151
|
Nicotine/cigarette smoke promotes metastasis of pancreatic cancer through α7nAChR-mediated MUC4 upregulation. Oncogene 2012; 32:1384-95. [PMID: 22614008 PMCID: PMC3427417 DOI: 10.1038/onc.2012.163] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite evidence that long-term smoking is the leading risk factor for pancreatic malignancies, the underlying mechanism(s) for cigarette-smoke (CS)-induced pancreatic cancer (PC) pathogenesis has not been well-established. Our previous studies revealed an aberrant expression of the MUC4 mucin in PC as compared to the normal pancreas and its association with cancer progression and metastasis. Interestingly, here we explore a potential link between MUC4 expression and smoking-mediated PC pathogenesis and report that both cigarette-smoke-extract (CSE) and nicotine, which is the major component of CS, significantly up-regulates MUC4 in PC cells. This nicotine-mediated MUC4 overexpression was via α7 subunit of nicotinic acetylcholine receptor (nAChR) stimulation and subsequent activation of the JAK2/STAT3 downstream signaling cascade in cooperation with the MEK/ERK1/2 pathway; this effect was blocked by the α7nAChR antagonists, α-bungarotoxin and mecamylamine, and by specific siRNA-mediated STAT3 inhibition. Additionally, we demonstrated that nicotine-mediated MUC4 up-regulation promotes the PC cell migration through the activation of the downstream effectors such as HER2, c-Src and FAK; this effect was attenuated by shRNA-mediated MUC4 abrogation, further implying that these nicotine-mediated pathological effects on PC cells are MUC4 dependent. Furthermore, the in-vivo studies demonstrated a dramatic increase in the mean pancreatic tumor weight [low-dose (100 mg/m3 TSP), p=0.014; high-dose (247 mg/m3 TSP), p=0.02] and significant tumor metastasis to various distant organs in the CS-exposed-mice, orthotopically implanted with luciferase-transfected PC cells, as compared to the sham-controls. Moreover, the CS-exposed mice had elevated levels of serum cotinine [low-dose, 155.88±35.96 ng/ml; high-dose, 216.25±29.95 ng/ml] and increased MUC4, α7nAChR and pSTAT3 expression in the pancreatic tumor tissues. Altogether, our findings revealed for the first time that CS up-regulates the MUC4 mucin in PC via α7nAChR/JAK2/STAT3 downstream signaling cascade, thereby promoting metastasis of pancreatic cancer.
Collapse
|
152
|
Hollenhorst MI, Lips KS, Weitz A, Krasteva G, Kummer W, Fronius M. Evidence for functional atypical nicotinic receptors that activate K+-dependent Cl- secretion in mouse tracheal epithelium. Am J Respir Cell Mol Biol 2012; 46:106-14. [PMID: 21852683 DOI: 10.1165/rcmb.2011-0171oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The present study focused on the influence of nicotinic acetylcholine receptors (nAChR) on ion transport processes in mouse tracheal epithelium. RT-PCR experiments revealed expression of the α3, α4, α5, α7, α9, α10, β2, and β4 nAChR subunits in mouse tracheal epithelium. In Ussing chamber recordings of mouse tracheae, apically applied nicotine (100 μM) induced a dose-dependent increase of the transepithelial short-circuit current (EC(50): 14.6 μM). The nicotine-induced effect (I(NIC)) was attenuated by mecamylamine (25 μM, apical) and methyllycaconitine (1 μM, apical). The nAChR agonist 1.1-dimethyl-4-phenylpiperatinium iodide (DMPP) (100 μM) revealed apical and basolateral location of the receptors. I(NIC) was not affected by the sodium channel inhibitor amiloride (10 μM, apical) or the cystic fibrosis transmembrane conductance regulator inhibitor CFTR(inh)-172 (20 μM, apical) but was reduced by the chloride channel inhibitor 5-nitro-2-(3-phenylpropylamino)benzoic acid (100 μM, apical), the Na(+)/K(+)/2Cl(-) cotransporter inhibitor bumetanide (200 μM, basolateral), the potassium channel inhibitor Ba(2+) (5 mM, basolateral), and 4.4'-diisothiocyanatostilbene-2.2'-disulfonate (100 μM, apical), indicating a contribution of Ca(2+)-activated chloride channels and potassium channels. Removal of extracellular Na(+) (apical) or Ca(2+) (apical) did not influence I(NIC) but reduced the DMPP effect. Experiments with the Ca(2+)-ionophore A23187, a mix of 3-isobutyl-1-methylxanthine and forskolin, or the inositol-1,4,5-triphospate (IP(3)) receptor inhibitor 2-aminoethyl-diphenyl-borinate (75 μM, apical) decreased I(NIC), indicating a nicotine-mediated increase of intracellular Ca(2+) and cAMP levels involving the IP(3) signaling pathway. These findings indicate the activity of Ca(2+)-permeable nAChRs and alternative metabotropic pathways by nAChR activation that mediate Cl(-) and K(+) transport in tracheal epithelium.
Collapse
|
153
|
Rezonzew G, Chumley P, Feng W, Hua P, Siegal GP, Jaimes EA. Nicotine exposure and the progression of chronic kidney disease: role of the α7-nicotinic acetylcholine receptor. Am J Physiol Renal Physiol 2012; 303:F304-12. [PMID: 22552933 DOI: 10.1152/ajprenal.00661.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clinical studies have established the role of cigarette smoking as a risk factor in the progression of chronic kidney disease (CKD). We have shown that nicotine promotes mesangial cell proliferation and hypertrophy via nonneuronal nicotinic acetylcholine receptors (nAChRs). The α7-nAChR is one of the most important subunits of the nAChRs. These studies were designed to test the hypothesis that nicotine worsens renal injury in rats with 5/6 nephrectomy (5/6Nx) and that the α7-nAChR subunit is required for these effects. We studied five different groups: Sham, 5/6Nx, 5/6Nx + nicotine (Nic; 100 μg/ml dry wt), 5/6Nx + Nic + α7-nAChR blocker methyllicaconitine (MLA; 3 mg·kg(-1)·day(-1) sq), and Sham + Nic. Blood pressure was measured by the tail-cuff method, and urine was collected for proteinuria. After 12 wk, the rats were euthanized and kidneys were collected. We observed expression of the α7-nAChR in the proximal and distal tubules. The administration of nicotine induced a small increase in blood pressure and resulted in cotinine levels similar to those found in the plasma of smokers. In 5/6Nx rats, the administration of nicotine significantly increased urinary protein excretion (onefold), worsened the glomerular injury score and increased fibronectin (∼ 50%), NADPH oxidase 4 (NOX4; ∼100%), and transforming growth factor-β expression (∼200%). The administration of nicotine to sham rats increased total proteinuria but not albuminuria, suggesting direct effects on tubular protein reabsorption. These effects were prevented by MLA, demonstrating a critical role for the α7-nAChR as a mediator of the effects of nicotine in the progression of CKD.
Collapse
Affiliation(s)
- Gabriel Rezonzew
- Nephrology Division, Department of Medicine, University of Alabama at Birmingham, 1530 3 Ave South, Birmingham, AL 3594-0007, USA
| | | | | | | | | | | |
Collapse
|
154
|
Kunigal S, Ponnusamy MP, Momi N, Batra SK, Chellappan SP. Nicotine, IFN-γ and retinoic acid mediated induction of MUC4 in pancreatic cancer requires E2F1 and STAT-1 transcription factors and utilize different signaling cascades. Mol Cancer 2012; 11:24. [PMID: 22537161 PMCID: PMC3464875 DOI: 10.1186/1476-4598-11-24] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/26/2012] [Indexed: 12/12/2022] Open
Abstract
Background The membrane-bound mucins are thought to play an important biological role in cell–cell and cell–matrix interactions, in cell signaling and in modulating biological properties of cancer cell. MUC4, a transmembrane mucin is overexpressed in pancreatic tumors, while remaining undetectable in the normal pancreas, thus indicating a potential role in pancreatic cancer pathogenesis. The molecular mechanisms involved in the regulation of MUC4 gene are not yet fully understood. Smoking is strongly correlated with pancreatic cancer and in the present study; we elucidate the molecular mechanisms by which nicotine as well as agents like retinoic acid (RA) and interferon-γ (IFN-γ) induce the expression of MUC4 in pancreatic cancer cell lines CD18, CAPAN2, AsPC1 and BxPC3. Results Chromatin immunoprecipitation assays and real-time PCR showed that transcription factors E2F1 and STAT1 can positively regulate MUC4 expression at the transcriptional level. IFN-γ and RA could collaborate with nicotine in elevating the expression of MUC4, utilizing E2F1 and STAT1 transcription factors. Depletion of STAT1 or E2F1 abrogated the induction of MUC4; nicotine-mediated induction of MUC4 appeared to require α7-nicotinic acetylcholine receptor subunit. Further, Src and ERK family kinases also mediated the induction of MUC4, since inhibiting these signaling molecules prevented the induction of MUC4. MUC4 was also found to be necessary for the nicotine-mediated invasion of pancreatic cancer cells, suggesting that induction of MUC4 by nicotine and other agents might contribute to the genesis and progression of pancreatic cancer. Conclusions Our studies show that agents that can promote the growth and invasion of pancreatic cancer cells induce the MUC4 gene through multiple pathways and this induction requires the transcriptional activity of E2F1 and STAT1. Further, the Src as well as ERK signaling pathways appear to be involved in the induction of this gene. It appears that targeting these signaling pathways might inhibit the expression of MUC4 and prevent the proliferation and invasion of pancreatic cancer cells.
Collapse
Affiliation(s)
- Sateesh Kunigal
- Dept, of Tumor Biology H, Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
155
|
Ibrahim IAAEH, Kurose H. β-arrestin-mediated signaling improves the efficacy of therapeutics. J Pharmacol Sci 2012; 118:408-12. [PMID: 22447307 DOI: 10.1254/jphs.11r10cp] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
β-Arrestins (β-arrestin-1 and β-arrestin-2) were first identified as proteins that have the ability to desensitize G protein-coupled receptors (GPCRs). However, it has recently been found that β-arrestins can activate signaling pathways independent of G protein activation. The diversity of these signaling pathways has also been recognized. This leads to an appreciation of β-arrestin-biased agonists, which is a new class of drugs that selectively activate β-arrestin-mediated signaling without G protein activation. In this review, we will discuss the recent advance of β-arrestin-mediated signaling pathways, including a brief account of different biased agonists, their pharmacological applications, and novel β-arrestin research.
Collapse
Affiliation(s)
- Islam A A E-H Ibrahim
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
156
|
Cucina A, Dinicola S, Coluccia P, Proietti S, D'Anselmi F, Pasqualato A, Bizzarri M. Nicotine stimulates proliferation and inhibits apoptosis in colon cancer cell lines through activation of survival pathways. J Surg Res 2012; 178:233-41. [PMID: 22520577 DOI: 10.1016/j.jss.2011.12.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/18/2011] [Accepted: 12/13/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND Colorectal cancer is one of the leading causes of cancer-related death throughout the world, and the risk to develop this malignant disease seems to be associated with long-term cigarette smoking. Nicotine, one of the major components of cigarette smoking, can stimulate cell proliferation and suppress apoptosis both in normal cells and in several human cancer cell lines derived from various organs. However, although nicotine appears to have a role in stimulating cell proliferation of colon cancer cells, there is no information on its role in inhibiting apoptosis in these cells. MATERIALS AND METHODS Human colorectal cancer cell lines Caco-2 and HCT-8 were treated with 1 μM nicotine alone or in combination with 1 μM α-BTX in complete or in serum free medium. Cell proliferation and apoptosis were determined by cell count performed with a cell counter and by cytofluorimetric assay respectively. PI3K/Akt and PKC/ERK1/2 pathways, survivin, and P-Bcl2 (Ser70) were investigated by Western blot analysis. RESULTS Nicotine induced an increase in cell proliferation and a decrease of apoptosis in Caco-2 and HCT-8 cells. Both cell growth and apoptosis appear to be mediated by α7-nicotinic acetylcholine receptors, since treatment with α-Bungarotoxin inhibited these processes. Nicotine induced a statistically significant increase in the expression of PI3K and in P-Akt/Akt ratio as well as in the expression of PKC, ERK1/2, survivin, and P-Bcl2 (Ser70) in both cell lines. CONCLUSIONS Nicotine, contained in cigarette smoking, could participate in colon cancer development and progression by stimulating cell proliferation and suppressing physiological apoptosis.
Collapse
Affiliation(s)
- Alessandra Cucina
- Department of Surgery Pietro Valdoni, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
157
|
Smyth EC, Capanu M, Janjigian YY, Kelsen DK, Coit D, Strong VE, Shah MA. Tobacco use is associated with increased recurrence and death from gastric cancer. Ann Surg Oncol 2012; 19:2088-94. [PMID: 22395977 DOI: 10.1245/s10434-012-2230-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tobacco use increases the risk of developing gastric cancer. We examined the hypothesis that gastric cancer developing in patients with a history of tobacco use may be associated with increased risk of cancer-specific death after curative surgical resection. METHODS From the Memorial Sloan-Kettering Cancer Center Gastric Cancer prospective surgical database, we collected baseline demographic data and tumor characteristics from all patients who had undergone curative resection for gastric cancer between 1995 and 2009 and who had not received pre- or postoperative chemo- or radiotherapy. A smoking history was defined as >100 cigarettes' lifetime use. The primary end point was gastric cancer disease-specific survival (DSS); secondary end points were 5-year disease-free survival (DFS) and overall survival (OS). Gastric cancer-specific hazard was modeled by Cox regression. RESULTS A total of 699 eligible patients were identified with a median age of 70 years (range 25-96 years); 410 (59%) were current or previous smokers. Smoking was associated with gastroesophageal junction/cardia tumors and white non-Hispanic ethnicity. Multivariate analysis included the following variables: tumor stage, age, performance status, diabetes mellitus, gender, and tumor location. In this analysis, the hazard ratio for gastric cancer DSS in smokers was 1.43 (95% confidence interval 1.08-1.91, P=0.01). Smoking was also an independent significant risk factor for worse 5-year DFS (hazard ratio 1.46, P=0.007) and OS (hazard ratio 1.48, P=0.003). Among 516 patients for whom tobacco pack-year usage was available, both heavy (≥20 pack-years) and light (<20 pack-years) tobacco use was significantly associated with DSS, DFS, and OS. CONCLUSIONS Smoking history appears to be an independent risk factor for death from gastric cancer in patients who have undergone curative surgical resection.
Collapse
Affiliation(s)
- E C Smyth
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
158
|
Mitochondrial reactive oxygen species mediates nicotine-induced hypoxia-inducible factor-1α expression in human non-small cell lung cancer cells. Biochim Biophys Acta Mol Basis Dis 2012; 1822:852-61. [PMID: 22349311 DOI: 10.1016/j.bbadis.2012.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 01/19/2023]
Abstract
Cigarette smoking is not only a documented risk for lung carcinogenesis but also promotes lung cancer development. Nicotine, a major component of cigarette smoke but not a carcinogen by itself, has been found to induce proliferation, invasion and metastasis of non-small cell lung cancer (NSCLC). Here we reported that proinvasive effect of nicotine is analogous to that of hypoxia and involves stabilization and activation of hypoxia-inducible factor (HIF)-1α, a key factor in determining the presence of HIF-1 and expression of its downstream metastasis-associated genes. Furthermore, nicotine-induced upregulation of HIF-1α was dependent on mitochondria-derived reactive oxygen species (ROS). Ecotopic expression of mitochondrial targeted catalase effectively prevented nicotine-induced accumulation of HIF-1α protein. In addition, we demonstrated that the effect of nicotine in upregulation of HIF-1α was mediated by Dihydro-β-erythroidine (DhβE)-sensitive nicotine acetylcholine receptors (nAChRs) and required synergistic cooperation of Akt and mitogen-activated protein kinase (MAPK) pathways. These results suggest that exposure to nicotine could mimic effects of hypoxia to stimulate HIF-1α accumulation and activity that might underlie the high metastatic potential of lung cancer.
Collapse
|
159
|
Essential requirement for β-arrestin2 in mouse intestinal tumors with elevated Wnt signaling. Proc Natl Acad Sci U S A 2012; 109:3047-52. [PMID: 22315403 DOI: 10.1073/pnas.1109457109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
β-Arrestins (Arrb) participate in the regulation of multiple signaling pathways, including Wnt/β-catenin, the major actor in human colorectal cancer initiation. To better understand the roles of Arrb in intestinal tumorigenesis, a reverse genetic approach (Arrb(-/-)) and in vivo siRNA treatment were used in Apc(Δ14/+) mice. Mice with Arrb2 depletion (knockout and siRNA) developed only 33% of the tumors detected in their Arrb2-WT littermates, whereas Arrb1 depletion remained without significant effect. These remaining tumors grow normally and are essentially Arrb2-independent. Unsupervised hierarchical clustering analysis showed that they clustered with 25% of Apc(Δ14/+);Arrb2(+/+) tumors. Genes overexpressed in this subset reflect a high interaction with the immune system, whereas those overexpressed in Arrb2-dependent tumors are predominantly involved in Wnt signaling, cell adhesion, migration, and extracellular matrix remodeling. The involvement of Arrb2 in intestinal tumor development via the regulation of the Wnt pathway is supported by ex vivo and in vitro experiments using either tumors from Apc(Δ14/+) mice or murine Apc(Min/+) cells. Indeed, Arrb2 siRNAs decreased the expression of Wnt target genes in cells isolated from 12 of 18 tumors from Apc(Δ14/+) mice. In Apc(Min/+) cells, Arrb2 siRNAs completely reversed the increased Wnt activity and colony formation in soft agar induced by Apc siRNA treatment, whereas they did not affect these parameters in basal conditions or in cells expressing constitutively active β-catenin. We demonstrate that Arrb2 is essential for the initiation and growth of intestinal tumors displaying elevated Wnt pathway activity and identify a previously unsuspected molecular heterogeneity among tumors induced by truncating Apc mutations.
Collapse
|
160
|
Guo L, Wu Z, Zhou Q. [Roles of nicotine and nicotinic acetylcholine receptors (nAChR) in carcinogenesis and development of lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2012; 14:753-7. [PMID: 21924045 PMCID: PMC5999618 DOI: 10.3779/j.issn.1009-3419.2011.09.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Lili Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | | | | |
Collapse
|
161
|
Wongtrakool C, Wang N, Hyde DM, Roman J, Spindel ER. Prenatal nicotine exposure alters lung function and airway geometry through α7 nicotinic receptors. Am J Respir Cell Mol Biol 2012; 46:695-702. [PMID: 22246862 DOI: 10.1165/rcmb.2011-0028oc] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Maternal smoking during pregnancy has been associated with adverse effects on respiratory health. Whereas the epidemiologic link is incontrovertible, the mechanisms responsible for this association are still poorly understood. Although cigarette smoke has many toxic constituents, nicotine, the major addictive component in cigarette smoke, may play a more significant role than previously realized. The objectives of this study were to determine whether exposure to nicotine prenatally leads to alterations in pulmonary function and airway geometry in offspring, and whether α7 nicotinic acetylcholine receptors (nAChRs) mediate these effects. In a murine model of in utero nicotine exposure, pulmonary function, airway size and number, methacholine response, and collagen deposition were examined. Exposure periods included Gestation Days 7-21, Gestation Day 14 to Postnatal Day 7, and Postnatal Days 3-15. Prenatal nicotine exposure decreases forced expiratory flows in offspring through α7 nAChR-mediated signals, and the critical period of nicotine exposure was between Prenatal Day 14 and Postnatal Day 7. These physiologic changes were associated with increased airway length and decreased diameter. In addition, adult mice exposed to prenatal nicotine exhibit an increased response to methacholine challenge, even in the absence of allergic sensitization. Collagen expression was increased between adjacent airways and vessels, which was absent in α7 nAChR knockout mice. These observations provide a unified mechanism of how maternal smoking during pregnancy may lead to lifelong alterations in offspring pulmonary function and increased risk of asthma, and suggest potential targets to counteract those effects.
Collapse
|
162
|
Alamanda V, Singh S, Lawrence NJ, Chellappan SP. Nicotine-mediated induction of E-selectin in aortic endothelial cells requires Src kinase and E2F1 transcriptional activity. Biochem Biophys Res Commun 2012; 418:56-61. [PMID: 22240023 DOI: 10.1016/j.bbrc.2011.12.127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 12/25/2011] [Indexed: 01/19/2023]
Abstract
Smoking is highly correlated with enhanced likelihood of atherosclerosis by inducing endothelial dysfunction. In endothelial cells, various cell-adhesion molecules including E-selectin, are shown to be upregulated upon exposure to nicotine, the addictive component of tobacco smoke; however, the molecular mechanisms underlying this induction are poorly understood. Here we demonstrate that nicotine-induced E-selectin transcription in human aortic endothelial cells (HAECs) could be significantly blocked by α7-nAChR subunit inhibitor, α-BT, Src-kinase inhibitor, PP2, or siRNAs against Src or β-Arrestin-1 (β-Arr1). Further, chromatin immunoprecipitations show that E-selectin is an E2F1 responsive gene and nicotine stimulation results in increased recruitment of E2F1 on E-selectin promoter. Inhibiting E2F1 activity using RRD-251, a disruptor of the Rb-Raf-1 kinase interaction, could significantly inhibit the nicotine-induced recruitment of E2F1 to the E-selectin promoter as well as E-selectin expression. Interestingly, stimulation of HAECs with nicotine results in increased adhesion of U937 monocytic cells to HAECs and could be inhibited by pre-treatment with RRD-251. Similarly, depletion of E2F1 or Src using RNAi blocked the increased adhesion of monocytes to nicotine-stimulated HAECs. These results suggest that nicotine-stimulated adhesion of monocytes to endothelial cells is dependent on the activation of α7-nAChRs, β-Arr1 and cSrc regulated increase in E2F1-mediated transcription of E-selectin gene. Therefore, agents such as RRD-251 that can target activity of E2F1 may have potential therapeutic benefit against cigarette smoke induced atherosclerosis.
Collapse
Affiliation(s)
- Vignesh Alamanda
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
163
|
Brown KC, Lau JK, Dom AM, Witte TR, Luo H, Crabtree CM, Shah YH, Shiflett BS, Marcelo AJ, Proper NA, Hardman WE, Egleton RD, Chen YC, Mangiarua EI, Dasgupta P. MG624, an α7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway. Angiogenesis 2011; 15:99-114. [PMID: 22198237 DOI: 10.1007/s10456-011-9246-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/14/2011] [Indexed: 01/18/2023]
Abstract
Small cell lung cancer (SCLC) demonstrates a strong etiological association with smoking. Although cigarette smoke is a mixture of about 4,000 compounds, nicotine is the addictive component of cigarette smoke. Several convergent studies have shown that nicotine promotes angiogenesis in lung cancers via the α7-nicotinic acetylcholine receptor (α7-nAChR) on endothelial cells. Therefore, we conjectured that α7-nAChR antagonists may attenuate nicotine-induced angiogenesis and be useful for the treatment of human SCLC. For the first time, our study explores the anti-angiogenic activity of MG624, a small-molecule α7-nAChR antagonist, in several experimental models of angiogenesis. We observed that MG624 potently suppressed the proliferation of primary human microvascular endothelial cells of the lung (HMEC-Ls). Furthermore, MG624 displayed robust anti-angiogenic activity in the Matrigel, rat aortic ring and rat retinal explant assays. The anti-angiogenic activity of MG624 was assessed by two in vivo models, namely the chicken chorioallantoic membrane model and the nude mice model. In both of these experimental models, MG624 inhibited angiogenesis of human SCLC tumors. Most importantly, the administration of MG624 was not associated with any toxic side effects, lethargy or discomfort in the mice. The anti-angiogenic activity of MG624 was mediated via the suppression of nicotine-induced FGF2 levels in HMEC-Ls. MG624 decreased nicotine-induced early growth response gene 1 (Egr-1) levels in HMEC-Ls, and reduced the levels of Egr-1 on the FGF2 promoter. Consequently, this process decreased FGF2 levels and angiogenesis. Our findings suggest that the anti-angiogenic effects of MG624 could be useful in anti-angiogenic therapy of human SCLCs.
Collapse
Affiliation(s)
- Kathleen C Brown
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Avenue, Huntington, WV 25755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Lai CS, Pan MH. Mechanism for Possible Chemopreventive Effects of Natural Dietary Compounds on Smoking-induced Tumorigenesis. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.jecm.2011.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
165
|
Ho YS, Lee CH, Wu CH. The Alpha 9-Nicotinic Acetylcholine Receptor Serves as a Molecular Target for Breast Cancer Therapy. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.jecm.2011.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
166
|
Rehni AK, Singh TG, Arora S. SU-6656, a Selective Src Kinase Inhibitor, Attenuates Mecamylamine-Precipitated Nicotine Withdrawal Syndrome in Mice. Nicotine Tob Res 2011; 14:407-14. [DOI: 10.1093/ntr/ntr228] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
167
|
Johnson JL, Pillai S, Pernazza D, Sebti SM, Lawrence NJ, Chellappan SP. Regulation of matrix metalloproteinase genes by E2F transcription factors: Rb-Raf-1 interaction as a novel target for metastatic disease. Cancer Res 2011; 72:516-26. [PMID: 22086850 DOI: 10.1158/0008-5472.can-11-2647] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The retinoblastoma (Rb)-E2F transcriptional regulatory pathway plays a major role in cell-cycle regulation, but its role in invasion and metastasis is less well understood. We find that many genes involved in the invasion of cancer cells, such as matrix metalloproteinases (MMP), have potential E2F-binding sites in their promoters. E2F-binding sites were predicted on all 23 human MMP gene promoters, many of which harbored multiple E2F-binding sites. Studies presented here show that MMP genes such as MMP9, MMP14, and MMP15 which are overexpressed in non-small cell lung cancer, have multiple E2F-binding sites and are regulated by the Rb-E2F pathway. Chromatin immunoprecipitation assays showed the association of E2F1 with the MMP9, MMP14, and MMP15 promoters, and transient transfection experiments showed that these promoters are E2F responsive. Correspondingly, depletion of E2F family members by RNA interference techniques reduced the expression of these genes with a corresponding reduction in collagen degradation activity. Furthermore, activating Rb by inhibiting the interaction of Raf-1 with Rb by using the Rb-Raf-1 disruptor RRD-251 was sufficient to inhibit MMP transcription. This led to reduced invasion and migration of cancer cells in vitro and metastatic foci development in a tail vein lung metastasis model in mice. These results suggest that E2F transcription factors may play a role in promoting metastasis through regulation of MMP genes and that targeting the Rb-Raf-1 interaction is a promising approach for the treatment of metastatic disease.
Collapse
Affiliation(s)
- Jackie L Johnson
- Department of Tumor Biology, University of South Florida, Tampa, Florida, USA
| | | | | | | | | | | |
Collapse
|
168
|
Nishioka T, Kim HS, Luo LY, Huang Y, Guo J, Chen CY. Sensitization of epithelial growth factor receptors by nicotine exposure to promote breast cancer cell growth. Breast Cancer Res 2011; 13:R113. [PMID: 22085699 PMCID: PMC3326555 DOI: 10.1186/bcr3055] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/03/2011] [Accepted: 11/15/2011] [Indexed: 02/01/2023] Open
Abstract
Introduction Tobacco smoke is known to be the main cause of lung, head and neck tumors. Recently, evidence for an increasing breast cancer risk associated with tobacco smoke exposure has been emerging. We and other groups have shown that nicotine, as a non-conventional carcinogen, has the potential to facilitate cancer genesis and progression. However, the underlying mechanisms by which the smoke affects the breast, rather than the lung, remain unclear. Here, we examine possible downstream signaling pathways of the nicotinic acetylcholine receptor (nAChR) and their role in breast cancer promotion. Methods Using human benign MCF10A and malignant MDA-MB-231 breast cells and specific inhibitors of possible downstream kinases, we identified nAChR effectors that were activated by treatment with nicotine. We further tested the effects of these effector pathways on the regulation of E2F1 activation, cell cycle progression and on Bcl-2 expression and long-term cell survival. Results In this study, we demonstrated a novel signaling mechanism by which nicotine exposure activated Src to sensitize epidermal growth factor receptor (EGFR)-mediated pathways for breast cancer cell growth promotion. After the ligation of nAChR with nicotine, EGFR was shown to be activated and then internalized in both MCF10A and MDA-MB-231 breast cancer cells. Subsequently, Src, Akt and ERK1/2 were phosphorylated at different time points following nicotine treatment. We further demonstrated that through Src, the ligation of nicotine with nAChR stimulated the EGFR/ERK1/2 pathway for the activation of E2F1 and further cell progression. Our data also showed that Akt functioned directly downstream of Src and was responsible for the increase of Bcl-2 expression and long-term cell survival. Conclusions Our study reveals the existence of a potential, regulatory network governed by the interaction of nicotine and nAChR that integrates the conventional, mitogenic Src and EGFR signals for breast cancer development.
Collapse
Affiliation(s)
- Takashi Nishioka
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 00215, USA
| | | | | | | | | | | |
Collapse
|
169
|
Cardinale A, Nastrucci C, Cesario A, Russo P. Nicotine: specific role in angiogenesis, proliferation and apoptosis. Crit Rev Toxicol 2011; 42:68-89. [PMID: 22050423 DOI: 10.3109/10408444.2011.623150] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nowadays, tobacco smoking is the cause of ~5-6 million deaths per year, counting 31% and 6% of all cancer deaths (affecting 18 different organs) in middle-aged men and women, respectively. Nicotine is the addictive component of tobacco acting on neuronal nicotinic receptors (nAChR). Functional nAChR, are also present on endothelial, haematological and epithelial cells. Although nicotine itself is regularly not referred to as a carcinogen, there is an ongoing debate whether nicotine functions as a 'tumour promoter'. Nicotine, with its specific binding to nAChR, deregulates essential biological processes like regulation of cell proliferation, apoptosis, migration, invasion, angiogenesis, inflammation and cell-mediated immunity in a wide variety of cells including foetal (regulation of development), embryonic and adult stem cells, adult tissues as well as cancer cells. Nicotine seems involved in fundamental aspects of the biology of malignant diseases, as well as of neurodegeneration. Investigating the biological effects of nicotine may provide new tools for therapeutic interventions and for the understanding of neurodegenerative diseases and tumour biology.
Collapse
|
170
|
Lehen'kyi V, Shapovalov G, Skryma R, Prevarskaya N. Ion channnels and transporters in cancer. 5. Ion channels in control of cancer and cell apoptosis. Am J Physiol Cell Physiol 2011; 301:C1281-9. [PMID: 21940667 DOI: 10.1152/ajpcell.00249.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ion channels contribute to virtually all basic cellular processes, including such crucial ones for maintaining tissue homeostasis as proliferation, differentiation, and apoptosis. The involvement of ion channels in regulation of programmed cell death, or apoptosis, has been known for at least three decades based on observation that classical blockers of ion channels can influence cell death rates, prolonging or shortening cell survival. Identification of the central role of these channels in regulation of cell cycle and apoptosis as well as the recent discovery that the expression of ion channels is not limited solely to the plasma membrane, but may also include membranes of internal compartments, has led researchers to appreciate the pivotal role of ion channels plays in development of cancer. This review focuses on the aspects of programmed cell death influenced by various ion channels and how dysfunctions and misregulations of these channels may affect the development and progression of different cancers.
Collapse
Affiliation(s)
- V'yacheslav Lehen'kyi
- Laboratory of Cell Physiology, INSERM U1003, Cité Scientifique, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
171
|
Ceppi P, Rapa I, Lo Iacono M, Righi L, Giorcelli J, Pautasso M, Billè A, Ardissone F, Papotti M, Scagliotti GV. Expression and pharmacological inhibition of thymidylate synthase and Src kinase in nonsmall cell lung cancer. Int J Cancer 2011; 130:1777-86. [PMID: 21618517 DOI: 10.1002/ijc.26188] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/28/2011] [Indexed: 11/07/2022]
Abstract
The combination of cytotoxic chemotherapy with signaling pathway inhibitors represents a potential strategy to improve the treatment of nonsmall cell lung cancer (NSCLC). Thymidylate synthase (TS) is an enzyme essential for DNA synthesis, and its overexpression has been associated with the reduced sensitivity to antifolate agents. Src is a tyrosine kinase that modulates the cytotoxicity of cancer cells after drug treatment, and in vitro data indicate that its inhibition could revert the resistance to TS-inhibiting drugs. Our study investigated the significance of TS and Src expression in NSCLC tissues, and the effects of their pharmacological inhibition in cell lines. In tumor and normal tissues from 94 resected NSCLC patients, TS and Src transcript levels were found positively correlated (R(S) = 0.66), associated with patients smoking history and overall survival. At multivariate analysis, TS gene expression was an independent prognostic factor (relative risk (RR) = 1.78, from 1.16 to 2.72; p < 0.01). Immunohistochemical detection in tumor specimens confirmed that Src kinase activation, evaluated by phospho-specific antibody, was associated to a higher TS expression. In cell lines, dasatinib, a Src-inhibiting agent, synergistically enhanced pemetrexed-cytotoxicity of A549 cells, as evaluated by MTT and apoptosis assays. The biological explanation for this interaction was based on the upregulation of TS messenger RNA and protein levels induced by pemetrexed, which was significantly prevented by dasatinib cotreatment. The data of our study suggest that TS and Src may belong to a common pathway that bears prognostic significance in NSCLC, and that Src represents a potential target to improve the efficacy of TS-inhibiting agents.
Collapse
Affiliation(s)
- Paolo Ceppi
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Hospital, Orbassano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Taguchi K, Kobayashi T, Matsumoto T, Kamata K. Dysfunction of endothelium-dependent relaxation to insulin via PKC-mediated GRK2/Akt activation in aortas of ob/ob mice. Am J Physiol Heart Circ Physiol 2011; 301:H571-83. [DOI: 10.1152/ajpheart.01189.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In diabetic states, hyperinsulinemia may negatively regulate Akt/endothelial nitric oxide synthase (eNOS) activation. Our main aim was to investigate whether and how insulin might negatively regulate Akt/eNOS activities via G protein-coupled receptor kinase 2 (GRK2) in aortas from ob/ob mice. Endothelium-dependent relaxation was measured in aortic rings from ob/ob mice (a type 2 diabetes model). GRK2, β-arrestin2, and Akt/eNOS signaling-pathway protein levels and activities were mainly assayed by Western blotting. Plasma insulin was significantly elevated in ob/ob mice. Insulin-induced relaxation was significantly decreased in the ob/ob aortas [vs. age-matched control (lean) ones]. The response in ob/ob aortas was enhanced by PKC inhibitor or GRK2 inhibitor. Akt (at Thr308) phosphorylation and eNOS (at Ser1177) phosphorylation, and also the β-arrestin2 protein level, were markedly decreased in the membrane fraction of insulin-stimulated ob/ob aortas (vs. insulin-stimulated lean ones). These membrane-fraction expressions were enhanced by GRK2 inhibitor and by PKC inhibitor in the ob/ob group but not in the lean group. PKC activity was much greater in ob/ob than in lean aortas. GRK2 protein and activity levels were increased in ob/ob and were greatly reduced by GRK2 inhibitor or PKC inhibitor pretreatment. These results suggest that in the aorta in diabetic mice with hyperinsulinemia an upregulation of GRK2 and a decrease in β-arrestin2 inhibit insulin-induced stimulation of the Akt/eNOS pathway and that GRK2 overactivation may result from an increase in PKC activity.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
173
|
Dom AM, Buckley AW, Brown KC, Egleton RD, Marcelo AJ, Proper NA, Weller DE, Shah YH, Lau JK, Dasgupta P. The α7-nicotinic acetylcholine receptor and MMP-2/-9 pathway mediate the proangiogenic effect of nicotine in human retinal endothelial cells. Invest Ophthalmol Vis Sci 2011; 52:4428-38. [PMID: 20554619 DOI: 10.1167/iovs.10-5461] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Nicotine, the active component of cigarette smoke, has been found to stimulate angiogenesis in several experimental systems. In this study, the Matrigel duplex assay (Matrigel; BD Biosciences, Franklin Lakes, NJ) and the rat retinal explant assay were used to explore the molecular mechanisms underlying the proangiogenic effects of nicotine in endothelial cells. METHODS Western blot analysis was performed to determine the nicotinic acetylcholine receptor (nAChR) subtypes expressed on primary human retinal microvascular endothelial cells (HRMECs). The angiogenic effect of nicotine in the retina was evaluated with the duplex assay. The results obtained from the assay were confirmed by the rat retinal explant angiogenesis assay. ELISAs were used to measure MMP-2, -9, and -13 levels in HRMEC culture supernatants. The role of α7-nAChRs in nicotine-induced angiogenesis was examined by siRNA techniques. RESULTS Nicotine-induced angiogenesis required nAChR function and was associated with the upregulation of MMP-2 and -9 in HRMECs. Specifically, α7-nAChRs mediated the stimulatory effects of nicotine on retinal angiogenesis and MMP levels. Treatment of HRMECs with α7-nAChR antagonists ablated nicotine-induced angiogenesis. The inhibitory actions of α7-nAChR antagonists correlated with the suppression of MMP-2 and -9 levels in HRMECs. CONCLUSIONS The α7-nAChR is vital for the proangiogenic activity of nicotine. The α7-nAChRs expressed on HRMECs upregulate levels of MMP-2 and -9, which stimulate retinal angiogenesis. The data also suggest that α7-nAChR antagonists could be useful agents for the therapy of angiogenesis-related retinal diseases.
Collapse
Affiliation(s)
- Aaron M Dom
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
INTRODUCTION We have observed that many patients with lung cancer stop smoking before diagnosis, usually before clinical symptoms, and often without difficulty. This led us to speculate that spontaneous smoking cessation may be a presenting symptom of lung cancer. METHODS Patients from the Philadelphia Veterans Affairs Medical Center with lung cancer and for comparison, prostate cancer and myocardial infarction underwent a structured interview about their smoking habits preceding diagnosis. Severity of nicotine addiction was graded using the Fagerström Test for Nicotine Dependence. Among former smokers, dates of cessation, onset of symptoms, and diagnosis were recorded. Difficulty quitting was rated on a scale of 0 to 10. Distributions of intervals from cessation to diagnosis were compared between groups. RESULTS All 115 patients with lung cancer had been smokers. Fifty-five (48%) quit before diagnosis, and only six of these (11%) were symptomatic at quitting. Patients with lung cancer who quit were as dependent on nicotine, when smoking the most, as those who continued to smoke, unlike the other groups. Despite this, 31% quit with no difficulty. The median interval from cessation to diagnosis was 2.7 years for lung cancer, 24.3 years for prostate cancer, and 10.0 years for patients with myocardial infarction. CONCLUSIONS These results challenge the notion that patients with lung cancer usually quit smoking because of disease symptoms. The hypothesis that spontaneous smoking cessation may be a presenting symptom of lung cancer warrants further investigation.
Collapse
|
175
|
β-arrestin1 mediates metastatic growth of breast cancer cells by facilitating HIF-1-dependent VEGF expression. Oncogene 2011; 31:282-92. [PMID: 21685944 PMCID: PMC3179824 DOI: 10.1038/onc.2011.238] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
β-Arrestins 1 and 2 are multifunctional adaptor proteins originally discovered for their role in desensitizing seven-transmembrane receptor signaling via the heterotrimeric guanine nucleotide-binding proteins. Recently identified roles of β-arrestins include regulation of cancer cell chemotaxis and proliferation. Herein, we report that β-arrestin1 expression regulates breast tumor colonization in nude mice and cancer cell viability during hypoxia. β-Arrestin1 robustly interacts with nuclear hypoxia-induced factor-1α (HIF-1α) that is stabilized during hypoxia and potentiates HIF-1-dependent transcription of the angiogenic factor vascular endothelial growth factor-A (VEGF-A). Increased expression of β-arrestin1 in human breast cancer (infiltrating ductal carcinoma or IDC and metastatic IDC) correlates with increased levels of VEGF-A. While the anti-angiogenic drug thalidomide inhibits HIF-1-dependent VEGF transcription in breast carcinoma cells, it does not prevent HIF-1α stabilization, but leads to aberrant localization of HIF-1α to the perinuclear compartments and surprisingly stimulates nuclear export of β-arrestin1. Additionally, imatinib mesylate that inhibits release of VEGF induces nuclear export of β-arrestin1-HIF-1α complexes. Our findings suggest that β-arrestin1 regulates nuclear signaling during hypoxia to promote survival of breast cancer cells via VEGF signaling and that drugs that induce its translocation from the nucleus to the cytoplasm could be useful in anti-angiogenic and breast cancer therapies.
Collapse
|
176
|
Shenoy SK, Lefkowitz RJ. β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 2011; 32:521-33. [PMID: 21680031 DOI: 10.1016/j.tips.2011.05.002] [Citation(s) in RCA: 552] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 01/14/2023]
Abstract
β-Arrestins function as endocytic adaptors and mediate trafficking of a variety of cell-surface receptors, including seven-transmembrane receptors (7TMRs). In the case of 7TMRs, β-arrestins carry out these tasks while simultaneously inhibiting upstream G-protein-dependent signaling and promoting alternate downstream signaling pathways. The mechanisms by which β-arrestins interact with a continuously expanding ensemble of protein partners and perform their multiple functions including trafficking and signaling are currently being uncovered. Molecular changes at the level of protein conformation as well as post-translational modifications of β-arrestins probably form the basis for their dynamic interactions during receptor trafficking and signaling. It is becoming increasingly evident that β-arrestins, originally discovered as 7TMR adaptor proteins, indeed have much broader and more versatile roles in maintaining cellular homeostasis. In this review paper, we assess the traditional and novel functions of β-arrestins and discuss the molecular attributes that might facilitate multiple interactions in regulating cell signaling and receptor trafficking.
Collapse
Affiliation(s)
- Sudha K Shenoy
- Department of Medicine, Duke University Medical Center, Box 3821, Durham, NC 27710, USA.
| | | |
Collapse
|
177
|
Osanai M, Lee GH. Nicotine-mediated suppression of the retinoic acid metabolizing enzyme CYP26A1 limits the oncogenic potential of breast cancer. Cancer Sci 2011; 102:1158-63. [PMID: 21371177 DOI: 10.1111/j.1349-7006.2011.01920.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Tobacco smoke influences cancer development in tissues that are not directly exposed, and epidemiological studies have indicated that smoking women might experience decreased risk of breast cancer as a result of antiestrogenic effects. However, it remains to be clarified whether nicotine, one of the major addictive and best-investigated constituents of tobacco smoke, has any effect on breast cancer. Our recent work demonstrated that the retinoic acid metabolizing enzyme CYP26A1 enhances oncogenic and cell survival properties of breast carcinoma cells, implying a role as an oncogene. Here, we present evidence that nicotine significantly suppresses constitutive expression of CYP26A1, and that cells treated with nicotine exhibit enhanced sensitivity to apoptosis. In addition, nicotine may inhibit anchorage independent growth, cellular invasiveness and motility. These data show that nicotine can limit CYP26A1-mediated oncogenic characteristics, and suggest mechanisms by which nicotine might inhibit breast cancer development.
Collapse
Affiliation(s)
- Makoto Osanai
- Department of Pathology, Kochi University School of Medicine, Kohasu, Kochi, Japan.
| | | |
Collapse
|
178
|
Improgo MR, Tapper AR, Gardner PD. Nicotinic acetylcholine receptor-mediated mechanisms in lung cancer. Biochem Pharmacol 2011; 82:1015-21. [PMID: 21640716 DOI: 10.1016/j.bcp.2011.05.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 11/30/2022]
Abstract
Despite the known adverse health effects associated with tobacco use, over 45 million adults in the United States smoke. Cigarette smoking is the major etiologic factor associated with lung cancer. Cigarettes contain thousands of toxic chemicals, many of which are carcinogenic. Nicotine contributes directly to lung carcinogenesis through the activation of nicotinic acetylcholine receptors (nAChRs). nAChRs are ligand-gated ion channels, expressed in both normal and lung cancer cells, which mediate the proliferative, pro-survival, angiogenic, and metastatic effects of nicotine and its nitrosamine derivatives. The underlying molecular mechanisms involve increases in intracellular calcium levels and activation of cancer signal transduction pathways. In addition, acetylcholine (ACh) acts as an autocrine or paracrine growth factor in lung cancer. Other neurotransmitters and neuropeptides also activate similar growth loops. Recent genetic studies further support a role for nAChRs in the development of lung cancer. Several nAChR antagonists have been shown to inhibit lung cancer growth, suggesting that nAChRs may serve as valuable targets for biomarker-guided lung cancer interventions.
Collapse
Affiliation(s)
- Ma Reina Improgo
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont St., Worcester, MA 01604, USA.
| | | | | |
Collapse
|
179
|
ID1 facilitates the growth and metastasis of non-small cell lung cancer in response to nicotinic acetylcholine receptor and epidermal growth factor receptor signaling. Mol Cell Biol 2011; 31:3052-67. [PMID: 21606196 DOI: 10.1128/mcb.01311-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Expression of ID1 (inhibitor of differentiation) has been correlated with the progression of a variety of cancers, but little information is available on its role in non-small cell lung cancer (NSCLC). Here we show that ID1 is induced by nicotinic acetylcholine receptor (nAChR) and epidermal growth factor receptor (EGFR) signaling in a panel of NSCLC cell lines and primary cells from the lung. ID1 induction was Src dependent and mediated through the α7 subunit of nAChR; transfection of K-Ras or EGFR to primary cells induced ID1. ID1 depletion prevented nicotine- and EGF-induced proliferation, migration, and invasion of NSCLC cells and angiogenic tubule formation of human microvascular endothelial cells from lungs (HMEC-Ls). ID1 could induce the expression of mesenchymal markers such as vimentin and fibronectin by downregulating ZBP-89, a zinc finger repressor protein. ID1 levels were elevated in tumors from mice that were exposed to nicotine. Further, human lung tissue microarrays (TMAs) showed elevated levels of ID1 in NSCLC samples, with maximal levels in metastatic lung cancers. Quantitative reverse transcription-PCR (RT-PCR) performed on patient lung tumors showed that ID1 levels were elevated in advanced stages of NSCLC and correlated with elevated expression of vimentin and fibronectin, irrespective of smoking history.
Collapse
|
180
|
Abstract
Raf are conserved, ubiquitous serine/protein kinases discovered as the cellular elements hijacked by transforming retroviruses. The three mammalian RAF proteins (A, B and CRAF) can be activated by the human oncogene RAS, downstream from which they exert both kinase-dependent and kinase-independent, tumor-promoting functions. The kinase-dependent functions are mediated chiefly by the MEK/ERK pathway, whose activation is associated with proliferation in a broad range of human tumors. Almost 10 years ago, activating BRAF mutations were discovered in a subset of human tumors, and in the past year treatment with small-molecule RAF inhibitors has yielded unprecedented response rates in melanoma patients. Thus, Raf qualifies as an excellent molecular target for anticancer therapy. This review focuses on the role of BRAF and CRAF in different aspects of carcinogenesis, on the success of molecular therapies targeting Raf and the challenges they present.
Collapse
|
181
|
Nicotine overrides DNA damage-induced G1/S restriction in lung cells. PLoS One 2011; 6:e18619. [PMID: 21559516 PMCID: PMC3084701 DOI: 10.1371/journal.pone.0018619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 03/07/2011] [Indexed: 11/19/2022] Open
Abstract
As an addictive substance, nicotine has been suggested to facilitate pro-survival activities (such as anchorage-independent growth or angiogenesis) and the establishment of drug resistance to anticancer therapy. Tobacco smoking consists of a variety of carcinogens [such as benzopyrene (BP) and nitrosamine derivatives] that are able to cause DNA double strand breaks. However, the effect of nicotine on DNA damage-induced checkpoint response induced by genotoxins remains unknown. In this study, we investigated the events occurred during G(1) arrest induced by γ-radiation or BP in nicotine-treated murine or human lung epithelial cells. DNA synthesis was rapidly inhibited after exposure to γ-radiation or BP treatment, accompanied with the activation of DNA damage checkpoint. When these cells were co-treated with nicotine, the growth restriction was compromised, manifested by upregulation of cyclin D and A, and attenuation of Chk2 phosphorylation. Knockdown of cyclin D or Chk2 by the siRNAs blocked nicotine-mediated effect on DNA damage checkpoint activation. However, nicotine treatment appeared to play no role in nocodazole-induced mitotic checkpoint activation. Overall, our study presented a novel observation, in which nicotine is able to override DNA damage checkpoint activated by tobacco-related carcinogen BP or γ-irradiation. The results not only indicates the potentially important role of nicotine in facilitating the establishment of genetic instability to promote lung tumorigenesis, but also warrants a dismal prognosis for cancer patients who are smokers, heavily exposed second-hand smokers or nicotine users.
Collapse
|
182
|
From smoking to cancers: novel targets to neuronal nicotinic acetylcholine receptors. JOURNAL OF ONCOLOGY 2011; 2011:693424. [PMID: 21772846 PMCID: PMC3136181 DOI: 10.1155/2011/693424] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/18/2011] [Accepted: 03/17/2011] [Indexed: 12/11/2022]
Abstract
Cigarette smoking bears a strong etiological association with many neovascularization-related diseases, including cancer, cardiovascular disease, and age-related macular degeneration. Cigarette smoke is a complex mixture of many compounds, including nicotine, which is the major active and addictive component of tobacco. Nicotine and its specific metabolized carcinogens directly bind to nicotinic acetylcholine receptors (nAChRs) on cell membranes and trigger the nAChR signal cascade. The nAChRs were originally thought to be ligand-gated ion channels that modulate physiological processes ranging from neurotransmission to cancer signaling. For several decades, the nAChRs served as a prototypic molecule for neurotransmitter receptors; however, they are now important therapeutic targets for various diseases, including Alzheimer's and Parkinson's diseases, schizophrenia, and even cancer. This paper describes recent advances in our understanding of the assembly, activity, and biological functions of nicotinic receptors, as well as developments in the therapeutic application of nicotinic receptor ligands.
Collapse
|
183
|
Nicotinic acetylcholine receptor signaling in tumor growth and metastasis. JOURNAL OF ONCOLOGY 2011; 2011:456743. [PMID: 21541211 PMCID: PMC3085312 DOI: 10.1155/2011/456743] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 01/28/2011] [Indexed: 12/19/2022]
Abstract
Cigarette smoking is highly correlated with the onset of a variety of human cancers, and continued smoking is known to abrogate the beneficial effects of cancer therapy. While tobacco smoke contains hundreds of molecules that are known carcinogens, nicotine, the main addictive component of tobacco smoke, is not carcinogenic. At the same time, nicotine has been shown to promote cell proliferation, angiogenesis, and epithelial-mesenchymal transition, leading to enhanced tumor growth and metastasis. These effects of nicotine are mediated through the nicotinic acetylcholine receptors that are expressed on a variety of neuronal and nonneuronal cells. Specific signal transduction cascades that emanate from different nAChR subunits or subunit combinations facilitate the proliferative and prosurvival functions of nicotine. Nicotinic acetylcholine receptors appear to stimulate many downstream signaling cascades induced by growth factors and mitogens. It has been suggested that antagonists of nAChR signaling might have antitumor effects and might open new avenues for combating tobacco-related cancer. This paper examines the historical data connecting nicotine tumor progression and the recent efforts to target the nicotinic acetylcholine receptors to combat cancer.
Collapse
|
184
|
Epigenetic effects and molecular mechanisms of tumorigenesis induced by cigarette smoke: an overview. JOURNAL OF ONCOLOGY 2011; 2011:654931. [PMID: 21559255 PMCID: PMC3087891 DOI: 10.1155/2011/654931] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/24/2011] [Indexed: 12/20/2022]
Abstract
Cigarette smoking is one of the major causes of carcinogenesis. Direct genotoxicity induced by cigarette smoke leads to initiation of carcinogenesis. Nongenotoxic (epigenetic) effects of cigarette smoke also act as modulators altering cellular functions. These two effects underlie the mechanisms of tumor promotion and progression. While there is no lack of general reviews on the genotoxic and carcinogenic potentials of cigarette smoke in lung carcinogenesis, updated review on the epigenetic effects and molecular mechanisms of cigarette smoke and carcinogenesis, not limited to lung, is lacking. We are presenting a comprehensive review of recent investigations on cigarette smoke, with special attentions to nicotine, NNK, and PAHs. The current understanding on their molecular mechanisms include (1) receptors, (2) cell cycle regulators, (3) signaling pathways, (4) apoptosis mediators, (5) angiogenic factors, and (6) invasive and metastasis mediators. This review highlighted the complexity biological responses to cigarette smoke components and their involvements in tumorigenesis.
Collapse
|
185
|
Zeng F, Li YC, Chen G, Zhang YK, Wang YK, Zhou SQ, Ma LN, Zhou JH, Huang YY, Zhu WY, Liu XG. Nicotine inhibits cisplatin-induced apoptosis in NCI-H446 cells. Med Oncol 2011; 29:364-73. [PMID: 21267677 DOI: 10.1007/s12032-010-9792-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 12/16/2010] [Indexed: 11/29/2022]
Abstract
Nicotine is not only a major component in tobacco but is also a survival agonist that inhibits apoptosis induced by certain agents including chemotherapeutic drugs. Here, we first showed that nicotine inhibits cisplatin-induced apoptosis in NCI-H446 cells. An MTT assay, Annexin V-FITC staining, RT-PCR, and Western blot were applied to identify the viability of cells, stages of apoptosis, mRNA and signaling proteins expression, respectively. First, we observed that nicotine induced no significant apoptosis when used alone and promoted cell proliferation at a low concentration or for a short time, but the opposite was observed at a high concentration or for a long time. In addition, an increase in XIAP and Survivin mRNA or protein was observed. Next, when combined with cisplatin, growth inhibition rates were concentration dependent, decreased to the lowest level at first, but later climbed to the highest point. Furthermore, nicotine inhibited apoptosis induced by cisplatin and caused a concentration-dependent increase in both XIAP and Survivin mRNA or protein. Moreover, the apoptotic effect of the combination group was obviously higher than that of nicotine used alone at the same nicotine concentration and lower than that of cisplatin used alone at the same cisplatin concentration. These studies suggest that exposure to nicotine might negatively impact the apoptotic potential of chemotherapeutics.
Collapse
Affiliation(s)
- Fang Zeng
- Joint Laboratory of Immunogenomics, Zhoushan Hospital-Beijing Institute of Genomics Chinese Academy of Sciences, 238 Renming North Road, 316004 Dinghai, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Dasgupta P, Rizwani W, Pillai S, Davis R, Banerjee S, Hug K, Lloyd M, Coppola D, Haura E, Chellappan SP. ARRB1-mediated regulation of E2F target genes in nicotine-induced growth of lung tumors. J Natl Cancer Inst 2011; 103:317-33. [PMID: 21212384 DOI: 10.1093/jnci/djq541] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nicotine induces the proliferation of non-small cell lung cancer (NSCLC) cells via nicotinic acetylcholine receptors and the arrestin, β1 (ARRB1) protein. However, whether ARRB1 translocates to the nucleus upon nicotinic acetylcholine receptor activation and how it regulates growth of human NSCLCs are not known. METHODS We investigated nuclear localization of ARRB1 in human NSCLC cell lines (A549 and H1650), normal lung cell lines (NHBE and SAEC), and lung cancer tissue microarray. A549 cells were transfected with ARRB1-specific short hairpin RNA (A549-sh) to knockdown ARRB1 expression, or with empty vector (A549-EV), to examine the role of ARRB1 in the mitogenic and antiapoptotic effects of nicotine, binding of ARRB1 to E2F transcription factors, and the role of ARRB1 in nicotine-induced expression of E2F-regulated survival and proliferative genes cell division cycle 6 homolog (CDC6), thymidylate synthetase (TYMS), and baculoviral IAP repeat-containing 5 (BIRC5). Real-time polymerase chain reaction was performed for quantitative analysis of mRNA expression. Chromatin immunoprecipitation assays were performed on A549 cells and fresh-frozen human NSCLC tumors (n = 8) to examine the binding of ARRB1, E1A binding protein (EP300), and acetylated histone 3 (Ac-H3) on the E2F-regulated genes. All statistical tests were two-sided. RESULTS Nicotine induced the nuclear translocation of ARRB1 in NSCLC and normal lung cells, and lung tumor tissues from smokers showed an increased nuclear localization. The mitogenic and antiapoptotic effects of nicotine were reduced in A549-sh cells. Nuclear ARRB1 bound to E2F transcription factors in normal lung cells, NSCLC cells, and tumors. Nicotine treatment induced a statistically significant increased expression of E2F-regulated genes in A549-EV but not in A549-sh cells; the maximum difference being observed in BIRC5 (A549-EV vs A549-sh, mean fold-increase in mRNA level upon nicotine treatment = 20.7-fold, 95% confidence interval = 19.2- to 22.2-fold, vs mean = 0.8-fold, 95% confidence interval= 0.78- to 0.82-fold, P < .001). Furthermore, nicotine induced the binding of ARRB1, EP300, and Ac-H3 on E2F-regulated genes. CONCLUSION Nicotine induced the nuclear translocation of ARRB1 and showed increased expression of proliferative and survival genes, thereby contributing to the growth and progression of NSCLCs.
Collapse
Affiliation(s)
- Piyali Dasgupta
- Department of Oncologic Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Wang J, Cui W, Wei J, Sun D, Gutala R, Gu J, Li MD. Genome-wide expression analysis reveals diverse effects of acute nicotine exposure on neuronal function-related genes and pathways. Front Psychiatry 2011; 2:5. [PMID: 21556275 PMCID: PMC3089989 DOI: 10.3389/fpsyt.2011.00005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 02/16/2011] [Indexed: 12/04/2022] Open
Abstract
Previous human and animal studies demonstrate that acute nicotine exposure has complicated influences on the function of the nervous system, which may lead to long-lasting effects on the behavior and physiology of the subject. To determine the genes and pathways that might account for long-term changes after acute nicotine exposure, a pathway-focused oligoarray specifically designed for drug addiction research was used to assess acute nicotine effect on gene expression in the neuron-like SH-SY5Y cells. Our results showed that 295 genes involved in various biological functions were differentially regulated by 1 h of nicotine treatment. Among these genes, the expression changes of 221 were blocked by mecamylamine, indicating that the majority of nicotine-modulated genes were altered through the nicotinic acetylcholine receptors (nAChRs)-mediated signaling process. We further identified 14 biochemical pathways enriched among the nicotine-modulated genes, among which were those involved in neural development/synaptic plasticity, neuronal survival/death, immune response, or cellular metabolism. In the genes significantly regulated by nicotine but blocked by mecamylamine, 13 enriched pathways were detected. Nine of these pathways were shared with those enriched in the genes regulated by nicotine, including neuronal function-related pathways such as glucocorticoid receptor signaling, p38 MAPK signaling, PI3K/AKT signaling, and PTEN signaling, implying that nAChRs play important roles in the regulation of these biological processes. Together, our results not only provide insights into the mechanism underlying the acute response of neuronal cells to nicotine but also provide clues to how acute nicotine exposure exerts long-term effects on the nervous system.
Collapse
Affiliation(s)
- Ju Wang
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia Charlottesville, VA, USA
| | | | | | | | | | | | | |
Collapse
|
188
|
Shen H, Kihara T, Hongo H, Wu X, Kem WR, Shimohama S, Akaike A, Niidome T, Sugimoto H. Neuroprotection by donepezil against glutamate excitotoxicity involves stimulation of alpha7 nicotinic receptors and internalization of NMDA receptors. Br J Pharmacol 2010; 161:127-39. [PMID: 20718745 DOI: 10.1111/j.1476-5381.2010.00894.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Glutamate excitotoxicity may be involved in ischaemic injury to the CNS and some neurodegenerative diseases, such as Alzheimer's disease. Donepezil, an acetylcholinesterase (AChE) inhibitor, exerts neuroprotective effects. Here we demonstrated a novel mechanism underlying the neuroprotection induced by donepezil. EXPERIMENTAL APPROACH Cell damage in primary rat neuron cultures was quantified by lactate dehydrogenase release. Morphological changes associated with neuroprotective effects of nicotine and AChE inhibitors were assessed by immunostaining. Cell surface levels of the glutamate receptor sub-units, NR1 and NR2A, were analyzed using biotinylation. Immunoblot was used to measure protein levels of cleaved caspase-3, total NR1, total NR2A and phosphorylated NR1. Immunoprecipitation was used to measure association of NR1 with the post-synaptic protein, PSD-95. Intracellular Ca(2+) concentrations were measured with fura 2-acetoxymethylester. Caspase 3-like activity was measured using enzyme substrate, 7-amino-4-methylcoumarin (AMC)-DEVD. KEY RESULTS Levels of NR1, a core subunit of the NMDA receptor, on the cell surface were significantly reduced by donepezil. In addition, glutamate-mediated Ca(2+) entry was significantly attenuated by donepezil. Methyllycaconitine, an inhibitor of alpha7 nicotinic acetylcholine receptors (nAChR), inhibited the donepezil-induced attenuation of glutamate-mediated Ca(2+) entry. LY294002, a phosphatidyl inositol 3-kinase (PI3K) inhibitor, had no effect on attenuation of glutamate-mediated Ca(2+) entry induced by donepezil. CONCLUSIONS AND IMPLICATIONS Decreased glutamate toxicity through down-regulation of NMDA receptors, following stimulation of alpha7 nAChRs, could be another mechanism underlying neuroprotection by donepezil, in addition to up-regulating the PI3K-Akt cascade or defensive system.
Collapse
Affiliation(s)
- H Shen
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol Med 2010; 17:126-39. [PMID: 21183406 DOI: 10.1016/j.molmed.2010.11.004] [Citation(s) in RCA: 418] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/13/2010] [Accepted: 11/17/2010] [Indexed: 12/21/2022]
Abstract
Members of the seven-transmembrane receptor (7TMR), or G protein-coupled receptor (GPCR), superfamily represent some of the most successful targets of modern drug therapy, with proven efficacy in the treatment of a broad range of human conditions and disease processes. It is now appreciated that β-arrestins, once viewed simply as negative regulators of traditional 7TMR-stimulated G protein signaling, act as multifunctional adapter proteins that regulate 7TMR desensitization and trafficking and promote distinct intracellular signals in their own right. Moreover, several 7TMR biased agonists, which selectively activate these divergent signaling pathways, have been identified. Here we highlight the diversity of G protein- and β-arrestin-mediated functions and the therapeutic potential of selective targeting of these in disease states.
Collapse
Affiliation(s)
- Erin J Whalen
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
190
|
Kanou T, Oneyama C, Kawahara K, Okimura A, Ohta M, Ikeda N, Shintani Y, Okumura M, Okada M. The transmembrane adaptor Cbp/PAG1 controls the malignant potential of human non-small cell lung cancers that have c-src upregulation. Mol Cancer Res 2010; 9:103-14. [PMID: 21156787 DOI: 10.1158/1541-7786.mcr-10-0340] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The tyrosine kinase c-Src is upregulated in various human cancers, although the precise regulatory mechanism underlying this upregulation is unclear. We previously reported that a transmembrane adaptor Csk-binding protein (Cbp; PAG1) plays an important role in controlling the cell transformation that is induced by the activation of c-Src. To elucidate the in vivo role of Cbp, we examined the function of Cbp in lung cancer cell lines and tissues. In this study, we found that Cbp was markedly downregulated in human non-small cell lung cancer (NSCLC) cells. The ectopic expression of Cbp suppressed the anchorage-independent growth of the NSCLC cell lines (A549 and Lu99) that had upregulated c-Src, whereas the Cbp expression had little effect on other NSCLC cell lines (PC9 and Lu65) that express normal levels of c-Src. The expression of Cbp suppressed the kinase activity of c-Src in A549 cells by recruiting c-Src and its negative regulator, C-terminal Src kinase (Csk), to lipid rafts. The treatment with Src inhibitors, such as PP2, dasatinib, and saracatinib, also suppressed the growth of A549 cells. Furthermore, Cbp expression attenuated the ability of A549 cells to form tumors in nude mice, invade in vitro, and metastasize in vivo. In addition, we found a significant inverse correlation between the level of Cbp expression and the extent of lymph node metastasis in human lung cancers. These results indicate that Cbp is required for the Csk-mediated inactivation of c-Src and may control the promotion of malignancy in NSCLC tumors that are characterized by c-Src upregulation.
Collapse
Affiliation(s)
- Takashi Kanou
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University. 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Lee CH, Chang YC, Chen CS, Tu SH, Wang YJ, Chen LC, Chang YJ, Wei PL, Chang HW, Chang CH, Huang CS, Wu CH, Ho YS. Crosstalk between nicotine and estrogen-induced estrogen receptor activation induces α9-nicotinic acetylcholine receptor expression in human breast cancer cells. Breast Cancer Res Treat 2010; 129:331-45. [DOI: 10.1007/s10549-010-1209-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 09/29/2010] [Indexed: 12/15/2022]
|
192
|
Nicotinic receptors on rat alveolar macrophages dampen ATP-induced increase in cytosolic calcium concentration. Respir Res 2010; 11:133. [PMID: 20920278 PMCID: PMC2955664 DOI: 10.1186/1465-9921-11-133] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/29/2010] [Indexed: 01/28/2023] Open
Abstract
Background Nicotinic acetylcholine receptors (nAChR) have been identified on a variety of cells of the immune system and are generally considered to trigger anti-inflammatory events. In the present study, we determine the nAChR inventory of rat alveolar macrophages (AM), and investigate the cellular events evoked by stimulation with nicotine. Methods Rat AM were isolated freshly by bronchoalveolar lavage. The expression of nAChR subunits was analyzed by RT-PCR, immunohistochemistry, and Western blotting. To evaluate function of nAChR subunits, electrophysiological recordings and measurements of intracellular calcium concentration ([Ca2+]i) were conducted. Results Positive RT-PCR results were obtained for nAChR subunits α3, α5, α9, α10, β1, and β2, with most stable expression being noted for subunits α9, α10, β1, and β2. Notably, mRNA coding for subunit α7 which is proposed to convey the nicotinic anti-inflammatory response of macrophages from other sources than the lung was not detected. RT-PCR data were supported by immunohistochemistry on AM isolated by lavage, as well as in lung tissue sections and by Western blotting. Neither whole-cell patch clamp recordings nor measurements of [Ca2+]i revealed changes in membrane current in response to ACh and in [Ca2+]i in response to nicotine, respectively. However, nicotine (100 μM), given 2 min prior to ATP, significantly reduced the ATP-induced rise in [Ca2+]i by 30%. This effect was blocked by α-bungarotoxin and did not depend on the presence of extracellular calcium. Conclusions Rat AM are equipped with modulatory nAChR with properties distinct from ionotropic nAChR mediating synaptic transmission in the nervous system. Their stimulation with nicotine dampens ATP-induced Ca2+-release from intracellular stores. Thus, the present study identifies the first acute receptor-mediated nicotinic effect on AM with anti-inflammatory potential.
Collapse
|
193
|
Puliyappadamba VT, Cheriyan VT, Thulasidasan AKT, Bava SV, Vinod BS, Prabhu PR, Varghese R, Bevin A, Venugopal S, Anto RJ. Nicotine-induced survival signaling in lung cancer cells is dependent on their p53 status while its down-regulation by curcumin is independent. Mol Cancer 2010; 9:220. [PMID: 20727180 PMCID: PMC2936340 DOI: 10.1186/1476-4598-9-220] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 08/20/2010] [Indexed: 12/23/2022] Open
Abstract
Background Lung cancer is the most lethal cancer and almost 90% of lung cancer is due to cigarette smoking. Even though nicotine, one of the major ingredients of cigarette smoke and the causative agent for addiction, is not a carcinogen by itself, several investigators have shown that nicotine can induce cell proliferation and angiogenesis. We observed that the proliferative index of nicotine is different in the lung cancer cell lines H1299 (p53-/-) and A549 (p53+/+) which indicates that the mode of up-regulation of survival signals by nicotine might be different in cells with and without p53. Results While low concentrations of nicotine induced activation of NF-κB, Akt, Bcl2, MAPKs, AP1 and IAPs in H1299, it failed to induce NF-κB in A549, and compared to H1299, almost 100 times higher concentration of nicotine was required to induce all other survival signals in A549. Transfection of WT-p53 and DN-p53 in H1299 and A549 respectively, reversed the mode of activation of survival signals. Curcumin down-regulated all the survival signals induced by nicotine in both the cells, irrespective of their p53 status. The hypothesis was confirmed when lower concentrations of nicotine induced NF-κB in two more lung cancer cells, Hop-92 and NCI-H522 with mutant p53 status. Silencing of p53 in A549 using siRNA made the cells susceptible to nicotine-induced NF-κB nuclear translocation as in A549 DN-p53 cells. Conclusions The present study reveals a detrimental role of nicotine especially in lung cancer patients with impaired p53 status and identifies curcumin as a potential chemopreventive.
Collapse
Affiliation(s)
- Vineshkumar T Puliyappadamba
- Integrated Cancer Research Program, Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Hua P, Feng W, Ji S, Raij L, Jaimes EA. Nicotine worsens the severity of nephropathy in diabetic mice: implications for the progression of kidney disease in smokers. Am J Physiol Renal Physiol 2010; 299:F732-9. [PMID: 20685820 DOI: 10.1152/ajprenal.00293.2010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epidemiological studies have established the role of cigarette smoking as a risk factor in the progression of chronic kidney disease, including diabetic nephropathy. We have previously reported that nicotine promotes mesangial cell proliferation and hypertrophy via activation of nonneuronal nicotinic acetylcholine receptors and that nicotine worsens renal injury in a model of acute glomerulonephritis (Jaimes E, Tian RX, Raij L. Am J Physiol Heart Circ Physiol 292: H76-H82, 2007; Jaimes EA, Tian RX, Joshi M, Raij L. Am J Nephrol 29: 319-326, 2009). These studies were designed to test the hypothesis that nicotine worsens renal injury in db/db mice, a well-established model of diabetic nephropathy, and that reactive oxygen species play an important as mediators of these effects. For these studies, nicotine (100 μg/ml) was administered in the drinking water to control and db/db mice for 10 wk. Blood pressure was measured by the tail-cuff method, and urine was collected for proteinuria. At death, kidneys were collected for histology and molecular biology. The administration of nicotine did not result in significant changes in blood pressure or blood glucose and resulted in cotinine levels similar to those found in the plasma of smokers. In diabetic mice, the administration of nicotine significantly increased urinary protein excretion (1-fold), glomerular hypertrophy, and mesangial area (∼20%). These changes were accompanied by significant increases in NADPH oxidase 4 (∼30%) and increased nitrotyrosine and Akt expression. In vitro, we determined that nicotine has additive effects to high glucose on reactive oxygen species generation and Akt phosphorylation in human mesangial cells. These findings unveil novel mechanisms that may result in the development of novel strategies in the treatment and prevention of diabetic nephropathy in smokers.
Collapse
Affiliation(s)
- Ping Hua
- Division of Nephrology, University of Alabama at Birmingham, USA
| | | | | | | | | |
Collapse
|
195
|
Pillai SG, Kong X, Edwards LD, Cho MH, Anderson WH, Coxson HO, Lomas DA, Silverman EK. Loci identified by genome-wide association studies influence different disease-related phenotypes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 182:1498-505. [PMID: 20656943 DOI: 10.1164/rccm.201002-0151oc] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Genome-wide association studies have shown significant associations between variants near hedgehog interacting protein HHIP, FAM13A, and cholinergic nicotinic acetylcholine receptor CHRNA3/5 with increased risk of chronic obstructive pulmonary disease (COPD) in smokers; however, the disease mechanisms behind these associations are not well understood. OBJECTIVES To identify the association between replicated loci and COPD-related phenotypes in well-characterized patient populations. METHODS The relationship between these three loci and COPD-related phenotypes was assessed in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-point (ECLIPSE) cohort. The results were validated in the family-based International COPD Genetics Network (ICGN). MEASUREMENTS AND MAIN RESULTS The CHRNA3/5 locus was significantly associated with pack-years of smoking (P = 0.002 and 3 × 10⁻⁴), emphysema assessed by a radiologist using high-resolution computed tomography (P = 2 × 10⁻⁴ and 4.8 × 10⁻⁵), and airflow obstruction (P = 0.004 and 1.8 × 10⁻⁵) in the ECLIPSE and ICGN populations, respectively. However, variants in the IREB2 gene were only significantly associated with FEV₁. The HHIP locus was not associated with smoking intensity but was associated with FEV₁/FVC (P = 1.9 × 10⁻⁴ and 0.004 in the ECLIPSE and ICGN populations). The HHIP locus was also associated with fat-free body mass (P = 0.007) and with both retrospectively (P = 0.015) and prospectively (P = 0.024) collected COPD exacerbations in the ECLIPSE cohort. Single-nucleotide polymorphisms in the FAM13A locus were associated with lung function. CONCLUSIONS The CHRNA3/5 locus was associated with increased smoking intensity and emphysema in individuals with COPD, whereas the HHIP and FAM13A loci were not associated with smoking intensity. The HHIP locus was associated with the systemic components of COPD and with the frequency of COPD exacerbations. FAM13A locus was associated with lung function.
Collapse
|
196
|
Vazquez-Padron RI, Mateu D, Rodriguez-Menocal L, Wei Y, Webster KA, Pham SM. Novel role of Egr-1 in nicotine-related neointimal formation. Cardiovasc Res 2010; 88:296-303. [PMID: 20615913 DOI: 10.1093/cvr/cvq213] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS The aim of this study was to investigate the mechanisms by which nicotine increases vascular smooth muscle cell (VSMC) proliferation and post-injury neointimal formation. METHODS AND RESULTS Vascular injury was inflicted in the right iliac artery of nicotine-treated and control rats. Nicotine increased post-injury VSMC proliferation (Ki67(+) cells) and neointimal formation (neointima/media ratio, 0.42 ± 0.23 vs. 0.14 ± 0.07, P= 0.02). To determine the mechanisms by which nicotine exacerbates VSMC proliferation, cultured cells were exposed to nicotine, and signalling pathways leading to cell proliferation were studied. Nicotine activated extracellular signal-regulated kinase (ERK) 1/2 in a dose- and time-dependent manner. The blockade of this signalling axis abolished nicotine-mediated proliferation. Functional nicotinic acetylcholine receptors and Ca(2+) influx were necessary for ERK1/2 activation and nicotine-induced mitogenesis in VSMCs. Downstream to ERK1/2, nicotine induced the phosphorylation of Ets-like gene 1 in a timely co-ordinated manner with the up-regulation of the atherogenic transcription factor, early growth response 1 (Egr-1). The treatment of balloon-injured arteries with a lentivirus vector carrying a short hairpin RNA against Egr-1 abolished the deleterious effect of nicotine on vascular remodelling. CONCLUSION Nicotine acts through its receptors in VSMC to activate the ERK-Egr-1 signaling cascade that induces cell proliferation and exacerbates post-injury neointimal development.
Collapse
Affiliation(s)
- Roberto I Vazquez-Padron
- Department of Surgery and Vascular Biology Institute, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB 7147A, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
197
|
Brown KC, Witte TR, Hardman WE, Luo H, Chen YC, Carpenter AB, Lau JK, Dasgupta P. Capsaicin displays anti-proliferative activity against human small cell lung cancer in cell culture and nude mice models via the E2F pathway. PLoS One 2010; 5:e10243. [PMID: 20421925 PMCID: PMC2857654 DOI: 10.1371/journal.pone.0010243] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/24/2010] [Indexed: 11/18/2022] Open
Abstract
Background Small cell lung cancer (SCLC) is characterized by rapid progression and low survival rates. Therefore, novel therapeutic agents are urgently needed for this disease. Capsaicin, the active ingredient of chilli peppers, displays anti-proliferative activity in prostate and epidermoid cancer in vitro. However, the anti-proliferative activity of capsaicin has not been studied in human SCLCs. The present manuscript fills this void of knowledge and explores the anti-proliferative effect of capsaicin in SCLC in vitro and in vivo. Methodology/Principal Findings BrdU assays and PCNA ELISAs showed that capsaicin displays robust anti-proliferative activity in four human SCLC cell lines. Furthermore, capsaicin potently suppressed the growth of H69 human SCLC tumors in vivo as ascertained by CAM assays and nude mice models. The second part of our study attempted to provide insight into molecular mechanisms underlying the anti-proliferative activity of capsaicin. We found that the anti-proliferative activity of capsaicin is correlated with a decrease in the expression of E2F-responsive proliferative genes like cyclin E, thymidylate synthase, cdc25A and cdc6, both at mRNA and protein levels. The transcription factor E2F4 mediated the anti-proliferative activity of capsaicin. Ablation of E2F4 levels by siRNA methodology suppressed capsaicin-induced G1 arrest. ChIP assays demonstrated that capsaicin caused the recruitment of E2F4 and p130 on E2F-responsive proliferative promoters, thereby inhibiting cell proliferation. Conclusions/Significance Our findings suggest that the anti-proliferative effects of capsaicin could be useful in the therapy of human SCLCs.
Collapse
Affiliation(s)
- Kathleen C. Brown
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Ted R. Witte
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - W. Elaine Hardman
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Haitao Luo
- Department of Biology, Alderson-Broaddus College, Phillipi, West Virginia, United States of America
| | - Yi C. Chen
- Department of Biology, Alderson-Broaddus College, Phillipi, West Virginia, United States of America
| | - A. Betts Carpenter
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Jamie K. Lau
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Piyali Dasgupta
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
198
|
Arcangeli A, Becchetti A. New Trends in Cancer Therapy: Targeting Ion Channels and Transporters. Pharmaceuticals (Basel) 2010; 3:1202-1224. [PMID: 27713296 PMCID: PMC4034029 DOI: 10.3390/ph3041202] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 02/07/2023] Open
Abstract
The expression and activity of different channel types mark and regulate specific stages of cancer establishment and progression. Blocking channel activity impairs the growth of some tumors, both in vitro and in vivo, which opens a new field for pharmaceutical research. However, ion channel blockers may produce serious side effects, such as cardiac arrhythmias. For instance, Kv11.1 (hERG1) channels are aberrantly expressed in several human cancers, in which they control different aspects of the neoplastic cell behaviour. hERG1 blockers tend to inhibit cancer growth. However they also retard the cardiac repolarization, thus lengthening the electrocardiographic QT interval, which can lead to life-threatening ventricular arrhythmias. Several possibilities exist to produce less harmful compounds, such as developing specific drugs that bind hERG1 channels in the open state or disassemble the ion channel/integrin complex which appears to be crucial in certain stages of neoplastic progression. The potential approaches to improve the efficacy and safety of ion channel targeting in oncology include: (1) targeting specific conformational channel states; (2) finding ever more specific inhibitors, including peptide toxins, for channel subtypes mainly expressed in well-identified tumors; (3) using specific ligands to convey traceable or cytotoxic compounds; (4) developing channel blocking antibodies; (5) designing new molecular tools to decrease channel expression in selected cancer types. Similar concepts apply to ion transporters such as the Na⁺/K⁺ pump and the Na⁺/H⁺ exchanger. Pharmacological targeting of these transporters is also currently being considered in anti-neoplastic therapy.
Collapse
Affiliation(s)
- Annarosa Arcangeli
- Department of Experimental Pathology and Oncology, University of Florence, Italy.
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy.
| | - Andrea Becchetti
- Department of Experimental Pathology and Oncology, University of Florence, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| |
Collapse
|
199
|
Han SW, Roman J. Anticancer actions of PPARγ ligands: Current state and future perspectives in human lung cancer. World J Biol Chem 2010; 1:31-40. [PMID: 21537367 PMCID: PMC3083946 DOI: 10.4331/wjbc.v1.i3.31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 02/05/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent nuclear transcription factors and members of the nuclear receptor superfamily. Of the three PPARs identified to date (PPARγ, PPARβ/δ, and PPARα), PPARγ has been studied the most, in part because of the availability of PPARγ agonists (also known as PPARγ ligands) and its significant effects on the management of several human diseases including type 2 diabetes, metabolic syndrome, cardiovascular disease and cancers. PPARγ is expressed in many tumors including lung cancer, and its function has been linked to the process of lung cancer development, progression and metastasis. Studies performed in gynogenic and xenograft models of lung cancer showed decreased tumor growth and metastasis in animals treated with PPARγ ligands. Furthermore, data are emerging from retrospective clinical studies that suggest a protective role for PPARγ ligands on the incidence of lung cancer. This review summarizes the research being conducted in this area and focuses on the mechanisms and potential therapeutic effects of PPARγ ligands as a novel anti-lung cancer treatment strategy.
Collapse
Affiliation(s)
- Shou Wei Han
- Shou Wei Han, Jesse Roman, Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | | |
Collapse
|
200
|
Nishioka T, Guo J, Yamamoto D, Chen L, Huppi P, Chen CY. Nicotine, through upregulating pro-survival signaling, cooperates with NNK to promote transformation. J Cell Biochem 2010; 109:152-61. [PMID: 19911375 DOI: 10.1002/jcb.22392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cigarette smoking is a mixture of thousands of compounds, many of which are carcinogens, such as NNK [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone]. Nicotine, as an addictive substance in cigarette, has been shown to promote growth of non-neuronal cells. It is unclear how nicotine cooperates with tobacco-related carcinogens during tumorigenesis. Here, by concurrent treatment of nicotine and NNK, we investigate the effect of the cooperation of these two compounds on cell growth and apoptosis in various different lung epithelial (RLE) or cancer (LKR) cells. We demonstrated that short-term nicotine exposure moderately activated mitogenic signaling pathways (such as PKC, ERK, and Akt) and a mediocre protection against cisplatin-mediated apoptosis. In contrast, NNK strongly stimulated mitogenic signaling and rendered the cells a high resistance to cisplatin. The pre-ligation of nAChR by nicotine interfered with NNK-mediated mitogenic signaling and resistance to cisplatin, the magnitude of which was similar as that exposed to nicotine alone. Interestingly, a week after the exposure to nicotine or nicotine plus NNK, Bcl-2 expression was augmented, accompanied with the increased resistance to cisplatin-induced apoptosis. In comparison, long-term NNK treatment provided very little protection of the cells from cisplatin. We also showed that the combination treatment promoted more cells to grow in an anchorage-independent fashion than NNK exposure alone. Thus, the data suggest that through occupying nAChR, nicotine appears to modulate NNK-mediated signaling and persistently sustain pro-survival activities to promote transformation.
Collapse
Affiliation(s)
- Takashi Nishioka
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|