151
|
Porretta E, Happel KI, Teng XS, Ramsay A, Mason CM. The impact of alcohol on BCG-induced immunity against Mycobacterium tuberculosis. Alcohol Clin Exp Res 2011; 36:310-7. [PMID: 22014229 DOI: 10.1111/j.1530-0277.2011.01624.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Alcoholics are at heightened risk for developing active tuberculosis. This study evaluates chronic alcohol consumption in a murine model of vaccination with Mycobacterium bovis Bacille Calmette-Guèrin (BCG) and subsequent pulmonary infection with virulent Mycobacterium tuberculosis. METHODS BALB/c mice were administered the Lieber-DeCarli liquid ethanol diet or pair-fed the liquid control diet for 3 weeks either before or after subcutaneous vaccination with M. bovis BCG. At least 3 weeks after BCG vaccination, groups of mice on the aforesaid diets were challenged with intratracheal infection with M. tuberculosis H37Rv. Lung mycobacterial burden, and lung and lung-associated lymph node CD4(+) lymphocyte production of tuberculosis-specific interferon (IFN)-γ were assayed. Popliteal lymph node lymphocytes from both dietary regimens undergoing BCG vaccination (in the absence of M. tuberculosis infection) were also evaluated for purified protein derivative-induced IFN-γ production by ELISpot assay. RESULTS Mice begun on alcohol prior to vaccination with M. bovis BCG demonstrated impaired control of pulmonary challenge with virulent M. tuberculosis, as well as impaired lung CD4(+) and popliteal lymph node T-cell IFN-γ responses. If BCG vaccination was delivered prior to initiation of alcohol feeding, the mice remained protected against a subsequent challenge with M. tuberculosis, and BCG-induced immunity was not impaired in either the lung or the popliteal lymph nodes. CONCLUSIONS Alcohol consumption blunts the development of the adaptive immune response to M. bovis BCG vaccination, which impairs the control of a secondary challenge with M. tuberculosis, but only if the alcohol exposure is begun prior to BCG vaccination. These results provide insight into mechanisms by which alcohol consumption impairs antimycobacterial immunity, including in response to vaccination and subsequent pathogenic challenge.
Collapse
Affiliation(s)
- Elizabeth Porretta
- Pulmonary/Critical Care Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
152
|
Oxidative and Nitrosative Stress on Phagocytes’ Function: from Effective Defense to Immunity Evasion Mechanisms. Arch Immunol Ther Exp (Warsz) 2011; 59:441-8. [DOI: 10.1007/s00005-011-0144-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/27/2011] [Indexed: 12/12/2022]
|
153
|
Jain R, Dey B, Khera A, Srivastav P, Gupta UD, Katoch V, Ramanathan V, Tyagi AK. Over-expression of superoxide dismutase obliterates the protective effect of BCG against tuberculosis by modulating innate and adaptive immune responses. Vaccine 2011; 29:8118-25. [PMID: 21856361 DOI: 10.1016/j.vaccine.2011.08.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 08/03/2011] [Accepted: 08/05/2011] [Indexed: 11/26/2022]
|
154
|
Karim AF, Chandra P, Chopra A, Siddiqui Z, Bhaskar A, Singh A, Kumar D. Express path analysis identifies a tyrosine kinase Src-centric network regulating divergent host responses to Mycobacterium tuberculosis infection. J Biol Chem 2011; 286:40307-19. [PMID: 21953458 PMCID: PMC3220550 DOI: 10.1074/jbc.m111.266239] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Global gene expression profiling has emerged as a major tool in understanding complex response patterns of biological systems to perturbations. However, a lack of unbiased analytical approaches has restricted the utility of complex microarray data to gain novel system level insights. Here we report a strategy, express path analysis (EPA), that helps to establish various pathways differentially recruited to achieve specific cellular responses under contrasting environmental conditions in an unbiased manner. The analysis superimposes differentially regulated genes between contrasting environments onto the network of functional protein associations followed by a series of iterative enrichments and network analysis. To test the utility of the approach, we infected THP1 macrophage cells with a virulent Mycobacterium tuberculosis strain (H37Rv) or the attenuated non-virulent strain H37Ra as contrasting perturbations and generated the temporal global expression profiles. EPA of the results provided details of response-specific and time-dependent host molecular network perturbations. Further analysis identified tyrosine kinase Src as the major regulatory hub discriminating the responses between wild-type and attenuated Mtb infection. We were then able to verify this novel role of Src experimentally and show that Src executes its role through regulating two vital antimicrobial processes of the host cells (i.e. autophagy and acidification of phagolysosome). These results bear significant potential for developing novel anti-tuberculosis therapy. We propose that EPA could prove extremely useful in understanding complex cellular responses for a variety of perturbations, including pathogenic infections.
Collapse
Affiliation(s)
- Ahmad Faisal Karim
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | |
Collapse
|
155
|
Mukhopadhyay S, Nair S, Ghosh S. Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiol Rev 2011; 36:463-85. [PMID: 22092372 DOI: 10.1111/j.1574-6976.2011.00302.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/31/2011] [Accepted: 08/05/2011] [Indexed: 01/12/2023] Open
Abstract
Tuberculosis (TB) remains a major health problem worldwide. Attempts to control this disease have proved difficult owing to our poor understanding of the pathobiology of Mycobacterium tuberculosis and the emergence of strains that are resistant to multiple drugs currently available for treatment. Genome-wide expression profiling has provided new insight into the transcriptome signatures of the bacterium during infection, notably of macrophages and dendritic cells. These data indicate that M. tuberculosis expresses numerous genes to evade the host immune responses, to suit its intracellular life style, and to respond to various antibiotic drugs. Among the intracellularly induced genes, several have functions in lipid metabolism, cell wall synthesis, iron uptake, oxidative stress resistance, protein secretion, or inhibition of apoptosis. Herein we review these findings and discuss possible ways to exploit the data to understand the complex etiology of TB and to find new effective drug targets.
Collapse
Affiliation(s)
- Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India.
| | | | | |
Collapse
|
156
|
Sweeney KA, Dao DN, Goldberg MF, Hsu T, Venkataswamy MM, Henao-Tamayo M, Ordway D, Sellers RS, Jain P, Chen B, Chen M, Kim J, Lukose R, Chan J, Orme IM, Porcelli SA, Jacobs WR. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat Med 2011; 17:1261-8. [PMID: 21892180 DOI: 10.1038/nm.2420] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/14/2011] [Indexed: 12/13/2022]
Abstract
We report the involvement of an evolutionarily conserved set of mycobacterial genes, the esx-3 region, in evasion of bacterial killing by innate immunity. Whereas high-dose intravenous infections of mice with the rapidly growing mycobacterial species Mycobacterium smegmatis bearing an intact esx-3 locus were rapidly lethal, infection with an M. smegmatis Δesx-3 mutant (here designated as the IKE strain) was controlled and cleared by a MyD88-dependent bactericidal immune response. Introduction of the orthologous Mycobacterium tuberculosis esx-3 genes into the IKE strain resulted in a strain, designated IKEPLUS, that remained susceptible to innate immune killing and was highly attenuated in mice but had a marked ability to stimulate bactericidal immunity against challenge with virulent M. tuberculosis. Analysis of these adaptive immune responses indicated that the highly protective bactericidal immunity elicited by IKEPLUS was dependent on CD4(+) memory T cells and involved a distinct shift in the pattern of cytokine responses by CD4(+) cells. Our results establish a role for the esx-3 locus in promoting mycobacterial virulence and also identify the IKE strain as a potentially powerful candidate vaccine vector for eliciting protective immunity to M. tuberculosis.
Collapse
Affiliation(s)
- Kari A Sweeney
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Involvement of activating NK cell receptors and their modulation in pathogen immunity. J Biomed Biotechnol 2011; 2011:152430. [PMID: 21860586 PMCID: PMC3155793 DOI: 10.1155/2011/152430] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/23/2011] [Indexed: 01/20/2023] Open
Abstract
Natural Killer (NK) cells are endowed with cell-structure-sensing receptors providing inhibitory protection from self-destruction (inhibitory NK receptors, iNKRs, including killer inhibitory receptors and other molecules) and rapid triggering potential leading to functional cell activation by Toll-like receptors (TLRs), cytokine receptors, and activating NK cell receptors including natural cytotoxicity receptors (NCRs, i.e., NKp46, NKp46, and NKp44). NCR and NKG2D recognize ligands on infected cells which may be endogenous or may directly bind to some structures derived from invading pathogens. In this paper, we address the known direct or indirect interactions between activating receptors and pathogens and their expression during chronic HIV and HCV infections.
Collapse
|
158
|
Abstract
The current tuberculosis (TB) vaccine, bacille Calmette-Guerin (BCG), is a live vaccine used worldwide, as it protects against severe forms of the disease, saving thousands of lives every year, but its efficacy against pulmonary forms of TB, responsible for transmission of the diseases, is variable. For more than 80 years now no new TB vaccines have been successfully developed. Over the last decade the effort of the scientific community has resulted in the design and construction of promising vaccine candidates. The goal is to develop a new generation of vaccines effective against respiratory forms of the disease. We will focus this review on new prophylactic vaccine candidates that aim to prevent TB diseases. Two are the main strategies used to improve the immunity conferred by the current BCG vaccine, by boosting it with new subunit vaccines, and a second strategy is focused on the construction of new more effective live vaccines, capable to replace the current BCG and to be used as prime vaccines. After rigorous preclinical studies in different animal models new TB vaccine candidates enter in clinical trials in humans. First, a small Phase I for safety followed by immunological evaluation in Phase II trials and finally evaluated in large population Phase III efficacy trials in endemic countries. At present BCG prime and boost with different subunit vaccine candidates are the more advanced assessed in Phase II. Two prime vaccines (based on recombinant BCG) have been successfully evaluated for safety in Phase I trials. A short number of live attenuated vaccines are in advance preclinical studies and the candidates ready to enter Phase I safety trials are produced under current good manufacturing practices.
Collapse
Affiliation(s)
- Carlos Martín Montañés
- Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza, CIBER Enfermedades Respiratorias, Zaragoza, Spain.
| | | |
Collapse
|
159
|
|
160
|
Newly attenuated Mycobacterium bovis mutants as vaccines against bovine tuberculosis, particularly for possums. Vet Microbiol 2011; 151:99-103. [DOI: 10.1016/j.vetmic.2011.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
161
|
Bold TD, Banaei N, Wolf AJ, Ernst JD. Suboptimal activation of antigen-specific CD4+ effector cells enables persistence of M. tuberculosis in vivo. PLoS Pathog 2011; 7:e1002063. [PMID: 21637811 PMCID: PMC3102708 DOI: 10.1371/journal.ppat.1002063] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 04/14/2011] [Indexed: 01/17/2023] Open
Abstract
Adaptive immunity to Mycobacterium tuberculosis controls progressive bacterial growth and disease but does not eradicate infection. Among CD4+ T cells in the lungs of M. tuberculosis-infected mice, we observed that few produced IFN-γ without ex vivo restimulation. Therefore, we hypothesized that one mechanism whereby M. tuberculosis avoids elimination is by limiting activation of CD4+ effector T cells at the site of infection in the lungs. To test this hypothesis, we adoptively transferred Th1-polarized CD4+ effector T cells specific for M. tuberculosis Ag85B peptide 25 (P25TCRTh1 cells), which trafficked to the lungs of infected mice and exhibited antigen-dependent IFN-γ production. During the early phase of infection, ∼10% of P25TCRTh1 cells produced IFN-γ in vivo; this declined to <1% as infection progressed to chronic phase. Bacterial downregulation of fbpB (encoding Ag85B) contributed to the decrease in effector T cell activation in the lungs, as a strain of M. tuberculosis engineered to express fbpB in the chronic phase stimulated P25TCRTh1 effector cells at higher frequencies in vivo, and this resulted in CD4+ T cell-dependent reduction of lung bacterial burdens and prolonged survival of mice. Administration of synthetic peptide 25 alone also increased activation of endogenous antigen-specific effector cells and reduced the bacterial burden in the lungs without apparent host toxicity. These results indicate that CD4+ effector T cells are activated at suboptimal frequencies in tuberculosis, and that increasing effector T cell activation in the lungs by providing one or more epitope peptides may be a successful strategy for TB therapy.
Collapse
Affiliation(s)
- Tyler D. Bold
- Department of Pathology, New York University
School of Medicine, New York City, New York, United States of
America
| | - Niaz Banaei
- Division of Infectious Diseases, Department of
Medicine, New York University School of Medicine, New York City, New York,
United States of America
| | - Andrea J. Wolf
- Division of Infectious Diseases, Department of
Medicine, New York University School of Medicine, New York City, New York,
United States of America
| | - Joel D. Ernst
- Department of Pathology, New York University
School of Medicine, New York City, New York, United States of
America
- Division of Infectious Diseases, Department of
Medicine, New York University School of Medicine, New York City, New York,
United States of America
- Department of Microbiology, New York
University School of Medicine, New York City, New York, United States of
America
- * E-mail:
| |
Collapse
|
162
|
Blomgran R, Ernst JD. Lung neutrophils facilitate activation of naive antigen-specific CD4+ T cells during Mycobacterium tuberculosis infection. THE JOURNAL OF IMMUNOLOGY 2011; 186:7110-9. [PMID: 21555529 DOI: 10.4049/jimmunol.1100001] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Initiation of the adaptive immune response to Mycobacterium tuberculosis occurs in the lung-draining mediastinal lymph node and requires transport of M. tuberculosis by migratory dendritic cells (DCs) to the local lymph node. The previously published observations that 1) neutrophils are a transiently prominent population of M. tuberculosis-infected cells in the lungs early in infection and 2) that the peak of infected neutrophils immediately precedes the peak of infected DCs in the lungs prompted us to characterize the role of neutrophils in the initiation of adaptive immune responses to M. tuberculosis. We found that, although depletion of neutrophils in vivo increased the frequency of M. tuberculosis-infected DCs in the lungs, it decreased trafficking of DCs to the mediastinal lymph node. This resulted in delayed activation (CD69 expression) and proliferation of naive M. tuberculosis Ag85B-specific CD4 T cells in the mediastinal lymph node. To further characterize the role of neutrophils in DC migration, we used a Transwell chemotaxis system and found that DCs that were directly infected by M. tuberculosis migrated poorly in response to CCL19, an agonist for the chemokine receptor CCR7. In contrast, DCs that had acquired M. tuberculosis through uptake of infected neutrophils exhibited unimpaired migration. These results revealed a mechanism wherein neutrophils promote adaptive immune responses to M. tuberculosis by delivering M. tuberculosis to DCs in a form that makes DCs more effective initiators of naive CD4 T cell activation. These observations provide insight into a mechanism for neutrophils to facilitate initiation of adaptive immune responses in tuberculosis.
Collapse
Affiliation(s)
- Robert Blomgran
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
163
|
Widdison S, Watson M, Coffey TJ. Early response of bovine alveolar macrophages to infection with live and heat-killed Mycobacterium bovis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:580-591. [PMID: 21232552 DOI: 10.1016/j.dci.2011.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 05/30/2023]
Abstract
Bovine tuberculosis (TB) is a disease of economic importance and a significant animal health and welfare issue. The alveolar macrophage (AlvMϕ) plays a vital role in the immune response to TB and recent studies provide insights into the interactions between Mϕ and Mycobacterium bovis. Here we reveal the early transcriptional response of bovine AlvMϕ to M. bovis infection. We demonstrate up-regulation of immune response genes, including chemokines, members of the NF-κB pathway which may be involved in their transcription and also pro- and anti-apoptotic genes. M. bovis may therefore induce multiple mechanisms to manipulate the host immune response. We compared the response of AlvMϕ to infection with live and heat-killed M. bovis to determine transcriptional differences dependent on the viable pathogen. Several chemokines up-regulated following live M. bovis infection were not up-regulated after heat-killed M. bovis stimulation; hence the Mϕ seems to differentiate between the two stimuli.
Collapse
Affiliation(s)
- Stephanie Widdison
- Livestock Infectious Diseases Programme, Institute for Animal Health, Compton, Berkshire, RG20 7NN, UK
| | | | | |
Collapse
|
164
|
Urdahl KB, Shafiani S, Ernst JD. Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunol 2011; 4:288-93. [PMID: 21451503 PMCID: PMC3206635 DOI: 10.1038/mi.2011.10] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tuberculosis (TB) poses a great challenge to immunologists, as it represents a chronic infection characterized by persistence of the pathogen despite development of antigen-specific immune responses. Among the characteristics of adaptive immune responses to Mycobacterium tuberculosis is a delay in the onset of detectable T-cell responses, in both humans and experimental animals. Recent studies have revealed mechanisms that contribute to this delay, including pathogen inhibition of apoptosis, delayed migration of dendritic cells from the lungs to the local lymph node, and influence of regulatory T cells. In addition, novel features of M. tuberculosis antigen-specific T-cell differentiation have been discovered, which reveal pathways that limit and promote immune control of infection. Taken together, these results highlight the need for additional basic research and provide optimism for the development of TB vaccines with greater efficacy.
Collapse
Affiliation(s)
- KB Urdahl
- Seattle Biomedical Research Institute, Seattle, Washington, USA.
,Departments of Immunology and Pediatrics, University of Washington, Seattle, Washington, USA.
| | - S Shafiani
- Seattle Biomedical Research Institute, Seattle, Washington, USA.
| | - JD Ernst
- Division of Infectious Diseases, Department of Medicine; Departments of Pathology and Microbiology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
165
|
Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol 2011; 4:279-87. [PMID: 21307848 PMCID: PMC3155700 DOI: 10.1038/mi.2011.3] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two different forms of death are commonly observed when Mycobacterium tuberculosis (Mtb)-infected macrophages die: (i) necrosis, a death modality defined by cell lysis and (ii) apoptosis, a form of death that maintains an intact plasma membrane. Necrosis is a mechanism used by bacteria to exit the macrophage, evade host defenses, and spread. In contrast, apoptosis of infected macrophages is associated with diminished pathogen viability. Apoptosis occurs when tumor necrosis factor activates the extrinsic death domain pathway, leading to caspase-8 activation. In addition, mitochondrial outer membrane permeabilization leading to activation of the intrinsic apoptotic pathway is required. Both pathways lead to caspase-3 activation, which results in apoptosis. We have recently demonstrated that during mycobacterial infection, cell death is regulated by the eicosanoids, prostaglandin E(2) (proapoptotic) and lipoxin (LX)A(4) (pronecrotic). Although PGE(2) protects against necrosis, virulent Mtb induces LXA(4) and inhibits PGE(2) production. Under such conditions, mitochondrial inner membrane damage leads to macrophage necrosis. Thus, virulent Mtb subverts eicosanoid regulation of cell death to foil innate defense mechanisms of the macrophage.
Collapse
|
166
|
Obregón-Henao A, Shanley C, Bianco MV, Cataldi AA, Basaraba RJ, Orme IM, Bigi F. Vaccination of guinea pigs using mce operon mutants of Mycobacterium tuberculosis. Vaccine 2011; 29:4302-7. [PMID: 21515327 DOI: 10.1016/j.vaccine.2011.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/31/2011] [Accepted: 04/07/2011] [Indexed: 12/11/2022]
Abstract
The limited efficacy of the BCG vaccine for tuberculosis, coupled with emerging information suggesting that it is poorly protective against newly emerging strains of Mycobacterium tuberculosis such as the W-Beijing isolates, makes it paramount to search for more potent alternatives. One such class of candidates is attenuated mutants derived from M. tuberculosis itself. We demonstrate here, in an initial short term assay, that mutants derived from disruption of the mce genes of the bacillus were highly protective in guinea pigs exposed by low dose aerosol infection with the virulent W-Beijing isolate SA161. This protection was demonstrated by a significant reduction in the numbers of bacilli harvested from the lungs, and dramatic improvements in lung histopathology.
Collapse
Affiliation(s)
- Andrés Obregón-Henao
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | |
Collapse
|
167
|
Mycobacterium tuberculosis induces an atypical cell death mode to escape from infected macrophages. PLoS One 2011; 6:e18367. [PMID: 21483832 PMCID: PMC3069075 DOI: 10.1371/journal.pone.0018367] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/28/2011] [Indexed: 01/26/2023] Open
Abstract
Background Macrophage cell death following infection with Mycobacterium tuberculosis plays a central role in tuberculosis disease pathogenesis. Certain attenuated strains induce extrinsic apoptosis of infected macrophages but virulent strains of M. tuberculosis suppress this host response. We previously reported that virulent M. tuberculosis induces cell death when bacillary load exceeds ∼20 per macrophage but the precise nature of this demise has not been defined. Methodology/Principal Findings We analyzed the characteristics of cell death in primary murine macrophages challenged with virulent or attenuated M. tuberculosis complex strains. We report that high intracellular bacillary burden causes rapid and primarily necrotic death via lysosomal permeabilization, releasing hydrolases that promote Bax/Bak-independent mitochondrial damage and necrosis. Cell death was independent of cathepsins B or L and notable for ultrastructural evidence of damage to lipid bilayers throughout host cells with depletion of several host phospholipid species. These events require viable bacteria that can respond to intracellular cues via the PhoPR sensor kinase system but are independent of the ESX1 system. Conclusions/Significance Cell death caused by virulent M. tuberculosis is distinct from classical apoptosis, pyroptosis or pyronecrosis. Mycobacterial genes essential for cytotoxicity are regulated by the PhoPR two-component system. This atypical death mode provides a mechanism for viable bacilli to exit host macrophages for spreading infection and the eventual transition to extracellular persistence that characterizes advanced pulmonary tuberculosis.
Collapse
|
168
|
Behar SM, Martin CJ, Nunes-Alves C, Divangahi M, Remold HG. Lipids, apoptosis, and cross-presentation: links in the chain of host defense against Mycobacterium tuberculosis. Microbes Infect 2011; 13:749-56. [PMID: 21458584 DOI: 10.1016/j.micinf.2011.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 01/22/2023]
Abstract
Eicosanoids regulate whether human and murine macrophages infected with Mycobacterium tuberculosis die by apoptosis or necrosis. The death modality is important since apoptosis is associated with diminished pathogen viability and should be viewed as a form of innate immunity. Apoptotic vesicles derived from infected macrophages are also an important source of bacterial antigens that can be acquired by dendritic cells to prime antigen-specific T cells. This review integrates in vitro and in vivo data on how apoptosis of infected macrophages is linked to development of T cell immunity against M. tuberculosis.
Collapse
Affiliation(s)
- Samuel M Behar
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Smith Research Building, 1 Jimmy Fund Way, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
169
|
Priming of protective anti-Listeria monocytogenes memory CD8+ T cells requires a functional SecA2 secretion system. Infect Immun 2011; 79:2396-403. [PMID: 21402759 DOI: 10.1128/iai.00020-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The SecA2 auxiliary secretion system of Gram-positive bacteria promotes the export of virulence proteins essential for colonization of the host in the case of both Mycobacterium tuberculosis and Listeria monocytogenes, two intracellular bacteria causing diseases in humans. We and others have demonstrated that this secretion system is also linked to the onset of long-term CD8(+) T cell-mediated protective immunity in mice. In the case of L. monocytogenes, expression of SecA2 inside the cytosol of infected cells correlates with the generation of CCL3-secreting memory CD8(+) T cells that are required for protection against secondary challenge with wild-type (wt) L. monocytogenes. Since the SecA2 ATPase is well conserved among Gram-positive pathogenic bacteria, we hypothesized that SecA2 itself bears evolutionarily conserved motifs recognized by cytosolic pattern recognition receptors, leading to signaling events promoting the differentiation of CCL3(+) memory CD8(+) T cells. To test this possibility, we generated a stable L. monocytogenes chromosomal mutant that expressed a SecA2 ATPase bearing a mutated nucleotide binding site (NBS). Similarly to a SecA2 deletion mutant, the NBS mutant exhibited rough colonies, a bacterial chaining phenotype, an impaired protein secretion profile, and in vivo virulence in comparison to wt L. monocytogenes. Importantly, mice immunized with the SecA2 NBS mutant were not protected against secondary infection with wt L. monocytogenes and did not develop CCL3(+) memory CD8(+) T cells. NBS mutant and wt SecA2 proteins were expressed to comparable extents by bacteria, suggesting that SecA2 itself is unlikely to promote the induction of these cells. Rather, one or several of the SecA2 substrate proteins released inside the cytosol of infected cells may be involved.
Collapse
|
170
|
Feltcher ME, Sullivan JT, Braunstein M. Protein export systems of Mycobacterium tuberculosis: novel targets for drug development? Future Microbiol 2011; 5:1581-97. [PMID: 21073315 DOI: 10.2217/fmb.10.112] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protein export is essential in all bacteria and many bacterial pathogens depend on specialized protein export systems for virulence. In Mycobacterium tuberculosis, the etiological agent of the disease tuberculosis, the conserved general secretion (Sec) and twin-arginine translocation (Tat) pathways perform the bulk of protein export and are both essential. M. tuberculosis also has specialized export pathways that transport specific subsets of proteins. One such pathway is the accessory SecA2 system, which is important for M. tuberculosis virulence. There are also specialized ESX export systems that function in virulence (ESX-1) or essential physiologic processes (ESX-3). The increasing prevalence of drug-resistant M. tuberculosis strains makes the development of novel drugs for tuberculosis an urgent priority. In this article, we discuss our current understanding of the protein export systems of M. tuberculosis and consider the potential of these pathways to be novel targets for tuberculosis drugs.
Collapse
Affiliation(s)
- Meghan E Feltcher
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, CB # 7290, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
171
|
Festjens N, Bogaert P, Batni A, Houthuys E, Plets E, Vanderschaeghe D, Laukens B, Asselbergh B, Parthoens E, De Rycke R, Willart MA, Jacques P, Elewaut D, Brouckaert P, Lambrecht BN, Huygen K, Callewaert N. Disruption of the SapM locus in Mycobacterium bovis BCG improves its protective efficacy as a vaccine against M. tuberculosis. EMBO Mol Med 2011; 3:222-34. [PMID: 21328541 PMCID: PMC3377067 DOI: 10.1002/emmm.201000125] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 12/23/2022] Open
Abstract
Mycobacterium bovis bacille Calmette-Guerin (BCG) provides only limited protection against pulmonary tuberculosis. We tested the hypothesis that BCG might have retained immunomodulatory properties from its pathogenic parent that limit its protective immunogenicity. Mutation of the molecules involved in immunomodulation might then improve its vaccine potential. We studied the vaccine potential of BCG mutants deficient in the secreted acid phosphatase, SapM, or in the capping of the immunomodulatory ManLAM cell wall component with α-1,2-oligomannoside. Both systemic and intratracheal challenge of mice with Mycobacterium tuberculosis following vaccination showed that the SapM mutant, compared to the parental BCG vaccine, provided better protection: it led to longer-term survival. Persistence of the SapM-mutated BCG in vivo resembled that of the parental BCG indicating that this mutation will likely not compromise the safety of the BCG vaccine. The SapM mutant BCG vaccine was more effective than the parental vaccine in inducing recruitment and activation of CD11c(+) MHC-II(int) CD40(int) dendritic cells (DCs) to the draining lymph nodes. Thus, SapM acts by inhibiting recruitment of DCs and their activation at the site of vaccination.
Collapse
Affiliation(s)
- Nele Festjens
- Unit for Medical Biotechnology, Department for Molecular Biomedical Research, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
From vaccine practice to vaccine science: the contribution of human immunology to the prevention of infectious disease. Immunol Cell Biol 2011; 89:332-9. [PMID: 21301476 DOI: 10.1038/icb.2010.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past 50 years, the practice of vaccination has reached the important goal of reducing many of the diseases that afflicted humanity in past centuries. A better understanding of immunological mechanisms underlying the induction of immune protection and the advent of new technology led to improved vaccine preparations based on purified microbial antigens and new adjuvants able to boost both humoral and cellular immune responses. Despite these tremendous advances, much remains to be done. The emergence of new pathogens, the spread of strains resistant to antibiotics and the enormous increase in latent infections are urgently demanding more and more effective vaccines. Understanding the immunological mechanisms that mediate resistance against infections would certainly provide valuable information for the design of new candidate vaccines.
Collapse
|
173
|
HIV-1/mycobacterium tuberculosis coinfection immunology: how does HIV-1 exacerbate tuberculosis? Infect Immun 2011; 79:1407-17. [PMID: 21245275 DOI: 10.1128/iai.01126-10] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV) and Mycobacterium tuberculosis have become intertwined over the past few decades in a "syndemic" that exacerbates the morbidity and mortality associated with each pathogen alone. The severity of the coinfection has been extensively examined in clinical studies. The extrapolation of peripheral evidence from clinical studies has increased our basic understanding of how HIV increases susceptibility to TB. These studies have resulted in multiple hypotheses of how HIV exacerbates TB pathology through the manipulation of granulomas. Granulomas can be located in many tissues, most prominently the lungs and associated lymph nodes, and are made up of multiple immune cells that can actively contain M. tuberculosis. Granuloma-based research involving both animal models and clinical studies is needed to confirm these hypotheses, which will further our understanding of this coinfection and may lead to better treatment options. This review examines the data that support each hypothesis of how HIV manipulates TB pathology while emphasizing a need for more tissue-based experiments.
Collapse
|
174
|
Hinchey J, Jeon BY, Alley H, Chen B, Goldberg M, Derrick S, Morris S, Jacobs WR, Porcelli SA, Lee S. Lysine auxotrophy combined with deletion of the SecA2 gene results in a safe and highly immunogenic candidate live attenuated vaccine for tuberculosis. PLoS One 2011; 6:e15857. [PMID: 21264335 PMCID: PMC3018466 DOI: 10.1371/journal.pone.0015857] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 11/26/2010] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a major global health problem, despite the widespread use of the M. bovis Bacille Calmette-Guerin (BCG) vaccine and the availability of drug therapies. In recent years, the high incidence of coinfection of M. tuberculosis and HIV, as well as escalating problems associated with drug resistance, has raised ominous concerns with regard to TB control. Vaccination with BCG has not proven highly effective in controlling TB, and also has been associated with increasing concerns about the potential for the vaccine to cause disseminated mycobacterial infection in HIV infected hosts. Thus, the development of an efficacious and safe TB vaccine is generally viewed as a critical to achieving control of the ongoing global TB pandemic. In the current study, we have analyzed the vaccine efficacy of an attenuated M. tuberculosis strain that combines a mutation that enhances T cell priming (ΔsecA2) with a strongly attenuating lysine auxotrophy mutation (ΔlysA). The ΔsecA2 mutant was previously shown to be defective in the inhibition of apoptosis and markedly increased priming of antigen-specific CD8+ T cells in vivo. Similarly, the ΔsecA2ΔlysA strain retained enhanced apoptosis and augmented CD8+ T cell stimulatory effects, but with a noticeably improved safety profile in immunosuppressed mice. Thus, the M. tuberculosis ΔsecA2ΔlysA mutant represents a live attenuated TB vaccine strain with the potential to deliver increased protection and safety compared to standard BCG vaccination.
Collapse
Affiliation(s)
- Joseph Hinchey
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Bo Y. Jeon
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Holly Alley
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Bing Chen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Michael Goldberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Steven Derrick
- Center for Biologics Evaluation, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Sheldon Morris
- Center for Biologics Evaluation, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sunhee Lee
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
175
|
Modulation of cell death by M. tuberculosis as a strategy for pathogen survival. Clin Dev Immunol 2011; 2011:678570. [PMID: 21253484 PMCID: PMC3022200 DOI: 10.1155/2011/678570] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/27/2010] [Indexed: 12/28/2022]
Abstract
It has been clearly demonstrated that in vitro, virulent M. tuberculosis can favor necrosis over apoptosis in infected macrophages, and this has been suggested as a mechanism for evading the host immune response. We recently reported that an effect consistent with this hypothesis could be observed in cells from the blood of TB patients, and in this paper, we review what is known about evasion strategies employed by M. tuberculosis and in particular consider the possible interaction of the apoptosis-inhibiting effects of M. tuberculosis infection with another factor (IL-4) whose expression is thought to play a role in the failure to control M. tuberculosis infection. It has been noted that IL-4 may exacerbate TNF-α-induced pathology, though the mechanism remains unexplained. Since pathology in TB typically involves inflammatory aggregates around infected cells, where TNF-α plays an important role, we predicted that IL-4 would inhibit the ability of cells to remove M. tuberculosis by apoptosis of infected cells, through the extrinsic pathway, which is activated by TNF-α. Infection of human monocytic cells with mycobacteria in vitro, in the presence of IL-4, appears to promote necrosis over apoptosis in infected cells—a finding consistent with its suggested role as a factor in pathology during M. tuberculosis infection.
Collapse
|
176
|
Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection. Clin Dev Immunol 2010; 2011:814943. [PMID: 21234341 PMCID: PMC3017943 DOI: 10.1155/2011/814943] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 10/28/2010] [Indexed: 01/22/2023]
Abstract
Phagocytosis of tubercle bacilli by antigen-presenting cells in human lung alveoli initiates a complex infection process by Mycobacterium tuberculosis and a potentially protective immune response by the host. M. tuberculosis has devoted a large part of its genome towards functions that allow it to successfully establish latent or progressive infection in the majority of infected individuals. The failure of immune-mediated clearance is due to multiple strategies adopted by M. tuberculosis that blunt the microbicidal mechanisms of infected immune cells and formation of distinct granulomatous lesions that differ in their ability to support or suppress the persistence of viable M. tuberculosis. In this paper, current understanding of various immune processes that lead to the establishment of latent M. tuberculosis infection, bacterial spreading, persistence, reactivation, and waning or elimination of latent infection as well as new diagnostic approaches being used for identification of latently infected individuals for possible control of tuberculosis epidemic are described.
Collapse
|
177
|
Cautivo KM, Bueno SM, Cortes CM, Wozniak A, Riedel CA, Kalergis AM. Efficient lung recruitment of respiratory syncytial virus-specific Th1 cells induced by recombinant bacillus Calmette-Guérin promotes virus clearance and protects from infection. THE JOURNAL OF IMMUNOLOGY 2010; 185:7633-45. [PMID: 21084664 DOI: 10.4049/jimmunol.0903452] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection by the respiratory syncytial virus (RSV) can cause extensive inflammation and lung damage in susceptible hosts due to a Th2-biased immune response. Such a deleterious inflammatory response can be enhanced by immunization with formalin- or UV-inactivated RSV, as well as with vaccinia virus expressing the RSV-G protein. Recently, we have shown that vaccination with rBCG-expressing RSV Ags can prevent the disease in the mouse. To further understand the immunological mechanisms responsible for protection against RSV, we have characterized the T cell populations contributing to virus clearance in mice immunized with this BCG-based vaccine. We found that both CD4(+) and CD8(+) T cells were recruited significantly earlier to the lungs of infected mice that were previously vaccinated. Furthermore, we observed that simultaneous adoptive transfer of CD8(+) and CD4(+) RSV-specific T cells from vaccinated mice was required to confer protection against virus infection in naive recipients. In addition, CD4(+) T cells induced by vaccination released IFN-γ after RSV challenge, indicating that protection is mediated by a Th1 immune response. These data suggest that vaccination with rBCG-expressing RSV Ags can induce a specific effector/memory Th1 immune response consisting on CD4(+) and CD8(+) T cells, both necessary for a fully protective response against RSV. These results support the notion that an effective induction of Th1 T cell immunity against RSV during childhood could counteract the unbalanced Th2-like immune response triggered by the natural RSV infection.
Collapse
Affiliation(s)
- Kelly M Cautivo
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
178
|
Blanchard N, Shastri N. Topological journey of parasite-derived antigens for presentation by MHC class I molecules. Trends Immunol 2010; 31:414-21. [PMID: 20869317 DOI: 10.1016/j.it.2010.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 12/21/2022]
Abstract
Within cells of their host, many bacteria and parasites inhabit specialized compartments, such as a modified phagosome for Mycobacterium tuberculosis or a parasitophorous vacuole for Toxoplasma gondii. These locations could exclude microbial material from entry into the MHC class I surveillance pathway. Remarkably, however, under these circumstances, cells can still signal the presence of invading pathogens to circulating CD8(+) T cells, which typically play a key role in protection against such intracellular organisms. Here, we review MHC I presentation pathways in various contexts, ranging from model antigens in non-infectious settings to pathogen-infected cells. We suggest that presentation of intracellular pathogens can be described as not just one, but several distinct pathways; perhaps because diverse pathogens have evolved different strategies to interact with host cells.
Collapse
Affiliation(s)
- Nicolas Blanchard
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.
| | | |
Collapse
|
179
|
Seimon TA, Kim MJ, Blumenthal A, Koo J, Ehrt S, Wainwright H, Bekker LG, Kaplan G, Nathan C, Tabas I, Russell DG. Induction of ER stress in macrophages of tuberculosis granulomas. PLoS One 2010; 5:e12772. [PMID: 20856677 PMCID: PMC2939897 DOI: 10.1371/journal.pone.0012772] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/26/2010] [Indexed: 12/15/2022] Open
Abstract
Background The endoplasmic reticulum (ER) stress pathway known as the Unfolded Protein Response (UPR) is an adaptive survival pathway that protects cells from the buildup of misfolded proteins, but under certain circumstances it can lead to apoptosis. ER stress has been causally associated with macrophage apoptosis in advanced atherosclerosis of mice and humans. Because atherosclerosis shares certain features with tuberculosis (TB) with regard to lesional macrophage accumulation, foam cell formation, and apoptosis, we investigated if the ER stress pathway is activated during TB infection. Principal Findings Here we show that ER stress markers such as C/EBP homologous protein (CHOP; also known as GADD153), phosphorylated inositol-requiring enzyme 1 alpha (Ire1α) and eukaryotic initiation factor 2 alpha (eIF2α), and activating transcription factor 3 (ATF3) are expressed in macrophage-rich areas of granulomas in lungs of mice infected with virulent Mycobacterium tuberculosis (Mtb). These areas were also positive for numerous apoptotic cells as assayed by TUNEL. Microarray analysis of human caseous TB granulomas isolated by laser capture microdissection reveal that 73% of genes involved in the UPR are upregulated at the mRNA transcript level. The expression of two ER stress markers, ATF3 and CHOP, were also increased in macrophages of human TB granulomas when assayed by immunohistochemistry. CHOP has been causally associated with ER stress-induced macrophage apoptosis. We found that apoptosis was more abundant in granulomas as compared to non-granulomatous tissue isolated from patients with pulmonary TB, and apoptosis correlated with CHOP expression in areas surrounding the centralized areas of caseation. Conclusions In summary, ER stress is induced in macrophages of TB granulomas in areas where apoptotic cells accumulate in mice and humans. Although macrophage apoptosis is generally thought to be beneficial in initially protecting the host from Mtb infection, death of infected macrophages in advanced granulomas might favor dissemination of the bacteria. Therefore future work is needed to determine if ER-stress is causative for apoptosis and plays a role in the host response to infection.
Collapse
Affiliation(s)
- Tracie A Seimon
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Bohsali A, Abdalla H, Velmurugan K, Briken V. The non-pathogenic mycobacteria M. smegmatis and M. fortuitum induce rapid host cell apoptosis via a caspase-3 and TNF dependent pathway. BMC Microbiol 2010; 10:237. [PMID: 20831789 PMCID: PMC2944237 DOI: 10.1186/1471-2180-10-237] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 09/10/2010] [Indexed: 11/16/2022] Open
Abstract
Background The HIV pandemic raised the potential for facultative-pathogenic mycobacterial species like, Mycobacterium kansasii, to cause disseminating disease in humans with immune deficiencies. In contrast, non-pathogenic mycobacterial species, like M. smegmatis, are not known to cause disseminating disease even in immunocompromised individuals. We hypothesized that this difference in phenotype could be explained by the strong induction of an innate immune response by the non-pathogenic mycobacterial species. Results A comparison of two rapid-growing, non-pathogenic species (M. smegmatis and M. fortuitum) with two facultative-pathogenic species (M. kansasii and M. bovis BCG) demonstrated that only the non-pathogenic bacteria induced strong apoptosis in human THP-1 cells and murine bone marrow-derived macrophages (BMDM) and dendritic cells (BMDD). The phospho-myo-inositol modification of lipoarabinomannan (PI-LAM) isolated from non-pathogenic species may be one of the cell wall components responsible for the pro-inflammatory activity of the whole bacteria. Indeed, PI-LAM induces high levels of apoptosis and IL-12 expression compared to the mannosyl modification of LAM isolated from facultative-pathogenic mycobacteria. The apoptosis induced by non-pathogenic M. smegmatis was dependent upon caspase-3 activation and TNF secretion. Consistently, BALB/c BMDM responded by secreting large amounts of TNF upon infection with non-pathogenic but not facultative-pathogenic mycobacteria. Interestingly, C57Bl/6 BMDM do not undergo apoptosis upon infection with non-pathogenic mycobacteria despite the fact that they still induce an increase in TNF secretion. This suggests that the host cell signaling pathways are different between these two mouse genotypes and that TNF is necessary but not sufficient to induce host cell apoptosis. Conclusion These results demonstrate a much stronger induction of the innate immune response by non-pathogenic versus facultative-pathogenic mycobacteria as measured by host cell apoptosis, IL-12 and TNF cytokine induction. These observations lend support to the hypothesis that the strong induction of the innate immune response is a major reason for the lack of pathogenicity in fast-growing mycobacteria.
Collapse
Affiliation(s)
- Amro Bohsali
- Department of Cell Biology and Molecular Genetics, University of Maryland, Campus Drive, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
181
|
Lin PL, Flynn JL. Understanding latent tuberculosis: a moving target. THE JOURNAL OF IMMUNOLOGY 2010; 185:15-22. [PMID: 20562268 DOI: 10.4049/jimmunol.0903856] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tuberculosis (TB) remains a threat to the health of people worldwide. Infection with Mycobacterium tuberculosis can result in active TB or, more commonly, latent infection. Latently infected persons, of which there are estimated to be approximately 2 billion in the world, represent an enormous reservoir of potential reactivation TB, which can spread to other people. The immunology of TB is complex and multifaceted. Identifying the immune mechanisms that lead to control of initial infection and prevent reactivation of latent infection is crucial to combating this disease.
Collapse
Affiliation(s)
- Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | | |
Collapse
|
182
|
Rajavelu P, Pokkali S, P U, Bhatt K, Narayanan PR, Salgame P, Das SD. Comparative evaluation of cytokines, T-cell apoptosis, and costimulatory molecule expression in tuberculous and nontuberculous pleurisy. Clin Transl Sci 2010; 1:209-14. [PMID: 20443851 DOI: 10.1111/j.1752-8062.2008.00057.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this study, we compared several immune parameters in tuberculosis (TB) and nontuberculosis (NTB) pleurisy to gain an understanding of the mechanism behind enhanced Th1 apoptosis that occurs at sites of active Myobacterium tuberculosis (M. tuberculosis) infection. An initial evaluation of the accumulated cytokines in pleural fluid (PF) demonstrated that both TB and NTB pleurisy were associated with prointflammatory cytokines, while only TB pleurisy had augmented expression of interferon (IFN)-gamma and soluble Fas ligand (sFASL). Despite enhanced expression of the apoptosis-inducing molecule in TB pleurisy, T cells derived from both types of pleurisy exhibited significant apoptosis. In both groups, T-cell apoptosis correlated with low expression of CD80 on PF-derived macrophages and elevated accumulation of TGF-beta in the PF. A causative correlation between TGF-beta and low CD80 expression in the two groups was established by in vitro studies demonstrating TGF-beta inhibition of CD80 upregulation in a macrophage cell line. Together, the findings allude to the possibility that activation in the absence of appropriate CD80 costimulation is the mechanism that leads to T-cell apoptosis at sites of active M. tuberculosis infection. Furthermore, the findings also indicate that T-cell apoptosis is perhaps a host regulatory mechanism to limit inflammation, rather than a pathogen-induced immune deviation.
Collapse
Affiliation(s)
- Priya Rajavelu
- Department of Immunology, Tuberculosis Research Centre (ICMR), Chennai, India
| | | | | | | | | | | | | |
Collapse
|
183
|
Behar SM, Divangahi M, Remold HG. Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 2010; 8:668-74. [PMID: 20676146 DOI: 10.1038/nrmicro2387] [Citation(s) in RCA: 334] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Virulent Mycobacterium tuberculosis inhibits apoptosis and triggers necrosis of host macrophages to evade innate immunity and delay the initiation of adaptive immunity. By contrast, attenuated M. tuberculosis induces macrophage apoptosis, an innate defence mechanism that reduces bacterial viability. In this Opinion article, we describe how virulent M. tuberculosis blocks production of the eicosanoid lipid mediator prostaglandin E(2) (PGE(2)). PGE(2) production by infected macrophages prevents mitochondrial damage and initiates plasma membrane repair, two processes that are crucial for preventing necrosis and inducing apoptosis. Thus, M. tuberculosis-mediated modulation of eicosanoid production determines the death modality of the infected macrophage, which in turn has a substantial impact on the outcome of infection.
Collapse
Affiliation(s)
- Samuel M Behar
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Womens Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
184
|
Divangahi M, Desjardins D, Nunes-Alves C, Remold HG, Behar SM. Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat Immunol 2010; 11:751-8. [PMID: 20622882 DOI: 10.1038/ni.1904] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/15/2010] [Indexed: 12/29/2022]
Abstract
The fate of infected macrophages has an essential role in protection against Mycobacterium tuberculosis by regulating innate and adaptive immunity. M. tuberculosis exploits cell necrosis to exit from macrophages and spread. In contrast, apoptosis, which is characterized by an intact plasma membrane, is an innate mechanism that results in lower bacterial viability. Virulent M. tuberculosis inhibits apoptosis and promotes necrotic cell death by inhibiting production of prostaglandin E(2). Here we show that by activating the 5-lipoxygenase pathway, M. tuberculosis not only inhibited apoptosis but also prevented cross-presentation of its antigens by dendritic cells, which impeded the initiation of T cell immunity. Our results explain why T cell priming in response to M. tuberculosis is delayed and emphasize the importance of early immunity.
Collapse
Affiliation(s)
- Maziar Divangahi
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
185
|
Abstract
There has never been a greater need for a new protective tuberculosis vaccine. Bacille Calmette-Guerin remains the cornerstone of any vaccine strategy, but improving its immunogenicity and efficacy has now become an urgent global health priority. This review discusses the main vaccines currently in clinical development and other novel vaccine strategies in the pipeline. It addresses the key questions in vaccine design, including antigen selection, route of vaccine delivery and immune correlates of vaccine-induced protection. There is an opportunity to identify such correlates from ongoing and future Phase II/III trials and, as these emerge, they can be used to validate the most relevant and predictive animal models with which to develop the next generation of new vaccines.
Collapse
Affiliation(s)
- Angela M Minassian
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Level 2, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK.
| | | |
Collapse
|
186
|
Abstract
Mycobacterium tuberculosis has a penetrance of its host population that would be the envy of most human pathogens. About one-third of the human population would have a positive skin test for the infection and is thus thought to harbor the bacterium. Globally, 22 "high-burden" countries account for more than 80% of the active tuberculosis cases in the world, which shows the inequitable distribution of the disease. There is no effective vaccine against infection, and current drug therapies are fraught with problems, predominantly because of the protracted nature of the treatment and the increasing occurrence of drug resistance. Here we focus on the biology of the host-pathogen interaction and discuss new and evolving strategies for intervention.
Collapse
Affiliation(s)
- David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
187
|
Miller JL, Velmurugan K, Cowan MJ, Briken V. The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-alpha-mediated host cell apoptosis. PLoS Pathog 2010; 6:e1000864. [PMID: 20421951 PMCID: PMC2858756 DOI: 10.1371/journal.ppat.1000864] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 03/18/2010] [Indexed: 01/01/2023] Open
Abstract
The capacity of infected cells to undergo apoptosis upon insult with a pathogen is an ancient innate immune defense mechanism. Consequently, the ability of persisting, intracellular pathogens such as the human pathogen Mycobacterium tuberculosis (Mtb) to inhibit infection-induced apoptosis of macrophages is important for virulence. The nuoG gene of Mtb, which encodes the NuoG subunit of the type I NADH dehydrogenase, NDH-1, is important in Mtb-mediated inhibition of host macrophage apoptosis, but the molecular mechanism of this host pathogen interaction remains elusive. Here we show that the apoptogenic phenotype of MtbDeltanuoG was significantly reduced in human macrophages treated with caspase-3 and -8 inhibitors, TNF-alpha-neutralizing antibodies, and also after infection of murine TNF(-/-) macrophages. Interestingly, incubation of macrophages with inhibitors of reactive oxygen species (ROS) reduced not only the apoptosis induced by the nuoG mutant, but also its capacity to increase macrophage TNF-alpha secretion. The MtbDeltanuoG phagosomes showed increased ROS levels compared to Mtb phagosomes in primary murine and human alveolar macrophages. The increase in MtbDeltanuoG induced ROS and apoptosis was abolished in NOX-2 deficient (gp91(-/-)) macrophages. These results suggest that Mtb, via a NuoG-dependent mechanism, can neutralize NOX2-derived ROS in order to inhibit TNF-alpha-mediated host cell apoptosis. Consistently, an Mtb mutant deficient in secreted catalase induced increases in phagosomal ROS and host cell apoptosis, both of which were dependent upon macrophage NOX-2 activity. In conclusion, these results serendipitously reveal a novel connection between NOX2 activity, phagosomal ROS, and TNF-alpha signaling during infection-induced apoptosis in macrophages. Furthermore, our study reveals a novel function of NOX2 activity in innate immunity beyond the initial respiratory burst, which is the sensing of persistent intracellular pathogens and subsequent induction of host cell apoptosis as a second line of defense.
Collapse
Affiliation(s)
- Jessica L. Miller
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Kamalakannan Velmurugan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Mark J. Cowan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
188
|
Larsen MH, Jacobs WR, Porcelli SA, Kim J, Ranganathan UDK, Fennelly GJ. Balancing safety and immunogenicity in live-attenuated mycobacterial vaccines for use in humans at risk for HIV: response to misleading comments in Ranganathan et al. "recombinant pro-apoptotic Mycobacterium tuberculosis generates CD8+ T cell responses against human immunodeficiency virus type 1 Env and M. tuberculosis in neonatal mice". Vaccine 2010; 28:3633-4. [PMID: 20347058 DOI: 10.1016/j.vaccine.2010.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/24/2010] [Accepted: 03/11/2010] [Indexed: 11/17/2022]
|
189
|
Abstract
We previously described a caspase-independent death induced in macrophages by a high intracellular burden of Mycobacterium tuberculosis (Mtb). This death, with features of apoptosis and necrosis, releases viable bacilli for spreading infection. Interferon (IFN)-γ promotes survival of macrophages with a low intracellular Mtb load by inhibiting bacterial replication. Macrophages in naïve hosts are unable to restrict Mtb replication following aerosol transmission, but IFN-γ is increasingly present when adaptive immunity is expressed in the lungs ~2 weeks post-infection. We therefore investigated the effects of IFN-γ on macrophages challenged with Mtb at high multiplicity of infection (MOI). In contrast to the response at low MOI, IFN-γ accelerated the death of heavily infected macrophages and altered the characteristics of the dying cells. IFN-γ increased caspase-dependent DNA cleavage and apoptotic vesicle formation, but it also increased mitochondrial injury and release of LDH and HMGB1 in a caspase-independent manner. Adaptive immunity in tuberculosis (TB), mediated primarily by IFN-γ, has differential effects on Mtb-induced macrophage cell death depending on the intracellular bacillary load. While IFN-γ generally promotes host defense, our data suggest that its effects on heavily infected macrophages could also accelerate necrosis and spreading infection in TB disease.
Collapse
Affiliation(s)
- Jinhee Lee
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655.
| | | |
Collapse
|
190
|
Re: Misleading comments in Ranganathan et al. "Recombinant pro-apoptotic Mycobacterium tuberculosis generates CD8+ T cell responses against human immunodeficiency virus type 1 Env and M. tuberculosis in neonatal mice". Vaccine 2010; 28:2064-5. [PMID: 20038429 DOI: 10.1016/j.vaccine.2009.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 12/14/2009] [Indexed: 11/22/2022]
|
191
|
Verma I, Grover A. Antituberculous vaccine development: a perspective for the endemic world. Expert Rev Vaccines 2010; 8:1547-53. [PMID: 19863247 DOI: 10.1586/erv.09.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several new antituberculous vaccine candidates that are effective against primary infection in preclinical animal models have now entered the early phases of clinical trials. Many of these clinical trials involve subunit vaccines, recombinant bacillus Calmette-Guérin (BCG), or improvement of BCG immunity by boosting with subunit vaccines or recombinant viral vectors expressing immunodominant TB antigens. The burning question at this stage is: will the current vaccines be effective in the endemic world where the diverse and complex challenges of TB exist? These challenges include protection of those individuals who are already vaccinated with BCG, those already exposed to environmental mycobacteria and those infected with latent TB or HIV. This review focuses on the available BCG vaccine, new TB vaccines in the pipeline and what type of vaccines are actually needed in high-burden endemic countries.
Collapse
Affiliation(s)
- Indu Verma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | | |
Collapse
|
192
|
Stokes RW, Waddell SJ. Adjusting to a new home: Mycobacterium tuberculosis gene expression in response to an intracellular lifestyle. Future Microbiol 2010; 4:1317-35. [PMID: 19995191 DOI: 10.2217/fmb.09.94] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis remains the most significant single species of bacteria causing disease in mankind. The ability of M. tuberculosis to survive and replicate within host macrophages is a pivotal step in its pathogenesis. Understanding the microenvironments that M. tuberculosis encounters within the macrophage and the adaptations that the bacterium undergoes to facilitate its survival will lead to insights into possible therapeutic targets for improved treatment of tuberculosis. This is urgently needed with the emergence of multi- and extensively drug resistant strains of M. tuberculosis. Significant advances have been made in understanding the macrophage response on encountering M. tuberculosis. Complementary information is also accumulating regarding the counter responses of M. tuberculosis during the various stages of its interactions with the host. As such, a picture is emerging delineating the gene expression of intracellular M. tuberculosis at different stages of the interaction with macrophages.
Collapse
Affiliation(s)
- Richard W Stokes
- Department of Paediatrics, University of British Columbia, British Columbia, Canada.
| | | |
Collapse
|
193
|
Sun J, Wang X, Lau A, Liao TYA, Bucci C, Hmama Z. Mycobacterial nucleoside diphosphate kinase blocks phagosome maturation in murine RAW 264.7 macrophages. PLoS One 2010; 5:e8769. [PMID: 20098737 PMCID: PMC2808246 DOI: 10.1371/journal.pone.0008769] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 12/29/2009] [Indexed: 11/30/2022] Open
Abstract
Background Microorganisms capable of surviving within macrophages are rare, but represent very successful pathogens. One of them is Mycobacterium tuberculosis (Mtb) whose resistance to early mechanisms of macrophage killing and failure of its phagosomes to fuse with lysosomes causes tuberculosis (TB) disease in humans. Thus, defining the mechanisms of phagosome maturation arrest and identifying mycobacterial factors responsible for it are key to rational design of novel drugs for the treatment of TB. Previous studies have shown that Mtb and the related vaccine strain, M. bovis bacille Calmette-Guérin (BCG), disrupt the normal function of host Rab5 and Rab7, two small GTPases that are instrumental in the control of phagosome fusion with early endosomes and late endosomes/lysosomes respectively. Methodology/Principal Findings Here we show that recombinant Mtb nucleoside diphosphate kinase (Ndk) exhibits GTPase activating protein (GAP) activity towards Rab5 and Rab7. Then, using a model of latex bead phagosomes, we demonstrated that Ndk inhibits phagosome maturation and fusion with lysosomes in murine RAW 264.7 macrophages. Maturation arrest of phagosomes containing Ndk-beads was associated with the inactivation of both Rab5 and Rab7 as evidenced by the lack of recruitment of their respective effectors EEA1 (early endosome antigen 1) and RILP (Rab7-interacting lysosomal protein). Consistent with these findings, macrophage infection with an Ndk knocked-down BCG strain resulted in increased fusion of its phagosome with lysosomes along with decreased survival of the mutant. Conclusion Our findings provide evidence in support of the hypothesis that mycobacterial Ndk is a putative virulence factor that inhibits phagosome maturation and promotes survival of mycobacteria within the macrophage.
Collapse
Affiliation(s)
- Jim Sun
- Division of Infectious Diseases, Department of Medicine, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
194
|
Weerdenburg EM, Peters PJ, van der Wel NN. How do mycobacteria activate CD8+ T cells? Trends Microbiol 2009; 18:1-10. [PMID: 19962899 DOI: 10.1016/j.tim.2009.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 10/05/2009] [Accepted: 10/28/2009] [Indexed: 01/01/2023]
Abstract
CD8(+) T cells are activated upon presentation of antigens from the cytosol. Therefore, it was unclear how pathogenic mycobacteria could prime this type of lymphocyte, given that these microbes were thought to remain in phagosomes and, hence, be shielded from the host cytosol. Recently, it was shown that some mycobacteria can enter the cytosol through translocation from phagolysosomes, providing a direct mechanism for CD8(+) T cell priming. However, this mechanism might not apply to other mycobacteria, which do not appear to be able to enter the cytosol. Here, we discuss the different hypotheses to explain the induction of CD8(+) T cell responses in mycobacterial infections.
Collapse
Affiliation(s)
- Eveline M Weerdenburg
- Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| | | | | |
Collapse
|
195
|
A broad-range of recombination cloning vectors in mycobacteria. Plasmid 2009; 62:158-65. [DOI: 10.1016/j.plasmid.2009.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 11/19/2022]
|
196
|
Williams A, Hall Y, Orme IM. Evaluation of new vaccines for tuberculosis in the guinea pig model. Tuberculosis (Edinb) 2009; 89:389-97. [PMID: 19815462 DOI: 10.1016/j.tube.2009.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 08/17/2009] [Indexed: 11/30/2022]
Abstract
The guinea pig is a very useful animal model for evaluating new tuberculosis candidate vaccines. In addition to established methods for bacterial load determinations, new technologies are emerging that allow us to specifically evaluate effects of vaccines on the pathology of the disease process and the expression by the host of cell mediated immunity. Limitations to the model include housing and related costs, which often contribute to issue with study design and adequate statistical power, and the use of laboratory strains of Mycobacterium tuberculosis which lack the high virulence and immune evasion properties of newly emerging clinical isolates.
Collapse
Affiliation(s)
- Ann Williams
- Health Protection Agency, Centre for Emergency Preparedness and Response, Porton Down, Salisbury, Wiltshire, UK
| | | | | |
Collapse
|
197
|
Recombinant pro-apoptotic Mycobacterium tuberculosis generates CD8+ T cell responses against human immunodeficiency virus type 1 Env and M. tuberculosis in neonatal mice. Vaccine 2009; 28:152-61. [PMID: 19808028 DOI: 10.1016/j.vaccine.2009.09.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 07/29/2009] [Accepted: 09/23/2009] [Indexed: 12/18/2022]
Abstract
Mycobacterium bovis BCG is an attractive vaccine vector against breast milk HIV transmission because it elicits Th1-type responses in newborns. However, BCG causes disease in HIV-infected infants. Genetically attenuated Mycobacterium tuberculosis (Mtb) mutants represent a safer alternative for immunocompromised populations. In the current study, we compared the immunogenicity in mice of three different recombinant attenuated Mtb strains expressing an HIV envelope (Env) antigen construct. Two of these strains (DeltalysA DeltapanCD Mtb and DeltaRD1 DeltapanCD Mtb) failed to induce significant levels of HIV Env-specific CD8(+) T cell responses. In striking contrast, an HIV-1 Env-expressing attenuated DeltalysA Mtb containing a deletion in secA2, which encodes a virulence-related secretion system involved in evading adaptive immunity, generated consistently measurable Env-specific CD8(+) T cell responses that were significantly greater than those observed after immunization with BCG expressing HIV Env. Similarly, another strain of DeltalysA DeltasecA2 Mtb expressing SIV Gag induced Gag- and Mtb-specific CD8(+) T cells producing perforin or IFNgamma, and Gag-specific CD4(+) T cells producing IFNgamma within 3 weeks after immunization in adult mice; in addition, IFNgamma-producing Gag-specific CD8(+) T cells and Mtb-specific CD4(+) T cells were observed in neonatal mice within 1 week of immunization. We conclude that DeltalysA DeltasecA2 Mtb is a promising vaccine platform to construct a safe combination HIV-TB vaccine for use in neonates.
Collapse
|
198
|
Baena A, Porcelli SA. Evasion and subversion of antigen presentation by Mycobacterium tuberculosis. TISSUE ANTIGENS 2009; 74:189-204. [PMID: 19563525 PMCID: PMC2753606 DOI: 10.1111/j.1399-0039.2009.01301.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis is one of the most successful of human pathogens and has acquired the ability to establish latent or progressive infection and persist even in the presence of a fully functioning immune system. The ability of M. tuberculosis to avoid immune-mediated clearance is likely to reflect a highly evolved and coordinated program of immune evasion strategies, including some that interfere with antigen presentation to prevent or alter the quality of T-cell responses. Here, we review an extensive array of published studies supporting the view that antigen presentation pathways are targeted at many points by pathogenic mycobacteria. These studies show the multiple potential mechanisms by which M. tuberculosis may actively inhibit, subvert or otherwise modulate antigen presentation by major histocompatibility complex class I, class II and CD1 molecules. Unraveling the mechanisms by which M. tuberculosis evades or modulates antigen presentation is of critical importance for the development of more effective new vaccines based on live attenuated mycobacterial strains.
Collapse
Affiliation(s)
- Andres Baena
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
199
|
Venkataswamy MM, Baena A, Goldberg MF, Bricard G, Im JS, Chan J, Reddington F, Besra GS, Jacobs WR, Porcelli SA. Incorporation of NKT cell-activating glycolipids enhances immunogenicity and vaccine efficacy of Mycobacterium bovis bacillus Calmette-Guerin. THE JOURNAL OF IMMUNOLOGY 2009; 183:1644-56. [PMID: 19620317 DOI: 10.4049/jimmunol.0900858] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The attenuated strain of Mycobacterium bovis known as bacille Calmette-Guérin (BCG) has been widely used as a vaccine for prevention of disease by Mycobacterium tuberculosis, but with relatively little evidence of success. Recent studies suggest that the failure of BCG may be due to its retention of immune evasion mechanisms that delay or prevent the priming of robust protective cell-mediated immunity. In this study, we describe an approach to enhance the immunogenicity of BCG by incorporating glycolipid activators of CD1d-restricted NKT cells, a conserved T cell subset with the potential to augment many types of immune responses. A method was developed for stably incorporating two forms of the NKT cell activator alpha-galactosylceramide into live BCG organisms, and the impact of this on stimulation of T cell responses and protective antimycobacterial immunity was evaluated. We found that live BCG containing relatively small amounts of incorporated alpha-galactosylceramide retained the ability to robustly activate NKT cells. Compared with immunization with unmodified BCG, the glycolipid-modified BCG stimulated increased maturation of dendritic cells and markedly augmented the priming of Ag-specific CD8(+) T cells responses. These effects were correlated with improved protective effects of vaccination in mice challenged with virulent M. tuberculosis. These results support the view that mycobacteria possess mechanisms to avoid stimulation of CD8(+) T cell responses and that such responses contribute significantly to protective immunity against these pathogens. Our findings raise the possibility of a simple modification of BCG that could yield a more effective vaccine for control of tuberculosis.
Collapse
|
200
|
Cooper AM. T cells in mycobacterial infection and disease. Curr Opin Immunol 2009; 21:378-84. [PMID: 19646851 DOI: 10.1016/j.coi.2009.06.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 05/12/2009] [Accepted: 06/27/2009] [Indexed: 11/27/2022]
Abstract
There has been an increase in our understanding of the complexity of the T cell response to mycobacterial infection recently. Improved tools have allowed the determination of the location and kinetics of naïve T cell activation in the mouse as well the variety of function of mycobacteria-specific cells in humans. There is also an increased appreciation of the balance required during mycobacterial infection between anti-bacterial activity and control of the immunopathologic response. The integration of the T cell functional data with the consequences of infection should improve rational vaccine design.
Collapse
|