151
|
Saheb M, Fereydouni N, Nemati S, Barreto GE, Johnston TP, Sahebkar A. Chitosan-based delivery systems for curcumin: A review of pharmacodynamic and pharmacokinetic aspects. J Cell Physiol 2019; 234:12325-12340. [PMID: 30697728 DOI: 10.1002/jcp.28024] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Indexed: 12/24/2022]
Abstract
Effective drug delivery is one of the most important issues associated with the administration of therapeutic agents that have low oral bioavailability. Curcumin is an active ingredient in the turmeric plant, which has low oral bioavailability due to its poor aqueous solubility. One strategy that has been considered for enhancing the aqueous solubility, and, thus, its oral bioavailability, is the use of chitosan as a carrier for curcumin. Chitosan is a biodegradable and biocompatible polymer that is relatively water-soluble. Therefore, various studies have sought to improve the aqueous solubility of chitosan. The use of different pharmaceutical excipients and formulation strategies has the potential to improve aqueous solubility, formulation processing, and the overall delivery of hydrophobic drugs. This review focuses on various methods utilized for chitosan-based delivery of curcumin.
Collapse
Affiliation(s)
- Mahsa Saheb
- Department of Basic Science, Islamic Azad University of Damghan, Damghan, Iran
| | - Narges Fereydouni
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Nemati
- Department of Basic Science, Islamic Azad University of Damghan, Damghan, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, Missouri
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
152
|
Diaferia C, Ghosh M, Sibillano T, Gallo E, Stornaiuolo M, Giannini C, Morelli G, Adler-Abramovich L, Accardo A. Fmoc-FF and hexapeptide-based multicomponent hydrogels as scaffold materials. SOFT MATTER 2019; 15:487-496. [PMID: 30601569 DOI: 10.1039/c8sm02366b] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Short peptides or single amino acids are interesting building blocks for fabrication of hydrogels, frequently used as extracellular matrix-mimicking scaffolds for cell growth in tissue engineering. The combination of two or more peptide hydrogelators could allow obtaining different materials exhibiting new architectures, tunable mechanical properties, high stability and improved biofunctionality. Here we report on the synthesis, formulation and multi-scale characterization of peptide-based mixed hydrogels formed by the low molecular weight Fmoc-FF (Nα-fluorenylmethyloxycarbonyl diphenylalanine) hydrogelator and of the PEG8-(FY)3 hexapeptide, containing three repetitions of the Phe-Tyr motif and a PEG moiety at its N-terminus. Mixed hydrogels were also prepared by replacing PEG8-(FY)3 with its analogue (FY)3, without the PEG moiety. Rheology analysis confirmed the improved mechanical features of the multicomponent gels prepared at two different ratios (2/1 or 1/1, v/v). However, the presence of the hydrophilic PEG polymeric moiety causes a slowing down of the gel kinetic formation (from 42 to 18 minutes) and a decrease of the gel rigidity (G' from 9 to 6 kPa). Preliminary in vitro biocompatibility and cell adhesion assays performed on Chinese hamster ovarian (CHO) cells suggest a potential employment of these multicomponent hydrogels as exogenous scaffold materials for tissue engineering.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy. and Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Moumita Ghosh
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Teresa Sibillano
- Institute of Crystallography (IC), CNR, Via Amendola 122, 70126 Bari, Italy
| | - Enrico Gallo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| | - Mariano Stornaiuolo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| | - Cinzia Giannini
- Institute of Crystallography (IC), CNR, Via Amendola 122, 70126 Bari, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
153
|
Dergunov SA, Kim MD, Shmakov SN, Pinkhassik E. Building Functional Nanodevices with Vesicle-Templated Porous Polymer Nanocapsules. Acc Chem Res 2019; 52:189-198. [PMID: 30561994 DOI: 10.1021/acs.accounts.8b00442] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vesicle-templated nanocapsules offer a unique combination of properties enabled by robust shells with single-nanometer thickness containing programmed uniform pores capable of fast and selective mass transfer. These capsules emerged as a versatile platform for creating functional devices, such as nanoreactors, nanosensors, and containers for the delivery of drugs and imaging agents. Nanocapsules are synthesized by a directed assembly method using self-assembled bilayers of vesicles as temporary scaffolds. In this approach, hydrophobic building blocks are loaded into the hydrophobic interior of vesicles formed from lipids or surfactants. Pore-forming templates are codissolved with the monomers and cross-linkers in the interior of the bilayer. The polymerization forms a cross-linked shell with embedded pore-forming templates. Removal of the surfactant scaffold and pore-forming templates leads to free-standing nanocapsules with shells containing uniform imprinted nanopores. Development of reliable and scalable synthetic methods for the modular construction of capsules with tunable properties has opened the opportunity to pursue practical applications of nanocapsules. In this Account, we discuss how unique properties of vesicle-templated nanocapsules translate into the creation of functional nanodevices. Specifically, we focus the conversation on applications aiming at the delivery of drugs and imaging agents, creation of fast-acting and selective nanoreactors, and fabrication of nanoprobes for sensing and imaging. We present a brief overview of the synthesis of nanocapsules with an emphasis on recent developments leading to robust synthetic methods including the synthesis under physiological conditions and creation of biodegradable nanocapsules. We then highlight unique properties of nanocapsules essential for practical applications, such as precise control of pore size and chemical environment, selective permeability, and ultrafast transport through the pores. We discuss new motifs for catch and release of small molecules with porous nanocapsules based on controlling the microenvironment inside the nanocapsules, regulating the charge on the orifice of nanopores in the shells, and reversible synergistic action of host and guest forming a supramolecular complex in nanocapsules. We demonstrate successful creation of fast-acting and selective nanoreactors by encapsulation of diverse homogeneous and nanoparticle catalysts. Due to unhindered flow of substrates and products through the nanopores, encapsulation did not compromise catalytic efficiency and, in fact, improved the stability of entrapped catalysts. We present robust nanoprobes based on nanocapsules with entrapped sensing agents and show how the encapsulation resulted in selective measurements with fast response times in challenging conditions, such as small volumes and complex mixtures. Throughout this Account, we highlight the advantages of encapsulation and discuss the opportunities for future design of nanodevices.
Collapse
Affiliation(s)
- Sergey A. Dergunov
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Mariya D. Kim
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Sergey N. Shmakov
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Eugene Pinkhassik
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
154
|
Ko Y, Kim J, Jeong HY, Kwon G, Kim D, Ku M, Yang J, Yamauchi Y, Kim HY, Lee C, You J. Antibacterial poly (3,4-ethylenedioxythiophene):poly(styrene-sulfonate)/agarose nanocomposite hydrogels with thermo-processability and self-healing. Carbohydr Polym 2019; 203:26-34. [DOI: 10.1016/j.carbpol.2018.09.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023]
|
155
|
Sofi HS, Ashraf R, Khan AH, Beigh MA, Majeed S, Sheikh FA. Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:1102-1124. [DOI: 10.1016/j.msec.2018.10.069] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/19/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
|
156
|
Rajan M, Sumathra M. Biomedical Applications of Hydroxyapatite Nanocomposites. LECTURE NOTES IN BIOENGINEERING 2019:167-204. [DOI: 10.1007/978-3-030-04741-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
157
|
Yu L, Yang Y, Wang C. Peptide Self-Assembly and Its Modulation: Imaging on the Nanoscale. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:35-60. [PMID: 31713196 DOI: 10.1007/978-981-13-9791-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter intends to review the progress in obtaining site-specific structural information for peptide assemblies using scanning tunneling microscopy. The effects on assembly propensity due to mutations and modifications in peptide sequences, small organic molecules and conformational transitions of peptides are identified. The obtained structural insights into the sequence-dependent assembly propensity could inspire rational design of peptide architectures at the molecular level.
Collapse
Affiliation(s)
- Lanlan Yu
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
| | - Yanlian Yang
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
| | - Chen Wang
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
158
|
Tsao CJ, Pandolfi L, Wang X, Minardi S, Lupo C, Evangelopoulos M, Hendrickson T, Shi A, Storci G, Taraballi F, Tasciotti E. Electrospun Patch Functionalized with Nanoparticles Allows for Spatiotemporal Release of VEGF and PDGF-BB Promoting In Vivo Neovascularization. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44344-44353. [PMID: 30511828 DOI: 10.1021/acsami.8b19975] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The use of nanomaterials as carriers for the delivery of growth factors has been applied to a multitude of applications in tissue engineering. However, issues of toxicity, stability, and systemic effects of these platforms have yet to be fully understood, especially for cardiovascular applications. Here, we proposed a delivery system composed of poly(dl-lactide- co-glycolide) acid (PLGA) and porous silica nanoparticles (pSi) to deliver vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). The tight spatiotemporal release of these two proteins has been proven to promote neovascularization. In order to minimize tissue toxicity, localize the release, and maintain a stable platform, we conjugated two formulations of PLGA-pSi to electrospun (ES) gelatin to create a combined ES patch releasing both PDGF and VEGF. When compared to freely dispersed particles, the ES patch cultured in vitro with neonatal cardiac cells had significantly less particle internalization (2.0 ± 1.3%) compared to free PLGA-pSi (21.5 ± 6.1) or pSi (28.7 ± 2.5) groups. Internalization was positively correlated to late-stage apoptosis with PLGA-pSi and pSi groups having increased apoptosis compared to the untreated group. When implanted subcutaneously, the ES patch was shown to have greater neovascularization than controls evidenced by increased expression of α-SMA and CD31 after 21 days. Quantitative reverse transcription-polymerase chain reaction results support increased angiogenesis by the upregulation of VEGFA, VEGFR2, vWF, and COL3A1, exhibiting a synergistic effect with the release of VEGF-A164 and PDGF-BB after 21 days in vivo. The results of this study proved that the ES patch reduced cellular toxicity and may be tailored to have a dual release of growth factors promoting localized neovascularization.
Collapse
Affiliation(s)
- Christopher J Tsao
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Laura Pandolfi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Xin Wang
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Silvia Minardi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Cristina Lupo
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Troy Hendrickson
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
- MD/PhD Program , Texas A&M College of Medicine , 8441 Riverside Parkway , Bryan , Texas 77807 , United States
| | - Aaron Shi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Gianluca Storci
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Francesca Taraballi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
- Houston Methodist Orthopedics & Sports Medicine , Houston Methodist Hospital , 6550 Fannin Street , Houston , Texas 77030 , United States
| | - Ennio Tasciotti
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
- Houston Methodist Orthopedics & Sports Medicine , Houston Methodist Hospital , 6550 Fannin Street , Houston , Texas 77030 , United States
| |
Collapse
|
159
|
Gumí-Audenis B, Illa-Tuset S, Grimaldi N, Pasquina-Lemonche L, Ferrer-Tasies L, Sanz F, Veciana J, Ratera I, Faraudo J, Ventosa N, Giannotti MI. Insights into the structure and nanomechanics of a quatsome membrane by force spectroscopy measurements and molecular simulations. NANOSCALE 2018; 10:23001-23011. [PMID: 30500043 DOI: 10.1039/c8nr07110a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quatsomes (QS) are unilamellar nanovesicles constituted by quaternary ammonium surfactants and sterols in defined molar ratios. Unlike conventional liposomes, QS are stable upon long storage such as for several years, they show outstanding vesicle-to-vesicle homogeneity regarding size and lamellarity, and they have the structural and physicochemical requirements to be a potential platform for site-specific delivery of hydrophilic and lipophilic molecules. Knowing in detail the structure and mechanical properties of the QS membrane is of great importance for the design of deformable and flexible nanovesicle alternatives, highly pursued in nanomedicine applications such as the transdermal administration route. In this work, we report the first study on the detailed structure of the cholesterol : CTAB QS membrane at the nanoscale, using atomic force microscopy (AFM) and spectroscopy (AFM-FS) in a controlled liquid environment (ionic medium and temperature) to assess the topography of supported QS membranes (SQMs) and to evaluate the local membrane mechanics. We further perform molecular dynamics (MD) simulations to provide an atomistic interpretation of the obtained results. Our results are direct evidence of the bilayer nature of the QS membrane, with characteristics of a fluid-like membrane, compact and homogeneous in composition, and with structural and mechanical properties that depend on the surrounding environment. We show how ions alter the lateral packing, modifying the membrane mechanics. We observe that according to the ionic environment and temperature, different domains may coexist in the QS membranes, ascribed to variations in molecular tilt angles. Our results indicate that QS membrane properties may be easily tuned by altering the lateral interactions with either different environmental ions or counterions.
Collapse
Affiliation(s)
- Berta Gumí-Audenis
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Ching Lau C, Kemal Bayazit M, Reardon PJT, Tang J. Microwave Intensified Synthesis: Batch and Flow Chemistry. CHEM REC 2018; 19:172-187. [DOI: 10.1002/tcr.201800121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 11/13/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Chi Ching Lau
- Department of Chemical EngineeringUniversity College London Torrington Place WC1E 7JE
| | - Mustafa Kemal Bayazit
- Department of Chemical EngineeringUniversity College London Torrington Place WC1E 7JE
| | | | - Junwang Tang
- Department of Chemical EngineeringUniversity College London Torrington Place WC1E 7JE
| |
Collapse
|
161
|
Sarkar S, Tran N, Rashid MH, Le TC, Yarovsky I, Conn CE, Drummond CJ. Toward Cell Membrane Biomimetic Lipidic Cubic Phases: A High-Throughput Exploration of Lipid Compositional Space. ACS APPLIED BIO MATERIALS 2018; 2:182-195. [DOI: 10.1021/acsabm.8b00539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sampa Sarkar
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Nhiem Tran
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Md Harunur Rashid
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Tu C. Le
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Charlotte E. Conn
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Calum J. Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
162
|
Srinivasarao DA, Lohiya G, Katti DS. Fundamentals, challenges, and nanomedicine‐based solutions for ocular diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1548. [DOI: 10.1002/wnan.1548] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/21/2018] [Accepted: 10/28/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Dadi A. Srinivasarao
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| | - Garima Lohiya
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| | - Dhirendra S. Katti
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| |
Collapse
|
163
|
Ghafoor B, Aleem A, Najabat Ali M, Mir M. Review of the fabrication techniques and applications of polymeric electrospun nanofibers for drug delivery systems. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
164
|
Pradeepkumar P, Rajendran NK, Alarfaj AA, Munusamy MA, Rajan M. Deep Eutectic Solvent-Mediated FA-g-β-Alanine-co-PCL Drug Carrier for Sustainable and Site-Specific Drug Delivery. ACS APPLIED BIO MATERIALS 2018; 1:2094-2109. [DOI: 10.1021/acsabm.8b00554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Periyakaruppan Pradeepkumar
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu,India
| | - Naresh Kumar Rajendran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Murugan A. Munusamy
- Department of Botany and Microbiology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu,India
| |
Collapse
|
165
|
Metformin Hydrochloride-Loaded PLGA Nanoparticle in Periodontal Disease Experimental Model Using Diabetic Rats. Int J Mol Sci 2018; 19:ijms19113488. [PMID: 30404181 PMCID: PMC6274734 DOI: 10.3390/ijms19113488] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/11/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
Evidence shows that metformin is an antidiabetic drug, which can exert favorable anti-inflammatory effects and decreased bone loss. The development of nanoparticles for metformin might be useful for increased therapeutic efficacy. The aim of this study was to evaluate the effect of metformin hydrochloride-loaded Poly (d,l-Lactide-co-glycolide) (PLGA)/(MET-loaded PLGA) on a ligature-induced periodontitis model in diabetic rats. MET-loaded PLGA were characterized by mean diameter, particle size, polydispensity index, and entrapment efficiency. Maxillae were scanned using Microcomputed Tomography (µCT) and histopathological and immunohistochemical analysis. IL-1β and TNF-α levels were analyzed by ELISA immunoassay. Quantitative RT-PCR was used (AMPK, NF-κB p65, HMGB1, and TAK-1). The mean diameter of MET-loaded PLGA nanoparticles was in a range of 457.1 ± 48.9 nm (p < 0.05) with a polydispersity index of 0.285 (p < 0.05), Z potential of 8.16 ± 1.1 mV (p < 0.01), and entrapment efficiency (EE) of 66.7 ± 3.73. Treatment with MET-loaded PLGA 10 mg/kg showed low inflammatory cells, weak staining by RANKL, cathepsin K, OPG, and osteocalcin, and levels of IL-1β and TNF-α (p < 0.05), increased AMPK expression gene (p < 0.05) and decreased NF-κB p65, HMGB1, and TAK-1 (p < 0.05). It is concluded that MET-loaded PLGA decreased inflammation and bone loss in periodontitis in diabetic rats.
Collapse
|
166
|
Kim H, Jang H, Kim B, Kim MK, Wie DS, Lee HS, Kim DR, Lee CH. Flexible elastomer patch with vertical silicon nanoneedles for intracellular and intratissue nanoinjection of biomolecules. SCIENCE ADVANCES 2018; 4:eaau6972. [PMID: 30430139 PMCID: PMC6226283 DOI: 10.1126/sciadv.aau6972] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/05/2018] [Indexed: 05/14/2023]
Abstract
Vertically ordered arrays of silicon nanoneedles (Si NNs), due to their nanoscale dimension and low cytotoxicity, could enable minimally invasive nanoinjection of biomolecules into living biological systems such as cells and tissues. Although production of these Si NNs on a bulk Si wafer has been achieved through standard nanofabrication technology, there exists a large mismatch at the interface between the rigid, flat, and opaque Si wafer and soft, curvilinear, and optically transparent biological systems. Here, we report a unique methodology that is capable of constructing vertically ordered Si NNs on a thin layer of elastomer patch to flexibly and transparently interface with biological systems. The resulting outcome provides important capabilities to form a mechanically elastic interface between Si NNs and biological systems, and simultaneously enables direct imaging of their real-time interactions under the transparent condition. We demonstrate its utility in intracellular, intradermal, and intramuscular nanoinjection of biomolecules into various kinds of biological cells and tissues at their length scales.
Collapse
Affiliation(s)
- Hyungjun Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hanmin Jang
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Min Ku Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Dae Seung Wie
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Heung Soo Lee
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
- Corresponding author. (D.R.K.); (C.H.L.)
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Corresponding author. (D.R.K.); (C.H.L.)
| |
Collapse
|
167
|
Border SE, Pavlović RZ, Zhiquan L, Gunther MJ, Wang H, Cui H, Badjić JD. Light‐Triggered Transformation of Molecular Baskets into Organic Nanoparticles. Chemistry 2018; 25:273-279. [PMID: 30133001 DOI: 10.1002/chem.201803693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/17/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Sarah E. Border
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Radoslav Z. Pavlović
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Lei Zhiquan
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Michael J. Gunther
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Han Wang
- Department of Chemical and Biomolecular EngineeringThe Johns Hopkins University, Maryland Hall 221 3400 North Charles Street 21218 Baltimore Maryland USA
| | - Honggang Cui
- Department of Chemical and Biomolecular EngineeringThe Johns Hopkins University, Maryland Hall 221 3400 North Charles Street 21218 Baltimore Maryland USA
| | - Jovica D. Badjić
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| |
Collapse
|
168
|
Matsumoto NM, Lafleur RPM, Lou X, Shih KC, Wijnands SPW, Guibert C, van Rosendaal JWAM, Voets IK, Palmans ARA, Lin Y, Meijer EW. Polymorphism in Benzene-1,3,5-tricarboxamide Supramolecular Assemblies in Water: A Subtle Trade-off between Structure and Dynamics. J Am Chem Soc 2018; 140:13308-13316. [PMID: 30221520 PMCID: PMC6194755 DOI: 10.1021/jacs.8b07697] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
In biology, polymorphism is a well-known
phenomenon by which a
discrete biomacromolecule can adopt multiple specific conformations
in response to its environment. The controlled incorporation of polymorphism
into noncovalent aqueous assemblies of synthetic small molecules is
an important step toward the development of bioinspired responsive
materials. Herein, we report on a family of carboxylic acid functionalized
water-soluble benzene-1,3,5-tricarboxamides (BTAs) that self-assemble
in water to form one-dimensional fibers, membranes, and hollow nanotubes.
Interestingly, one of the BTAs with the optimized position of the
carboxylic group in the hydrophobic domain yields nanotubes that undergo
reversible temperature-dependent dynamic reorganizations. SAXS and
Cryo-TEM data show the formation of elongated, well-ordered nanotubes
at elevated temperatures. At these temperatures, increased dynamics,
as measured by hydrogen–deuterium exchange, provide enough
flexibility to the system to form well-defined nanotube structures
with apparently defect-free tube walls. Without this flexibility,
the assemblies are frozen into a variety of structures that are very
similar at the supramolecular level, but less defined at the mesoscopic
level.
Collapse
Affiliation(s)
- Nicholas M Matsumoto
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry , Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven , the Netherlands
| | - René P M Lafleur
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry , Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven , the Netherlands
| | - Xianwen Lou
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry , Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven , the Netherlands
| | - Kuo-Chih Shih
- Department of Chemistry and Polymer Program at the Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Sjors P W Wijnands
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry , Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven , the Netherlands
| | - Clément Guibert
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry , Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven , the Netherlands
| | - Johannes W A M van Rosendaal
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry , Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven , the Netherlands
| | - Ilja K Voets
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry , Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven , the Netherlands
| | - Anja R A Palmans
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry , Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven , the Netherlands
| | - Yao Lin
- Department of Chemistry and Polymer Program at the Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry , Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven , the Netherlands
| |
Collapse
|
169
|
Bazrafshan Z, Stylios GK. One-Step Fabrication of Three-Dimensional Fibrous Collagen-Based Macrostructure with High Water Uptake Capability by Coaxial Electrospinning. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E803. [PMID: 30297671 PMCID: PMC6215112 DOI: 10.3390/nano8100803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022]
Abstract
One step fabrication of the three dimension (3D) fibrous structure of Collagen-g-poly(MMA-co-EA)/Nylon6 was investigated by controlling the experimental conditions during coaxial electrospinning. This 3D fibrous structure is the result of interactions of two polymeric systems with a varied capability to be electrostatically polarized under the influence of the external electric field; the solution with the higher conductivity into the inner spinneret and the solution with the lesser conductivity into the outer capillary of the coaxial needle. This set-up was to obtain bimodal fiber fabrication in micro and nanoscale developing a spatial structure; the branches growing off a trunk. The resultant 3D collagen-based fibrous structure has two distinguished configurations: microfibers of 6.9 ± 2.2 µm diameter gap-filled with nanofibers of 216 ± 49 nm diameter. The 3D fibrous structure can be accumulated at an approximate height of 4 cm within 20 min. The mechanism of the 3D fibrous structure and the effect of experimental conditions, the associated hydration degree, water uptake and degradation rate were also investigated. This highly stable 3D fibrous structure has great potential end-uses benefitting from its large surface area and high water uptake which is caused by the high polarity and spatial orientation of collagen-based macrostructure.
Collapse
Affiliation(s)
- Zahra Bazrafshan
- Organic Chemistry Laboratory, Research Institute for Flexible Materials, Heriot Watt University, Galashiels TD1 3HF, UK.
| | - George K Stylios
- Research Institute for Flexible Materials, Heriot Watt University, Galashiels TD1 3HF, UK.
| |
Collapse
|
170
|
Saidi T, Fortuin J, Douglas TS. Nanomedicine for drug delivery in South Africa: a protocol for systematic review. Syst Rev 2018; 7:154. [PMID: 30292237 PMCID: PMC6173875 DOI: 10.1186/s13643-018-0823-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/25/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The emergence of nanomedicine in the past decade has changed the landscape of disease diagnosis and treatment. Nanomedicine makes use of nanostructures for applications in different fields of medicine, including drug delivery, biosensors, neuro-electronic interfaces, in vivo imaging, and cell-specific molecular interactions. Despite its relative infancy, nanomedicine has generated a significant body of research as evidenced by peer reviewed literature and several patents. This proposed systematic review will focus specifically on drug delivery systems in which nanoparticles are used to enhance the pharmacological and therapeutic properties of drugs. The strength of nanoparticulate drug delivery systems is their ability to alter the pharmacokinetics and bio-distribution of drugs. Globally, the discourse on nanomedicine is dominated by research being done in the developed countries of Europe and in the United States of America. Less attention has been given to the applications of nanomedicine in developing countries, particularly Africa. There is dearth of information on the applications of nanomedicine in terms of drug delivery with particular reference to which diseases are being targeted generally in Africa. The review will describe the specific diseases that are being targeted and the progress being made in South Africa, with a view to determining whether the applications of nanomedicine are being appropriated to address the context-specific challenges in this country or if they mimic what is being done globally. METHODS Keywords related to nanomedicine and drug delivery will be combined to build a search strategy for each of the following databases: PubMed, Cochrane Library (including Cochrane Central Register of Controlled Trials (CENTRAL), Cochrane Database of Systematic Reviews, Cochrane Methodology Register), Google Scholar, NHS Health Technology Assessment Database and Web of Science. We will also check reference lists of included studies for other eligible reports and search unpublished data. To ensure that the search is comprehensive, grey literature will be searched extensively. Literature to be included will have nanomedicine in drug delivery as the primary application and report on the specific diseases that are targeted in South Africa. Two authors will independently screen the search output, select studies and extract data; discrepancies will be resolved by consensus and discussion. When no consensus is reached, the third author will be consulted DISCUSSION: The systematic review will inform the government, policy-makers, investors, health professionals, scientists, and engineers about the applications of nanomedicine in drug delivery. In particular, it will identify the diseases targeted by the application of nanomedicine for drug delivery and the progress being made in South Africa as the disease burden of this country differs from that of developed countries where nanomedicine has been widely used for drug delivery. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42017057388.
Collapse
Affiliation(s)
- Trust Saidi
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Jill Fortuin
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Tania S Douglas
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|
171
|
Park S, Han U, Choi D, Hong J. Layer-by-layer assembled polymeric thin films as prospective drug delivery carriers: design and applications. Biomater Res 2018; 22:29. [PMID: 30275972 PMCID: PMC6158909 DOI: 10.1186/s40824-018-0139-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The main purpose of drug delivery systems is to deliver the drugs at the appropriate concentration to the precise target site. Recently, the application of a thin film in the field of drug delivery has gained increasing interest because of its ability to safely load drugs and to release the drug in a controlled manner, which improves drug efficacy. Drug loading by the thin film can be done in various ways, depending on type of the drug, the area of exposure, and the purpose of drug delivery. MAIN TEXT This review summarizes the various methods used for preparing thin films with drugs via Layer-by-layer (LbL) assembly. Furthermore, additional functionalities of thin films using surface modification in drug delivery are briefly discussed. There are three types of methods for preparing a drug-carrying multilayered film using LbL assembly. First methods include approaches for direct loading of the drug into the pre-fabricated multilayer film. Second methods are preparing thin films using drugs as building blocks. Thirdly, the drugs are incorporated in the cargo so that the cargo itself can be used as the materials of the film. CONCLUSION The appropriate designs of the drug-loaded film were produced in consideration of the release amounts and site of the desired drug. Furthermore, additional surface modification using the LbL technique enabled the preparation of effective drug delivery carriers with improved targeting effect. Therefore, the multilayer thin films fabricated by the LbL technique are a promising candidate for an ideal drug delivery system and the development possibilities of this technology are infinite.
Collapse
Affiliation(s)
- Sohyeon Park
- Department of Chemical and Biomolecular Engineering, College of Engineering Yonsei University, 50 Yonsei Ro, Seodaemun Gu, Seoul, 038722 Republic of Korea
| | - Uiyoung Han
- Department of Chemical and Biomolecular Engineering, College of Engineering Yonsei University, 50 Yonsei Ro, Seodaemun Gu, Seoul, 038722 Republic of Korea
| | - Daheui Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering Yonsei University, 50 Yonsei Ro, Seodaemun Gu, Seoul, 038722 Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering Yonsei University, 50 Yonsei Ro, Seodaemun Gu, Seoul, 038722 Republic of Korea
| |
Collapse
|
172
|
Dang M, Saunders L, Niu X, Fan Y, Ma PX. Biomimetic delivery of signals for bone tissue engineering. Bone Res 2018; 6:25. [PMID: 30181921 PMCID: PMC6115422 DOI: 10.1038/s41413-018-0025-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/22/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Bone tissue engineering is an exciting approach to directly repair bone defects or engineer bone tissue for transplantation. Biomaterials play a pivotal role in providing a template and extracellular environment to support regenerative cells and promote tissue regeneration. A variety of signaling cues have been identified to regulate cellular activity, tissue development, and the healing process. Numerous studies and trials have shown the promise of tissue engineering, but successful translations of bone tissue engineering research into clinical applications have been limited, due in part to a lack of optimal delivery systems for these signals. Biomedical engineers are therefore highly motivated to develop biomimetic drug delivery systems, which benefit from mimicking signaling molecule release or presentation by the native extracellular matrix during development or the natural healing process. Engineered biomimetic drug delivery systems aim to provide control over the location, timing, and release kinetics of the signal molecules according to the drug's physiochemical properties and specific biological mechanisms. This article reviews biomimetic strategies in signaling delivery for bone tissue engineering, with a focus on delivery systems rather than specific molecules. Both fundamental considerations and specific design strategies are discussed with examples of recent research progress, demonstrating the significance and potential of biomimetic delivery systems for bone tissue engineering.
Collapse
Affiliation(s)
- Ming Dang
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
| | - Laura Saunders
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Peter X. Ma
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
173
|
Yu DG, Li JJ, Williams GR, Zhao M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J Control Release 2018; 292:91-110. [PMID: 30118788 DOI: 10.1016/j.jconrel.2018.08.016] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022]
Abstract
The development of oral dosage forms for poorly water-soluble active pharmaceutical ingredients (APIs) is a persistent challenge. A range of methods has been explored to address this issue, and amorphous solid dispersions (ASDs) have received increasing attention. ASDs are typically prepared by starting with a liquid precursor (a solution or melt) and applying energy for solidification. Many techniques can be used, with the emergence of electrospinning as a potent option in recent years. This method uses electrical energy to induce changes from liquid to solid. Through the direct applications of electrical energy, electrospinning can generate nanofiber-based ASDs from drug-loaded solutions, melts and melt-solutions. The technique can also be combined with other approaches using the application of mechanical, thermal or other energy sources. Electrospinning has numerous advantages over other approaches to produce ASDs. These advantages include extremely rapid drying speeds, ease of implentation, compatibility with a wide range of active ingredients (including those which are thermally labile), and the generation of products with large surface areas and high porosity. Furthermore, this technique exhibits the potential to create so-called 'fifth-generation' ASDs with nanostructured architectures, such as core/shell or Janus systems and their combinations. These advanced systems can improve dissolution behaviour and provide programmable drug release profiles. Additionally, the fiber components and their spatial distributions can be precisely controlled. Electrospun fiber-based ASDs can maintain an incorporated active ingredient in the amorphous physical form for prolonged periods of time because of their homogeneous drug distribution within the polymer matrix (typically they comprise solid solutions), and ability to inhibit molecular motion. These ASDs can be utilised to generate oral dosage forms for poorly water-soluble drugs, resulting in linear or multiple-phase release of one or more APIs. Electrospun ASDs can also be exploited as templates for manipulating molecular self-assembly, offering a bridge between ASDs and other types of dosage forms. This review addresses the development, advantages and pharmaceutical applications of electrospinning for producing polymeric ASDs. Material preparation and analysis procedures are considered. The mechanisms through which performance has been improved are also discussed.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Jiao-Jiao Li
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Min Zhao
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
174
|
Corsini E, Engin AB, Neagu M, Galbiati V, Nikitovic D, Tzanakakis G, Tsatsakis AM. Chemical-induced contact allergy: from mechanistic understanding to risk prevention. Arch Toxicol 2018; 92:3031-3050. [PMID: 30097700 DOI: 10.1007/s00204-018-2283-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Chemical allergens are small molecules able to form a sensitizing complex once they bound to proteins. One of the most frequent manifestations of chemical allergy is contact hypersensitivity, which can have serious impact on quality of life. Allergic contact dermatitis is a predominantly CD8 + T cell-mediated immune disease, resulting in erythema and eczema. Chemical allergy is of considerable importance to the toxicologist, who has the responsibility of identifying and characterizing the allergenic potential of chemicals, and estimating the risk they pose to human health. This review aimed at exploring the phenomena of chemical-induced contact allergy starting from a mechanistic understanding, immunoregulatory mechanisms, passing through the potency of contract allergen until the hazard identification, pointing out the in vitro models for assessing contact allergen-induced cell activation and the risk prevention.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, Department of Environmental and Political Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Ayşe Başak Engin
- Gazi Üniversitesi, Eczacılık Fakültesi, Toksikoloji, Hipodrom, 06330, Ankara, Turkey
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096, Bucharest, Romania
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Environmental and Political Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| | - Dragana Nikitovic
- Department of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - George Tzanakakis
- Department of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Greece
| |
Collapse
|
175
|
Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications. Biomed Pharmacother 2018; 104:496-508. [DOI: 10.1016/j.biopha.2018.05.066] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 01/19/2023] Open
|
176
|
Villarreal-Gómez LJ, Serrano-Medina A, José Torres-Martínez E, Lizeth Perez-González G, Manuel Cornejo-Bravo J. Polymeric advanced delivery systems for antineoplasic drugs: doxorubicin and 5-fluorouracil. E-POLYMERS 2018. [DOI: 10.1515/epoly-2017-0202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractConventional pharmaceuticals generally display the inability to transport active ingredients directly to specific regions of the body, amongst some of their main limitations. The distribution of the drugs in the circulatory system may lead to undesired toxicity, and therefore, adverse reactions. To address this situation, a selective transport of drugs is required, that is, releasing drugs specifically to the site of action in appropriate concentrations and in the right time. To achieve this goal, it is necessary to develop delivery systems that respond to several features, such as low toxicity, optimum properties for the transport and release of the drug, as well as a long half-life in the body. This feature paper critically provides an overview of different strategies of controlled drug release for two model antineoplasic drugs, i.e. doxorubicin (DOX) and 5-fluorouracil (5-FU). Any of the presented strategies for drug release possess advantages and disadvantages, and the selection of the strategy used will depend on the targeted tissue and nature of the drug.
Collapse
Affiliation(s)
- Luis Jesús Villarreal-Gómez
- Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California C.P. 22390, México
- Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
| | - Aracely Serrano-Medina
- Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California C.P. 22390, México
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
| | - Erick José Torres-Martínez
- Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California C.P. 22390, México
- Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
| | - Graciela Lizeth Perez-González
- Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California C.P. 22390, México
- Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
| | - José Manuel Cornejo-Bravo
- Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California C.P. 22390, México
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
| |
Collapse
|
177
|
Wang Y, Zhang Y, Li X, Li C, Yang Z, Wang L. A Peptide-Based Supramolecular Hydrogel for Controlled Delivery of Amine Drugs. Chem Asian J 2018; 13:3460-3463. [DOI: 10.1002/asia.201800708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/05/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Youzhi Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300071 P. R. China
- College of Life Sciences; Key Laboratory of Bioactive Materials; Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 P. R. China
| | - Yiming Zhang
- College of Life Sciences; Key Laboratory of Bioactive Materials; Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 P. R. China
| | - Xinxin Li
- College of Life Sciences; Key Laboratory of Bioactive Materials; Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 P. R. China
| | - Can Li
- College of Life Sciences; Key Laboratory of Bioactive Materials; Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300071 P. R. China
- College of Life Sciences; Key Laboratory of Bioactive Materials; Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 P. R. China
| | - Ling Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300071 P. R. China
| |
Collapse
|
178
|
Lee CJ, Wang H, Young M, Li S, Cheng F, Cong H, Cheng G. Structure-function study of poly(sulfobetaine 3,4-ethylenedioxythiophene) (PSBEDOT) and its derivatives. Acta Biomater 2018; 75:161-170. [PMID: 29879552 DOI: 10.1016/j.actbio.2018.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 01/02/2023]
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT) has been widely studied in recent decades due to its high stability, biocompatibility, low redox potential, moderate band gap, and optical transparency in its conducting state. However, for its long-term in vivo applications, the biocompatibility of PEDOT still needs to be improved. To address this challenge, zwitterionic poly(sulfobetaine 3,4-ethylenedioxythiophene) (PSBEDOT) that contains EDOT backbone with sulfobetaine functional side chains was developed in our previous study. Although PSBEDOT showed great resistance to proteins, cells, and bacteria, it is still not clear how the zwitterionic sulfobetaine side chain affects the electrochemical properties of the polymer and reactivity of the monomer. To achieve better understanding of the structure-function relationships of zwitterionic conducting polymers, we synthesized two derivatives of PSBEDOT, PSBEDOT-4 and PSBEDOT-5, by introducing the alkoxyl spacer between PEDOT backbone and sulfobetaine side chain. The interfacial impedance of PSBEDOT-4 and PSBEDOT-5 was examined by electrochemical impedance spectroscopy and showed significant improvement which is about 20 times lower than PSBEDOT on both gold and indium tin oxide substrates at 1 Hz. In the protein adsorption study, PSBEDOT, PSBEDOT-4 and PSBEDOT-5 exhibited comparable resistance to the fibrinogen solution. All three polymers had low protein adsorption around 3-5% comparing to PEDOT. Additionally, the morphology of PSBEDOT, PSBEDOT-4 and PSBEDOT-5 have been investigated by scanning electron microscopy. We believe that these stable and biocompatible materials can be excellent candidates for developing long-term bioelectronic devices. STATEMENT OF SIGNIFICANCE To address the challenges associated with existing conducting polymers for bioelectronics, we developed a versatile and high performance zwitterionic conducting material platform with excellent stability, electrochemical, antifouling and controllable antimicrobial/antifouling properties. In this work, we developed two high-performance conducting polymers and systematically investigated how the structure affects their properties. Our study shows we can accurately tune the molecular structure of the monomer to improve the performance of zwitterionic conducting polymer. This zwitterionic conducting polymer platform may dramatically increase the performance and service life of bio-electrochemical devices for many long-term applications, such as implantable biosensing, tissue engineering, wound healing, robotic prostheses, biofuel cell etc., which all require high performance conducting materials with excellent antifouling property/biocompatibility at complex biointerfaces.
Collapse
|
179
|
Giri RP, Mukhopadhyay MK, Basak UK, Chakrabarti A, Sanyal MK, Runge B, Murphy BM. Continuous Uptake or Saturation—Investigation of Concentration and Surface-Packing-Specific Hemin Interaction with Lipid Membranes. J Phys Chem B 2018; 122:7547-7554. [DOI: 10.1021/acs.jpcb.8b03327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. P. Giri
- Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - M. K. Mukhopadhyay
- Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - U. K. Basak
- Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - A. Chakrabarti
- Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - M. K. Sanyal
- Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - B. Runge
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - B. M. Murphy
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
- Ruprecht Haensel Laboratory, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
180
|
Bouchmella K, Campanaro FD, Mondo GB, Santos MI, Franco CH, Moraes CB, Biolley C, Mehdi A, Cardoso MB. Tetracycline@silver ions-functionalized mesoporous silica for high bactericidal activity at ultra-low concentration. Nanomedicine (Lond) 2018; 13:1731-1751. [DOI: 10.2217/nnm-2018-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Polyether pores were designed and tetracycline-loaded mesoporous silica materials, with their surface decorated by silver ions, were prepared, with the aim of reaching high antibacterial activity. Meanwhile, mammalian cell cytotoxicity and hemolytic effects were not observed using material concentrations tenfold the ones optimized for the bactericidal tests. Methods: Pore size was tuned by changing the polyether content and the surface was covalently decorated with silver thiolate groups. Results: We showed that the biological activity was enhanced by modulating silver ions and tetracycline releases by tuning silver thiolate group concentration on the silica surface and/or by modulating the pH of the environment. Conclusion: The combined use of tetracycline and silver ions with the mesoporous drug-delivery carrier was a very effective strategy against susceptible and tetracycline-resistant Escherichia coli bacteria.
Collapse
Affiliation(s)
- Karim Bouchmella
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brasil
- Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brasil
- Instituto de Química (IQ), Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Caixa Postal 6154, Campinas, São Paulo, Brasil
| | - Felipe Davi Campanaro
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brasil
- Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brasil
| | - Gabriela Borba Mondo
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brasil
- Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brasil
- Instituto de Química (IQ), Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Caixa Postal 6154, Campinas, São Paulo, Brasil
| | - Murilo Izidoro Santos
- Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brasil
| | - Caio Haddad Franco
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brasil
| | - Carolina Borsoi Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brasil
| | - Christine Biolley
- Institut Charles Gerhardt Montpellier (ICGM), UMR5253, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Ahmad Mehdi
- Institut Charles Gerhardt Montpellier (ICGM), UMR5253, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Mateus Borba Cardoso
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brasil
- Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brasil
- Instituto de Química (IQ), Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Caixa Postal 6154, Campinas, São Paulo, Brasil
| |
Collapse
|
181
|
Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv Drug Deliv Rev 2018; 132:57-80. [PMID: 29935987 DOI: 10.1016/j.addr.2018.06.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Cellular carriers for drug delivery are attractive alternatives to synthetic nanoparticles owing to their innate homing/targeting abilities. Here, we review molecular interactions involved in the homing of Mesenchymal stem cells (MSCs) and other cell types to understand the process of designing and engineering highly efficient, actively targeting cellular vehicles. In addition, we comprehensively discuss various genetic and non-genetic strategies and propose futuristic approaches of engineering MSC homing using micro/nanotechnology and high throughput small molecule screening. Most of the targeting abilities of a cell come from its plasma membrane, thus, efforts to harness cell membranes as drug delivery vehicles are gaining importance and are highlighted here. We also recognize and report the lack of detailed characterization of cell membranes in terms of safety, structural integrity, targeting functionality, and drug transport. Finally, we provide insights on future development of bioengineered cellular and cell membrane-derived vesicles for successful clinical translation.
Collapse
Affiliation(s)
- Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, B.H. Road, Tumakuru, 572103, Karnataka, India.
| |
Collapse
|
182
|
Nicol E, Nicolai T, Zhao J, Narita T. Photo-Cross-Linked Self-Assembled Poly(ethylene oxide)-Based Hydrogels Containing Hybrid Junctions with Dynamic and Permanent Cross-Links. ACS Macro Lett 2018; 7:683-687. [PMID: 35632977 DOI: 10.1021/acsmacrolett.8b00317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Homogeneous hydrogels were formed by self-assembly of triblock copolymers via association of small hydrophobic end blocks into micelles bridged by large poly(ethylene oxide) central blocks. A fraction of the end blocks were photo-cross-linkable and could be rapidly cross-linked covalently by in situ UV irradiation. In this manner networks were formed with well-defined chain lengths between homogeneously distributed hybrid micelles that contained both permanent and dynamically cross-linked end blocks. Linear rheology showed a single relaxation mode before in situ irradiation intermediate between those of the individual networks. The presence of transient cross-links decreased the percolation threshold of the network rendered permanent by irradiation and caused a strong increase of the elastic modulus at lower polymer concentrations. Large amplitude oscillation and tensile tests showed significant increase of the fracture strain caused by the dynamic cross-links.
Collapse
Affiliation(s)
- Erwan Nicol
- IMMM − UMR CNRS 6283, Le Mans Université, Avenue O. Messiaen, 72085 Cedex 9 Le Mans, France
| | - Taco Nicolai
- IMMM − UMR CNRS 6283, Le Mans Université, Avenue O. Messiaen, 72085 Cedex 9 Le Mans, France
| | - Jingwen Zhao
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Tetsuharu Narita
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
183
|
Satapathy MK, Nyambat B, Chiang CW, Chen CH, Wong PC, Ho PH, Jheng PR, Burnouf T, Tseng CL, Chuang EY. A Gelatin Hydrogel-Containing Nano-Organic PEI⁻Ppy with a Photothermal Responsive Effect for Tissue Engineering Applications. Molecules 2018; 23:E1256. [PMID: 29795044 PMCID: PMC6099840 DOI: 10.3390/molecules23061256] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/11/2018] [Accepted: 05/19/2018] [Indexed: 12/25/2022] Open
Abstract
The introduction and designing of functional thermoresponsive hydrogels have been recommended as recent potential therapeutic approaches for biomedical applications. The development of bioactive materials such as thermosensitive gelatin-incorporated nano-organic materials with a porous structure and photothermally triggerable and cell adhesion properties may potentially achieve this goal. This novel class of photothermal hydrogels can provide an advantage of hyperthermia together with a reversibly transformable hydrogel for tissue engineering. Polypyrrole (Ppy) is a bioorganic conducting polymeric substance and has long been used in biomedical applications owing to its brilliant stability, electrically conductive features, and excellent absorbance around the near-infrared (NIR) region. In this study, a cationic photothermal triggerable/guidable gelatin hydrogel containing a polyethylenimine (PEI)⁻Ppy nanocomplex with a porous microstructure was established, and its physicochemical characteristics were studied through dynamic light scattering, scanning electronic microscopy, transmission electron microscopy, an FTIR; and cellular interaction behaviors towards fibroblasts incubated with a test sample were examined via MTT assay and fluorescence microscopy. Photothermal performance was evaluated. Furthermore, the in vivo study was performed on male Wistar rat full thickness excisions model for checking the safety and efficacy of the designed gelatin⁻PEI⁻Ppy nanohydrogel system in wound healing and for other biomedical uses in future. This photothermally sensitive hydrogel system has an NIR-triggerable property that provides local hyperthermic temperature by PEI⁻Ppy nanoparticles for tissue engineering applications. Features of the designed hydrogel may fill other niches, such as being an antibacterial agent, generation of free radicals to further improve wound healing, and remodeling of the promising photothermal therapy for future tissue engineering applications.
Collapse
Affiliation(s)
- Mantosh Kumar Satapathy
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| | - Batzaya Nyambat
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| | - Chih-Wei Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- Bone and Joint Research Center, Department of Orthopedics, Taipei Medical University Hospital, School of Medicine, College of Medicine, Taipei Medical University, No. 252, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Room 410, Barry Lam Hall, No.1, Sec.4, Roosevelt Road, Taipei 10617, Taiwan.
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- Bone and Joint Research Center, Department of Orthopedics, Taipei Medical University Hospital, School of Medicine, College of Medicine, Taipei Medical University, No. 252, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| | - Pei-Chun Wong
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| | - Po-Hsien Ho
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| |
Collapse
|
184
|
Gahl TJ, Kunze A. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function. Front Neurosci 2018; 12:299. [PMID: 29867315 PMCID: PMC5962660 DOI: 10.3389/fnins.2018.00299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices.
Collapse
Affiliation(s)
| | - Anja Kunze
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
185
|
Multifunctional Self-Assembling Peptide-Based Nanostructures for Targeted Intracellular Delivery: Design, Physicochemical Characterization, and Biological Assessment. Methods Mol Biol 2018; 1758:11-26. [PMID: 29679319 DOI: 10.1007/978-1-4939-7741-3_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peptide amphiphiles (PAs), consisting of a hydrophobic alkyl chain covalently bound to a hydrophilic peptide sequence, possess a versatile molecular design due to their combined self-assembling features of amphiphile surfactants and biological functionalities of peptides. Through rational design, PAs can self-assemble into a variety of nanostructures with controlled shape, size, and biological functionality to deliver therapeutic and imaging agents to target cells. Here, we describe principles to design multifunctional PAs for self-assembly into micellar nanostructures and targeted intracellular delivery. The PA micelles are designed to display a tumour targeting sequence on their surfaces and direct their interactions with specific cells. This targeting sequence includes an enzymatic sensitive sequence that can be cleaved upon exposure to matrix metalloproteinase 2 (MMP-2), an enzyme overexpressed in tumor environment, allowing the presentation of a cell-penetrating domain. The presentation of this domain will then facilitate the delivery of therapeutics for cancer treatment inside targeted cells. Methods to characterize the key physicochemical properties of PAs and their assemblies, including secondary structure, critical micelle concentration, shape and size, are described in detail. The enzyme responsiveness of PA assemblies is described with respect to their degradation by MMP-2. Protocols to evaluate the cytotoxicity and cellular uptake of the micellar carriers are also included.
Collapse
|
186
|
Ren B, Chen X, Ma Y, Du S, Qian S, Xu Y, Yan Z, Li J, Jia Y, Tan H, Ling Z, Chen Y, Hu X. Dynamical release nanospheres containing cell growth factor from biopolymer hydrogel via reversible covalent conjugation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1344-1359. [PMID: 29609508 DOI: 10.1080/09205063.2018.1460140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For practical adipose regeneration, the challenge is to dynamically deliver the key adipogenic insulin-like growth factors in hydrogels to induce adipogenesis. In order to achieve dynamic release, smart hydrogels to sense the change in the blood glucose concentration is required when glucose concentration increases. In this study, a heparin-based hydrogel has been developed for use in dynamic delivery of heparin nanospheres containing insulin-like growth factor. The gel scaffold was facilely prepared in physiological conditions by the formation of boronate-maltose ester cross-links between boronate and maltose groups of heparin derivatives. Due to its intrinsic glucose-sensitivity, the exposure of gel scaffold to glucose induces maltose functionalized nanospheres dissociation off hydrogel network and thereby could dynamically move into the microenvironment. The potential of the hydrogel as a cell scaffold was demonstrated by encapsulation of human adipose-derived stem cells (ASCs) within the gel matrix in vitro. Cell culture showed that this dynamic hydrogel could support survival and proliferation of ASCs. This biocompatible coupling chemistry has the advantage that it introduces no potentially cytotoxic groups into injectable gel scaffolds formed and can create a more biomimetic microenvironment for drug and cell delivery, rendering them more suitable for potential in vivo biomedical applications. All these results indicate that this biocompatible gel scaffold can render the formulation of a therapeutically effective platform for diabetes treatment and adipose regeneration.
Collapse
Affiliation(s)
- Bowen Ren
- a School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing , China
| | - Xueyun Chen
- a School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing , China
| | - Ye Ma
- a School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing , China
| | - Shoukang Du
- a School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing , China
| | - Saibo Qian
- a School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing , China
| | - Yongjie Xu
- a School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing , China
| | - Zhilin Yan
- a School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing , China
| | - Jianliang Li
- a School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing , China
| | - Yang Jia
- a School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing , China
| | - Huaping Tan
- a School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing , China
| | - Zhonghua Ling
- b Department of Orthopaedics , Jinling Hospital , Nanjing , China
| | - Yong Chen
- b Department of Orthopaedics , Jinling Hospital , Nanjing , China
| | - Xiaohong Hu
- c School of Material Engineering , Jinling Institute of Technology , Nanjing , China
| |
Collapse
|
187
|
Whinton M, Hughes TC, Peng S, Brook MA. Silicone Microemulsion Structures Are Maintained During Polymerization with Reactive Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4374-4381. [PMID: 29546990 DOI: 10.1021/acs.langmuir.8b00240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bicontinuous microemulsions exhibit domain structures on the nanoscale (<20 nm). Normally, such fine details are lost during the conversion from a fluid microemulsion to solid elastomeric materials, as a consequence of interfacial destabilization via polymerization of either the oil phase or monomers in the aqueous phase. Very little is known about the polymerization of silicone microemulsions and the morphological changes that occur upon transition from a nanostructured liquid to a solid matrix. Silicone microemulsions polymerized by free radical (aqueous phase) and condensation (silicone phase) processes, respectively, were characterized by small-angle X-ray scattering and transmission electron microscopy. It was found that cross-linking of the silicone phase alone led, over time, to large increase of the size of the microemulsion nanodomains. By contrast, photoinduced polymerization of a reactive surfactant and acrylic monomers in the aqueous phase was effective at retaining bicontinuous nanomorphology, irrespective of the degree of cross-linking of the silicone phase.
Collapse
Affiliation(s)
- Marlena Whinton
- Department of Chemistry and Chemical Biology , McMaster University , 1280 Main St. W. , Hamilton , Ontario L8S 4M1 , Canada
| | - Timothy C Hughes
- CSIRO Materials Science and Engineering , Bayview Avenue , Clayton South , Victoria 3169 , Australia
| | - Shuhua Peng
- CSIRO Materials Science and Engineering , Bayview Avenue , Clayton South , Victoria 3169 , Australia
| | - Michael A Brook
- Department of Chemistry and Chemical Biology , McMaster University , 1280 Main St. W. , Hamilton , Ontario L8S 4M1 , Canada
| |
Collapse
|
188
|
Peng Y, Tellier LE, Temenoff JS. Heparin-based hydrogels with tunable sulfation & degradation for anti-inflammatory small molecule delivery. Biomater Sci 2018; 4:1371-80. [PMID: 27447003 DOI: 10.1039/c6bm00455e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sustained release of anti-inflammatory agents remains challenging for small molecule drugs due to their low molecular weight and hydrophobicity. Therefore, the goal of this study was to control the release of a small molecule anti-inflammatory agent, crystal violet (CV), from hydrogels fabricated with heparin, a highly sulfated glycosaminoglycan capable of binding positively-charged molecules such as CV. In this system, both electrostatic interactions between heparin and CV and hydrogel degradation were tuned simultaneously by varying the level of heparin sulfation and varying the amount of dithiothreitol within hydrogels, respectively. It was found that heparin sulfation significantly affected CV release, whereby more sulfated heparin hydrogels (Hep and Hep(-N)) released CV with near zero-order release kinetics (R-squared values between 0.96-0.99). Furthermore, CV was released more quickly from fast-degrading hydrogels than slow-degrading hydrogels, providing a method to tune total CV release between 5-15 days while maintaining linear release kinetics. In particular, N-desulfated heparin hydrogels exhibited efficient CV loading (∼90% of originally included CV), near zero-order CV release kinetics, and maintenance of CV bioactivity after release, making this hydrogel formulation a promising CV delivery vehicle for a wide range of inflammatory diseases.
Collapse
Affiliation(s)
- Yifeng Peng
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA.
| | - Liane E Tellier
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA.
| | - Johnna S Temenoff
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA. and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
189
|
|
190
|
Gao F, Djordjevic I, Pokholenko O, Zhang H, Zhang J, Steele TWJ. On-Demand Bioadhesive Dendrimers with Reduced Cytotoxicity. Molecules 2018; 23:E796. [PMID: 29601480 PMCID: PMC6017702 DOI: 10.3390/molecules23040796] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 01/11/2023] Open
Abstract
Tissue adhesives based on polyamidoamine (PAMAM) dendrimer, grafted with UV-sensitive aryldiazirine (PAMAM-g-diazirine) are promising new candidates for light active adhesion on soft tissues. Diazirine carbene precursors form interfacial and intermolecular covalent crosslinks with tissues after UV light activation that requires no premixing or inclusion of free radical initiators. However, primary amines on the PAMAM dendrimer surface present a potential risk due to their cytotoxic and immunological effects. PAMAM-g-diazirine formulations with cationic pendant amines converted into neutral amide groups were evaluated. In vitro toxicity is reduced by an order of magnitude upon amine capping while retaining bioadhesive properties. The in vivo immunological response to PAMAM-g-diazirine formulations was found to be optimal in comparison to standard poly(lactic-co-glycolic acid) (PLGA) thin films.
Collapse
Affiliation(s)
- Feng Gao
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China.
| | - Ivan Djordjevic
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico.
| | - Oleksandr Pokholenko
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, Singapore 639798, Singapore.
| | - Haobo Zhang
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China.
| | - Junying Zhang
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China.
| | - Terry W J Steele
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
191
|
Lu YJ, Lin PY, Huang PH, Kuo CY, Shalumon KT, Chen MY, Chen JP. Magnetic Graphene Oxide for Dual Targeted Delivery of Doxorubicin and Photothermal Therapy. NANOMATERIALS 2018; 8:nano8040193. [PMID: 29584656 PMCID: PMC5923523 DOI: 10.3390/nano8040193] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022]
Abstract
To develop a pH-sensitive dual targeting magnetic nanocarrier for chemo-phototherapy in cancer treatment, we prepared magnetic graphene oxide (MGO) by depositing Fe3O4 magnetic nanoparticles on graphene oxide (GO) through chemical co-precipitation. MGO was modified with polyethylene glycol (PEG) and cetuximab (CET, an epidermal growth factor receptor (EGFR) monoclonal antibody) to obtain MGO-PEG-CET. Since EGFR was highly expressed on the tumor cell surface, MGO-PEG-CET was used for dual targeted delivery an anticancer drug doxorubicin (DOX). The physico-chemical properties of MGO-PEG-CET were fully characterized by dynamic light scattering, transmission electron microscopy, X-ray diffraction, Fourier transform Infrared spectroscopy, thermogravimetric analysis, and superconducting quantum interference device. Drug loading experiments revealed that DOX adsorption followed the Langmuir isotherm with a maximal drug loading capacity of 6.35 mg/mg, while DOX release was pH-dependent with more DOX released at pH 5.5 than pH 7.4. Using quantum-dots labeled nanocarriers and confocal microscopy, intracellular uptakes of MGO-PEG-CET by high EGFR-expressing CT-26 murine colorectal cells was confirmed to be more efficient than MGO. This cellular uptake could be inhibited by pre-incubation with CET, which confirmed the receptor-mediated endocytosis of MGO-PEG-CET. Magnetic targeted killing of CT-26 was demonstrated in vitro through magnetic guidance of MGO-PEG-CET/DOX, while the photothermal effect could be confirmed in vivo and in vitro after exposure of MGO-PEG-CET to near-infrared (NIR) laser light. In addition, the biocompatibility tests indicated MGO-PEG-CET showed no cytotoxicity toward fibroblasts and elicited minimum hemolysis. In vitro cytotoxicity tests showed the half maximal inhibitory concentration (IC50) value of MGO-PEG-CET/DOX toward CT-26 cells was 1.48 µg/mL, which was lower than that of MGO-PEG/DOX (2.64 µg/mL). The IC50 value could be further reduced to 1.17 µg/mL after combining with photothermal therapy by NIR laser light exposure. Using subcutaneously implanted CT-26 cells in BALB/c mice, in vivo anti-tumor studies indicated the relative tumor volumes at day 14 were 12.1 for control (normal saline), 10.1 for DOX, 9.5 for MGO-PEG-CET/DOX, 5.8 for MGO-PEG-CET/DOX + magnet, and 0.42 for MGO-PEG-CET/DOX + magnet + laser. Therefore, the dual targeting MGO-PEG-CET/DOX could be suggested as an effective drug delivery system for anticancer therapy, which showed a 29-fold increase in therapeutic efficacy compared with control by combining chemotherapy with photothermal therapy.
Collapse
Affiliation(s)
- Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital Linkuo Medical Center and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan.
| | - Pin-Yi Lin
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Pei-Han Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital Linkuo Medical Center and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan.
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - K T Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Mao-Yu Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital Linkuo Medical Center and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan.
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan.
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
192
|
Polymerization shrinkage stress of resin-based dental materials: A systematic review and meta-analyses of composition strategies. J Mech Behav Biomed Mater 2018; 82:268-281. [PMID: 29627738 DOI: 10.1016/j.jmbbm.2018.03.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 11/22/2022]
Abstract
PURPOSE A systematic review was conducted to determine whether there were composition strategies available to reduce and control polymerization shrinkage stress development in resin-based restorative dental materials. DATA SOURCES This report was reported in accordance with the PRISMA Statement. Two reviewers performed a literature search up to December 2016, without restriction of the year of publication, in seven databases: PubMed, Web of Science, Scopus, SciELO, LILACS, IBECS, and BBO. STUDY SELECTION Only laboratory studies that evaluated polymerization shrinkage stress by direct testing were included. Pilot studies, reviews and in vitro studies that evaluated polymerization shrinkage stress by indirect methods (e.g., microleakage or cuspal deflection measurements), finite elemental analysis, or theoretical and mathematical models were excluded. Of the 6113 eligible articles, 62 studies were included in the qualitative analysis, and the meta-analysis was performed with 58 studies. The composition strategy was subdivided according to the modified part of the material: filler phase, coupling agent, or resin matrix. A global comparison was performed with random-effects models (α = 0.05). The only subgroup that did not show a statistical difference between the alternative strategy and the control was 'the use of alternative photo-initiators' (p = 0.29). CONCLUSION Modification of the resin matrix made the largest contribution to minimizing stress development. The technology used for decreasing stress in the formulation of low-shrinkage and bulk-fill materials was shown to be a promising application for reducing and controlling stress development.
Collapse
|
193
|
Progress in topographically defined scaffolds for drug delivery system. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-017-0379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
194
|
Reinwald Y, El Haj AJ. Hydrostatic pressure in combination with topographical cues affects the fate of bone marrow-derived human mesenchymal stem cells for bone tissue regeneration. J Biomed Mater Res A 2018; 106:629-640. [PMID: 28984025 PMCID: PMC5813264 DOI: 10.1002/jbm.a.36267] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022]
Abstract
Topographical and mechanical cues are vital for cell fate, tissue development in vivo, and to mimic the native cell growth environment in vitro. To date, the combinatory effect of mechanical and topographical cues as not been thoroughly investigated. This study investigates the effect of PCL nanofiber alignment and hydrostatic pressure on stem cell differentiation for bone tissue regeneration. Bone marrow-derived human mesenchymal stem cells were seeded onto standard tissue culture plastic and electrospun random and aligned nanofibers. These substrates were either cultured statically or subjected to intermittent hydrostatic pressure at 270 kPa, 1 Hz for 60 min daily over 21 days in osteogenic medium. Data revealed higher cell metabolic activities for all mechanically stimulated cell culture formats compared with non-stimulated controls; and random fibers compared with aligned fibers. Fiber orientation influenced cell morphology and patterns of calcium deposition. Significant up-regulation of Collagen-I, ALP, and Runx-2 were observed for random and aligned fibers following mechanical stimulation; highest levels of osteogenic markers were expressed when hydrostatic pressure was applied to random fibers. These results indicate that fiber alignment and hydrostatic pressure direct stem cell fate and are important stimulus for tissue regeneration. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: A: 629-640, 2018.
Collapse
Affiliation(s)
- Yvonne Reinwald
- Institute of Science and Technology in Medicine, Keele University, Medical School, Guy Hilton Research Centre, UHNMStoke‐on‐TrentUnited Kingdom
- Department of Engineering, School of Science and TechnologyNottingham Trent UniversityNottinghamUnited Kingdom
| | - Alicia J. El Haj
- Institute of Science and Technology in Medicine, Keele University, Medical School, Guy Hilton Research Centre, UHNMStoke‐on‐TrentUnited Kingdom
| |
Collapse
|
195
|
Hu Q, Li H, Wang L, Gu H, Fan C. DNA Nanotechnology-Enabled Drug Delivery Systems. Chem Rev 2018; 119:6459-6506. [PMID: 29465222 DOI: 10.1021/acs.chemrev.7b00663] [Citation(s) in RCA: 607] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past decade, we have seen rapid advances in applying nanotechnology in biomedical areas including bioimaging, biodetection, and drug delivery. As an emerging field, DNA nanotechnology offers simple yet powerful design techniques for self-assembly of nanostructures with unique advantages and high potential in enhancing drug targeting and reducing drug toxicity. Various sequence programming and optimization approaches have been developed to design DNA nanostructures with precisely engineered, controllable size, shape, surface chemistry, and function. Potent anticancer drug molecules, including Doxorubicin and CpG oligonucleotides, have been successfully loaded on DNA nanostructures to increase their cell uptake efficiency. These advances have implicated the bright future of DNA nanotechnology-enabled nanomedicine. In this review, we begin with the origin of DNA nanotechnology, followed by summarizing state-of-the-art strategies for the construction of DNA nanostructures and drug payloads delivered by DNA nanovehicles. Further, we discuss the cellular fates of DNA nanostructures as well as challenges and opportunities for DNA nanostructure-based drug delivery.
Collapse
Affiliation(s)
- Qinqin Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University , Shanghai 200032 , China.,Department of Systems Biology for Medicine , School of Basic Medical Sciences, Fudan University , Shanghai 200032 , China
| | - Hua Li
- Shanghai Institute of Cardiovascular Diseases , Zhongshan Hospital, Fudan University , Shanghai 200032 , China.,Research & Development Center, Shandong Buchang Pharmaceutical Company, Limited, Heze 274000 , China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University , Shanghai 200032 , China.,Department of Systems Biology for Medicine , School of Basic Medical Sciences, Fudan University , Shanghai 200032 , China.,Shanghai Institute of Cardiovascular Diseases , Zhongshan Hospital, Fudan University , Shanghai 200032 , China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| |
Collapse
|
196
|
Schoenmakers DC, Schoonen L, Rutten MGTA, Nolte RJM, Rowan AE, van Hest JCM, Kouwer PHJ. Virus-like particles as crosslinkers in fibrous biomimetic hydrogels: approaches towards capsid rupture and gel repair. SOFT MATTER 2018; 14:1442-1448. [PMID: 29392267 DOI: 10.1039/c7sm02320k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biological hydrogels can become many times stiffer under deformation. This unique ability has only recently been realised in fully synthetic gels. Typically, these networks are composed of semi-flexible polymers and bundles and show such large mechanical responses at very small strains, which makes them particularly suitable for application as strain-responsive materials. In this work, we introduced strain-responsiveness by crosslinking the architecture with a multi-functional virus-like particle. At high stresses, we find that the virus particles disintegrate, which creates an (irreversible) mechanical energy dissipation pathway, analogous to the high stress response of fibrin networks. A cooling-heating cycle allows for re-crosslinking at the damaged site, which gives rise to much stronger hydrogels. Virus particles and capsids are promising drug delivery vehicles and our approach offers an effective strategy to trigger the release mechanically without compromising the mechanical integrity of the host material.
Collapse
Affiliation(s)
- Daniël C Schoenmakers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
197
|
Chen R, Ren N, Jin X, Zhu X. Stabilization capacity of PNIPAM microgels as particulate stabilizer in dispersion polymerization. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.11.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
198
|
Oduse K, Campbell L, Lonchamp J, Euston SR. Electrostatic complexes of whey protein and pectin as foaming and emulsifying agents. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1396478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Lydia Campbell
- Institute of Mechanical Process & Energy Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Julien Lonchamp
- School of Health Sciences, Queen Margaret University, Edinburgh, United Kingdom
| | - Stephen R. Euston
- Institute of Mechanical Process & Energy Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
199
|
Ghaffarlou M, Sütekin SD, Güven O. Preparation of nanogels by radiation-induced cross-linking of interpolymer complexes of poly (acrylic acid) with poly (vinyl pyrrolidone) in aqueous medium. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2017.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
200
|
Yu GN, Huang JC, Li L, Liu RT, Cao JQ, Wu Q, Zhang SY, Wang CX, Mei WJ, Zheng WJ. Preparation of Ru(ii)@oligonucleotide nanosized polymers as potential tumor-imaging luminescent probes. RSC Adv 2018; 8:30573-30581. [PMID: 35546841 PMCID: PMC9085494 DOI: 10.1039/c8ra05454a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/15/2018] [Indexed: 01/05/2023] Open
Abstract
The development of Ru(ii) complexes as luminescent probes has attracted increasing attention in recent decades. In this study, the nanosized polymers of two Ru(ii) complexes [Ru(phen)2(dppz)](ClO4)2 (1, phen = 1,10-phenanthrolin; dppz = dipyrido[3,2-a:2′,3′-c]phenazine) and [Ru(phen)2(Br-dppz)](ClO4)2 (2, Br-dppz = 11-bromodipyrido[3,2-a:2′,3′-c]phenazine) with oligonucleotides were prepared and investigated as potential tumor-imaging probes. The formation of the nanosized polymers, which had an average width of 125–438 nm and an average height of 3–6 nm, for 1 and 2@oligonucleotides were observed through atomic force microscopy. The emission spectra indicated that the luminescence of 1 and 2 markedly increased after binding to oligonucleotides and double-strand DNA (calf thymus DNA), respectively. Moreover, further studies indicated that 1@oligonucleotides and 2@oligonucleotides can easily enter into tumor cells and selectively highlight the tumor area in the zebrafish bear xenograft tumor (MDA-MB-231). In summary, this study demonstrated that 1@oligonucleotides and 2@oligonucleotides could be developed as potential tumor-imaging luminescent probes for clinical diagnosis and therapy. Ru(ii)@oligonucleotide nanoparticles can be developed as potential tumor selective tracker and have potential applications of tumor targeting imaging.![]()
Collapse
Affiliation(s)
- Geng-Nan Yu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Jun-Chao Huang
- Traditional Chinese Medicine College
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Li Li
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Ruo-Tong Liu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | | | - Qiong Wu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- China
- School of Chemistry
| | - Shuang-Yan Zhang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Cheng-Xi Wang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Wen-Jie Mei
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- China
- Guangdong Province Engineering Technology Centre for Molecular Probe and Biomedicine Imaging
| | | |
Collapse
|