00134-012-2504-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/25/2011] [Indexed: 01/11/2023]
Abstract
Purpose Diaphragm weakness induced by mechanical ventilation may contribute to difficult weaning from the ventilator. For optimal force generation the muscle proteins myosin and titin are indispensable. The present study investigated if myosin and titin loss or dysfunction are involved in mechanical ventilation-induced diaphragm weakness. Methods Male Wistar rats were either assigned to a control group (n = 10) or submitted to 18 h of mechanical ventilation (MV, n = 10). At the end of the experiment, diaphragm and soleus muscle were excised for functional and biochemical analysis. Results Maximal specific active force generation of muscle fibers isolated from the diaphragm of MV rats was lower than controls (128 ± 9 vs. 165 ± 13 mN/mm2, p = 0.02) and was accompanied by a proportional reduction of myosin heavy chain concentration in these fibers. Passive force generation upon stretch was significantly reduced in diaphragm fibers from MV rats by ca. 35%. Yet, titin content was not significantly different between control and MV diaphragm. In vitro pre-incubation with phosphatase-1 decreased passive force generation upon stretch in diaphragm fibers from control, but not from MV rats. Mechanical ventilation did not affect active or passive force generation in the soleus muscle. Conclusions Mechanical ventilation leads to impaired diaphragm fiber active force-generating capacity and passive force generation upon stretch. Loss of myosin contributes to reduced active force generation, whereas reduced passive force generation is likely to result from a decreased phosphorylation status of titin. These impairments were not discernable in the soleus muscle of 18 h mechanically ventilated rats. Electronic supplementary material The online version of this article (doi:10.1007/s00134-012-2504-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hieronymus W H van Hees
- Department of Pulmonary Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Decker RS, Nakamura S, Decker ML, Sausamuta M, Sinno S, Harris K, Klocke FJ, Kulikovskaya I, Winegrad S. The dynamic role of cardiac myosin binding protein-C during ischemia. J Mol Cell Cardiol 2012; 52:1145-54. [PMID: 22281395 DOI: 10.1016/j.yjmcc.2012.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 12/16/2022]
Abstract
Cardiac myosin binding protein C (cMyBP-C) is a myofibrillar protein important for normal myocardial contractility and stability. In mutated form it can cause cardiomyopathy and heart failure. cMyBP-C appears to have separate regions for different functions. Three phosphorylation sites near the N terminus modulate contractility by their effect on both the kinetics of contraction and the binding site of the N-terminus. The C terminal region binds to myosin rods and stabilizes thick filament structure. The aim of the study reported here was to test whether cMyBPC is important in producing the structural and functional changes that result from ischemia/reperfusion. In this study the sequential changes in cMyBP-C, contractility, and thick filament structure following dephosphorylation of cMyBP-C associated with ischemia and reperfusion have been studied in biopsied specimens from chronically instrumented dogs. One and two dimensional electrophoresis, electron microscopy and immunocytochemistry with multiple antibodies generated against different domains in cMyBP-C have been used to follow structural changes in cMyBP-C. Ischemia produced dephosphorylation of cMyBP-C. Subsequent reperfusion released the dephosphorylated cMyBP-C from myofibrils and activated proteolysis of the cytoplasmic cMyBP-C. This in turn leads to increased vulnerability of cMyBP-C to proteolysis and increased degradation of thick filaments. The state of cMyBP-C appears to be closely related to phosphorylation and dephosphorylation of serine 282. In the absence of the stabilizing action of cMyBP-C either as a consequence of genetic mutation or dephosphorylation, premature degradation of thick filaments occurs and is accompanied by persistent contractile dysfunction.
Collapse
Affiliation(s)
- Robert S Decker
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Ottenheijm CAC, Voermans NC, Hudson BD, Irving T, Stienen GJM, van Engelen BG, Granzier H. Titin-based stiffening of muscle fibers in Ehlers-Danlos Syndrome. J Appl Physiol (1985) 2012; 112:1157-65. [PMID: 22223454 DOI: 10.1152/japplphysiol.01166.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE tenascin-X (TNX) is an extracellular matrix glycoprotein whose absence leads to Ehlers-Danlos Syndrome (EDS). TNX-deficient EDS patients present with joint hypermobility and muscle weakness attributable to increased compliance of the extracellular matrix. We hypothesized that in response to the increased compliance of the extracellular matrix in TNX-deficient EDS patients, intracellular adaptations take place in the elastic properties of the giant muscle protein titin. METHODS we performed extensive single muscle fiber mechanical studies to determine active and passive properties in TNX-deficient EDS patients. Gel-electrophoresis, Western blotting, and microarray studies were used to evaluate titin expression and phosphorylation. X-ray diffraction was used to measure myofilament lattice spacing. RESULTS passive tension of muscle fibers from TNX-deficient EDS patients was markedly increased. Myofilament extraction experiments indicated that the increased passive tension is attributable to changes in the properties of the sarcomeric protein titin. Transcript and protein data indicated no changes in titin isoform expression. Instead, differences in posttranslational modifications within titin's elastic region were found. In patients, active tension was not different at maximal activation level, but at submaximal activation level it was augmented attributable to increased calcium sensitivity. This increased calcium sensitivity might be attributable to stiffer titin molecules. CONCLUSION in response to the increased compliance of the extracellular matrix in muscle of TNX-deficient EDS patients, a marked intracellular stiffening occurs of the giant protein titin. The stiffening of titin partly compensates for the muscle weakness in these patients by augmenting submaximal active tension generation.
Collapse
Affiliation(s)
- Coen A C Ottenheijm
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam.
| | | | | | | | | | | | | |
Collapse
|
170
|
van der Velden J, Merkus D, de Beer V, Hamdani N, Linke WA, Boontje NM, Stienen GJM, Duncker DJ. Transmural heterogeneity of myofilament function and sarcomeric protein phosphorylation in remodeled myocardium of pigs with a recent myocardial infarction. Front Physiol 2011; 2:83. [PMID: 22131977 PMCID: PMC3223384 DOI: 10.3389/fphys.2011.00083] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 10/28/2011] [Indexed: 02/05/2023] Open
Abstract
Aim: Transmural differences in sarcomeric protein composition and function across the left ventricular (LV) wall have been reported. We studied in pigs sarcomeric function and protein phosphorylation in subepicardial (EPI) and subendocardial (ENDO) layers of remote LV myocardium after myocardial infarction (MI), induced by left circumflex coronary artery ligation. Methods: EPI and ENDO samples were taken 3 weeks after sham surgery (n = 12) or induction of MI (n = 12) at baseline (BL) and during β-adrenergic receptor (βAR) stimulation with dobutamine. Isometric force was measured in single cardiomyocytes at various [Ca2+] and 2.2 μm sarcomere length. Results: In sham hearts, no significant transmural differences were observed in myofilament function or protein phosphorylation. Myofilament Ca2+-sensitivity was significantly higher in both EPI and ENDO of MI compared to sham hearts. Maximal force was significantly reduced in MI compared to sham, but solely in ENDO cells. A higher passive force was observed in MI hearts, but only in EPI cells. The proportion of stiff N2B isoform was higher in EPI than in ENDO in both sham and MI hearts, and a trend toward increased N2B-proportion appeared in MI EPI, but not MI Endo. Analysis of myofilament protein phosphorylation did not reveal significant transmural differences in phosphorylation of myosin binding protein C, desmin, troponin T, troponin I (cTnI), and myosin light chain 2 (MLC-2) both at BL and during βAR stimulation with dobutamine infusion. A significant increase in MLC-2 phosphorylation was observed during dobutamine only in sham. In addition, the increase in cTnI phosphorylation upon dobutamine was twofold lower in MI than in sham. Conclusion: Myofilament dysfunction is present in both EPI and ENDO in post-MI remodeled myocardium, but shows a high degree of qualitative heterogeneity across the LV wall. These heterogeneous transmural changes in sarcomeric properties likely contribute differently to systolic vs. diastolic global LV dysfunction after MI.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Titin-actin interaction: PEVK-actin-based viscosity in a large animal. J Biomed Biotechnol 2011; 2011:310791. [PMID: 22162634 PMCID: PMC3227466 DOI: 10.1155/2011/310791] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 09/01/2011] [Indexed: 12/16/2022] Open
Abstract
Titin exhibits an interaction between its PEVK segment and the actin filament resulting in viscosity, a speed dependent resistive force, which significantly influences diastolic filling in mice. While diastolic disease is clinically pervasive, humans express a more compliant titin (N2BA:N2B ratio ~0.5–1.0) than mice (N2BA:N2B ratio ~0.2). To examine PEVK-actin based viscosity in compliant titin-tissues, we used pig cardiac tissue that expresses titin isoforms similar to that in humans. Stretch-hold experiments were performed at speeds from 0.1 to 10 lengths/s from slack sarcomere lengths (SL) to SL of 2.15 μm. Viscosity was calculated from the slope of stress-relaxation vs stretch speed. Recombinant PEVK was added to compete off native interactions and this found to reduce the slope by 35%, suggesting that PEVK-actin interactions are a strong contributor of viscosity. Frequency sweeps were performed at frequencies of 0.1–400 Hz and recombinant protein reduced viscous moduli by 40% at 2.15 μm and by 50% at 2.25 μm, suggesting a SL-dependent nature of viscosity that might prevent SL “overshoot” at long diastolic SLs. This study is the first to show that viscosity is present at physiologic speeds in the pig and supports the physiologic relevance of PEVK-actin interactions in humans in both health and disease.
Collapse
|
172
|
Pasipoularides A. LV twisting and untwisting in HCM: ejection begets filling. Diastolic functional aspects of HCM. Am Heart J 2011; 162:798-810. [PMID: 22093194 DOI: 10.1016/j.ahj.2011.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/21/2011] [Indexed: 12/31/2022]
Abstract
Conventional and emerging concepts on mechanisms by which hypertrophic cardiomyopathy (HCM) engenders diastolic dysfunction are surveyed. A shift from familiar left ventricular (LV) diastolic function approaches to large-scale (twist-untwist) and small-scale (titin unfolding-refolding, etc.) wall rebound models, incorporating interaction and dynamic distortions and rearrangements of myofiber sheets and ultrastructural constituents, is suggested. Such an emerging new paradigm of diastolic dynamics, emphasizing the relationship of myofiber sheet and ultraconstituent distortion to LV mechanics and end-systolic shape, might clarify intricate patterns of early diastolic rebound and suction, needed for LV filling in many of the polymorphic phenotypes of HCM.
Collapse
|
173
|
Nedrud J, Labeit S, Gotthardt M, Granzier H. Mechanics on myocardium deficient in the N2B region of titin: the cardiac-unique spring element improves efficiency of the cardiac cycle. Biophys J 2011; 101:1385-92. [PMID: 21943419 DOI: 10.1016/j.bpj.2011.06.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/01/2011] [Accepted: 06/15/2011] [Indexed: 01/21/2023] Open
Abstract
Titin (also known as connectin) is an intrasarcomeric muscle protein that functions as a molecular spring and generates passive tension upon muscle stretch. The N2B element is a cardiac-specific spring element within titin's extensible region. Our goal was to study the contribution of the N2B element to the mechanical properties of titin, particularly its hypothesized role in limiting energy loss during repeated stretch (diastole)-shortening (systole) cycles of the heart. We studied energy loss by measuring hysteresis from the area between the stretch and release passive force-sarcomere length curves and used both wild-type (WT) mice and N2B knockout (KO) mice in which the N2B element has been deleted. A range of protocols was used, including those that mimic physiological loading conditions. KO mice showed significant increases in hysteresis. Most prominently, in tissue that had been preconditioned with a physiological stretch-release protocol, hysteresis increased significantly from 320 ± 46 pJ/mm(2)/sarcomere in WT to 650 ± 94 pJ/mm(2)/sarcomere in N2B KO myocardium. These results are supported by experiments in which oxidative stress was used to mechanically inactivate portions of the N2B-Us of WT titin through cysteine cross-linking. Studies on muscle from which the thin filaments had been extracted (using the actin severing protein gelsolin) showed that the difference in hysteresis between WT and KO tissue cannot be explained by filament sliding-based viscosity. Instead the results suggest that hysteresis arises from within titin and most likely involves unfolding of immunoglobulin-like domains. These studies support that the mechanical function of the N2B element of titin includes reducing hysteresis and increasing the efficiency of the heart.
Collapse
Affiliation(s)
- Joshua Nedrud
- Graduate Interdisciplinary Program in Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|
174
|
Falcão-Pires I, Hamdani N, Borbély A, Gavina C, Schalkwijk CG, van der Velden J, van Heerebeek L, Stienen GJ, Niessen HW, Leite-Moreira AF, Paulus WJ. Diabetes Mellitus Worsens Diastolic Left Ventricular Dysfunction in Aortic Stenosis Through Altered Myocardial Structure and Cardiomyocyte Stiffness. Circulation 2011; 124:1151-9. [DOI: 10.1161/circulationaha.111.025270] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Inês Falcão-Pires
- From the Departments of Physiology (I.F.-P., N.H., A.B., J.v.d.V., L.v.H., G.J.M.S., W.J.P.) and Pathology and Cardiac Surgery (H.W.M.N.), Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Amsterdam, the Netherlands; Departments of Physiology and Cardiothoracic Surgery (I.F.-P., A.F.L.-M.) and Cardiology (C.G.), Faculty of Medicine, Universidade do Porto, and Center of Thoracic Surgery (A.F.L.-M.), Hospital de São João, Porto, Portugal; Department of Internal Medicine,
| | - Nazha Hamdani
- From the Departments of Physiology (I.F.-P., N.H., A.B., J.v.d.V., L.v.H., G.J.M.S., W.J.P.) and Pathology and Cardiac Surgery (H.W.M.N.), Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Amsterdam, the Netherlands; Departments of Physiology and Cardiothoracic Surgery (I.F.-P., A.F.L.-M.) and Cardiology (C.G.), Faculty of Medicine, Universidade do Porto, and Center of Thoracic Surgery (A.F.L.-M.), Hospital de São João, Porto, Portugal; Department of Internal Medicine,
| | - Attila Borbély
- From the Departments of Physiology (I.F.-P., N.H., A.B., J.v.d.V., L.v.H., G.J.M.S., W.J.P.) and Pathology and Cardiac Surgery (H.W.M.N.), Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Amsterdam, the Netherlands; Departments of Physiology and Cardiothoracic Surgery (I.F.-P., A.F.L.-M.) and Cardiology (C.G.), Faculty of Medicine, Universidade do Porto, and Center of Thoracic Surgery (A.F.L.-M.), Hospital de São João, Porto, Portugal; Department of Internal Medicine,
| | - Cristina Gavina
- From the Departments of Physiology (I.F.-P., N.H., A.B., J.v.d.V., L.v.H., G.J.M.S., W.J.P.) and Pathology and Cardiac Surgery (H.W.M.N.), Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Amsterdam, the Netherlands; Departments of Physiology and Cardiothoracic Surgery (I.F.-P., A.F.L.-M.) and Cardiology (C.G.), Faculty of Medicine, Universidade do Porto, and Center of Thoracic Surgery (A.F.L.-M.), Hospital de São João, Porto, Portugal; Department of Internal Medicine,
| | - Casper G. Schalkwijk
- From the Departments of Physiology (I.F.-P., N.H., A.B., J.v.d.V., L.v.H., G.J.M.S., W.J.P.) and Pathology and Cardiac Surgery (H.W.M.N.), Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Amsterdam, the Netherlands; Departments of Physiology and Cardiothoracic Surgery (I.F.-P., A.F.L.-M.) and Cardiology (C.G.), Faculty of Medicine, Universidade do Porto, and Center of Thoracic Surgery (A.F.L.-M.), Hospital de São João, Porto, Portugal; Department of Internal Medicine,
| | - Jolanda van der Velden
- From the Departments of Physiology (I.F.-P., N.H., A.B., J.v.d.V., L.v.H., G.J.M.S., W.J.P.) and Pathology and Cardiac Surgery (H.W.M.N.), Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Amsterdam, the Netherlands; Departments of Physiology and Cardiothoracic Surgery (I.F.-P., A.F.L.-M.) and Cardiology (C.G.), Faculty of Medicine, Universidade do Porto, and Center of Thoracic Surgery (A.F.L.-M.), Hospital de São João, Porto, Portugal; Department of Internal Medicine,
| | - Loek van Heerebeek
- From the Departments of Physiology (I.F.-P., N.H., A.B., J.v.d.V., L.v.H., G.J.M.S., W.J.P.) and Pathology and Cardiac Surgery (H.W.M.N.), Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Amsterdam, the Netherlands; Departments of Physiology and Cardiothoracic Surgery (I.F.-P., A.F.L.-M.) and Cardiology (C.G.), Faculty of Medicine, Universidade do Porto, and Center of Thoracic Surgery (A.F.L.-M.), Hospital de São João, Porto, Portugal; Department of Internal Medicine,
| | - Ger J.M. Stienen
- From the Departments of Physiology (I.F.-P., N.H., A.B., J.v.d.V., L.v.H., G.J.M.S., W.J.P.) and Pathology and Cardiac Surgery (H.W.M.N.), Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Amsterdam, the Netherlands; Departments of Physiology and Cardiothoracic Surgery (I.F.-P., A.F.L.-M.) and Cardiology (C.G.), Faculty of Medicine, Universidade do Porto, and Center of Thoracic Surgery (A.F.L.-M.), Hospital de São João, Porto, Portugal; Department of Internal Medicine,
| | - Hans W.M. Niessen
- From the Departments of Physiology (I.F.-P., N.H., A.B., J.v.d.V., L.v.H., G.J.M.S., W.J.P.) and Pathology and Cardiac Surgery (H.W.M.N.), Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Amsterdam, the Netherlands; Departments of Physiology and Cardiothoracic Surgery (I.F.-P., A.F.L.-M.) and Cardiology (C.G.), Faculty of Medicine, Universidade do Porto, and Center of Thoracic Surgery (A.F.L.-M.), Hospital de São João, Porto, Portugal; Department of Internal Medicine,
| | - Adelino F. Leite-Moreira
- From the Departments of Physiology (I.F.-P., N.H., A.B., J.v.d.V., L.v.H., G.J.M.S., W.J.P.) and Pathology and Cardiac Surgery (H.W.M.N.), Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Amsterdam, the Netherlands; Departments of Physiology and Cardiothoracic Surgery (I.F.-P., A.F.L.-M.) and Cardiology (C.G.), Faculty of Medicine, Universidade do Porto, and Center of Thoracic Surgery (A.F.L.-M.), Hospital de São João, Porto, Portugal; Department of Internal Medicine,
| | - Walter J. Paulus
- From the Departments of Physiology (I.F.-P., N.H., A.B., J.v.d.V., L.v.H., G.J.M.S., W.J.P.) and Pathology and Cardiac Surgery (H.W.M.N.), Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Amsterdam, the Netherlands; Departments of Physiology and Cardiothoracic Surgery (I.F.-P., A.F.L.-M.) and Cardiology (C.G.), Faculty of Medicine, Universidade do Porto, and Center of Thoracic Surgery (A.F.L.-M.), Hospital de São João, Porto, Portugal; Department of Internal Medicine,
| |
Collapse
|
175
|
Taylor M, Graw S, Sinagra G, Barnes C, Slavov D, Brun F, Pinamonti B, Salcedo EE, Sauer W, Pyxaras S, Anderson B, Simon B, Bogomolovas J, Labeit S, Granzier H, Mestroni L. Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy-overlap syndromes. Circulation 2011; 124:876-85. [PMID: 21810661 PMCID: PMC3167235 DOI: 10.1161/circulationaha.110.005405] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 06/14/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited genetic myocardial disease characterized by fibrofatty replacement of the myocardium and a predisposition to cardiac arrhythmias and sudden death. We evaluated the cardiomyopathy gene titin (TTN) as a candidate ARVC gene because of its proximity to an ARVC locus at position 2q32 and the connection of the titin protein to the transitional junction at intercalated disks. METHODS AND RESULTS All 312 titin exons known to be expressed in human cardiac titin and the complete 3' untranslated region were sequenced in 38 ARVC families. Eight unique TTN variants were detected in 7 families, including a prominent Thr2896Ile mutation that showed complete segregation with the ARVC phenotype in 1 large family. The Thr2896IIe mutation maps within a highly conserved immunoglobulin-like fold (Ig10 domain) located in the spring region of titin. Native gel electrophoresis, nuclear magnetic resonance, intrinsic fluorescence, and proteolysis assays of wild-type and mutant Ig10 domains revealed that the Thr2896IIe exchange reduces the structural stability and increases the propensity for degradation of the Ig10 domain. The phenotype of TTN variant carriers was characterized by a history of sudden death (5 of 7 families), progressive myocardial dysfunction causing death or heart transplantation (8 of 14 cases), frequent conduction disease (11 of 14), and incomplete penetrance (86%). CONCLUSIONS Our data provide evidence that titin mutations can cause ARVC, a finding that further expands the origin of the disease beyond desmosomal proteins. Structural impairment of the titin spring is a likely cause of ARVC and constitutes a novel mechanism underlying myocardial remodeling and sudden cardiac death.
Collapse
Affiliation(s)
- Matthew Taylor
- Adult Medical Genetics Program and Division of Cardiology, University of Colorado Denver, Aurora, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Hudson B, Hidalgo C, Saripalli C, Granzier H. Hyperphosphorylation of mouse cardiac titin contributes to transverse aortic constriction-induced diastolic dysfunction. Circ Res 2011; 109:858-66. [PMID: 21835910 DOI: 10.1161/circresaha.111.246819] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Mechanisms underlying diastolic dysfunction need to be better understood. OBJECTIVE To study the role of titin in diastolic dysfunction using a mouse model of experimental heart failure induced by transverse aortic constriction. METHODS AND RESULTS Eight weeks after transverse aortic constriction surgery, mice were divided into heart failure (HF) and congestive heart failure (CHF) groups. Mechanical studies on skinned left ventricle myocardium measured total and titin-based and extracellular matrix-based passive stiffness. Total passive stiffness was increased in both HF and CHF mice, and this was attributable to increases in both extracellular matrix-based and titin-based passive stiffness, with titin being dominant. Protein expression and titin exon microarray analysis revealed increased expression of the more compliant N2BA isoform at the expense of the stiff N2B isoform in HF and CHF mice. These changes are predicted to lower titin-based stiffness. Because the stiffness of titin is also sensitive to titin phosphorylation by protein kinase A and protein kinase C, back phosphorylation and Western blot assays with novel phospho-specific antibodies were performed. HF and CHF mice showed hyperphosphorylation of protein kinase A sites and the proline glutamate valine lysine (PEVK) S26 protein kinase C sites, but hypophosphorylation of the PEVK S170 protein kinase C site. Protein phosphatase I abolished differences in phosphorylation levels and normalized titin-based passive stiffness levels between control and HF myocardium. CONCLUSION Transverse aortic constriction-induced HF results in increased extracellular matrix-based and titin-based passive stiffness. Changes in titin splicing occur, which lower passive stiffness, but this effect is offset by hyperphosphorylation of residues in titin spring elements, particularly of PEVK S26. Thus, complex changes in titin occur that combined are a major factor in the increased passive myocardial stiffness in HF.
Collapse
Affiliation(s)
- Bryan Hudson
- Department of Physiology, University of Arizona, Tucson, USA
| | | | | | | |
Collapse
|
177
|
Bhuiyan T, Maurer MS. Heart Failure with Preserved Ejection Fraction: Persistent Diagnosis, Therapeutic Enigma. CURRENT CARDIOVASCULAR RISK REPORTS 2011; 5:440-449. [PMID: 22081782 DOI: 10.1007/s12170-011-0184-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure with preserved ejection fraction (HFPEF) is increasing in prevalence with the aging of the population, and morbidity and mortality rates are comparable to that of heart failure with reduced ejection fraction (HFREF). The diagnosis can be difficult to make, especially in older adults, stemming from the presence of multiple comorbid illnesses with confounding symptoms. New diagnostic tools have resulted in guidelines proposed to define and diagnose HFPEF. Recent literature focusing on the pathophysiology underlying this disease suggests multiple mechanisms are involved in the generation of the phenotype, such as abnormal relaxation and ventricular-vascular coupling, chronotropic incompetence, volume overload, and redistribution and /or endothelial dysfunction. Currently, no clinically proven treatments are shown to decrease morbidity and mortality in this population; however, there may be a novel multidisciplinary and multistage treatment strategy that can be studied to address this complex disease which incorporates pharmacologic and non-pharmacologic therapeutics.
Collapse
Affiliation(s)
- Taslima Bhuiyan
- Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| | | |
Collapse
|
178
|
Voelkel T, Linke WA. Conformation-regulated mechanosensory control via titin domains in cardiac muscle. Pflugers Arch 2011; 462:143-54. [PMID: 21347754 PMCID: PMC3114084 DOI: 10.1007/s00424-011-0938-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 12/19/2022]
Abstract
The giant filamentous protein titin is ideally positioned in the muscle sarcomere to sense mechanical stimuli and transform them into biochemical signals, such as those triggering cardiac hypertrophy. In this review, we ponder the evidence for signaling hotspots along the titin filament involved in mechanosensory control mechanisms. On the way, we distinguish between stress and strain as triggers of mechanical signaling events at the cardiac sarcomere. Whereas the Z-disk and M-band regions of titin may be prominently involved in sensing mechanical stress, signaling hotspots within the elastic I-band titin segment may respond primarily to mechanical strain. Common to both stress and strain sensor elements is their regulation by conformational changes in protein domains.
Collapse
Affiliation(s)
- Tobias Voelkel
- Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, MA 3/56, 44780 Bochum, Germany
| | - Wolfgang A. Linke
- Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, MA 3/56, 44780 Bochum, Germany
| |
Collapse
|
179
|
Irving T, Wu Y, Bekyarova T, Farman GP, Fukuda N, Granzier H. Thick-filament strain and interfilament spacing in passive muscle: effect of titin-based passive tension. Biophys J 2011; 100:1499-508. [PMID: 21402032 DOI: 10.1016/j.bpj.2011.01.059] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/16/2011] [Accepted: 01/25/2011] [Indexed: 01/28/2023] Open
Abstract
We studied the effect of titin-based passive tension on sarcomere structure by simultaneously measuring passive tension and low-angle x-ray diffraction patterns on passive fiber bundles from rabbit skinned psoas muscle. We used a stretch-hold-release protocol with measurement of x-ray diffraction patterns at various passive tension levels during the hold phase before and after passive stress relaxation. Measurements were performed in relaxing solution without and with dextran T-500 to compress the lattice toward physiological levels. The myofilament lattice spacing was measured in the A-band (d(1,0)) and Z-disk (d(Z)) regions of the sarcomere. The axial spacing of the thick-filament backbone was determined from the sixth myosin meridional reflection (M6) and the equilibrium positions of myosin heads from the fourth myosin layer line peak position and the I(1,1)/I(1,0) intensity ratio. Total passive tension was measured during the x-ray experiments, and a differential extraction technique was used to determine the relations between collagen- and titin-based passive tension and sarcomere length. Within the employed range of sarcomere lengths (∼2.2-3.4 μm), titin accounted for >80% of passive tension. X-ray results indicate that titin compresses both the A-band and Z-disk lattice spacing with viscoelastic behavior when fibers are swollen after skinning, and elastic behavior when the lattice is reduced with dextran. Titin also increases the axial thick-filament spacing, M6, in an elastic manner in both the presence and absence of dextran. No changes were detected in either I(1,1)/I(1,0) or the position of peaks on the fourth myosin layer line during passive stress relaxation. Passive tension and M6 measurements were converted to thick-filament compliance, yielding a value of ∼85 m/N, which is several-fold larger than the thick-filament compliance determined by others during the tetanic tension plateau of activated intact muscle. This difference can be explained by the fact that thick filaments are more compliant at low tension (passive muscle) than at high tension (tetanic tension). The implications of our findings are discussed.
Collapse
Affiliation(s)
- Thomas Irving
- Department of Biological, Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
180
|
Malaty AN, Shah DJ, Abdelkarim AR, Nagueh SF. Relation of replacement fibrosis to left ventricular diastolic function in patients with dilated cardiomyopathy. J Am Soc Echocardiogr 2011; 24:333-8. [PMID: 21338867 DOI: 10.1016/j.echo.2010.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND Previous studies have shown that delayed hyperenhancement (HE) by cardiac magnetic resonance (CMR) is related to left ventricular (LV) stiffness in a variety of cardiac diseases. However, it is not known whether this relation is also present in dilated cardiomyopathy (DCM), in which replacement fibrosis is less extensive. METHODS Consecutive patients with DCM (n = 50, age 56 ± 13 years, 20 females) were studied with CMR and two-dimensional and Doppler echocardiography. CMR images with breath-hold segmented inversion-recovery sequence were acquired 10 minutes after an intravenous bolus of gadolinium. The scar tissue distribution and extent were calculated in the 17 LV segments. LV diastolic function was assessed using mitral inflow and tissue Doppler velocities at the septal and lateral sides of the mitral annulus. RESULTS The group had an ejection fraction of 30% ± 11% and left atrial volume of 103 ± 50 mL by CMR. HE was present in 31 patients with a mean scar burden of 4% ± 7.6%. Patients with DCM without HE had a significantly higher septal E/e' ratio than patients with scar (P = .05), and there was no significant correlation between deceleration time and extent of HE. Lateral late diastolic velocity (a') had a weak inverse relation with the number of segments with HE (r = -0.44, P = .005) and with scar burden (r = -0.31, P = .05). CONCLUSION Patients with DCM without HE have higher LV filling pressures than patients with HE. Our findings suggest that other factors influence LV stiffness to a larger extent than replacement fibrosis in this population.
Collapse
Affiliation(s)
- Adham N Malaty
- Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX, USA
| | | | | | | |
Collapse
|
181
|
de Tombe PP, Granzier HL. The cytoskeleton and the cellular transduction of mechanical strain in the heart: a special issue. Pflugers Arch 2011; 462:1-2. [PMID: 21594569 DOI: 10.1007/s00424-011-0976-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 01/15/2023]
|
182
|
Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch 2011; 462:89-104. [PMID: 21499986 DOI: 10.1007/s00424-011-0951-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 02/27/2011] [Indexed: 12/16/2022]
Abstract
Mechanotransduction refers to the conversion of mechanical forces into biochemical or electrical signals that initiate structural and functional remodeling in cells and tissues. The heart is a kinetic organ whose form changes considerably during development and disease, requiring cardiac myocytes to be mechanically durable and capable of fusing a variety of environmental signals on different time scales. During physiological growth, myocytes adaptively remodel to mechanical loads. Pathological stimuli can induce maladaptive remodeling. In both of these conditions, the cytoskeleton plays a pivotal role in both sensing mechanical stress and mediating structural remodeling and functional responses within the myocyte.
Collapse
|
183
|
King NMP, Methawasin M, Nedrud J, Harrell N, Chung CS, Helmes M, Granzier H. Mouse intact cardiac myocyte mechanics: cross-bridge and titin-based stress in unactivated cells. ACTA ACUST UNITED AC 2011; 137:81-91. [PMID: 21187335 PMCID: PMC3010058 DOI: 10.1085/jgp.201010499] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A carbon fiber-based cell attachment and force measurement system was used to measure the diastolic stress-sarcomere length (SL) relation of mouse intact cardiomyocytes, before and after the addition of actomyosin inhibitors (2,3-butanedione monoxime [BDM] or blebbistatin). Stress was measured during the diastolic interval of twitching myocytes that were stretched at 100% base length/second. Diastolic stress increased close to linear from 0 at SL 1.85 µm to 4.2 mN/mm(2) at SL 2.1 µm. The actomyosin inhibitors BDM and blebbistatin significantly lowered diastolic stress by ∼1.5 mN/mm(2) (at SL 2.1 µm, ∼30% of total), suggesting that during diastole actomyosin interaction is not fully switched off. To test this further, calcium sensitivity of skinned myocytes was studied under conditions that simulate diastole: 37°C, presence of Dextran T500 to compress the myofilament lattice to the physiological level, and [Ca(2+)] from below to above 100 nM. Mean active stress was significantly increased at [Ca(2+)] > 55 nM (pCa 7.25) and was ∼0.7 mN/mm(2) at 100 nM [Ca(2+)] (pCa 7.0) and ∼1.3 mN/mm(2) at 175 nM Ca(2+) (pCa 6.75). Inhibiting active stress in intact cells attached to carbon fibers at their resting SL and stretching the cells while first measuring restoring stress (pushing outward) and then passive stress (pulling inward) made it possible to determine the passive cell's mechanical slack SL as ∼1.95 µm and the restoring stiffness and passive stiffness of the cells around the slack SL each as ∼17 mN/mm(2)/µm/SL. Comparison between the results of intact and skinned cells shows that titin is the main contributor to restoring stress and passive stress of intact cells, but that under physiological conditions, calcium sensitivity is sufficiently high for actomyosin interaction to contribute to diastolic stress. These findings are relevant for understanding diastolic function and for future studies of diastolic heart failure.
Collapse
Affiliation(s)
- Nicholas M P King
- Department of Physiology and Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA. granzier@email.arizona.edu
| | | | | | | | | | | | | |
Collapse
|
184
|
Chung CS, Granzier HL. Contribution of titin and extracellular matrix to passive pressure and measurement of sarcomere length in the mouse left ventricle. J Mol Cell Cardiol 2011; 50:731-9. [PMID: 21255582 DOI: 10.1016/j.yjmcc.2011.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/02/2011] [Accepted: 01/09/2011] [Indexed: 12/17/2022]
Abstract
It remains to be established to what degree titin and the extracellular matrix (ECM) contribute to passive pressure in the left ventricle (LV). Thus, we aimed to elucidate the contribution of major molecular determinants of passive pressure in the normal mouse LV. Furthermore, we determined the working sarcomere length (SL) range of the LV to bridge our findings to earlier work in skinned muscle fibers. We utilized Frank-Starling type protocols to obtain diastolic pressure-volume relationships (PVR) in Langendorff perfused isolated LVs. To quantify the molecular contribution of titin and ECM, we innovated on methods of fiber mechanics to chemically permeabilize intact LVs and measure a fully passive PVR. To differentially dissect the contributions of the ECM and titin, we utilized myofilament extraction techniques in permeabilized LVs, measuring passive PVRs at each stage in the protocol. Myofilament extraction suggests that titin contributes ~80% of passive pressures in the heart. Langendorff perfusion was also used to chemically fix passive and BaCl(2) activated hearts at specific volumes to determine that the maximal working SL range of the midwall LV fibers is approximately 1.8-2.2 μm. A model of the passive SL-volume relationship was then used to estimate the pressure-SL relationships, indicating that the ECM contribution does not exceed titin's contribution until large volumes with SLs >~2.2 μm. In conclusion, within physiological volumes, titin is the dominant contributor to LV passive pressure, and ECM-based pressures dominate at larger volumes.
Collapse
Affiliation(s)
- Charles S Chung
- Molecular Cardiovascular Research Program, Sarver Heart Center, Department of Physiology, The University of Arizona, Tucson, AZ 85724, USA
| | | |
Collapse
|
185
|
Weiner RB, Hutter AM, Wang F, Kim J, Weyman AE, Wood MJ, Picard MH, Baggish AL. The Impact of Endurance Exercise Training on Left Ventricular Torsion. JACC Cardiovasc Imaging 2010; 3:1001-9. [DOI: 10.1016/j.jcmg.2010.08.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/26/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
|
186
|
S100A1 gene therapy for heart failure: a novel strategy on the verge of clinical trials. J Mol Cell Cardiol 2010; 50:777-84. [PMID: 20732326 DOI: 10.1016/j.yjmcc.2010.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 11/23/2022]
Abstract
Representing the common endpoint of various cardiovascular disorders, heart failure (HF) shows a dramatically growing prevalence. As currently available therapeutic strategies are not capable of terminating the progress of the disease, HF is still associated with a poor clinical prognosis. Among the underlying molecular mechanisms, the loss of cardiomyocyte Ca(2+) cycling integrity plays a key role in the pathophysiological development and progression of the disease. The cardiomyocyte EF-hand Ca(2+) sensor protein S100A1 emerged as a regulator both of sarcoplasmic reticulum (SR), sarcomere and mitochondrial function implicating a significant role in cardiac physiology and dysfunction. In this review, we aim to recapitulate the translation of S100A1-based investigation from first clinical observations over basic research experiments back to a near-clinical setting on the verge of clinical trials today. We also address needs for further developments towards "second-generation" gene therapy and discuss the therapeutic potential of S100A1 gene therapy for HF as a promising novel strategy for future cardiologists. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".
Collapse
|