151
|
Choi DJ, Rockman HA. Beta-adrenergic receptor desensitization in cardiac hypertrophy and heart failure. Cell Biochem Biophys 2000; 31:321-9. [PMID: 10736754 DOI: 10.1007/bf02738246] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- D J Choi
- Department of Medicine, University of North Carolina at Chapel Hill 27599, USA
| | | |
Collapse
|
152
|
White DC, Hata JA, Shah AS, Glower DD, Lefkowitz RJ, Koch WJ. Preservation of myocardial beta-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc Natl Acad Sci U S A 2000; 97:5428-33. [PMID: 10779554 PMCID: PMC25845 DOI: 10.1073/pnas.090091197] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2000] [Indexed: 01/08/2023] Open
Abstract
When the heart fails, there is often a constellation of biochemical alterations of the beta-adrenergic receptor (betaAR) signaling system, leading to the loss of cardiac inotropic reserve. betaAR down-regulation and functional uncoupling are mediated through enhanced activity of the betaAR kinase (betaARK1), the expression of which is increased in ischemic and failing myocardium. These changes are widely viewed as representing an adaptive mechanism, which protects the heart against chronic activation. In this study, we demonstrate, using in vivo intracoronary adenoviral-mediated gene delivery of a peptide inhibitor of betaARK1 (betaARKct), that the desensitization and down-regulation of betaARs seen in the failing heart may actually be maladaptive. In a rabbit model of heart failure induced by myocardial infarction, which recapitulates the biochemical betaAR abnormalities seen in human heart failure, delivery of the betaARKct transgene at the time of myocardial infarction prevents the rise in betaARK1 activity and expression and thereby maintains betaAR density and signaling at normal levels. Rather than leading to deleterious effects, cardiac function is improved, and the development of heart failure is delayed. These results appear to challenge the notion that dampening of betaAR signaling in the failing heart is protective, and they may lead to novel therapeutic strategies to treat heart disease via inhibition of betaARK1 and preservation of myocardial betaAR function.
Collapse
Affiliation(s)
- D C White
- Department of Surgery, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
153
|
Ramos-Ruiz R, Penela P, Penn RB, Mayor F. Analysis of the human G protein-coupled receptor kinase 2 (GRK2) gene promoter: regulation by signal transduction systems in aortic smooth muscle cells. Circulation 2000; 101:2083-9. [PMID: 10790351 DOI: 10.1161/01.cir.101.17.2083] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Desensitization of G protein-coupled receptors (GPCR) is emerging as an important feature of several cardiovascular diseases. G protein-coupled receptor kinase 2 (GRK2) plays a key role in the regulation of a variety of these receptors, and its cardiac expression levels are altered in pathological situations such as chronic heart failure. However, very little is known about the signals and mechanisms that modulate GRK2 expression in cardiovascular cells. METHODS AND RESULTS We have studied the transcriptional activity of the 1.6-kb-long proximal genomic region of the human GRK2 gene. In an aortic smooth muscle cell line, agents that lead to physiological vasoconstriction and hypertrophy, such as phorbol esters, increased GRK2 promoter activity. Activation of signaling pathways by cotransfected G(alphaq) subunits or alpha(1)-adrenergic receptors also markedly enhanced the expression of the GRK2 promoter constructs. Conversely, proinflammatory cytokines, such as interleukin-1beta, tumor necrosis factor-alpha, or interferon-gamma, led to the opposite effect, decreasing the activity of the GRK2 promoter. CONCLUSIONS Our results suggest that the expression of GRK2 in vascular cells is tightly controlled at the transcriptional level by the interplay between several extracellular messengers, which may trigger alterations of normal GRK2 levels in some physiopathological circumstances, thus promoting changes in the efficacy of the GPCR signal transduction.
Collapse
Affiliation(s)
- R Ramos-Ruiz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
154
|
Abstract
During the past decade, it has become evident that dopamine plays an important role in the regulation of fluid and electrolyte balance and blood pressure. Dopamine exerts its actions through two families of dopamine receptors, designated D1-like and D2-like, which are identical in the brain and in peripheral tissues. The two D1-like receptors--D1 and D5 receptors--expressed in mammals are linked to stimulation of adenylyl cyclase. The three D2-like receptors--D2, D3, and D4,--are linked to inhibition of adenylyl cyclase. Dopamine affects fluid and electrolyte balance by regulation of renal excretion of electrolytes and water through actions on renal hemodynamics and tubular epithelial transport and by modulation of the secretion and/or action of vasopressin, renin, aldosterone, catecholamines, and endothelin B receptors (ETB) receptors. It also affects fluid and sodium intake by way of "appetite" centers in the brain and alterations of gastrointestinal tract transport. The production of dopamine in neural and non-neural tissues and the presence of receptors in these tissues suggest that dopamine can act in an autocrine or paracrine fashion. This renal autocrine-paracrine function, which becomes most evident during extracellular fluid volume expansion, is lost in essential hypertension and in some animal models of genetic hypertension. This deficit may be caused by abnormalities in renal dopamine production and polymorphisms or abnormal post-translational modification and regulation of dopamine receptor subtypes.
Collapse
Affiliation(s)
- P A Jose
- Department of Pediatrics, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | | | | |
Collapse
|
155
|
Samain E, Bouillier H, Marty J, Safar M, Dagher G. The effect of propofol on angiotensin II-induced Ca(2+) mobilization in aortic smooth muscle cells from normotensive and hypertensive rats. Anesth Analg 2000; 90:546-52. [PMID: 10702434 DOI: 10.1097/00000539-200003000-00009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
UNLABELLED We studied the effect of propofol (5.6-560 micromol/L; 1-100 microg/mL) on the mechanisms involved in Ca(2+) mobilization elicited by angiotensin II (AngII) in Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats. We studied the variations in intracellular Ca(2+) ([Ca(2+)](i)) concentrations in cultured aortic vascular smooth muscle cells (VSMCs) isolated from 6-wk-old WKY and SHR rats loaded with the Ca(2+)-sensitive fluorescent dye, Fura-2, using fluorescent imaging microscopy. In the absence of external Ca(2+), AngII (1 micromol/L) induced a transient [Ca(2+)](i) mobilization from internal stores that was larger in SHR than in WKY rats. Ca(2+) influx was assessed after external Ca(2+) (1 mmol/L) reintroduction. Propofol (1-100 microg/mL) added 5 min before the experiments did not alter AngII-induced Ca(2+) release from internal stores in either strain. By contrast, Ca(2+) influx elicited by AngII was significantly decreased by propofol. This effect occurred at a smaller concentration of propofol in the SHR than in the WKY rats. When Ca(2+) stores were depleted by exposure of cells to thapsigargin, an inhibitor of the sarcoendoplasmic reticulum Ca(2+)-ATPase, reintroduction of Ca(2+) to the medium induced a capacitative Ca(2+) influx of similar magnitude than that elicited by AngII. This influx was also significantly decreased by propofol at 100 microg/mL ( WKY: 27 +/- 3% of control values, n = 107; SHR: 16 +/- 3%, n = 47; P < 0.001). In conclusion, propofol decreased AngII-induced Ca(2+) influx through voltage-independent channels, without altering Ca(2+) release from internal stores in aortic VSMCs. The hypertensive rats were found to be more sensitive to the effect of propofol than the normotensive rats. This suggests that the response of VSMCs to AngII may be altered by propofol. IMPLICATIONS In rat aortic vascular smooth muscle cells, propofol reduced angiotensin II-elicited Ca(2+) entry through capacitative Ca(2+) channels without altering Ca(2+) release from intracellular stores. Spontaneously hypertensive rats were more sensitive to these effects of propofol than normotensive rats. The response of vascular smooth muscle cells to angiotensin II may be altered by propofol.
Collapse
Affiliation(s)
- E Samain
- Department of Anesthesiology, Beaujon Hospital, University Xavier Bichat, Clichy. INSERM U337, Paris, France
| | | | | | | | | |
Collapse
|
156
|
Gros R, Chorazyczewski J, Meek MD, Benovic JL, Ferguson SS, Feldman RD. G-Protein-coupled receptor kinase activity in hypertension : increased vascular and lymphocyte G-protein receptor kinase-2 protein expression. Hypertension 2000; 35:38-42. [PMID: 10642272 DOI: 10.1161/01.hyp.35.1.38] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Impaired receptor-stimulated adenylyl cyclase activation has been observed in lymphocytes from hypertensive subjects and has been linked to an increase in lymphocyte G-protein receptor kinase-2 (GRK-2) protein expression. However, whether the increase in lymphocyte GRK-2 reflected an increase in vascular GRK-2 was unknown. Therefore, we compared GRK-2 protein expression in lymphocytes and aortas obtained from normotensive Wistar rats, Wistar-Kyoto rats (WKY), and spontaneously hypertensive rats (SHR) and from aortas of Dahl rats. Impaired beta-adrenergic responsiveness was observed in lymphocytes and vascular tissues obtained from hypertensive SHR (10 and 15 weeks old) but not in those obtained from prehypertensive SHR (5 weeks old). Immunodetectable lymphocyte GRK-2 protein expression was increased in 10-week-old SHR (143+/-10% of the expression in 10-week-old Wistar rats and 131+/-11% of the expression in 10-week-old WKY, n=5 in each group). Immunodetectable vascular smooth muscle cell GRK-2 was comparably increased (169+/-14% of the expression in Wistar rats and 138+/-7% of the expression in WKY, n=5 in each group). Also, in hypertensive Dahl salt-sensitive rats, vascular GRK-2 protein expression was increased (185+/-14% of the expression in Dahl salt-resistant rats, n=5 in each group) compared with Dahl salt-resistant controls. These studies support a generalized defect in vascular GRK-2 protein expression in hypertension, which could be an important factor in the impairment of beta-adrenergic-mediated vasodilation, characteristic of the hypertensive state.
Collapse
Affiliation(s)
- R Gros
- Departments of Medicine, Physiology and Pharmacology and Toxicology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
157
|
Saito S, Kadoi Y, Ohyama A, Goto F. Halothane facilitates the translocation of GRK-2 and phosphorylation of beta2-adrenergic receptor in rat synaptosomes. Can J Anaesth 2000; 47:73-80. [PMID: 10626725 DOI: 10.1007/bf03020738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To examine the effect of halothane on beta2-adrenergic receptor phosphorylation and on G-protein coupled receptor kinase (GRK), responsible for beta2-receptor downregulation. METHODS Rat forebrain synaptosomes were incubated for 30 min with halothane 1 or 2%. The cytosolic and membrane fractions were separated, and phosphorylation activity of recombinant beta2-adrenergic receptor was quantified autoradiographically using 32P labeled adenosine triphosphate. Phosphorylation activity of a specific GRK-2 substrate, was examined by measuring 32P binding. Subcellular localization of the enzyme was immunologically analyzed by Western blotting. RESULTS Halothane 2% decreased the phosphorylation activity of the recombinant receptor in the cytosol fraction, regardless of 10 microM isoproterenol (ISP) (P<0.01), which activity in the membrane fraction was increased (P<0.01). Phosphorylation activity of the synthetic peptide decreased in the cytosol obtained from synaptosomes exposed to halothane 2% (P<0.05). In contrast, activity in the membrane increased by exposure to halothane 2% (P<0.01). The concentration of GRK-2 decreased in the cytosol obtained from synaptosomes exposed to halothane 1% or 2% (decreases of 8.3+/-1.2% @ 1%, and 18.0+/-2.1% @ 2%, P<0.05). In the membrane, exposure to halothane 1% or 2% increased the GRK-2 amount dose dependently (22.5+/-3.1% @ 1%, and by 45.7+/-6.1% @ 2%, P<0.01). CONCLUSION Halothane could facilitate translocation of GRK-2 and possibly promote the downregulation of beta2-adrenergic receptors in the synaptic membrane. The anesthetic action and hemodynamic suppressive action of halothane may be related to this phenomenon.
Collapse
Affiliation(s)
- S Saito
- Department of Anesthesiology and Reanimatology, Gunma University School of Medicine, Maebashi, Japan.
| | | | | | | |
Collapse
|
158
|
Felder RA, Eisner GM, Jose PA. D1 dopamine receptor signalling defect in spontaneous hypertension. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 168:245-50. [PMID: 10691808 DOI: 10.1046/j.1365-201x.2000.00634.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dopamine modulates cardiovascular function by actions in the central and peripheral nervous system, by altering the secretion/release of prolactin, pro-opiomelanocortin, vasopressin, aldosterone, and renin, and by directly affecting renal function. Dopamine produced by the renal proximal tubule exerts an autocrine/paracrine action via two classes of dopamine receptors, D1-like (D1 and D5) and D2-like (D2, D3, and D4), that are differentially expressed along the nephron. The autocrine/paracrine function of dopamine, manifested by tubular rather than by haemodynamic mechanisms, becomes most evident during extracellular fluid volume expansion. This renal autocrine/paracrine function is lost in essential hypertension and in some animal models of genetic hypertension. The molecular basis for the dopaminergic dysfunction in hypertension may involve an abnormal post-translational modification of dopamine receptors.
Collapse
Affiliation(s)
- R A Felder
- Department of Pathology, University of Virginia Center for the Health Sciences, Charlottesville, VA, USA
| | | | | |
Collapse
|
159
|
Milligan G. Exploring the dynamics of regulation of G protein-coupled receptors using green fluorescent protein. Br J Pharmacol 1999; 128:501-10. [PMID: 10516625 PMCID: PMC1571667 DOI: 10.1038/sj.bjp.0702824] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/1999] [Accepted: 07/02/1999] [Indexed: 11/09/2022] Open
Affiliation(s)
- G Milligan
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow.
| |
Collapse
|
160
|
Akhter SA, Eckhart AD, Rockman HA, Shotwell K, Lefkowitz RJ, Koch WJ. In vivo inhibition of elevated myocardial beta-adrenergic receptor kinase activity in hybrid transgenic mice restores normal beta-adrenergic signaling and function. Circulation 1999; 100:648-53. [PMID: 10441103 DOI: 10.1161/01.cir.100.6.648] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND The clinical syndrome of heart failure (HF) is characterized by an impaired cardiac beta-adrenergic receptor (betaAR) system, which is critical in the regulation of myocardial function. Expression of the betaAR kinase (betaARK1), which phosphorylates and uncouples betaARs, is elevated in human HF; this likely contributes to the abnormal betaAR responsiveness that occurs with beta-agonist administration. We previously showed that transgenic mice with increased myocardial betaARK1 expression had impaired cardiac function in vivo and that inhibiting endogenous betaARK1 activity in the heart led to enhanced myocardial function. METHODS AND RESULTS We created hybrid transgenic mice with cardiac-specific concomitant overexpression of both betaARK1 and an inhibitor of betaARK1 activity to study the feasibility and functional consequences of the inhibition of elevated betaARK1 activity similar to that present in human HF. Transgenic mice with myocardial overexpression of betaARK1 (3 to 5-fold) have a blunted in vivo contractile response to isoproterenol when compared with non-transgenic control mice. In the hybrid transgenic mice, although myocardial betaARK1 levels remained elevated due to transgene expression, in vitro betaARK1 activity returned to control levels and the percentage of betaARs in the high-affinity state increased to normal wild-type levels. Furthermore, the in vivo left ventricular contractile response to betaAR stimulation was restored to normal in the hybrid double-transgenic mice. CONCLUSIONS Novel hybrid transgenic mice can be created with concomitant cardiac-specific overexpression of 2 independent transgenes with opposing actions. Elevated myocardial betaARK1 in transgenic mouse hearts (to levels seen in human HF) can be inhibited in vivo by a peptide that can prevent agonist-stimulated desensitization of cardiac betaARs. This may represent a novel strategy to improve myocardial function in the setting of compromised heart function.
Collapse
Affiliation(s)
- S A Akhter
- Department of Surgery, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|
161
|
Samain E, Bouillier H, Perret C, Safar M, Dagher G. ANG II-induced Ca(2+) increase in smooth muscle cells from SHR is regulated by actin and microtubule networks. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H834-41. [PMID: 10444512 DOI: 10.1152/ajpheart.1999.277.2.h834] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that the cytoskeletal network in vascular smooth muscle cells (VSMC) is critical to the signaling pathways from angiotensin (ANG) II-receptor subtype 1 (AT(1)) activation to intracellular Ca(2+) (Ca(2+)(i)) release from internal stores and Ca(2+) influx. This was tested in spontaneously hypertensive rats (SHR), in which differences were reported in cultured aortic VSMC Ca(2+)(i) regulation and G protein function compared with those in normotensive Wistar-Kyoto (WKY) rats. In cultured aortic VSMC, disorganization of actin filaments with cytochalasin D (2 micromol/l) decreased the ANG II-induced Ca(2+)(i) release from internal stores and the ANG II-induced Ca(2+) influx in SHR in a reversible fashion, whereas it was without effect in WKY rats. On the other hand, blocking the dynamic state of the microtubule network significantly reduced ANG II-induced Ca(2+)(i) release from internal stores but was without effect on Ca(2+) influx in either SHR or WKY rats. This study demonstrates for the first time that, in the SHR, actin filaments play a major role in linking AT(1)-receptor activation to both Ca(2+)(i) release mechanisms and capacitative Ca(2+) influx. Furthermore, a functionally intact microtubule system is a necessary prerequisite for ANG II-induced Ca(2+)(i) release in both strains.
Collapse
Affiliation(s)
- E Samain
- Institut National de la Santé et de la Recherche Médicale U337, Faculté Broussais-Hotel Dieu, 75006 Paris, France
| | | | | | | | | |
Collapse
|
162
|
Hirsch JA, Schubert C, Gurevich VV, Sigler PB. The 2.8 A crystal structure of visual arrestin: a model for arrestin's regulation. Cell 1999; 97:257-69. [PMID: 10219246 DOI: 10.1016/s0092-8674(00)80735-7] [Citation(s) in RCA: 329] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
G protein-coupled signaling is utilized by a wide variety of eukaryotes for communicating information from the extracellular environment. Signal termination is achieved by the action of the arrestins, which bind to activated, phosphorylated G protein-coupled receptors. We describe here crystallographic studies of visual arrestin in its basal conformation. The salient features of the structure are a bipartite molecule with an unusual polar core. This core is stabilized in part by an extended carboxy-terminal tail that locks the molecule into an inactive state. In addition, arrestin is found to be a dimer of two asymmetric molecules, suggesting an intrinsic conformational plasticity. In conjunction with biochemical and mutagenesis data, we propose a molecular mechanism by which arrestin is activated for receptor binding.
Collapse
Affiliation(s)
- J A Hirsch
- Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | | | | | | |
Collapse
|
163
|
Sanada H, Jose PA, Hazen-Martin D, Yu PY, Xu J, Bruns DE, Phipps J, Carey RM, Felder RA. Dopamine-1 receptor coupling defect in renal proximal tubule cells in hypertension. Hypertension 1999; 33:1036-42. [PMID: 10205244 DOI: 10.1161/01.hyp.33.4.1036] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ability of the dopamine-1 (D1)-like receptor to stimulate adenylyl cyclase (AC) and phospholipase C (PLC), inhibit sodium transport in the renal proximal tubule (RPT), and produce natriuresis is attenuated in several rat models of hypertension. Since the inhibitory effect of D1-like receptors on RPT sodium transport is also reduced in some patients with essential hypertension, we measured D1-like receptor coupling to AC and PLC in cultures of human RPT cells from normotensive (NT) and hypertensive (HT) subjects. Basal cAMP concentrations were the same in NT (n=6) and HT (n=4). However, the D1-like receptor agonist fenoldopam increased cAMP production to a greater extent in NT (maximum response=67+/-1%) than in HT (maximum response=17+/-5%), with a potency ratio of 105. Dopamine also increased cAMP production to a greater extent in NT (32+/-3%) than in HT (14+/-3%). The fenoldopam-mediated increase in cAMP production was blocked by SCH23390 (a D1-like receptor antagonist) and by antisense D1 oligonucleotides in both HT and NT, indicating action at the D1 receptor. The stimulatory effects of forskolin and parathyroid hormone-related protein of cAMP accumulation were not statistically different in NT and HT, indicating receptor specificity and an intact G-protein/AC pathway. The fenoldopam-stimulated PLC activity was not impaired in HT, and the primary sequence and expression of the D1 receptor were the same in NT and HT. However, D1 receptor serine phosphorylation in the basal state was greater in HT than in NT and was not responsive to fenoldopam stimulation in HT. These studies demonstrate the expression of D1 receptors in human RPT cells in culture. The uncoupling of the D1 receptor in both rats (previously described) and humans (described here) suggests that this mechanism may be involved in the pathogenesis of hypertension; the uncoupling may be due to ligand-independent phosphorylation of the D1 receptor in hypertension.
Collapse
Affiliation(s)
- H Sanada
- University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Lombardi MS, Kavelaars A, Schedlowski M, Bijlsma JW, Okihara KL, Van de Pol M, Ochsmann S, Pawlak C, Schmidt RE, Heijnen CJ. Decreased expression and activity of G-protein-coupled receptor kinases in peripheral blood mononuclear cells of patients with rheumatoid arthritis. FASEB J 1999; 13:715-25. [PMID: 10094932 DOI: 10.1096/fasebj.13.6.715] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Beta2-Adrenergic and chemokine receptor antagonists delay the onset and reduce the severity of joint injury in rheumatoid arthritis. beta2-Adrenergic and chemokine receptors belong to the G-protein-coupled receptor family whose responsiveness is turned off by the G-protein-coupled receptor kinase family (GRK-1 to 6). GRKs phosphorylate receptors in an agonist-dependent manner resulting in receptor/G-protein uncoupling via subsequent binding of arrestin proteins. We assessed the activity of GRKs in lymphocytes of rheumatoid arthritis (RA) patients by rhodopsin phosphorylation. We found a significant decrease in GRK activity in RA subjects that is mirrored by a decrease in GRK-2 protein expression. Moreover, GRK-6 protein expression is reduced in RA patients whereas GRK-5 protein levels were unchanged. In search of an underlying mechanism, we demonstrated that proinflammatory cytokines induce a decrease in GRK-2 protein levels in leukocytes from healthy donors. Since proinflammatory cytokines are abundantly expressed in RA, it may provide an explanation for the decrease in GRK-2 expression and activity in patients. No changes in beta2-adrenergic receptor number and Kd were detected. However, RA patients showed a significantly increased cAMP production and inhibition of TNF-alpha production by beta2-adrenergic stimulation, suggesting that reduced GRK activity is associated with increased sensitivity to beta2-adrenergic activation.
Collapse
Affiliation(s)
- M S Lombardi
- Department of Immunology, University Hospital for Children and Youth, 'Het Wilhelmina Kinderziekenhuis', 3584 EA Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Supiano MA, Hogikyan RV, Sidani MA, Galecki AT, Krueger JL. Sympathetic nervous system activity and alpha-adrenergic responsiveness in older hypertensive humans. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:E519-28. [PMID: 10070019 DOI: 10.1152/ajpendo.1999.276.3.e519] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated in normotensive humans an age-associated increase in sympathetic nervous system (SNS) activity combined with appropriate downregulation of alpha-adrenergic responsiveness. Impaired downregulation of alpha-adrenergic responsiveness, despite a comparable level of SNS activity, could contribute to higher blood pressure in older hypertensive humans. We measured arterial plasma norepinephrine (NE) levels and the extravascular NE release rate (NE2) derived from [3H]NE kinetics (to assess systemic SNS activity), and platelet and forearm arterial adrenergic responsiveness in 20 normotensive (N) and in 24 hypertensive (H), otherwise healthy, older subjects (60-75 yr). Although plasma NE levels were similar (N 357 +/- 27 vs. H 322 +/- 22 pg/ml; P = 0.37), NE2 tended to be greater in the hypertensive group (H 2.23 +/- 0.21 vs. N 1.64 +/- 0.20 microgram. min-1. m-2; P = 0. 11), and the NE metabolic clearance rate was greater (H 1,100 +/- 30 vs. N 900 +/- 50 ml/m2; P = 0.004). In the hypertensive group, there was a greater alpha-agonist-mediated inhibition of platelet membrane adenylyl cyclase activity and a NE- but not ANG II-mediated decrease in forearm blood flow. Compared with normotensive subjects, in older hypertensive subjects 1) NE metabolic clearance rate is increased, 2) systemic SNS activity tends to be increased, and 3) arterial and platelet alpha-adrenergic responsiveness is enhanced. These results suggest that heightened SNS activity coupled with enhanced alpha-adrenergic responsiveness may contribute to elevated blood pressure in older hypertensive humans.
Collapse
Affiliation(s)
- M A Supiano
- Division of Geriatric Medicine, Department of Internal Medicine, and Institute of Gerontology, University of Michigan, Department of Veterans Affairs Medical Center, Ann Arbor, Michigan 48105, USA
| | | | | | | | | |
Collapse
|
166
|
Iaccarino G, Dolber PC, Lefkowitz RJ, Koch WJ. Bbeta-adrenergic receptor kinase-1 levels in catecholamine-induced myocardial hypertrophy: regulation by beta- but not alpha1-adrenergic stimulation. Hypertension 1999; 33:396-401. [PMID: 9931136 DOI: 10.1161/01.hyp.33.1.396] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pressure overload ventricular hypertrophy is accompanied by dysfunctional beta-adrenergic receptor signaling due to increased levels of the beta-adrenergic receptor kinase-1, which phosphorylates and desensitizes beta-adrenergic receptors. In this study, we examined whether increased beta-adrenergic receptor kinase 1 expression is associated with myocardial hypertrophy induced by adrenergic stimulation. With use of implanted mini-osmotic pumps, we treated mice with isoproterenol, phenylephrine, or vehicle to distinguish between alpha1- and beta-adrenergic stimulation. Both treatments resulted in cardiac hypertrophy, but only isoproterenol induced significant increases in beta-adrenergic receptor kinase-1 protein levels and activity. Similarly, in isolated adult rat cardiac myocytes, 24 hours of isoproterenol stimulation resulted in a significant 2.8-fold increase in beta-adrenergic receptor kinase-1 protein levels, whereas 24 hours of phenylephrine treatment did not alter beta-adrenergic receptor kinase-1 expression. Our results indicate that increased beta-adrenergic receptor kinase-1 is not invariably associated with myocardial hypertrophy but apparently is controlled by the state of beta-adrenergic receptor activation.
Collapse
Affiliation(s)
- G Iaccarino
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
167
|
Penela P, Ruiz-Gómez A, Castaño JG, Mayor F. Degradation of the G protein-coupled receptor kinase 2 by the proteasome pathway. J Biol Chem 1998; 273:35238-44. [PMID: 9857063 DOI: 10.1074/jbc.273.52.35238] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GRK2 is a ubiquitous member of the G protein-coupled receptor kinase (GRK) family and has been shown to play a key role in determining the desensitization and resensitization patterns of a variety of G protein-coupled receptors. In this report, we show that GRK2 is actively degraded by the proteasome proteolytic pathway, unveiling a new mechanism for the rapid regulation of its expression levels. Interestingly, activation of beta2-adrenergic receptors (beta2AR) markedly increases GRK2 ubiquitination and degradation through the proteasome pathway. In addition, blocking GRK2 degradation notably alters beta2AR signaling and internalization, consistent with a relevant physiological role for GRK2 proteasomal degradation. Activity-dependent modulation of GRK2 cellular levels emerges as an important mechanism for modulating the cellular response to agonists acting through G protein-coupled receptors.
Collapse
Affiliation(s)
- P Penela
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Universidad Autónoma, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
168
|
Ferguson SS. Using green fluorescent protein to understand the mechanisms of G-protein-coupled receptor regulation. Braz J Med Biol Res 1998; 31:1471-7. [PMID: 9921285 DOI: 10.1590/s0100-879x1998001100016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptor (GPCR) activation is followed rapidly by adaptive changes that serve to diminish the responsiveness of a cell to further stimulation. This process, termed desensitization, is the consequence of receptor phosphorylation, arrestin binding, sequestration and down-regulation. GPCR phosphorylation is initiated within seconds to minutes of receptor activation and is mediated by both second messenger-dependent protein kinases and receptor-specific G protein-coupled receptor kinases (GRKs). Desensitization in response to GRK-mediated phosphorylation involves the binding of arrestin proteins that serve to sterically uncouple the receptor from its G protein. GPCR sequestration, the endocytosis of receptors to endosomes, not only contributes to the temporal desensitization of GPCRs, but plays a critical role in GPCR resensitization. GPCR down-regulation, a loss of the total cellular complement of receptors, is the consequence of both increased lysosomal degradation and decreased mRNA synthesis of GPCRs. While each of these agonist-mediated desensitization processes are initiated within a temporally dissociable time frame, recent data suggest that they are intimately related to one another. The use of green fluorescent protein from the jellyfish Aqueora victoria as an epitope tag with intrinsic fluorescence has facilitated our understanding of the relative relationship between GRK phosphorylation, arrestin binding, receptor sequestration and down-regulation.
Collapse
Affiliation(s)
- S S Ferguson
- John P. Robarts Research Institute, University of Western Ontario, London, Canada
| |
Collapse
|
169
|
Abstract
During the past decade, it has become evident that dopamine plays an important role in the regulation of renal function and blood pressure. Dopamine exerts its actions via a class of cell-surface receptors coupled to G-proteins that belong to the rhodopsin family. Dopamine receptors have been classified into two families based on pharmacologic and molecular cloning studies. In mammals, two D1-like receptors that have been cloned, the D1 and D5 receptors (known as D1A and D1B, respectively, in rodents), are linked to stimulation of adenylyl cyclase. Three D2-like receptors that have been cloned (D2, D3, and D4) are linked to inhibition of adenylyl cyclase and Ca2+ channels and stimulation of K+ channels. All the mammalian dopamine receptors, initially cloned from the brain, have been found to be expressed outside the central nervous system, in such sites as the adrenal gland, blood vessels, carotid body, intestines, heart, parathyroid gland, and the kidney and urinary tract. Dopamine receptor subtypes are differentially expressed along the nephron, where they regulate renal hemodynamics and electrolyte and water transport, as well as renin secretion. The ability of renal proximal tubules to produce dopamine and the presence of receptors in these tubules suggest that dopamine can act in an autocrine or paracrine fashion; this action becomes most evident during extracellular fluid volume expansion. This renal autocrine/paracrine function is lost in essential hypertension and in some animal models of genetic hypertension; disruption of the D1 or D3 receptor produces hypertension in mice. In humans with essential hypertension, renal dopamine production in response to sodium loading is often impaired and may contribute to the hypertension. The molecular basis for the dopaminergic dysfunction in hypertension is not known, but may involve an abnormal post-translational modification of the dopamine receptor.
Collapse
Affiliation(s)
- P A Jose
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
170
|
Iaccarino G, Tomhave ED, Lefkowitz RJ, Koch WJ. Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by beta-adrenergic receptor stimulation and blockade. Circulation 1998; 98:1783-9. [PMID: 9788834 DOI: 10.1161/01.cir.98.17.1783] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Impaired myocardial beta-adrenergic receptor (betaAR) signaling, including desensitization and functional uncoupling, is a characteristic of congestive heart failure. A contributing mechanism for this impairment may involve enhanced myocardial beta-adrenergic receptor kinase (betaARK1) activity because levels of this betaAR-desensitizing G protein-coupled receptor kinase (GRK) are increased in heart failure. An hypothesis has emerged that increased sympathetic nervous system activity associated with heart failure might be the initial stimulus for betaAR signaling alterations, including desensitization. We have chronically treated mice with drugs that either activate or antagonize betaARs to study the dynamic relationship between betaAR activation and myocardial levels of betaARK1. METHODS AND RESULTS Long-term in vivo stimulation of betaARs results in the impairment of cardiac +betaAR signaling and increases the level of expression (mRNA and protein) and activity of +betaARK1 but not that of GRK5, a second GRK abundantly expressed in the myocardium. Long-term beta-blocker treatment, including the use of carvedilol, improves myocardial betaAR signaling and reduces betaARK1 levels in a specific and dose-dependent manner. Identical results were obtained in vitro in cultured cells, demonstrating that the regulation of GRK expression is directly linked to betaAR signaling. CONCLUSIONS This report demonstrates, for the first time, that betaAR stimulation can significantly increase the expression of betaARK1 , whereas beta-blockade decreases expression. This reciprocal regulation of betaARK1 documents a novel mechanism of ligand-induced betaAR regulation and provides important insights into the potential mechanisms responsible for the effectiveness of beta-blockers, such as carvedilol, in the treatment of heart failure.
Collapse
Affiliation(s)
- G Iaccarino
- Departments of Medicine, Surgery and Biochemistry, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | | | | | | |
Collapse
|
171
|
Abstract
G protein-coupled receptor kinases (GRKs) constitute a family of six mammalian serine/threonine protein kinases that phosphorylate agonist-bound, or activated, G protein-coupled receptors (GPCRs) as their primary substrates. GRK-mediated receptor phosphorylation rapidly initiates profound impairment of receptor signaling, or desensitization. This review focuses on the regulation of GRK activity by a variety of allosteric and other factors: agonist-stimulated GPCRs, beta gamma subunits of heterotrimeric GTP-binding proteins, phospholipid cofactors, the calcium-binding proteins calmodulin and recoverin, posttranslational isoprenylation and palmitoylation, autophosphorylation, and protein kinase C-mediated GRK phosphorylation. Studies employing recombinant, purified proteins, cell culture, and transgenic animal models attest to the general importance of GRKs in regulating a vast array of GPCRs both in vitro and in vivo.
Collapse
Affiliation(s)
- J A Pitcher
- Howard Hughes Medical Institute, Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
172
|
Smyth EM, Li WH, FitzGerald GA. Phosphorylation of the prostacyclin receptor during homologous desensitization. A critical role for protein kinase c. J Biol Chem 1998; 273:23258-66. [PMID: 9722557 DOI: 10.1074/jbc.273.36.23258] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agonist-induced phosphorylation of an epitope-tagged prostacyclin receptor (HAhIP) is mediated primarily by PKC (Smyth, E. M., Nestor, P. V., and FitzGerald G. A. (1996) J. Biol. Chem. 271, 33698-33704). Based on the two consensus sites for protein kinase C (PKC) phosphorylation in the C-terminal region mutant HAhIPs were generated: S328A and S374A, in which an alanine replaced Ser-328 or Ser-374, respectively, S328A/S374A and C-DEL, in which the C-terminal portion was truncated at amino acid 313. Mutant receptors, stably expressed in HEK293 cells, coupled normally to cAMP production. Substantially less coupling to inositol phosphate was apparent with S328A, S328A/S374A, and C-DEL compared with HAhIP or S374A. Point mutants resolved by SDS-polyacrylamide gel electrophoresis as a broad band with a molecular mass of 44-62, indicating that the receptors are glycosylated, and immunofluoresence staining demonstrated their membrane localization. C-DEL demonstrated a substantial reduction in glycosylation; bands with molecular masses of 38-54 (glycosylated), 30, and 27 kDa (unglycosylated) were apparent. Although membrane localization was evident, cellular localization was more diffuse. HAhIP and S374A underwent iloprost- and PMA-induced phosphorylation (1 and 5 microM, respectively, for 10 min). S328A and S328A/S374A showed a markedly less iloprost- and no PMA-induced phosphorylation. Phosphorylation of C-DEL was completely absent with either agonist. Electrospray mass spectrometry indicated that a peptide, including Ser-328, was phosphorylated in vitro by PKC, whereas one including Ser-374 was not. Iloprost (1 microM, 10 min) desensitized HAhIP- and S374A-mediated adenylyl cyclase activation. A less impressive desensitization was evident with S328A and S328A/S374A, and no desensitization of C-DEL coupling was apparent. Exposure of transfected cells to iloprost (1 microM) for increasing times induced a rapid desensitization of subsequent iloprost-induced (1 microM) HAhIP and S374A adenylyl cyclase coupling. In contrast, no significant time-dependent desensitization of S328A, S328A/S374A, or C-DEL coupling was evident. These results indicate that PKC-dependent phosphorylation is of critical importance to homologous regulation of hIP. Ser-328 is a primary site for PKC phosphorylation of hIP.
Collapse
Affiliation(s)
- E M Smyth
- Center for Experimental Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
173
|
Rockman HA, Choi DJ, Akhter SA, Jaber M, Giros B, Lefkowitz RJ, Caron MG, Koch WJ. Control of myocardial contractile function by the level of beta-adrenergic receptor kinase 1 in gene-targeted mice. J Biol Chem 1998; 273:18180-4. [PMID: 9660778 DOI: 10.1074/jbc.273.29.18180] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We studied the effect of alterations in the level of myocardial beta-adrenergic receptor kinase betaARK1) in two types of genetically altered mice. The first group is heterozygous for betaARK1 gene ablation, betaARK1(+/-), and the second is not only heterozygous for betaARK1 gene ablation but is also transgenic for cardiac-specific overexpression of a betaARK1 COOH-terminal inhibitor peptide, betaARK1(+/-)betaARKct. In contrast to the embryonic lethal phenotype of the homozygous betaARK1 knockout (Jaber, M., Koch, W. J., Rockman, H. A., Smith, B., Bond, R. A., Sulik, K., Ross, J., Jr., Lefkowitz, R. J., Caron, M. G., and Giros, B. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 12974-12979), betaARK1(+/-) mice develop normally. Cardiac catheterization was performed in mice and showed a stepwise increase in contractile function in the betaARK1(+/-) and betaARK1(+/-)betaARKct mice with the greatest level observed in the betaARK1(+/-)betaARKct animals. Contractile parameters were measured in adult myocytes isolated from both groups of gene-targeted animals. A significantly greater increase in percent cell shortening and rate of cell shortening following isoproterenol stimulation was observed in the betaARK1(+/-) and betaARK1(+/-)betaARKct myocytes compared with wild-type cells, indicating a progressive increase in intrinsic contractility. These data demonstrate that contractile function can be modulated by the level of betaARK1 activity. This has important implications in disease states such as heart failure (in which betaARK1 activity is increased) and suggests that betaARK1 should be considered as a therapeutic target in this situation. Even partial inhibition of betaARK1 activity enhances beta-adrenergic receptor signaling leading to improved functional catecholamine responsiveness.
Collapse
Affiliation(s)
- H A Rockman
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Aragay AM, Ruiz-Gómez A, Penela P, Sarnago S, Elorza A, Jiménez-Sainz MC, Mayor F. G protein-coupled receptor kinase 2 (GRK2): mechanisms of regulation and physiological functions. FEBS Lett 1998; 430:37-40. [PMID: 9678590 DOI: 10.1016/s0014-5793(98)00495-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
G protein-coupled receptor kinase 2 (GRK2) plays a key role in determining the rate and extent of G protein-coupled receptor (GPCR) desensitization and resensitization. Recent data indicate that GRK2 activity, subcellular distribution and expression are tightly regulated. The important physiological function of GRK2 as a modulator of the efficacy of GPCR signal transduction systems is exemplified by its relevance in cardiovascular physiopathology as well as by its emerging role in the regulation of chemokine receptors.
Collapse
Affiliation(s)
- A M Aragay
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Cientifícas-Universidad Autónoma de Madrid), Spain
| | | | | | | | | | | | | |
Collapse
|
175
|
Ferguson SS, Zhang J, Barak LS, Caron MG. Molecular mechanisms of G protein-coupled receptor desensitization and resensitization. Life Sci 1998; 62:1561-5. [PMID: 9585136 DOI: 10.1016/s0024-3205(98)00107-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beta-arrestin proteins play a dual role in regulating G protein-coupled receptor (GPCR) responsiveness by contributing to both receptor desensitization and internalization. Recently, beta-arrestins were also shown to be critical determinants for beta2-adrenergic receptor (beta2AR) resensitization. This was demonstrated by overexpressing wild-type beta-arrestins to rescue the resensitization-defect of a beta2AR (Y326A) mutant (gain of function) and overexpressing a dominant-negative beta-arrestin inhibitor of beta2AR sequestration to impair beta2AR dephosphorylation and resensitization (loss of function). Moreover, the ability of the beta2AR to resensitize in different cell types was shown to be dependent upon beta-arrestin expression levels. To further study the mechanisms underlying beta-arrestin function, green fluorescent protein was coupled to beta-arrestin2 (beta arr2GFP), thus allowing the real-time visualization of the agonist-dependent trafficking of beta-arrestin in living cells. Beta arr2GFP translocation from the cytoplasm to the plasma membrane proceeded with a time course, sensitivity and specificity that was indistinguishable from the most sensitive second messenger readout systems. Beta arr2GFP translocation was GRK-dependent and was demonstrated for 16 different ligand-activated GPCRs. Because beta-arrestin binding is a common divergent step in GPCR signalling, this assay represents a universal methodology for screening orphan receptors, GRK inhibitors and novel GPCR ligands. Moreover, beta arr2GFP provides a valuable new tool to dissect the biological function and regulation of beta-arrestin proteins.
Collapse
Affiliation(s)
- S S Ferguson
- John P. Robarts Research Institute and Department of Physiology, University of Western Ontario, London
| | | | | | | |
Collapse
|
176
|
Abstract
The kidney is responsible for regulation of water and electrolyte balance, filtration and absorption of plasma proteins, and control of blood volume and pressure. Homeostasis achieved by the kidney is controlled in large part by the action of hormones or proteins on specific transmembrane receptors. Conversely, many renal diseases, including that resulting from atherosclerosis, are characterised by scarring and abnormal proliferation of cellular components of the kidney, and these processes are mediated in large part by these same receptors. The G protein-coupled receptors constitute a large and diverse class of proteins, characterised by the possession of seven transmembrane-spanning domains. These receptors bind polypeptide growth factors, which function to transmit a variety of signals from the extracellular to the intracellular milieu. The receptor-associated G proteins utilised by the kidney derive their specificity not only by activating or inhibiting various second-messenger molecules, but also by their location on particular cell types. In this review, several G protein-coupled receptors will be discussed from the perspective of their importance to kidney function and to the pathogenesis of renal disease, atherosclerosis, and hypertension.
Collapse
Affiliation(s)
- R H Weiss
- Department of Internal Medicine, University of California, Davis 95616, USA.
| |
Collapse
|
177
|
Akhter SA, Skaer CA, Kypson AP, McDonald PH, Peppel KC, Glower DD, Lefkowitz RJ, Koch WJ. Restoration of beta-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer. Proc Natl Acad Sci U S A 1997; 94:12100-5. [PMID: 9342369 PMCID: PMC23716 DOI: 10.1073/pnas.94.22.12100] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular gene therapy is a novel approach to the treatment of diseases such as congestive heart failure (CHF). Gene transfer to the heart would allow for the replacement of defective or missing cellular proteins that may improve cardiac performance. Our laboratory has been focusing on the feasibility of restoring beta-adrenergic signaling deficiencies that are a characteristic of chronic CHF. We have now studied isolated ventricular myocytes from rabbits that have been chronically paced to produce hemodynamic failure. We document molecular beta-adrenergic signaling defects including down-regulation of myocardial beta-adrenergic receptors (beta-ARs), functional beta-AR uncoupling, and an up-regulation of the beta-AR kinase (betaARK1). Adenoviral-mediated gene transfer of the human beta2-AR or an inhibitor of betaARK1 to these failing myocytes led to the restoration of beta-AR signaling. These results demonstrate that defects present in this critical myocardial signaling pathway can be corrected in vitro using genetic modification and raise the possibility of novel inotropic therapies for CHF including the inhibition of betaARK1 activity in the heart.
Collapse
Affiliation(s)
- S A Akhter
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|