151
|
Nlrp-3-driven interleukin 17 production by γδT cells controls infection outcomes during Staphylococcus aureus surgical site infection. Infect Immun 2013; 81:4478-89. [PMID: 24082072 DOI: 10.1128/iai.01026-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent work has identified T cells and the cytokines they produce as important correlates of immune protection during Staphylococcus aureus infections through the ability of these T cells to regulate local neutrophil responses. However, the specific T-cell subsets that are involved in coordinating protection at distinct sites of infection remains to be established. In this study, we identify for the first time an important role for γδT cells in controlling S. aureus surgical site infection (SSI). γδT cells are recruited to the wound site following S. aureus challenge, where they represent the primary source of interleukin 17 (IL-17), with a small contribution from other non-γδT cells. The IL-17 response is entirely dependent upon IL-1 receptor signaling. Using IL-17 receptor-deficient mice, we demonstrate that IL-17 is required to control bacterial clearance during S. aureus SSI. However, we demonstrate a strain-dependent requirement for γδT cells in this process due to the differential abilities of individual strains to activate IL-1β production. IL-1β processing relies upon activation of the Nlrp3 inflammasome complex, and we demonstrate that Nlrp3-deficient and IL-1 receptor-deficient mice have an impaired ability to control S. aureus SSI due to reduced production of IL-17 by γδT cells at the site of infection. Given that IL-17 has been identified as an important correlate of immune protection during S. aureus infection, it is vital that the unique cellular sources of this cytokine and mechanisms inducing its activation are identified at distinct sites of infection. Our study demonstrates that while IL-17 may be critically important for mediating immune protection during S. aureus SSI, the relative contribution of γδT cells to these protective effects may be strain dependent.
Collapse
|
152
|
Brackett CM, Muhitch JB, Evans SS, Gollnick SO. IL-17 promotes neutrophil entry into tumor-draining lymph nodes following induction of sterile inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 191:4348-57. [PMID: 24026079 DOI: 10.4049/jimmunol.1103621] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Blood-borne neutrophils are excluded from entering lymph nodes across vascular portals termed high endothelial venules (HEVs) because of lack of expression of the CCR7 homeostatic chemokine receptor. Induction of sterile inflammation increases neutrophil entry into tumor-draining lymph nodes (TDLNs), which is critical for induction of antitumor adaptive immunity following treatments such as photodynamic therapy (PDT). However, the mechanisms controlling neutrophil entry into TDLNs remain unclear. Prior evidence that IL-17 promotes neutrophil emigration to sites of infection via induction of CXCL2 and CXCL1 inflammatory chemokines raised the question of whether IL-17 contributes to chemokine-dependent trafficking in TDLNs. In this article, we demonstrate rapid accumulation of IL-17-producing Th17 cells in the TDLNs following induction of sterile inflammation by PDT. We further report that nonhematopoietic expression of IL-17RA regulates neutrophil accumulation in TDLNs following induction of sterile inflammation by PDT. We show that HEVs are the major route of entry of blood-borne neutrophils into TDLNs through interactions of l-selectin with HEV-expressed peripheral lymph node addressin and by preferential interactions between CXCR2 and CXCL2 but not CXCL1. CXCL2 induction in TDLNs was mapped in a linear pathway downstream of IL-17RA-dependent induction of IL-1β. These results define a novel IL-17-dependent mechanism promoting neutrophil delivery across HEVs in TDLNs during acute inflammatory responses.
Collapse
Affiliation(s)
- Craig M Brackett
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | | | | |
Collapse
|
153
|
Correlations between psoriasis and inflammatory bowel diseases. BIOMED RESEARCH INTERNATIONAL 2013; 2013:983902. [PMID: 23971052 PMCID: PMC3736484 DOI: 10.1155/2013/983902] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/27/2013] [Indexed: 01/21/2023]
Abstract
For a long time the relationship between inflammatory bowel diseases (IBDs) and psoriasis has been investigated by epidemiological studies. It is only starting from the 1990s that genetic and immunological aspects have been focused on. Psoriasis and IBD are strictly related inflammatory diseases. Skin and bowel represent, at the same time, barrier and connection between the inner and the outer sides of the body. The most important genetic correlations involve the chromosomal loci 6p22, 16q, 1p31, and 5q33 which map several genes involved in innate and adaptive immunity. The genetic background represents the substrate to the common immune processes involved in psoriasis and IBD. In the past, psoriasis and IBD were considered Th1-related disorders. Nowadays the role of new T cells populations has been highlighted. A key role is played by Th17 and T-regs cells as by the balance between these two cells types. New cytokines and T cells populations, as IL-17A, IL-22, and Th22 cells, could play an important pathogenetic role in psoriasis and IBD. The therapeutic overlaps further support the hypothesis of a common pathogenesis.
Collapse
|
154
|
IL-17A and Th17 cells in lung inflammation: an update on the role of Th17 cell differentiation and IL-17R signaling in host defense against infection. Clin Dev Immunol 2013; 2013:267971. [PMID: 23956759 PMCID: PMC3730142 DOI: 10.1155/2013/267971] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/27/2013] [Indexed: 02/06/2023]
Abstract
The significance of Th17 cells and interleukin- (IL-)17A signaling in host defense and disease development has been demonstrated in various infection and autoimmune models. Numerous studies have indicated that Th17 cells and its signature cytokine IL-17A are critical to the airway's immune response against various bacteria and fungal infection. Cytokines such as IL-23, which are involved in Th17 differentiation, play a critical role in controlling Klebsiella pneumonia (K. pneumonia) infection. IL-17A acts on nonimmune cells in infected tissues to strengthen innate immunity by inducing the expression of antimicrobial proteins, cytokines, and chemokines. Mice deficient in IL-17 receptor (IL-17R) expression are susceptible to infection by various pathogens. In this review, we summarize the recent advances in unraveling the mechanism behind Th17 cell differentiation, IL-17A/IL-17R signaling, and also the importance of IL-17A in pulmonary infection.
Collapse
|
155
|
Torrado E, Cooper AM. Cytokines in the balance of protection and pathology during mycobacterial infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:121-40. [PMID: 23468107 DOI: 10.1007/978-1-4614-6111-1_7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The outcome of natural infections with pathogenic mycobacteria can range from early asymptomatic clearance through latent infection to clinical disease. Different host and pathogen-specific factors have been implicated in determining the outcome of these infections; however, it is clear that the interaction of mycobacteria with the innate and acquired components of the immune system plays a central role. Specifically, the recognition of mycobacterial components by innate immune cells through different pathogen recognition receptors (PPRs) induces a cytokine response that can promote early control of the infection. In fact, in the majority of individuals that come into contact with mycobacteria, this response is enough to control the infection. Among PRRs, Toll-like receptors (TLRs), Nucleotide Oligomerization Domain (NOD)-like receptors, and C-type lectins have all been implicated in recognition of mycobacteria and in the initiation of the cytokine response. Defining the mechanisms by which distinct mycobacterial components and their receptors stimulate the immune response is an area of intense research.
Collapse
|
156
|
Bordetella pertussis infection induces a mucosal IL-17 response and long-lived Th17 and Th1 immune memory cells in nonhuman primates. Mucosal Immunol 2013; 6:787-96. [PMID: 23187316 DOI: 10.1038/mi.2012.117] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite near universal vaccine coverage, the bacterial pathogen Bordetella pertussis has re-emerged as a major public health concern. We recently developed a baboon (Papio anubis) model of pertussis that provides an excellent model of human pertussis. Using this model, the immune response to pertussis was characterized by measuring cytokines in the nasopharyngeal mucosa of infected baboons. Notably, we observed mucosal expression of interleukin-17 (IL-17) as well as IL-6, IL-23, and several cytokines and chemokines that are orchestrated by IL-17 immune responses. We also found substantial populations of circulating B. pertussis-specific Th17 and Th1 cells in convalescent animals >2 years post-infection consistent with a role in immunological memory to pertussis. Collectively, these data shed important light on the innate and adaptive immune responses to pertussis in a primate infection model and suggest that Th17 and Th1 immune responses contribute to the immunity conferred by natural pertussis infection.
Collapse
|
157
|
Kumar P, Chen K, Kolls JK. Th17 cell based vaccines in mucosal immunity. Curr Opin Immunol 2013; 25:373-80. [PMID: 23669353 DOI: 10.1016/j.coi.2013.03.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 03/29/2013] [Indexed: 12/18/2022]
Abstract
Vaccination is proven to be effective in controlling many infections including small pox, influenza and hepatitis, but strain-specific factors may limit vaccine efficacy. All of these vaccines work through the generation of neutralizing antibodies but for some pathogens there may be roles for serotype-independent immunity. Recently several groups using murine vaccine models have shown that induced T helper cell responses including Th17 responses have shown the potential for CD4+ T-cell dependent vaccine responses. Th17 mediated protective responses involve the recruitment of neutrophils, release of anti-microbial peptides and IL-17-driven Th1 immunity. These effector mechanisms provide immunity against a range of pathogens including the recently described antibiotic-resistant metallo-beta-lactamase 1 Klebsiella pneumoniae. Continued elucidation of the mechanism of Th17 responses and identification of effective adjuvants for inducing robust non pathogenic Th17 responses may lead to successful Th17 based vaccines. Here we summarize the recent advances in understanding the role of Th17 in vaccine induced immunity. We also discuss the current status and future challenges in Th17-based mucosal vaccine development.
Collapse
Affiliation(s)
- Pawan Kumar
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
158
|
Chan YR, Chen K, Duncan SR, Lathrop KL, Latoche JD, Logar AJ, Pociask DA, Wahlberg BJ, Ray P, Ray A, Pilewski JM, Kolls JK. Patients with cystic fibrosis have inducible IL-17+IL-22+ memory cells in lung draining lymph nodes. J Allergy Clin Immunol 2013; 131:1117-29, 1129.e1-5. [PMID: 22795370 PMCID: PMC3488163 DOI: 10.1016/j.jaci.2012.05.036] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 05/01/2012] [Accepted: 05/31/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND IL-17 is an important cytokine signature of the TH differentiation pathway TH17. This T-cell subset is crucial in mediating autoimmune disease or antimicrobial immunity in animal models, but its presence and role in human disease remain to be completely characterized. OBJECTIVE We set out to determine the frequency of TH17 cells in patients with cystic fibrosis (CF), a disease in which there is recurrent infection with known pathogens. METHODS Explanted lungs from patients undergoing transplantation or organ donors (CF samples=18; non-CF, nonbronchiectatic samples=10) were collected. Hilar nodes and parenchymal lung tissue were processed and examined for TH17 signature by using immunofluorescence and quantitative real-time PCR. T cells were isolated and stimulated with antigens from Pseudomonas aeruginosa and Aspergillus species. Cytokine profiles and staining with flow cytometry were used to assess the reactivity of these cells to antigen stimulation. RESULTS We found a strong IL-17 phenotype in patients with CF compared with that seen in control subjects without CF. Within this tissue, we found pathogenic antigen-responsive CD4+IL-17+ cells. There were double-positive IL-17+IL-22+ cells [TH17(22)], and the IL-22+ population had a higher proportion of memory characteristics. Antigen-specific TH17 responses were stronger in the draining lymph nodes compared with those seen in matched parenchymal lungs. CONCLUSION Inducible proliferation of TH17(22) with memory cell characteristics is seen in the lungs of patients with CF. The function of these individual subpopulations will require further study regarding their development. T cells are likely not the exclusive producers of IL-17 and IL-22, and this will require further characterization.
Collapse
Affiliation(s)
- Yvonne R Chan
- Division of Pulmonary, Allergy and Critical Care Medicine, the Eye and Ear Institute, University of Pittsburgh, and the Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Liu Y, Bartlett JA, Di ME, Bomberger JM, Chan YR, Gakhar L, Mallampalli RK, McCray PB, Di YP. SPLUNC1/BPIFA1 contributes to pulmonary host defense against Klebsiella pneumoniae respiratory infection. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1519-31. [PMID: 23499554 DOI: 10.1016/j.ajpath.2013.01.050] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/10/2013] [Accepted: 01/14/2013] [Indexed: 12/12/2022]
Abstract
Epithelial host defense proteins comprise a critical component of the pulmonary innate immune response to infection. The short palate, lung, nasal epithelium clone (PLUNC) 1 (SPLUNC1) protein is a member of the bactericidal/permeability-increasing (BPI) fold-containing (BPIF) protein family, sharing structural similarities with BPI-like proteins. SPLUNC1 is a 25 kDa secretory protein that is expressed in nasal, oropharyngeal, and lung epithelia, and has been implicated in airway host defense against Pseudomonas aeruginosa and other organisms. SPLUNC1 is reported to have surfactant properties, which may contribute to anti-biofilm defenses. The objective of this study was to assess the importance of SPLUNC1 surfactant activity in airway epithelial secretions and to explore its biological relevance in the context of a bacterial infection model. Using cultured airway epithelia, we confirmed that SPLUNC1 is critically important for maintenance of low surface tension in airway fluids. Furthermore, we demonstrated that recombinant SPLUNC1 (rSPLUNC1) significantly inhibited Klebsiella pneumoniae biofilm formation on airway epithelia. We subsequently found that Splunc1(-/-) mice were significantly more susceptible to infection with K. pneumoniae, confirming the likely in vivo relevance of this anti-biofilm effect. Our data indicate that SPLUNC1 is a crucial component of mucosal innate immune defense against pulmonary infection by a relevant airway pathogen, and provide further support for the novel hypothesis that SPLUNC1 protein prevents bacterial biofilm formation through its ability to modulate surface tension of airway fluids.
Collapse
Affiliation(s)
- Yang Liu
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Frank CG, Reguerio V, Rother M, Moranta D, Maeurer AP, Garmendia J, Meyer TF, Bengoechea JA. Klebsiella pneumoniae targets an EGF receptor-dependent pathway to subvert inflammation. Cell Microbiol 2013; 15:1212-33. [PMID: 23347154 DOI: 10.1111/cmi.12110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/21/2012] [Accepted: 01/12/2013] [Indexed: 12/24/2022]
Abstract
The NF-κB transcriptional factor plays a key role governing the activation of immune responses. Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by lacking an early inflammatory response. Recently, we have demonstrated that Klebsiella antagonizes the activation of NF-κB via the deubiquitinase CYLD. In this work, by applying a high-throughput siRNA gain-of-function screen interrogating the human kinome, we identified 17 kinases that when targeted by siRNA restored IL-1β-dependent NF-κB translocation in infected cells. Further characterization revealed that K. pneumoniae activates an EGF receptor (EGFR)-phosphatidylinositol 3-OH kinase (PI3K)-AKT-PAK4-ERK-GSK3β signalling pathway to attenuate the cytokine-dependent nuclear translocation of NF-κB. Our data also revealed that CYLD is a downstream effector of K. pneumoniae-induced EGFR-PI3K-AKT-PAK4-ERK-GSK3β signalling pathway. Our efforts to identify the bacterial factor(s)responsible for EGFR activation demonstrate that a capsule (CPS) mutant did not activate EGFR hence suggesting that CPS could mediate the activation of EGFR. Supporting this notion, purified CPS did activate EGFR as well as the EGFR-dependent PI3K-AKT-PAK4-ERK-GSK3β signalling pathway. CPS-mediated EGFR activation was dependent on a TLR4-MyD88-c-SRC-dependent pathway. Several promising drugs have been developed to antagonize this cascade. We propose that agents targeting this signalling pathway might provide selective alternatives for the management of K. pneumoniae pneumonias.
Collapse
Affiliation(s)
- Christian G Frank
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, 07110, Bunyola, Spain
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Huber S, Gagliani N, Flavell RA. Life, death, and miracles: Th17 cells in the intestine. Eur J Immunol 2013; 42:2238-45. [PMID: 22949322 DOI: 10.1002/eji.201242619] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Th17 cells, a distinct subset of CD4(+) T-helper cells, are commonly associated with chronic inflammatory and autoimmune diseases; however, Th17 cells also possess a variety of beneficial functions as they maintain and defend mucosal barriers against pathogens and promote tissue repair. Furthermore, recent findings indicate that Th17 cells can also acquire immunosuppressive functions that protect against inflammatory and auto-immune diseases. A sentinel population of Th17 cells is localized in the intestine in the absence of pathology and, in response to infection, this population expands in number, and can also modulate its functions. This review discusses the beneficial and pathogenic roles played by Th17 cells in the intestine.
Collapse
Affiliation(s)
- Samuel Huber
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
162
|
Mosolygó T, Korcsik J, Balogh EP, Faludi I, Virók DP, Endrész V, Burián K. Chlamydophila pneumoniae re-infection triggers the production of IL-17A and IL-17E, important regulators of airway inflammation. Inflamm Res 2013; 62:451-60. [PMID: 23385305 DOI: 10.1007/s00011-013-0596-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 12/14/2012] [Accepted: 01/16/2013] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Investigation of the effects of interleukin (IL)-17 cytokines in Chlamydophila pneumoniae-infected mice. METHODS Mice were infected with C. pneumoniae once or three times and the expression of IL-17 cytokines was followed by RT qPCR from day 1 to day 28 after infection and re-infection. After the treatment of mice with anti-IL-17A, ELISA was used to detect the differences in cytokine and chemokine production. The number and phenotype of the IL-17A-producing cells were determined by ELISPOT. RESULTS Chlamydophila pneumoniae induced IL-17A and IL-17F from day 2 after infection, and their levels remained elevated on day 28. The expression of IL-17C, IL-17D and IL-17E mRNA did not change significantly in response to a single infection. The in vivo neutralization of IL-17A resulted in a higher C. pneumoniae burden in the mouse lungs, a decreased cell influx, and diminished chemokine levels. The phenotype of IL-17A-producing cells was CD4(+). The re-infection of mice led to an increased expression of IL-17E mRNA. CONCLUSION These results facilitate an understanding of the early inflammatory response after C. pneumoniae infection and suggest that C. pneumoniae re-infection induces the production of a high amount of IL-17E, which has an important role in the pathogenesis of allergic pulmonary diseases.
Collapse
Affiliation(s)
- Tímea Mosolygó
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
163
|
Bordon J, Aliberti S, Fernandez-Botran R, Uriarte SM, Rane MJ, Duvvuri P, Peyrani P, Morlacchi LC, Blasi F, Ramirez JA. Understanding the roles of cytokines and neutrophil activity and neutrophil apoptosis in the protective versus deleterious inflammatory response in pneumonia. Int J Infect Dis 2013; 17:e76-83. [DOI: 10.1016/j.ijid.2012.06.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/22/2012] [Accepted: 06/22/2012] [Indexed: 02/03/2023] Open
|
164
|
Interleukin-17A genetic variants can confer resistance to brucellosis in Iranian population. Cytokine 2013; 61:297-303. [DOI: 10.1016/j.cyto.2012.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 10/06/2012] [Accepted: 10/12/2012] [Indexed: 01/24/2023]
|
165
|
Poe SL, Arora M, Oriss TB, Yarlagadda M, Isse K, Khare A, Levy DE, Lee JS, Mallampalli R, Ray A, Ray P, Ray P. STAT1-regulated lung MDSC-like cells produce IL-10 and efferocytose apoptotic neutrophils with relevance in resolution of bacterial pneumonia. Mucosal Immunol 2013; 6:189-99. [PMID: 22785228 PMCID: PMC3505806 DOI: 10.1038/mi.2012.62] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial pneumonia remains a significant burden worldwide. Although an inflammatory response in the lung is required to fight the causative agent, persistent tissue-resident neutrophils in non-resolving pneumonia can induce collateral tissue damage and precipitate acute lung injury. However, little is known about mechanisms orchestrated in the lung tissue that remove apoptotic neutrophils to restore tissue homeostasis. In mice infected with Klebsiella pneumoniae, a bacterium commonly associated with hospital-acquired pneumonia, we show that interleukin (IL)-10 is essential for resolution of lung inflammation and recovery of mice after infection. Although IL-10(-/-) mice cleared bacteria, they displayed increased morbidity with progressive weight loss and persistent lung inflammation in the later phase after infection. A source of tissue IL-10 was found to be resident CD11b(+)Gr1(int)F4/80(+) cells resembling myeloid-derived suppressor cells (MDSCs) that appeared with a delayed kinetics after infection. These cells efficiently efferocytosed apoptotic neutrophils, which was aided by IL-10. The lung neutrophil burden was attenuated in infected signal transducer and activator of transcription 1 (STAT1)(-/-) mice with concomitant increase in the frequency of the MDSC-like cells and lung IL-10 levels. Thus, inhibiting STAT1 in combination with antibiotics may be a novel therapeutic strategy to address inefficient resolution of bacterial pneumonia.
Collapse
Affiliation(s)
- Stephanie L. Poe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Meenakshi Arora
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Timothy B. Oriss
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Manohar Yarlagadda
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kumiko Isse
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Anupriya Khare
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - David E. Levy
- Departments of Pathology and Microbiology, New York University, New York, New York 10016
| | - Janet S. Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Rama Mallampalli
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Prabir Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | |
Collapse
|
166
|
Seki N, Maeda Y, Kataoka H, Sugahara K, Chiba K. Role of Sphingosine 1-Phosphate (S1P) Receptor 1 in Experimental Autoimmune Encephalomyelitis —I. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/pp.2013.48089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
167
|
Gao X, Gigoux M, Yang J, Leconte J, Yang X, Suh WK. Anti-chlamydial Th17 responses are controlled by the inducible costimulator partially through phosphoinositide 3-kinase signaling. PLoS One 2012; 7:e52657. [PMID: 23285133 PMCID: PMC3527575 DOI: 10.1371/journal.pone.0052657] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/19/2012] [Indexed: 11/18/2022] Open
Abstract
We previously showed that mice deficient in the Inducible Costimulator ligand (ICOSL-KO) develop more severe disease and lung pathology with delayed bacterial clearance upon respiratory infection of Chlamydia muridarum. Importantly, the exacerbation of disease in ICOSL-KO mice was seen despite heightened IFN-γ/Th1 responses, the major defense mechanisms against Chlamydia. To gain insight into the mechanism of ICOS function in this model, we presently analyzed anti-Chlamydia immune responses in mice lacking the entire ICOS (ICOS-KO) versus knock-in mice expressing a mutant ICOS (ICOS-Y181F) that has selectively lost the ability to activate phosphoinositide 3-kinase (PI3K). Like ICOSL-KO mice, ICOS-KO mice showed worse disease with elevated IFN-γ/Th1 responses compared to wild-type (WT) mice. ICOS-Y181F mice developed much milder disease compared to ICOS-KO mice, yet they were still not fully protected to the WT level. This partial protection in ICOS-Y181F mice could not be explained by the magnitude of IFN-γ/Th1 responses since these mice developed a similar level of IFN-γ response compared to WT mice. It was rather IL-17/Th17 responses that reflected disease severity: IL-17/Th17 response was partially impaired in ICOS-Y181F mice compared to WT, but was substantially stronger than that of ICOS-KO mice. Consistently, we found that both polarization and expansion of Th17 cells were partially impaired in ICOS-Y181F CD4 T cells, and was further reduced in ICOS-KO CD4 T cells in vitro. Our results indicate that once the IFN-γ/Th1 response is above a threshold level, the IL-17/Th17 response becomes a limiting factor in controlling Chlamydia lung infection, and that ICOS plays an important role in promoting Th17 responses in part through the activation of PI3K.
Collapse
Affiliation(s)
- Xiaoling Gao
- Laboratory of Infection and Immunity, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mathieu Gigoux
- Immune Regulation Laboratory, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Jie Yang
- Laboratory of Infection and Immunity, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Julien Leconte
- Immune Regulation Laboratory, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Xi Yang
- Laboratory of Infection and Immunity, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail: (W-KS); (XY)
| | - Woong-Kyung Suh
- Immune Regulation Laboratory, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (W-KS); (XY)
| |
Collapse
|
168
|
Ratio of T Helper to Regulatory T Cells in Synovial Fluid and Postoperative Joint Laxity After Allograft Anterior Cruciate Ligament Reconstruction. Transplantation 2012; 94:1160-6. [DOI: 10.1097/tp.0b013e31826dddeb] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
169
|
Tasca KI, Calvi SA, Souza LDRD. Immunovirological parameters and cytokines in HIV infection. Rev Soc Bras Med Trop 2012; 45:663-9. [DOI: 10.1590/s0037-86822012000600002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 09/19/2012] [Indexed: 11/22/2022] Open
Abstract
Although modern combined antiretroviral therapies (cART) result in lower morbidity and mortality and a visible improvement of clinical and laboratory parameters in HIV-infected, it is known that their long-term use contributes to appearance of the many events unrelated to AIDS such as cardiovascular diseases, cancer and osteoporosis, comorbidities which have been proposed as some of the most important that deprive the majority of infected to present an even better prognosis. This is because even with a decrease in inflammation and immune activation after drug intervention to the patient, these parameters remain higher than those shown by healthy individuals and the imbalance of cytokine profiles also persists. Therefore, evaluations of other biomarkers in clinical practice are needed to complement the exams already carried out routinely and allow more effective monitoring of HIV patients. This review aims to investigate the role of cytokines as potential markers showing studies on their behavior in various stages of HIV infection, with or without cART.
Collapse
|
170
|
Cloning and characterization of rainbow trout interleukin-17A/F2 (IL-17A/F2) and IL-17 receptor A: expression during infection and bioactivity of recombinant IL-17A/F2. Infect Immun 2012; 81:340-53. [PMID: 23147036 DOI: 10.1128/iai.00599-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lower vertebrates have been found to possess genes that have similar homology to both interleukin (IL)-17A and IL-17F, which have been termed IL-17A/F. In fish species, several of these genes can be present, but, to date, very little is known about their functional activity. This article describes the discovery and sequence analysis of a rainbow trout (Oncorhynchus mykiss) IL-17A/F2 molecule and an IL-17RA receptor. In addition, the bioactivity of the trout IL-17A/F2 is investigated for the first time in any species. The predicted IL-17A/F2 and IL-17RA proteins consist of 146 and 966 amino acids (aa), respectively, with both molecules containing conserved family motifs. Expression analysis revealed high constitutive expression of trout IL-17A/F2 in mucosal tissues from healthy fish, suggesting a potential role in mucosal immunity. When the modulation of IL-17A/F2 and IL-17RA in vitro was analyzed, it was observed that the two molecules were similarly affected. The expression of IL-17A/F2 was also induced in head kidney during bacterial, parasitic, and viral infections, revealing a possible function in defense against such pathogens. However, downregulation of IL-17RA was seen in some tissues and infections. The recombinant IL-17A/F2 protein was produced in Escherichia coli and was found to affect the expression of an antimicrobial peptide and the proinflammatory cytokines IL-6 and IL-8 in splenocytes. Consistent with mammalian IL-17 homologues, our expression and bioactivity results imply that trout IL-17A/F2 plays an important role in promoting inflammatory and host innate immune responses directed against different pathogen groups.
Collapse
|
171
|
Tam S, Maksaereekul S, Hyde DM, Godinez I, Beaman BL. IL-17 and γδ T-lymphocytes play a critical role in innate immunity against Nocardia asteroides GUH-2. Microbes Infect 2012; 14:1133-43. [PMID: 22634423 PMCID: PMC3483469 DOI: 10.1016/j.micinf.2012.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 01/01/2023]
Abstract
The early host response during pulmonary nocardiosis is highly dependent on neutrophils and the successful clearance of bacteria in tissue. The data presented in this study showed that IL-17 mediated the neutrophil response following intranasal inoculation with Nocardia asteroides strain GUH-2. Flow cytometry revealed that neutrophil levels in C57BL/6 mice were increased by day 1 post inoculation and remained elevated until day 3, during which time the majority of bacterial clearance occurred. Intracellular cytokine staining for IL-17 showed a 3.5- to 5-fold increase in IL-17 producing T-lymphocytes that were predominately comprised by CD4(-)CD8(-) γδ T-lymphocytes. The importance of IL-17 and γδ T-cells was determined by the in vivo administration of antibody, capable of blocking IL-17 binding or TCR δ, respectively. Neutralization of either IL-17 or γδ T-cells in Nocardia treated mice resulted in attenuated neutrophil infiltration. Paralleling this impaired neutrophil recruitment, nearly a 10-fold increase in bacterial burden was observed in both anti-IL-17 and anti-TCR δ treated animals. Together, these data indicate a protective role for IL-17 and suggest that IL-17 producing γδ T-lymphocytes contribute to neutrophil infiltration during pulmonary nocardiosis.
Collapse
Affiliation(s)
- Stanley Tam
- Respiratory Disease Unit, California National Primate Research Center (CNPRC), University of California, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
172
|
Kim CJ, Nazli A, Rojas OL, Chege D, Alidina Z, Huibner S, Mujib S, Benko E, Kovacs C, Shin LYY, Grin A, Kandel G, Loutfy M, Ostrowski M, Gommerman JL, Kaushic C, Kaul R. A role for mucosal IL-22 production and Th22 cells in HIV-associated mucosal immunopathogenesis. Mucosal Immunol 2012; 5:670-80. [PMID: 22854709 DOI: 10.1038/mi.2012.72] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Interleukin-22 (IL-22) is a cytokine with epithelial reparative and regenerative properties that is produced by Th22 cells and by other immune cell subsets. Therefore, we explored the hypothesis that disruption of the gut barrier during HIV infection involves dysregulation of these cells in the gastrointestinal mucosa. Sigmoid IL-22-producing T cell and Th22 cells were dramatically depleted during chronic HIV infection, epithelial integrity was compromised, and microbial translocation was increased. These alterations were reversed after long-term antiretroviral therapy. While all mucosal IL-22-producing T-cell subsets were also depleted very early during HIV infection, at these early stages IL-22 production by non-T-cell populations (including NKp44+ cells) was increased and gut epithelial integrity was maintained. Circulating Th22 cells expressed a higher level of the HIV co-receptor/binding molecules CCR5 and α4β7 than CD4+ T-cell subsets in HIV-uninfected participants, but this was not the case after HIV infection. Finally, recombinant IL-22 was protective against HIV and tumor necrosis factor-α-induced gut epithelial damage in a validated in vitro gut epithelial system. We conclude that reduced IL-22 production and Th22 depletion in the gut mucosa are important factors in HIV mucosal immunopathogenesis.
Collapse
MESH Headings
- Anti-HIV Agents/pharmacology
- Anti-HIV Agents/therapeutic use
- Cell Lineage
- Colon, Sigmoid/immunology
- Colon, Sigmoid/pathology
- Colon, Sigmoid/virology
- HIV/physiology
- HIV Infections/drug therapy
- HIV Infections/immunology
- HIV Infections/pathology
- HIV Infections/virology
- Humans
- Immunity, Mucosal
- Interleukins/deficiency
- Interleukins/immunology
- Interleukins/pharmacology
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Intestinal Mucosa/virology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Killer Cells, Natural/virology
- Lymphocyte Count
- Lymphocyte Depletion
- Receptors, CCR5/immunology
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/pathology
- T-Lymphocytes, Helper-Inducer/virology
- Time Factors
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/pharmacology
- Interleukin-22
Collapse
Affiliation(s)
- C J Kim
- Department of Medicine, University of Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Larkin BM, Smith PM, Ponichtera HE, Shainheit MG, Rutitzky LI, Stadecker MJ. Induction and regulation of pathogenic Th17 cell responses in schistosomiasis. Semin Immunopathol 2012; 34:873-88. [PMID: 23096253 DOI: 10.1007/s00281-012-0341-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/28/2012] [Indexed: 02/07/2023]
Abstract
Schistosomiasis is a major tropical disease caused by trematode helminths in which the host mounts a pathogenic immune response against tissue-trapped parasite eggs. The immunopathology consists of egg antigen-specific CD4 T cell-mediated granulomatous inflammation that varies greatly in magnitude in humans and among mouse strains in an experimental model. New evidence, covered in this review, intimately ties the development of severe pathology to IL-17-producing CD4 T helper (Th17) cells, a finding that adds a new dimension to the traditional CD4 Th1 vs. Th2 cell paradigm. Most examined mouse strains, in fact, develop severe immunopathology with substantial Th17 as well as Th1 and Th2 cell responses; a solely Th2-polarized response is an exception that is only observed in low-pathology strains such as the C57BL/6. The ability to mount pathogenic Th17 cell responses is genetically determined and depends on the production of IL-23 and IL-1β by antigen presenting cells following recognition of egg antigens; analyses of several F2 progenies of (high × low)-pathology strain crosses demonstrated that quantitative trait loci governing IL-17 levels and disease severity vary substantially from cross to cross. Low pathology is dominant, which may explain the low incidence of severe disease in humans; however, coinfection with intestinal nematodes can also dampen pathogenic Th17 cell responses by promoting regulatory mechanisms such as those afforded by alternatively activated macrophages and T regulatory cells. A better understanding of the pathways conducive to severe forms of schistosomiasis and their regulation should lead to interventions similar to those presently used to manage other immune-mediated diseases.
Collapse
Affiliation(s)
- Bridget M Larkin
- Department of Pathology, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
174
|
Kim JS, Jordan MS. Diversity of IL-17-producing T lymphocytes. Cell Mol Life Sci 2012; 70:2271-90. [PMID: 23052209 DOI: 10.1007/s00018-012-1163-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/31/2012] [Accepted: 09/06/2012] [Indexed: 12/14/2022]
Abstract
Interleukin (IL)-17 is a pro-inflammatory cytokine that plays critical roles in host defense against extracellular bacteria and fungi and also in the pathogenesis of autoimmune diseases. While CD4+ TCRαβ+ T helper (Th) 17 cells are the best-described cellular source of IL-17, many innate-like T cells are in fact potent producers of IL-17. Given the increasing interest in therapeutic modulation of the IL-17 axis, it is crucial to better understand the cellular origins of IL-17 in various infection and diseases settings. While the diverse population of IL-17-producing T cells share many common characteristics, notable differences also exist. In this review, we discuss the heterogeneity of IL-17-producing T cell types focusing on their development, regulation, and function.
Collapse
Affiliation(s)
- Jiyeon S Kim
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
175
|
|
176
|
Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice. Infect Immun 2012; 80:4271-80. [PMID: 23006848 DOI: 10.1128/iai.00761-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Brucella spp. are facultative intracellular bacterial pathogens responsible for brucellosis, a worldwide zoonosis that causes abortion in domestic animals and chronic febrile disease associated with serious complications in humans. There is currently no approved vaccine against human brucellosis, and antibiotic therapy is long and costly. Development of a safe protective vaccine requires a better understanding of the roles played by components of adaptive immunity in the control of Brucella infection. The importance of lymphocyte subsets in the control of Brucella growth has been investigated separately by various research groups and remains unclear or controversial. Here, we used a large panel of genetically deficient mice to compare the importance of B cells, transporter associated with antigen processing (TAP-1), and major histocompatibility complex class II-dependent pathways of antigen presentation as well as T helper 1 (Th1), Th2, and Th17-mediated responses on the immune control of Brucella melitensis 16 M infection. We clearly confirmed the key function played by gamma interferon (IFN-γ)-producing Th1 CD4(+) T cells in the control of B. melitensis infection, whereas IFN-γ-producing CD8(+) T cells or B cell-mediated humoral immunity plays only a modest role in the clearance of bacteria during primary infection. In the presence of a Th1 response, Th2 or Th17 responses do not really develop or play a positive or negative role during the course of B. melitensis infection. On the whole, these results could improve our ability to develop protective vaccines or therapeutic treatments against brucellosis.
Collapse
|
177
|
Short KR, Habets MN, Hermans PWM, Diavatopoulos DA. Interactions between Streptococcus pneumoniae and influenza virus: a mutually beneficial relationship? Future Microbiol 2012; 7:609-24. [PMID: 22568716 DOI: 10.2217/fmb.12.29] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Historically, most research on infectious diseases has focused on infections with single pathogens. However, infections with pathogens often occur in the context of pre-existing viral and bacterial infections. Clinically, this is of particular relevance for coinfections with Streptococcus pneumoniae and influenza virus, which together are an important cause of global morbidity and mortality. In recent years new evidence has emerged regarding the underlying mechanisms of influenza virus-induced susceptibility to secondary pneumococcal infections, in particular regarding the sustained suppression of innate recognition of S. pneumoniae. Conversely, it is also increasingly being recognized that there is not a unidirectional effect of the virus on S. pneumoniae, but that asymptomatic pneumococcal carriage may also affect subsequent influenza virus infection and the clinical outcome. Here, we will review both aspects of pneumococcal influenza virus infection, with a particular focus on the age-related differences in pneumococcal colonization rates and invasive pneumococcal disease.
Collapse
Affiliation(s)
- Kirsty R Short
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
178
|
Ramos PIP, Picão RC, Vespero EC, Pelisson M, Zuleta LFG, Almeida LGP, Gerber AL, Vasconcelos ATR, Gales AC, Nicolás MF. Pyrosequencing-based analysis reveals a novel capsular gene cluster in a KPC-producing Klebsiella pneumoniae clinical isolate identified in Brazil. BMC Microbiol 2012; 12:173. [PMID: 22882772 PMCID: PMC3438125 DOI: 10.1186/1471-2180-12-173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/23/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND An important virulence factor of Klebsiella pneumoniae is the production of capsular polysaccharide (CPS), a thick mucus layer that allows for evasion of the host's defense and creates a barrier against antibacterial peptides. CPS production is driven mostly by the expression of genes located in a locus called cps, and the resulting structure is used to distinguish between different serotypes (K types). In this study, we report the unique genetic organization of the cps cluster from K. pneumoniae Kp13, a clinical isolate recovered during a large outbreak of nosocomial infections that occurred in a Brazilian teaching hospital. RESULTS A pyrosequencing-based approach showed that the cps region of Kp13 (cpsKp13) is 26.4 kbp in length and contains genes common, although not universal, to other strains, such as the rmlBADC operon that codes for L-rhamnose synthesis. cpsKp13 also presents some unique features, like the inversion of the wzy gene and a unique repertoire of glycosyltransferases. In silico comparison of cpsKp13 RFLP pattern with 102 previously published cps PCR-RFLP patterns showed that cpsKp13 is distinct from the C patterns of all other K serotypes. Furthermore, in vitro serotyping showed only a weak reaction with capsular types K9 and K34. We confirm that K9 cps shares common genes with cpsKp13 such as the rmlBADC operon, but lacks features like uge and Kp13-specific glycosyltransferases, while K34 capsules contain three of the five sugars that potentially form the Kp13 CPS. CONCLUSIONS We report the first description of a cps cluster from a Brazilian clinical isolate of a KPC-producing K. pneumoniae. The gathered data including K-serotyping support that Kp13's K-antigen belongs to a novel capsular serotype. The CPS of Kp13 probably includes L-rhamnose and D-galacturonate in its structure, among other residues. Because genes involved in L-rhamnose biosynthesis are absent in humans, this pathway may represent potential targets for the development of antimicrobial agents. Studying the capsular serotypes of clinical isolates is of great importance for further development of vaccines and/or novel therapeutic agents. The distribution of K-types among multidrug-resistant isolates is unknown, but our findings may encourage scientists to perform K-antigen typing of KPC-producing strains worldwide.
Collapse
|
179
|
Chong DLW, Ingram RJ, Lowther DE, Muir R, Sriskandan S, Altmann DM. The nature of innate and adaptive interleukin-17A responses in sham or bacterial inoculation. Immunology 2012; 136:325-33. [PMID: 22384827 DOI: 10.1111/j.1365-2567.2012.03584.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Streptococcus pyogenes is the causative agent of numerous diseases ranging from benign infections (pharyngitis and impetigo) to severe infections associated with high mortality (necrotizing fasciitis and bacterial sepsis). As with other bacterial infections, there is considerable interest in characterizing the contribution of interleukin-17A (IL-17A) responses to protective immunity. We here show significant il17a up-regulation by quantitative real-time PCR in secondary lymphoid organs, correlating with increased protein levels in the serum within a short time of S. pyogenes infection. However, our data offer an important caveat to studies of IL-17A responsiveness following antigen inoculation, because enhanced levels of IL-17A were also detected in the serum of sham-infected mice, indicating that inoculation trauma alone can stimulate the production of this cytokine. This highlights the potency and speed of innate IL-17A immune responses after inoculation and the importance of proper and appropriate controls in comparative analysis of immune responses observed during microbial infection.
Collapse
Affiliation(s)
- Deborah L W Chong
- Section of Infectious Diseases & Immunity, Imperial College, Hammersmith Hospital, London Centre for Infection & Immunity, Queen's University, Belfast, UK
| | | | | | | | | | | |
Collapse
|
180
|
Mostafa Anower A, Shim JA, Choi B, Sohn S. Pretreatment with interleukin-6 small interfering RNA can improve the survival rate of polymicrobial cecal ligation and puncture mice by down regulating interleukin-6 production. Eur J Pharmacol 2012; 688:76-83. [DOI: 10.1016/j.ejphar.2012.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/26/2012] [Accepted: 05/15/2012] [Indexed: 11/28/2022]
|
181
|
Vaccine-induced th17 cells are maintained long-term postvaccination as a distinct and phenotypically stable memory subset. Infect Immun 2012; 80:3533-44. [PMID: 22851756 DOI: 10.1128/iai.00550-12] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Th17 cells are increasingly being recognized as an important T helper subset for immune-mediated protection, especially against pathogens at mucosal ports of entry. In several cases, it would thus be highly relevant to induce Th17 memory by vaccination. Th17 cells are reported to exhibit high plasticity and may not stably maintain their differentiation program once induced, questioning the possibility of inducing durable Th17 memory. Accordingly, there is no consensus as to whether Th17 memory can be established unless influenced by continuous Th17 polarizing conditions. We have previously reported (T. Lindenstrøm, et al., J. Immunol. 182:8047-8055, 2009) that the cationic liposome adjuvant CAF01 can prime both Th1 and Th17 responses and promote robust, long-lived Th1 memory. Here, we demonstrate that subunit vaccination in mice with CAF01 leads to establishment of bona fide Th17 memory cells. Accordingly, Th17 memory cells exhibited lineage stability by retaining both phenotypic and functional properties for nearly 2 years. Antigen-specific, long-term Th17 memory cells were found to be mobilized from lung-draining lymph nodes to the lung following an aerosol challenge by Mycobacterium tuberculosis nearly 2 years after their induction and proliferated at levels comparable to those of Th1 memory cells. During the infection, the vaccine-induced Th17 memory cells expanded in the lungs and adapted Th1 characteristics, implying that they represent a metastable population which exhibits plasticity when exposed to prolonged Th1 polarizing, inflammatory conditions such as those found in the M. tuberculosis-infected lung. In the absence of overt inflammation, however, stable bona fide Th17 memory can indeed be induced by parenteral immunization.
Collapse
|
182
|
Chen J, Tong J, Liu H, Liu Y, Su Z, Wang S, Shi Y, Zheng D, Sandoghchian S, Geng J, Xu H. Increased frequency of Th17 cells in the peripheral blood of children infected with enterovirus 71. J Med Virol 2012; 84:763-7. [PMID: 22431024 DOI: 10.1002/jmv.23254] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Enterovirus 71 (EV71) affects the health of young children globally causing severe neurologic diseases. The relationship between EV71 infection and T helper type 17 (Th17) has not been described, although this new Th subset or interleukin-17 (IL-17) has been reported to be associated with other viral infections. The purpose of the current study was to describe the immune profile involving Th17 cells, neutrophils, and related factors and to speculate on the possible immunopathogenesis of EV71 infections. Flow cytometry and an automatic blood cell counter were used to analyze circulating Th17 cells and count neutrophils, respectively. Expression of acid-related orphan nuclear receptor gamma t (ROR γt) was evaluated by reverse-transcriptional PCR, and enzyme linked immunosorbent assays (ELISAs) were used for detecting concentrations of IL-17, IL-23, and IFN-γ. The results showed that the frequencies of Th17 cells (1.47 ± 0.87%) and the number of neutrophils (7.4 ± 4.1 × 10(9) /L) in peripheral blood samples from children infected with EV71 were significantly higher compared to controls. In addition, there was a statistically higher expression of ROR γt in peripheral blood mononuclear cells (PBMCs) and elevated concentrations of IL-17 and IL-23 in sera, but lower IFN-γ production during EV71 infections. The findings suggest that Th17 cells are mediators during the immunologic process.
Collapse
Affiliation(s)
- Jianguo Chen
- Department of Clinical Laboratory, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Price AE, Reinhardt RL, Liang HE, Locksley RM. Marking and quantifying IL-17A-producing cells in vivo. PLoS One 2012; 7:e39750. [PMID: 22768117 PMCID: PMC3387253 DOI: 10.1371/journal.pone.0039750] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/29/2012] [Indexed: 12/21/2022] Open
Abstract
Interleukin (IL)-17A plays an important role in host defense against a variety of pathogens and may also contribute to the pathogenesis of autoimmune diseases. However, precise identification and quantification of the cells that produce this cytokine in vivo have not been performed. We generated novel IL-17A reporter mice to investigate expression of IL-17A during Klebsiella pneumoniae infection and during experimental autoimmune encephalomyelitis, conditions previously demonstrated to potently induce IL-17A production. In both settings, the majority of IL-17A was produced by non-CD4(+) T cells, particularly γδ T cells, but also invariant NKT cells and other CD4(-)CD3ε(+) cells. As measured in dual-reporter mice, IFN-γ-producing Th1 cells greatly outnumbered IL-17A-producing Th17 cells throughout both challenges. Production of IL-17A by cells from unchallenged mice or by non-T cells under any condition was not evident. Administration of IL-1β and/or IL-23 elicited rapid production of IL-17A by γδ T cells, invariant NKT cells and other CD4(-)CD3ε(+) cells in vivo, demonstrating that these cells are poised for rapid cytokine production and likely comprise the major sources of this cytokine during acute immunologic challenges.
Collapse
MESH Headings
- Animals
- Cell Count
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Genes, Reporter/genetics
- Humans
- Immunity, Innate/drug effects
- Immunity, Innate/immunology
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Interferon-gamma/biosynthesis
- Interleukin-17/biosynthesis
- Interleukin-1beta/pharmacology
- Interleukin-23/pharmacology
- Klebsiella Infections/complications
- Klebsiella Infections/immunology
- Klebsiella Infections/microbiology
- Klebsiella pneumoniae/drug effects
- Klebsiella pneumoniae/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Reproducibility of Results
- Rest
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- April E. Price
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - R. Lee Reinhardt
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Hong-Erh Liang
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Richard M. Locksley
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
184
|
Zhang Y, Wang H, Ren J, Tang X, Jing Y, Xing D, Zhao G, Yao Z, Yang X, Bai H. IL-17A synergizes with IFN-γ to upregulate iNOS and NO production and inhibit chlamydial growth. PLoS One 2012; 7:e39214. [PMID: 22745717 PMCID: PMC3379979 DOI: 10.1371/journal.pone.0039214] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 05/21/2012] [Indexed: 11/18/2022] Open
Abstract
IFN-γ-mediated inducible nitric oxide synthase (iNOS) expression is critical for controlling chlamydial infection through microbicidal nitric oxide (NO) production. Interleukin-17A (IL-17A), as a new proinflammatory cytokine, has been shown to play a protective role in host defense against Chlamydia muridarum (Cm) infection. To define the related mechanism, we investigated, in the present study, the effect of IL-17A on IFN-γ induced iNOS expression and NO production during Cm infection in vitro and in vivo. Our data showed that IL-17A significantly enhanced IFN-γ-induced iNOS expression and NO production and inhibited Cm growth in Cm-infected murine lung epithelial (TC-1) cells. The synergistic effect of IL-17A and IFN-γ on Chlamydia clearance from TC-1 cells correlated with iNOS induction. Since one of the main antimicrobial mechanisms of activated macrophages is the release of NO, we also examined the inhibitory effect of IL-17A and IFN-γ on Cm growth in peritoneal macrophages. IL-17A (10 ng/ml) synergizes with IFN-γ (200 U/ml) in macrophages to inhibit Cm growth. This effect was largely reversed by aminoguanidine (AG), an iNOS inhibitor. Finally, neutralization of IL-17A in Cm infected mice resulted in reduced iNOS expression in the lung and higher Cm growth. Taken together, the results indicate that IL-17A and IFN-γ play a synergistic role in inhibiting chlamydial lung infection, at least partially through enhancing iNOS expression and NO production in epithelial cells and macrophages.
Collapse
Affiliation(s)
- Yongci Zhang
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Haiping Wang
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jianyun Ren
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaofei Tang
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ye Jing
- Department of Clinical Laboratory, the Chinese People’s Liberation Army No.464 Hospital, Tianjin, China
| | - Donghong Xing
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guosheng Zhao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhi Yao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Yang
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail: (XY); (HB)
| | - Hong Bai
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- * E-mail: (XY); (HB)
| |
Collapse
|
185
|
Hudock KM, Liu Y, Mei J, Marino RC, Hale JE, Dai N, Worthen GS. Delayed resolution of lung inflammation in Il-1rn-/- mice reflects elevated IL-17A/granulocyte colony-stimulating factor expression. Am J Respir Cell Mol Biol 2012; 47:436-44. [PMID: 22592923 DOI: 10.1165/rcmb.2012-0104oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IL-1 has been associated with acute lung injury (ALI) in both humans and animal models, but further investigation of the precise mechanisms involved is needed, and may identify novel therapeutic targets. To discover the IL-1 mediators essential to the initiation and resolution phases of acute lung inflammation, knockout mice (with targeted deletions for either the IL-1 receptor-1, i.e., Il-1r1(-/-), or the IL-1 receptor antagonist, i.e., Il-1rn(-/-)) were exposed to aerosolized LPS, and indices of lung and systemic inflammation were examined over the subsequent 48 hours. The resultant cell counts, histology, protein, and RNA expression of key cytokines were measured. Il-1r1(-/-) mice exhibited decreased neutrophil influx, particularly at 4 and 48 hours after exposure to LPS, as well as reduced bronchoalveolar lavage (BAL) expression of chemokines and granulocyte colony-stimulating factor (G-CSF). On the contrary, Il-1rn(-/-) mice demonstrated increased BAL neutrophil counts, increased BAL total protein, and greater evidence of histologic injury, all most notably 2 days after LPS exposure. Il-1rn(-/-) mice also exhibited higher peripheral neutrophil counts and greater numbers of granulocyte receptor-1 cells in their bone marrow, potentially reflecting their elevated plasma G-CSF concentrations. Furthermore, IL-17A expression was increased in the BAL and lungs of Il-1rn(-/-) mice after exposure to LPS, likely because of increased numbers of γδ T cells in the Il-1rn(-/-) lungs. Blockade with IL-17A monoclonal antibody before LPS exposure decreased the resultant BAL neutrophil counts and lung G-CSF expression in Il-1rn(-/-) mice, 48 hours after exposure to LPS. In conclusion, Il-1rn(-/-) mice exhibit delayed resolution in acute lung inflammation after exposure to LPS, a process that appears to be mediated via the G-CSF/IL-17A axis.
Collapse
Affiliation(s)
- Kristin M Hudock
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Pearlman School of Medicine, University of Pennsylvania, Abramson Research Building, Rm. 414E, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
186
|
Stefanelli P, Teloni R, Carannante A, Mariotti S, Nisini R, Gagliardi MC. Neisseria gonorrhoeae triggers the PGE2/IL-23 pathway and promotes IL-17 production by human memory T cells. Prostaglandins Other Lipid Mediat 2012; 99:24-9. [PMID: 22542425 DOI: 10.1016/j.prostaglandins.2012.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/26/2012] [Accepted: 04/10/2012] [Indexed: 12/27/2022]
Abstract
PGE2 is a potent modulator of the T helper (Th)17 immune response that plays a critical role in the host defense against bacterial, fungal and viral infections. We recently showed high serum levels of interleukin (IL)-17 in patients with gonococcal infection and we hypothesized that Neisseria gonorrhoeae could exploit a PGE2 mediated mechanism to promote IL-17 production. Here we show that N. gonorrhoeae induces human dendritic cell (DC) maturation, secretion of prostaglandin E2 and proinflammatory cytokines, including the pro-Th17 cytokine IL-23. Blocking PGE2 endogenous synthesis selectively reduces IL-23 production by DC in response to gonococcal stimulation, confirming recent data on PGE2/IL-23 crosstalk. N. gonorrhoeae stimulated DC induce a robust IL-17 production by memory CD4(+) T cells and this function correlates with PGE2 production. Our findings delineate a previously unknown role for PGE2 in the immune response to N. gonorrhoeae, suggesting its contribute via Th17 cell expansion.
Collapse
Affiliation(s)
- Paola Stefanelli
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
187
|
Van der Velden J, Janssen-Heininger YMW, Mandalapu S, Scheller EV, Kolls JK, Alcorn JF. Differential requirement for c-Jun N-terminal kinase 1 in lung inflammation and host defense. PLoS One 2012; 7:e34638. [PMID: 22514650 PMCID: PMC3326034 DOI: 10.1371/journal.pone.0034638] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/02/2012] [Indexed: 01/07/2023] Open
Abstract
The c-Jun N-terminal kinase (JNK) - 1 pathway has been implicated in the cellular response to stress in many tissues and models. JNK1 is known to play a role in a variety of signaling cascades, including those involved in lung disease pathogenesis. Recently, a role for JNK1 signaling in immune cell function has emerged. The goal of the present study was to determine the role of JNK1 in host defense against both bacterial and viral pneumonia, as well as the impact of JNK1 signaling on IL-17 mediated immunity. Wild type (WT) and JNK1 -/- mice were challenged with Escherichia coli, Staphylococcus aureus, or Influenza A. In addition, WT and JNK1 -/- mice and epithelial cells were stimulated with IL-17A. The impact of JNK1 deletion on pathogen clearance, inflammation, and histopathology was assessed. JNK1 was required for clearance of E. coli, inflammatory cell recruitment, and cytokine production. Interestingly, JNK1 deletion had only a small impact on the host response to S. aureus. JNK1 -/- mice had decreased Influenza A burden in viral pneumonia, yet displayed worsened morbidity. Finally, JNK1 was required for IL-17A mediated induction of inflammatory cytokines and antimicrobial peptides both in epithelial cells and the lung. These data identify JNK1 as an important signaling molecule in host defense and demonstrate a pathogen specific role in disease. Manipulation of the JNK1 pathway may represent a novel therapeutic target in pneumonia.
Collapse
Affiliation(s)
- Jos Van der Velden
- Department of Pathology, University of Vermont, Burlington, Vermont, United States of America
| | | | - Sivanarayna Mandalapu
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Erich V. Scheller
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Jay K. Kolls
- RK Mellon Foundation Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - John F. Alcorn
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
188
|
Contribution of Bordetella filamentous hemagglutinin and adenylate cyclase toxin to suppression and evasion of interleukin-17-mediated inflammation. Infect Immun 2012; 80:2061-75. [PMID: 22473603 DOI: 10.1128/iai.00148-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bordetella pertussis and Bordetella bronchiseptica establish respiratory infections with notorious efficiency. Our previous studies showed that the fhaB genes of B. pertussis and B. bronchiseptica, which encode filamentous hemagglutinin (FHA), are functionally interchangeable and provided evidence that FHA-deficient B. bronchiseptica induces more inflammation in the lungs of mice than wild-type B. bronchiseptica. We show here that the robust inflammatory response to FHA-deficient B. bronchiseptica is characterized by the early and sustained influx of interleukin-17 (IL-17)-positive neutrophils and macrophages and, at 72 h postinoculation, IL-17-positive CD4(+) T cells, suggesting that FHA allows the bacteria to suppress the development of an IL-17-mediated inflammatory response. We also show that the cyaA genes of B. pertussis and B. bronchiseptica, which encode adenylate cyclase toxin (ACT), are functionally interchangeable and that ACT, specifically its catalytic activity, is required for B. bronchiseptica to resist phagocytic clearance but is neither required for nor inhibitory of the induction of inflammation if bacteria are present in numbers sufficient to persist during the first 3 days postinoculation. Incubation of bone marrow-derived macrophages with a ΔcyaA strain caused decreased production of IL-1β and increased production of tumor necrosis factor alpha (TNF-α) and IL-12, while incubation with a ΔcyaA ΔfhaB strain caused increased production of IL-23. These data suggest that FHA and ACT both contribute to suppress the recruitment of neutrophils and the development of an IL-17-mediated immune response. To our knowledge, this is the first demonstration of a microbial pathogen suppressing IL-17-mediated inflammation in vivo as a strategy to evade innate immunity.
Collapse
|
189
|
Abstract
The etiology of inflammatory bowel disease is unknown but available evidence suggests that a deregulated immune response towards the commensal bacterial flora is responsible for intestinal inflammation in genetically predisposed individuals. IL-23 promotes expansion and maintenance of Th17 cells, which secrete the proinflammatory cytokine IL-17 and have been implicated in the pathogenesis of many chronic inflammatory disorders. Recent studies have shown that IL-23 also acts on cells of the innate immune system that can contribute to inflammatory cytokine production and tissue inflammation. A role for the IL-23/IL-17 pathway in the pathogenesis of chronic intestinal inflammation in inflammatory bowel disease has emerged from both animal and human studies. Here we aim to review the recent advances in this rapidly moving field.
Collapse
Affiliation(s)
- Alessandra Geremia
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | | |
Collapse
|
190
|
He Y, Li J, Zheng Y, Luo Y, Zhou H, Yao Y, Chen X, Chen Z, He M. A randomized case-control study of dynamic changes in peripheral blood Th17/Treg cell balance and interleukin-17 levels in highly active antiretroviral-treated HIV type 1/AIDS patients. AIDS Res Hum Retroviruses 2012; 28:339-45. [PMID: 21767239 DOI: 10.1089/aid.2011.0140] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Our objective was to dynamically observe changes in peripheral blood Th17, Treg cells, and interleukin (IL)-17 levels in HIV-1/AIDS patients before and after highly active antiretroviral therapy (HAART). The study design consisted of a randomized case-controlled study. A total of 33 HIV-1/AIDS patients were chosen to receive a HAART regimen and 30 healthy volunteers were assigned as controls. Peripheral blood Th17 and Treg cells were measured by flow cytometry before or 6 and 12 months after HAART therapy. The plasma IL-17 level was determined by ELISA. The percentage of Th17 cells to total CD4(+) cells was 1.2 ± 0.37% in HIV/AIDS patients before treatment, which was significantly lower than that in uninfected controls (4.7 ± 1.43%). After HAART therapy for 6 or 12 months, the Th17 percentage increased to 2.5 ± 1.03% and 3.7±1.56%, respectively. The percentage of Treg cells to CD4(+) cells is 9.16 ± 3.33% in HIV/AIDS patients, which was significantly elevated compared to controls (4.43 ± 0.97%). HAART therapy for 6 and 12 months significantly decreased Treg cell percentage (7.19 ± 2.91% and 5.53 ± 1.88%, respectively). Interestingly, the ratio of Th17/Treg cells was significantly decreased in HIV/AIDS patients before treatment, while HAART treatment partially normalized the Th17/Treg ratio. IL-17 levels were 5.3 ± 2.5 and 17.7 ± 6.60 pg/ml in HIV/AIDS patients and controls, respectively; the HAART regimen increased the IL-17 level to 7.7 ± 2.4 and 10.4 ± 3.1 pg/ml at 6 and 12 months, respectively. The percentage of Th17 cells correlated with IL-17 level, but both negatively correlated with viral load before treatment, whereas the percentage of Treg cells positively correlated with viral load before HAART therapy. The imbalance of peripheral blood Th17 and Treg cells may play a crucial role in the pathogenesis of AIDS. HAART can restore the balance of Th17 and Treg cells as well as the IL-17 level, which may gradually rebuild the immune equilibrium in HIV/AIDS patients.
Collapse
Affiliation(s)
- Yan He
- Infectious Disease and AIDS Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Li
- Infectious Disease and AIDS Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuhuang Zheng
- Infectious Disease and AIDS Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Luo
- Infectious Disease and AIDS Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huaying Zhou
- Infectious Disease and AIDS Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunhai Yao
- Infectious Disease and AIDS Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xia Chen
- Infectious Disease and AIDS Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zi Chen
- Infectious Disease and AIDS Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mei He
- Infectious Disease and AIDS Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
191
|
Horvath DJ, Washington MK, Cope VA, Algood HMS. IL-23 Contributes to Control of Chronic Helicobacter Pylori Infection and the Development of T Helper Responses in a Mouse Model. Front Immunol 2012; 3:56. [PMID: 22566937 PMCID: PMC3342083 DOI: 10.3389/fimmu.2012.00056] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/02/2012] [Indexed: 12/21/2022] Open
Abstract
The immune response to Helicobacter pylori involves a mixed T helper-1, T helper-2, and T helper-17 response. It has been suggested that T helper cells contribute to the gastric inflammatory response during infection, and that T helper 1 (Th1) and T helper 17 (Th17) subsets may be required for control of H. pylori colonization in the stomach. The relative contributions of these subsets to gastritis and control of infection are still under investigation. IL-23 plays a role in stabilizing and expanding Th17 cell cytokine expression. Expression of IL-23, which is induced in dendritic cells and macrophages following co-culture with H. pylori, has also been reported to increase during H. pylori infection in humans and animal models. To investigate the role of IL-23 in H. pylori, we infected IL-23p19 deficient mice (IL-23−/−) and wild-type littermates with H. pylori strain SS1. At various time points post-infection, we assessed colonization, gastric inflammation, and cytokine profiles in the gastric tissue. Specifically, H. pylori-infected IL-23−/− mice have higher levels of H. pylori in their stomachs, significantly less chronic gastritis, and reduced expression of IL-17 and IFNγ compared to H. pylori-infected wild-type mice. While many of these differences were significant, the H. pylori infected IL-23−/− had mild increases in our measurements of disease severity. Our results indicate that IL-23 plays a role in the activation of the immune response and induction of gastritis in response to H. pylori by contributing to the control of infection and severity of gastritis.
Collapse
Affiliation(s)
- Dennis J Horvath
- Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA
| | | | | | | |
Collapse
|
192
|
Derbise A, Cerdà Marín A, Ave P, Blisnick T, Huerre M, Carniel E, Demeure CE. An encapsulated Yersinia pseudotuberculosis is a highly efficient vaccine against pneumonic plague. PLoS Negl Trop Dis 2012; 6:e1528. [PMID: 22348169 PMCID: PMC3279354 DOI: 10.1371/journal.pntd.0001528] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/29/2011] [Indexed: 12/31/2022] Open
Abstract
Background Plague is still a public health problem in the world and is re-emerging, but no efficient vaccine is available. We previously reported that oral inoculation of a live attenuated Yersinia pseudotuberculosis, the recent ancestor of Yersinia pestis, provided protection against bubonic plague. However, the strain poorly protected against pneumonic plague, the most deadly and contagious form of the disease, and was not genetically defined. Methodology and Principal Findings The sequenced Y. pseudotuberculosis IP32953 has been irreversibly attenuated by deletion of genes encoding three essential virulence factors. An encapsulated Y. pseudotuberculosis was generated by cloning the Y. pestis F1-encoding caf operon and expressing it in the attenuated strain. The new V674pF1 strain produced the F1 capsule in vitro and in vivo. Oral inoculation of V674pF1 allowed the colonization of the gut without lesions to Peyer's patches and the spleen. Vaccination induced both humoral and cellular components of immunity, at the systemic (IgG and Th1 cells) and the mucosal levels (IgA and Th17 cells). A single oral dose conferred 100% protection against a lethal pneumonic plague challenge (33×LD50 of the fully virulent Y. pestis CO92 strain) and 94% against a high challenge dose (3,300×LD50). Both F1 and other Yersinia antigens were recognized and V674pF1 efficiently protected against a F1-negative Y. pestis. Conclusions and Significance The encapsulated Y. pseudotuberculosis V674pF1 is an efficient live oral vaccine against pneumonic plague, and could be developed for mass vaccination in tropical endemic areas to control pneumonic plague transmission and mortality. Plague, among the most deadly infections of mankind's history, is present in Africa, Asia and America, and is currently re-emerging, recently causing cases in areas from where it had disappeared for decades. Pneumonic plague, its most deadly and contagious form, is responsible for human-to-human spreading of the infection. Vaccination would be an effective means to control the disease, but no efficient vaccine is currently available. Because live vaccines are potent inducers of protective immunity, our strategy was to use a Yersinia pseudotuberculosis, closely related to Y. pestis but genetically more stable, to make it suitable for use as live oral vaccine. We have developed a genetically defined Y. pseudotuberculosis strain strongly attenuated by deletion of virulence factors genes, which was also induced to produce the Y. pestis F1 pseudocapsule. A single oral dose was harmless and provided high- level protection against pneumonic plague. Such a candidate vaccine offers promising perspectives to control pneumonic plague mortality and transmission.
Collapse
Affiliation(s)
- Anne Derbise
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
193
|
Serotype-independent pneumococcal experimental vaccines that induce cellular as well as humoral immunity. Proc Natl Acad Sci U S A 2012; 109:3623-7. [PMID: 22308483 DOI: 10.1073/pnas.1121383109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For prevention of Streptococcus pneumoniae (pneumococcus) infections in infancy, protein-conjugated capsular polysaccharide vaccines provide serotype-specific, antibody-mediated immunity but do not cover all of the 90+ capsule serotypes. Therefore, microbiologists have sought protective noncapsular antigens common to all strains. Alternatively, we investigated killed cells of a noncapsulated strain, which expose many such common antigens. Given to mice intranasally, this vaccine elicits antibody-independent, CD4+ T lymphocyte-dependent accelerated clearance of pneumococci of various serotypes from the nasopharynx mediated by the cytokine IL-17A. Such immunity may reproduce the natural resistance that develops in infants before capsular antibodies arise. Given by injection, the killed cell vaccine induces bifunctional immunity: plasma antibodies protective against fatal pneumonia challenge, as well as IL-17A-mediated nasopharyngeal clearance. Human testing of this inexpensive candidate vaccine by intramuscular injection is planned. Bacterial cellular vaccines are complex--a challenge for reproducibility. However, when several known protective antigens were deleted, the killed pneumococcal vaccine was still protective. This antigenic redundancy may prevent vaccine escape variants by recombinational loss, which is frequent in pneumococcus. Biochemically defined immunogens with bifunctional activity have also been devised. These immunogens are three-component conjugates in which cell wall teichoic acid (a common antigen capable of T cell activation) is coupled to a genetic fusion of two common pneumococcal proteins: a protective surface antigen and a derivative of pneumolysin, which provides TLR4 agonist activity and induces antitoxic immunity. Such constructs induce accelerated clearance when given intranasally and induce both immune mechanisms when injected. The defined composition permits analysis of structure-function activity.
Collapse
|
194
|
Pollreisz A, Rafferty B, Kozarov E, Lalla E. Klebsiella pneumoniae induces an inflammatory response in human retinal-pigmented epithelial cells. Biochem Biophys Res Commun 2012; 418:33-7. [DOI: 10.1016/j.bbrc.2011.12.102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 01/01/2023]
|
195
|
Protection against Streptococcus pneumoniae serotype 1 acute infection shows a signature of Th17- and IFN-γ-mediated immunity. Immunobiology 2011; 217:420-9. [PMID: 22204818 DOI: 10.1016/j.imbio.2011.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/18/2011] [Accepted: 10/21/2011] [Indexed: 12/22/2022]
Abstract
Acute pneumonia caused by Streptococcus pneumoniae is a major cause of child mortality. Antibodies are considered the main effectors of protection in this clinical presentation of pneumococcal invasive disease. To get new insights into the mechanisms involved in the protective immunity, we established a murine experimental model of protection against acute pneumococcal pneumonia and then evaluated the transcriptional, humoral and cellular responses in protected and non-protected animals. We found that intranasal inoculation of a sublethal dose of S. pneumoniae serotype 1 conferred complete protection against a subsequent challenge with a lethal dose of the same strain. Sublethal infection elicited a strong IgM and IgG antibody response against the capsular polysaccharide, as assessed one week later, and an exacerbated influx of neutrophils into the lungs immediately after the lethal challenge. Genome-wide microarray-based transcriptional analysis of whole lungs showed 149 differentially expressed genes among which we found upregulation of Il17a, Ifng and several IL-17A- and IFN-γ-related genes in protected versus non-protected mice. Kinetics analysis showed higher expression levels of Il17a in protected animals at all time points whereas Ifng was upregulated early in the protected mice and later in the non-protected animals. Intracelluar cytokine staining demonstrated that CD4(+) T cells account for a great proportion of the IL-17A produced in the lungs of protected animals. Overall, these results showed that an upregulation of IL-17A- and a timely regulation of IFN-γ-related gene expression, together with development of a Th17 response, are relevant characteristics of the protective immunity against S. pneumoniae acute pneumonia.
Collapse
|
196
|
Aujla SJ, Alcorn JF. T(H)17 cells in asthma and inflammation. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1810:1066-79. [PMID: 21315804 DOI: 10.1016/j.bbagen.2011.02.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/25/2011] [Accepted: 02/02/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND The chronic airway disease asthma causes significant burden to patients as well as the healthcare system with limited options for prevention or cure. Inadequate treatment strategies are most likely due to the complex heterogeneous nature of asthma. Furthermore, the severe asthma phenotype is characterized by the lack of a response to standard medication, namely, corticosteroids. SCOPE OF REVIEW In the last several years it has been shown that the eosinophilic/atopic phenotype of asthma driven by T(H)2 mechanisms is not the only immunologic pathway contributing to disease. In fact, there has been evidence revealing that severe asthmatics in particular have neutrophilic inflammation, and this is associated with corticosteroid resistance. T(H)17 cells, a recently discovered lineage of T helper cells, play an important role in lung host defense against multiple pathogens via production of the cytokine IL-17. IL-17 promotes neutrophil production and chemotaxis via multiple factors. MAJOR CONCLUSIONS Mouse and human studies provide robust evidence that T(H)17 cells and IL-17 play a role in severe asthma and may contribute to corticosteroid resistance. GENERAL SIGNIFICANCE As we learn more about T(H)17 cells in severe asthma, the goal is to potentially target this pathway for treatment in the hope of significantly improving the quality of life for those children and adults affected with this disease. This article is part of a Special Issue entitled: Biochemistry of Asthma.
Collapse
Affiliation(s)
- Shean J Aujla
- Department of Pedaitrics, Children's Hospital of Pittsburgh of UPMC, Pitsburgh, PA 15224, USA
| | | |
Collapse
|
197
|
Liu C, Swaidani S, Qian W, Kang Z, Sun P, Han Y, Wang C, Gulen MF, Yin W, Zhang C, Fox PL, Aronica M, Hamilton TA, Misra S, Deng J, Li X. A CC' loop decoy peptide blocks the interaction between Act1 and IL-17RA to attenuate IL-17- and IL-25-induced inflammation. Sci Signal 2011; 4:ra72. [PMID: 22045852 DOI: 10.1126/scisignal.2001843] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interleukin-17 (IL-17) and IL-25 signaling induce the expression of genes encoding inflammatory factors and are implicated in the pathology of various inflammatory diseases. Nuclear factor κB (NF-κB) activator 1 (Act1) is an adaptor protein and E3 ubiquitin ligase that is critical for signaling by either IL-17 or IL-25, and it is recruited to their receptors (IL-17R and IL-25R) through heterotypic interactions between the SEFIR [SEF (similar expression to fibroblast growth factor genes) and IL-17R] domain of Act1 and that of the receptor. SEFIR domains have structural similarity with the Toll-IL-1 receptor (TIR) domains of Toll-like receptors and IL-1R. Whereas the BB' loop of TIR is required for TIR-TIR interactions, we found that deletion of the BB' loop from Act1 or IL-17RA (a common subunit of both IL-17R and IL-25R) did not affect Act1-IL-17RA interactions; rather, deletion of the CC' loop from Act1 or IL-17RA abolished the interaction between both proteins. Surface plasmon resonance measurements showed that a peptide corresponding to the CC' loop of Act1 bound directly to IL-17RA. A cell-permeable decoy peptide based on the CC' loop sequence inhibited IL-17- or IL-25-mediated signaling in vitro, as well as IL-17- and IL-25-induced pulmonary inflammation in mice. Together, these findings provide the molecular basis for the specificity of SEFIR-SEFIR versus TIR-TIR domain interactions and consequent signaling. Moreover, we suggest that the CC' loop motif of SEFIR domains is a promising target for therapeutic strategies against inflammatory diseases associated with IL-17 or IL-25 signaling.
Collapse
Affiliation(s)
- Caini Liu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Ankathatti Munegowda M, Deng Y, Mulligan SJ, Xiang J. Th17 and Th17-stimulated CD8⁺ T cells play a distinct role in Th17-induced preventive and therapeutic antitumor immunity. Cancer Immunol Immunother 2011; 60:1473-84. [PMID: 21660450 PMCID: PMC11028972 DOI: 10.1007/s00262-011-1054-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/26/2011] [Indexed: 01/01/2023]
Abstract
CD4(+) Th17 cells induce antitumor immunity leading to the eradication of established tumors. However, the mechanism of antitumour immunity and CTL activation by Th17 cells and the distinct role of Th17 and Th17-activated CTLs in antitumor immunity are still elusive. In this study, we generated ovalbumin (OVA)-specific Th17 cells by cultivating OVA-pulsed dendritic cells with CD4(+) T cells derived from transgenic OTII mice in the presence of IL-6, IL-23, TGF-β, and anti-IFN-γ antibody. We demonstrated that Th17 cells acquired major histocompatibility complex/peptide (pMHC)-I and expressed RORγt, IL-17, and IL-2. Th17 cells did not have any direct in vitro tumor cell-killing activity. However, Th17 cells were able to stimulate CD8(+) CTL responses via IL-2 and pMHC I, but not IL-17 signaling, which play a major role in Th17-induced preventive immunity against OVA-expressing B16 melanoma. Th17 cells stimulated the expression of CCL2 and CCL20 in lung tumor microenvironments promoting the recruitment of various inflammatory leukocytes (DCs, CD4(+), and CD8(+) T cells) stimulating more pronounced therapeutic immunity for early-stage (5-day lung metastases or 3 mm, s.c.) tumor than for well-established (6 mm, s.c.) tumor. The therapeutic effect of Th17 cells is associated with IL-17 and is mediated by Th17-stimulated CD8(+) CTLs and other inflammatory leukocytes recruited into B16 melanoma via Th17-stimulated CCL20 chemoattraction. Taken together, our data elucidate a distinct role of Th17 and Th17-stimulated CD8(+) CTLs in the induction of preventive and therapeutic antitumor immunity, which may greatly impact the development of Th17-based cancer immunotherapy.
Collapse
Affiliation(s)
- Manjunatha Ankathatti Munegowda
- Research Unit, Saskatchewan Cancer Agency, Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 4H4 Canada
- Research Unit, Saskatchewan Cancer Agency, Department of Immunology Pathology, University of Saskatchewan, Saskatoon, SK S7N 4H4 Canada
| | - Yulin Deng
- Research Unit, Saskatchewan Cancer Agency, Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 4H4 Canada
- Research Unit, Saskatchewan Cancer Agency, Department of Immunology Pathology, University of Saskatchewan, Saskatoon, SK S7N 4H4 Canada
| | - Sean J. Mulligan
- Research Unit, Saskatchewan Cancer Agency, Department of Physiology, University of Saskatchewan, Saskatoon, SK S7N 4H4 Canada
| | - Jim Xiang
- Research Unit, Saskatchewan Cancer Agency, Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 4H4 Canada
- Research Unit, Saskatchewan Cancer Agency, Department of Immunology Pathology, University of Saskatchewan, Saskatoon, SK S7N 4H4 Canada
| |
Collapse
|
199
|
Yannam GR, Gutti T, Poluektova LY. IL-23 in infections, inflammation, autoimmunity and cancer: possible role in HIV-1 and AIDS. J Neuroimmune Pharmacol 2011; 7:95-112. [PMID: 21947740 DOI: 10.1007/s11481-011-9315-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 09/11/2011] [Indexed: 12/30/2022]
Abstract
The growing family of interleukin (IL)-12-like cytokines produced by activated macrophages and dendritic cells became the important players in the control of infections, development of inflammation, autoimmunity and cancer. However, the role of one of them-heterodimer IL-23, which consists of IL12p40 and the unique p19 subunit in HIV-1 infection pathogenesis and progression to AIDS, represent special interest. We overviewed findings of IL-23 involvement in control of peripheral bacterial pathogens and opportunistic infection, central nervous system (CNS) viral infections and autoimmune disorders, and tumorogenesis, which potentially could be applicable to HIV-1 and AIDS.
Collapse
Affiliation(s)
- Govardhana Rao Yannam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
200
|
Olivares-Villagómez D, Algood HMS, Singh K, Parekh VV, Ryan KE, Piazuelo MB, Wilson KT, Van Kaer L. Intestinal epithelial cells modulate CD4 T cell responses via the thymus leukemia antigen. THE JOURNAL OF IMMUNOLOGY 2011; 187:4051-60. [PMID: 21900182 DOI: 10.4049/jimmunol.1101052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium is comprised of a monolayer of intestinal epithelial cells (IEC), which provide, among other functions, a physical barrier between the high Ag content of the intestinal lumen and the sterile environment beyond the epithelium. IEC express a nonclassical MHC class I molecule known as the thymus leukemia (TL) Ag. TL is known to interact with CD8αα-expressing cells, which are abundant in the intestinal intraepithelial lymphocyte compartment. In this report, we provide evidence indicating that expression of TL by IEC modulates the cytokine profile of CD4(+) T cells favoring IL-17 production. We show in an adoptive transfer model of colitis that donor-derived cells become more pathogenic when TL is expressed on IEC in recipient animals. Moreover, TL(+)IEC promote development of IL-17-mediated responses capable of protecting mice from Citrobacter rodentium infection. We also show that modulation of IL-17-mediated responses by TL(+)IEC is controlled by the expression of CD8α on CD4(+) T cells. Overall, our results provide evidence for an important interaction between IEC and CD4(+) T cells via TL, which modulates mucosal immune responses.
Collapse
Affiliation(s)
- Danyvid Olivares-Villagómez
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|