151
|
Tan C, Lui PPY, Lee YW, Wong YM. Scx-transduced tendon-derived stem cells (tdscs) promoted better tendon repair compared to mock-transduced cells in a rat patellar tendon window injury model. PLoS One 2014; 9:e97453. [PMID: 24831949 PMCID: PMC4022525 DOI: 10.1371/journal.pone.0097453] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
We hypothesized that the transplantation of Scx-transduced tendon-derived stem cells (TDSCs) promoted better tendon repair compared to the transplantation of mock-transduced cells. This study thus aimed to investigate the effect of Scx transduction on the expression of lineage markers in TDSCs and the effect of the resulting cell line in the promotion of tendon repair. Rat non-GFP or GFP-TDSCs were transduced with Scx or empty lentiviral vector (Mock) and selected by blasticidin. The mRNA expressions of Scx and different lineage markers were examined by qRT-PCR. The effect of the transplantation of GFP-TDSC-Scx on tendon repair was then tested in a rat unilateral patellar tendon window injury model. The transplantation of GFP-TDSC-Mock and scaffold-only served as controls. At week 2, 4 and 8 post-transplantation, the repaired patellar tendon was harvested for ex vivo fluorescent imaging, vivaCT imaging, histology, immunohistochemistry and biomechanical test. GFP-TDSC-Scx consistently showed higher expressions of most of tendon- and cartilage- related markers compared to the GFP-TDSC-Mock. However, the effect of Scx transduction on the expressions of bone-related markers was inconclusive. The transplanted GFP-TDSCs could be detected in the window wound at week 2 but not at week 4. Ectopic mineralization was detected in some samples at week 8 but there was no difference among different groups. The GFP-TDSC-Scx group only statistically significantly improved tendon repair histologically and biomechanically compared to the Scaffold-only group and the GFP-TDSC-Mock group at the early stage of tendon repair. There was significant higher expression of collagen type I in the window wound in the GFP-TDSC-Scx group compared to the other two groups at week 2. The transplantation of GFP-TDSC-Scx promoted healing at the early stage of tendon repair in a rat patellar tendon window injury model.
Collapse
Affiliation(s)
- Chunlai Tan
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Yuk Wa Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yin Mei Wong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
152
|
Machova Urdzikova L, Sedlacek R, Suchy T, Amemori T, Ruzicka J, Lesny P, Havlas V, Sykova E, Jendelova P. Human multipotent mesenchymal stem cells improve healing after collagenase tendon injury in the rat. Biomed Eng Online 2014; 13:42. [PMID: 24712305 PMCID: PMC4001357 DOI: 10.1186/1475-925x-13-42] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/01/2014] [Indexed: 01/30/2023] Open
Abstract
Background Mesenchymal stromal cells attract much interest in tissue regeneration because of their capacity to differentiate into mesodermal origin cells, their paracrine properties and their possible use in autologous transplantations. The aim of this study was to investigate the safety and reparative potential of implanted human mesenchymal stromal cells (hMSCs), prepared under Good Manufacturing Practice (GMP) conditions utilizing human mixed platelet lysate as a culture supplement, in a collagenase Achilles tendon injury model in rats. Methods Eighty-one rats with collagenase-induced injury were divided into two groups. The first group received human mesenchymal stromal cells injected into the site of injury 3 days after lesion induction, while the second group received saline. Biomechanical testing, morphometry and semiquantitative immunohistochemistry of collagens I, II and III, versican and aggrecan, neovascularization, and hMSC survival were performed 2, 4, and 6 weeks after injury. Results Human mesenchymal stromal cell-treated rats had a significantly better extracellular matrix structure and a larger amount of collagen I and collagen III. Neovascularization was also increased in hMSC-treated rats 2 and 4 weeks after tendon injury. MTCO2 (Cytochrome c oxidase subunit II) positivity confirmed the presence of hMSCs 2, 4 and 6 weeks after transplantation. Collagen II deposits and alizarin red staining for bone were found in 6 hMSC- and 2 saline-treated tendons 6 weeks after injury. The intensity of anti-versican and anti-aggrecan staining did not differ between the groups. Conclusions hMSCs can support tendon healing through better vascularization as well as through larger deposits and better organization of the extracellular matrix. The treatment procedure was found to be safe; however, cartilage and bone formation at the implantation site should be taken into account when planning subsequent in vivo and clinical trials on tendinopathy as an expected adverse event.
Collapse
Affiliation(s)
- Lucia Machova Urdzikova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Liu H, Zhu S, Zhang C, Lu P, Hu J, Yin Z, Ma Y, Chen X, OuYang H. Crucial transcription factors in tendon development and differentiation: their potential for tendon regeneration. Cell Tissue Res 2014; 356:287-98. [PMID: 24705622 DOI: 10.1007/s00441-014-1834-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/30/2014] [Indexed: 12/22/2022]
Abstract
Tendons that connect muscles to bone are often the targets of sports injuries. The currently unsatisfactory state of tendon repair is largely attributable to the limited understanding of basic tendon biology. A number of tendon lineage-related transcription factors have recently been uncovered and provide clues for the better understanding of tendon development. Scleraxis and Mohawk have been identified as critical transcription factors in tendon development and differentiation. Other transcription factors, such as Sox9 and Egr1/2, have also been recently reported to be involved in tendon development. However, the molecular mechanisms and application of these transcription factors remain largely unclear and this prohibits their use in tendon therapy. Here, we systematically review and analyze recent findings and our own data concerning tendon transcription factors and tendon regeneration. Based on these findings, we provide interaction and temporal programming maps of transcription factors, as a basis for future tendon therapy. Finally, we discuss future directions for tendon regeneration with differentiation and trans-differentiation approaches based on transcription factors.
Collapse
Affiliation(s)
- Huanhuan Liu
- Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Plate JF, Brown PJ, Walters J, Clark JA, Smith TL, Freehill MT, Tuohy CJ, Stitzel JD, Mannava S. Advanced age diminishes tendon-to-bone healing in a rat model of rotator cuff repair. Am J Sports Med 2014; 42:859-68. [PMID: 24500915 DOI: 10.1177/0363546513518418] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Advanced patient age is associated with recurrent tearing and failure of rotator cuff repairs clinically; however, basic science studies have not evaluated the influence of aging on tendon-to-bone healing after rotator cuff repair in an animal model. Hypothesis/ PURPOSE This study examined the effect of aging on tendon-to-bone healing in an established rat model of rotator cuff repair using the aged animal colony from the National Institute on Aging of the National Institutes of Health. The authors hypothesized that normal aging decreases biomechanical strength and histologic organization at the tendon-to-bone junction after acute repair. STUDY DESIGN Controlled laboratory study. METHODS In 56 F344xBN rats, 28 old and 28 young (24 and 8 months of age, respectively), the supraspinatus tendon was transected and repaired. At 2 or 8 weeks after surgery, shoulder specimens underwent biomechanical testing to compare load-to-failure and load-relaxation response between age groups. Histologic sections of the tendon-to-bone interface were assessed with hematoxylin and eosin staining, and collagen fiber organization was assessed by semiquantitative analysis of picrosirius red birefringence under polarized light. RESULTS Peak failure load was similar between young and old animals at 2 weeks after repair (31% vs 26% of age-matched uninjured controls, respectively; P > .05) but significantly higher in young animals compared with old animals 8 weeks after repair (86% vs 65% of age-matched uninjured controls, respectively; P < .01). Eight weeks after repair, fibroblasts appeared more organized and uniformly aligned in young animals on hematoxylin and eosin slides compared with old animals. Collagen birefringence analysis of the tendon-to-bone junction demonstrated that young animals had increased collagen fiber organization and similar histologic structure compared with age-matched controls (53.7 ± 2.4 gray scales; P > .05). In contrast, old animals had decreased collagen fiber organization and altered structure compared with age-matched controls (49.8 ± 3.1 gray scales; P < .01). DISCUSSION In a rat model of aging, old animals demonstrated diminished tendon-to-bone healing after rotator cuff injury and repair. Old animals had significantly decreased failure strength and collagen fiber organization at the tendon-to-bone junction compared with young animals. This study implies that animal age may need to be considered in future studies of rotator cuff repair in animal models. CLINICAL RELEVANCE With increasing age and activity level of the population, the incidence of rotator cuff tears is predicted to rise. Despite advances in rotator cuff repair technique, the retear rate remains specifically high in elderly patients. The findings of this research suggest that aging negatively influences tendon-to-bone healing after rotator cuff repair in a validated animal model.
Collapse
Affiliation(s)
- Johannes F Plate
- Johannes F. Plate, Department of Orthopaedic Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA. )
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Ersen A, Demirhan M, Atalar AC, Kapicioğlu M, Baysal G. Platelet-rich plasma for enhancing surgical rotator cuff repair: evaluation and comparison of two application methods in a rat model. Arch Orthop Trauma Surg 2014; 134:405-11. [PMID: 24379006 DOI: 10.1007/s00402-013-1914-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Indexed: 01/08/2023]
Abstract
PURPOSE Platelet-rich plasma (PRP) is a natural concentrate of autologous growth factors now being widely tested in different fields of medicine for its potential in enhancing the regeneration of tissue with low healing potential. However, studies of PRP in enhancing rotator cuff repair have been contradictory, perhaps because of how PRP is administered. The purpose of this study is to evaluate the effect of PRP and compare two different application methods of PRP on rotator cuff healing. METHODS The supraspinatus tendons of 48 mature, male Wistar-Albino rats were detached from their insertion on the humerus. The animals were divided into four groups: (1) no repair, (2) primary repair, (3) repair plus PRP injections into the tendon-bone interface, and (4) repair plus PRP absorbed from a sponge carrier to the tendon-bone interface. The tendons were evaluated biomechanically and histologically at week 8. RESULTS Cuffs repaired with PRP had significantly greater mean (SD) load-to-failure rates [11.1 (6.5) and 11.6 (3.9) N; P < 0.05] and stiffness [3.5 (2.3) and 1.6 (0.75) N; P < 0.05] than did cuffs repaired without PRP. The groups receiving PRP did not differ significantly on these variables. Histological evaluation showed no significant differences among the four groups. CONCLUSIONS The application of PRP, independent of the application method, significantly improved biomechanical properties at the rotator cuff tendon-bone interface. The type of application, injection or absorption from a sponge did not influence the effect of PRP on rotator cuff healing.
Collapse
Affiliation(s)
- Ali Ersen
- İstanbul Medical Faculty Department of Orthopaedics and Traumatology, Istanbul University, Topkapı, 34390, Istanbul, Turkey,
| | | | | | | | | |
Collapse
|
156
|
Beitzel K, McCarthy MB, Cote MP, Russell RP, Apostolakos J, Ramos DM, Kumbar SG, Imhoff AB, Arciero RA, Mazzocca AD. Properties of biologic scaffolds and their response to mesenchymal stem cells. Arthroscopy 2014; 30:289-98. [PMID: 24581253 DOI: 10.1016/j.arthro.2013.11.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to examine, in vitro, the cellular response of human mesenchymal stem cells (MSCs) to sample types of commercially available scaffolds in comparison with control, native tendon tissue (fresh-frozen rotator cuff tendon allograft). METHODS MSCs were defined by (1) colony-forming potential; (2) ability to differentiate into tendon, cartilage, bone, and fat tissue; and (3) fluorescence-activated cell sorting analysis (CD73, CD90, CD45). Samples were taken from fresh-frozen human rotator cuff tendon (allograft), human highly cross-linked collagen membrane (Arthroflex; LifeNet Health, Virginia Beach, VA), porcine non-cross-linked collagen membrane (Mucograft; Geistlich Pharma, Lucerne, Switzerland), a human platelet-rich fibrin matrix (PRF-M), and a fibrin matrix based on platelet-rich plasma (ViscoGel; Arthrex, Naples, FL). Cells were counted for adhesion (24 hours), thymidine assay for cell proliferation (96 hours), and live/dead stain for viability (168 hours). Histologic analysis was performed after 21 days, and the unloaded scaffolds were scanned with electron microscopy. RESULTS MSCs were successfully differentiated into all cell lines. A significantly greater number of cells adhered to both the non-cross-linked porcine collagen scaffold and PRF-M. Cell activity (proliferation) was significantly higher in the non-cross-linked porcine collagen scaffold compared with PRF-M and fibrin matrix based on platelet-rich plasma. There were no significant differences found in the results of the live/dead assay. CONCLUSIONS Significant differences in the response of human MSCs to biologic scaffolds existed. MSC adhesion, proliferation, and scaffold morphology evaluated by histologic analysis and electron microscopy varied throughout the evaluated types of scaffolds. Non-cross-linked porcine collagen scaffolds showed superior results for cell adhesion and proliferation, as well as on histologic evaluation. CLINICAL RELEVANCE This study enables the clinician and scientist to choose scaffold materials according to their specific interaction with MSCs.
Collapse
Affiliation(s)
- Knut Beitzel
- Department of Trauma and Orthopaedic Surgery, Trauma Center, Murnau, Germany
| | - Mary Beth McCarthy
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Mark P Cote
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Ryan P Russell
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - John Apostolakos
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Daisy M Ramos
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Sangamesh G Kumbar
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Andreas B Imhoff
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Munich, Germany
| | - Robert A Arciero
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Augustus D Mazzocca
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, U.S.A..
| |
Collapse
|
157
|
Adams SB, Thorpe MA, Parks BG, Aghazarian G, Allen E, Schon LC. Stem cell-bearing suture improves Achilles tendon healing in a rat model. Foot Ankle Int 2014; 35:293-9. [PMID: 24403347 DOI: 10.1177/1071100713519078] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Tendon healing is a slow and complicated process that results in inferior structural and functional properties when compared to healthy tendon tissue. It may be possible to improve outcomes of tendon healing with enhancement of biological aspects of the repair including tissue structure, organization, and composition. The purpose of this study was to determine whether use of a stem cell-bearing suture improves Achilles tendon healing in a rat model. METHODS The Achilles tendon was transected in 108 bilateral hind limbs from 54 rats. Each limb was randomized to repair with suture only (SO), suture plus injection (SI) of mesenchymal stem cells (MSCs) at the repair site, or suture loaded with MSCs (suture with stem cells, SCS). One half of the animals were randomly sacrificed at 14 and 28 days after surgery and the Achilles tendon was harvested. From each repair group at each time point, 12 limbs were randomized to biomechanical testing and 6 to histologic analysis. Tendons were loaded using a 223-N load cell at 0.17 mm/s. A blinded pathologist scored the histology sections. RESULTS Ultimate failure strength (N/mm(2)) was significantly higher in the SI and SCS groups versus the SO group. In the SI group, ultimate failure strength decreased significantly at 28 days versus 14 days. Histology score in the SCS group was significantly lower (better) than in both other groups (P ≤ .001). Histology findings at day 28 were significantly higher versus day 14 for all groups (P = .01). CONCLUSIONS Both the SI and the SCS groups had significantly higher ultimate failure strength versus the SO group, and strength was maintained at 28 days in the SCS group but not in the SI group. Histology in the SCS group was significantly better than in both other groups. CLINICAL RELEVANCE These findings in a rat model suggest that the use of stem cells enhances healing after Achilles repair and that embedding of stem cells directly into suture offers sustained early benefit to tendon healing.
Collapse
Affiliation(s)
- Samuel B Adams
- Department of Orthopaedic Surgery, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
158
|
Chen X, Yin Z, Chen JL, Liu HH, Shen WL, Fang Z, Zhu T, Ji J, Ouyang HW, Zou XH. Scleraxis-overexpressed human embryonic stem cell-derived mesenchymal stem cells for tendon tissue engineering with knitted silk-collagen scaffold. Tissue Eng Part A 2014; 20:1583-92. [PMID: 24328506 DOI: 10.1089/ten.tea.2012.0656] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AIM Despite our previous study that demonstrates that human embryonic stem cells (hESCs) can be used as seed cells for tendon tissue engineering after stepwise induction, suboptimal tendon regeneration implies that a new strategy needs to be developed for tendon repair. We investigated whether overexpression of the tendon-specific transcription factor scleraxis (SCX) in hESC-derived mesenchymal stem cells (hESC-MSCs) together with knitted silk-collagen sponge scaffold could promote tendon regeneration. METHODS AND RESULTS hESCs were initially differentiated into MSCs and then engineered with scleraxis (SCX+hESC-MSCs). Engineered tendons were constructed with SCX+hESC-MSCs and a knitted silk-collagen sponge scaffold and then mechanical stress was applied. SCX elevated tendon gene expression in hESC-MSCs and concomitantly attenuated their adipogenic and chondrogenic potential. Mechanical stress further augmented the expression of tendon-specific genes in SCX+hESC-MSC-engineered tendon. Moreover, in vivo mechanical stimulation promoted the alignment of cells and increased the diameter of collagen fibers after ectopic transplantation. In the in vivo tendon repair model, the SCX+hESC-MSC-engineered tendon enhanced the regeneration process as shown by histological scores and superior mechanical performance compared with control cells, especially at early stages. CONCLUSION Our study offers new evidence concerning the roles of SCX in tendon differentiation and regeneration. We demonstrated a novel strategy of combining hESCs, genetic engineering, and tissue-engineering principles for tendon regeneration, which are important for the future application of hESCs and silk scaffolds for tendon repair.
Collapse
Affiliation(s)
- Xiao Chen
- 1 Zhejiang Key Laboratory for Tissue Engineering and Repair Technology, School of Medicine, Zhejiang University , Hangzhou, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Ajibade DA, Vance DD, Hare JM, Kaplan LD, Lesniak BP. Emerging Applications of Stem Cell and Regenerative Medicine to Sports Injuries. Orthop J Sports Med 2014; 2:2325967113519935. [PMID: 26535296 PMCID: PMC4555618 DOI: 10.1177/2325967113519935] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: The treatment of sports-related musculoskeletal injuries with stem cells has become more publicized because of recent reports of high-profile athletes undergoing stem cell procedures. There has been increased interest in defining the parameters of safety and efficacy and the indications for potential use of stem cells in clinical practice. Purpose: To review the role of regenerative medicine in the treatment of sports-related injuries. Study Design: Review. Method: Relevant studies were identified through a PubMed search combining the terms stem cells and cartilage, ligament, tendon, muscle, and bone from January 2000 to August 2013. Studies and works cited in these studies were also reviewed. Results: Treatment of sports-related injuries with stem cells shows potential for clinical efficacy from the data available from basic science and animal studies. Conclusion: Cell-based therapies and regenerative medicine offer safe and potentially efficacious treatment for sports-related musculoskeletal injuries. Basic science and preclinical studies that support the possibility of enhanced recovery from sports injuries using cell-based therapies are accumulating; however, more clinical evidence is necessary to define the indications and parameters for their use. Accordingly, exposing patients to cell-based therapies could confer an unacceptable risk profile with minimal or no benefit. Continued clinical testing with animal models and clinical trials is necessary to determine the relative risks and benefits as well as the indications and methodology of treatment.
Collapse
Affiliation(s)
- David A Ajibade
- South Carolina Orthopaedic Institute, Orangeburg, South Carolina, USA
| | - Danica D Vance
- UHealth Sports Performance and Wellness Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA. ; Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Joshua M Hare
- UHealth Sports Performance and Wellness Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA. ; Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Lee D Kaplan
- UHealth Sports Performance and Wellness Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA. ; Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Bryson P Lesniak
- UHealth Sports Performance and Wellness Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA. ; Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
160
|
Application of Biologics in the Treatment of the Rotator Cuff, Meniscus, Cartilage, and Osteoarthritis. J Am Acad Orthop Surg 2014. [DOI: 10.5435/00124635-201402000-00002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
|
161
|
Angeline ME, Ma R, Pascual-Garrido C, Voigt C, Deng XH, Warren RF, Rodeo SA. Effect of diet-induced vitamin D deficiency on rotator cuff healing in a rat model. Am J Sports Med 2014; 42:27-34. [PMID: 24131579 DOI: 10.1177/0363546513505421] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Few studies have considered hormonal influences, particularly vitamin D, on healing. HYPOTHESIS Vitamin D deficiency would have a negative effect on the structure of the healing tendon-bone interface in a rat model and would result in decreased tendon attachment strength. STUDY DESIGN Controlled laboratory study. METHODS Vitamin D deficiency was induced in 28 male Sprague-Dawley rats using a specialized vitamin D-deficient diet and ultraviolet light restriction. Serum levels of vitamin D were measured after 6 weeks. These vitamin D-deficient animals (experimental group) plus 32 rats with normal vitamin D levels (controls) underwent unilateral detachment of the right supraspinatus tendon from the greater tuberosity of the humerus, followed by immediate repair using bone tunnel suture fixation. The animals were sacrificed at 2- and 4-week intervals after surgery for biomechanical analysis. A paired t test was used to compare serum vitamin D levels at day 0 and at 6 weeks. A nonparametric Mann-Whitney U test was used to compare load-to-failure and stiffness values between the experimental group and controls. Bone density and new bone formation at the tendon insertion site on the greater tuberosity were assessed with micro-computed tomography (CT). The organization of collagen tissue, new bone formation, vascularity at the tendon-bone interface, fibrocartilage at the tendon-bone interface, and collagen fiber continuity between the tendon and bone tissue were evaluated with safranin O and picrosirius red staining. RESULTS Blood draws confirmed vitamin D deficiency at 6 weeks compared with time zero/baseline for rats in the experimental group (10.9 ng/mL vs 6.5 ng/mL, respectively; P < .001). Biomechanical testing demonstrated a significant decrease in load to failure in the experimental group compared with controls at 2 weeks (5.8 ± 2.0 N vs 10.5 ± 4.4 N, respectively; P < .006). There was no difference in stiffness at 2 weeks between the control and experimental groups. At 4 weeks, there was no significant difference in load to failure or stiffness between the control and experimental groups. Histological analysis showed less bone formation and less collagen fiber organization in the vitamin D-deficient specimens at 4 weeks as compared with controls. Micro-CT analysis showed no significant difference between groups for total mineral density and bone volume fraction of cortical, whole, or trabecular bone at 4 weeks. CONCLUSION The biomechanical and histological data from this study suggest that low vitamin D levels may negatively affect early healing at the rotator cuff repair site. CLINICAL RELEVANCE It is estimated that 1 billion people worldwide are vitamin D deficient. In the deficient state, acutely injured rotator cuffs may have a reduced ability for tendon healing. Further studies are needed to determine the exact mechanism by which vitamin D affects tendon healing and whether vitamin D supplementation can improve rotator cuff tendon healing and reduce the incidence of retears.
Collapse
Affiliation(s)
- Michael E Angeline
- Scott A. Rodeo, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021.
| | | | | | | | | | | | | |
Collapse
|
162
|
Abstract
The intrasynovial bone-tendon interface is a gradual transition from soft tissue to bone, with two intervening zones of uncalcified and calcified fibrocartilage. Following injury, the native anatomy is not restored, resulting in inferior mechanical properties and an increased risk of re-injury. Recent in vivo studies provide evidence of improved healing when surgical repair of the bone-tendon interface is augmented with cells capable of undergoing chondrogenesis. In particular, cellular therapy in bone-tendon healing can promote fibrocartilage formation and associated improvements in mechanical properties. Despite these promising results in animal models, cellular therapy in human patients remains largely unexplored. This review highlights the development and structure-function relationship of normal bone-tendon insertions. The natural healing response to injury is discussed, with subsequent review of recent research on cellular approaches for improved healing. Finally, opportunities for translating in vivo findings into clinical practice are identified.
Collapse
Affiliation(s)
- Benjamin B Rothrauff
- Center for Cellular and Molecular Engineering; Department of Orthopaedic Surgery; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering; Department of Orthopaedic Surgery; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| |
Collapse
|
163
|
Abstract
Orthopedic injuries are common and a source of much misery and economic stress. Several relevant tissues, such as cartilage, meniscus, and intra-articular ligaments, do not heal. And even bone, which normally regenerates spontaneously, can fail to mend. The regeneration of orthopedic tissues requires 4 key components: cells, morphogenetic signals, scaffolds, and an appropriate mechanical environment. Although differentiated cells from the tissue in question can be used, most cellular research focuses on the use of mesenchymal stem cells. These can be retrieved from many different tissues, and one unresolved question is the degree to which the origin of the cells matters. Embryonic and induced pluripotent stem cells are also under investigation. Morphogenetic signals are most frequently supplied by individual recombinant growth factors or native mixtures provided by, for example, platelet-rich plasma; mesenchymal stem cells are also a rich source of trophic factors. Obstacles to the sustained delivery of individual growth factors can be addressed by gene transfer or smart scaffolds, but we still lack detailed, necessary information on which delivery profiles are needed. Scaffolds may be based on natural products, synthetic materials, or devitalized extracellular matrix. Strategies to combine these components to regenerate tissue can follow traditional tissue engineering practices, but these are costly, cumbersome, and not well suited to treating large numbers of individuals. More expeditious approaches make full use of intrinsic biological processes in vivo to avoid the need for ex vivo expansion of autologous cells and multiple procedures. Clinical translation remains a bottleneck.
Collapse
Affiliation(s)
- Christopher H Evans
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Collaborative Research Center, AO Foundation, Davos, Switzerland.
| |
Collapse
|
164
|
|
165
|
Lhee SH, Jo Y, Kim B, Nam B, Nemeno J, Lee S, Yang W, Lee J. Novel Supplier of Mesenchymal Stem Cell: Subacromial Bursa. Transplant Proc 2013; 45:3118-21. [DOI: 10.1016/j.transproceed.2013.07.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
166
|
Beitzel K, Solovyova O, Cote MP, Apostolakos J, Russell RP, McCarthy MB, Mazzocca AD. The future role of mesenchymal stem cells in the management of shoulder disorders. Arthroscopy 2013; 29:1702-11. [PMID: 23972267 DOI: 10.1016/j.arthro.2013.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 02/02/2023]
Abstract
PURPOSE Biologics may help to optimize the healing environment after rotator cuff repair. Mesenchymal stem cells (MSCs) may have the potential to regenerate a physiological enthesis, thereby improving healing at the repair site after rotator cuff repair. METHODS The PubMed database was searched in May 2013. Only in vivo and in vitro studies reporting on stem cell use in the rotator cuff of humans or animals were included. Exclusion criteria consisted of the following: Level V evidence, systematic reviews, and studies reporting preliminary results. RESULTS This query resulted in 141 citations. Of these, 90 were excluded based on the title of the study. A final group of 17 studies was included in this review (9 in vivo animal studies, 5 in vitro human studies, 1 in vitro animal study, 1 study reporting in vitro human and in vivo animal results, and 1 study reporting on clinical outcomes of human patients). CONCLUSIONS The current literature regarding therapeutic use of MSCs in shoulder surgery is limited. Although in vivo animal studies have shown some promising approaches to enhance tendon-to-bone healing, the use of MSCs for shoulder surgery should still be regarded as an experimental technique. Further basic and clinical research is needed until a procedure can be defined for the routine use of these cells in shoulder surgery.
Collapse
Affiliation(s)
- Knut Beitzel
- Department of Trauma and Orthopedic Surgery, Trauma Center Murnau, Murnau, Germany
| | | | | | | | | | | | | |
Collapse
|
167
|
Song N, Armstrong AD, Li F, Ouyang H, Niyibizi C. Multipotent mesenchymal stem cells from human subacromial bursa: potential for cell based tendon tissue engineering. Tissue Eng Part A 2013; 20:239-49. [PMID: 23865619 DOI: 10.1089/ten.tea.2013.0197] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rotator cuff injuries are a common clinical problem either as a result of overuse or aging. Biological approaches to tendon repair that involve use of scaffolding materials or cell-based approaches are currently being investigated. The cell-based approaches are focused on applying multipotent mesenchymal stem cells (MSCs) mostly harvested from bone marrow. In the present study, we focused on characterizing cells harvested from tissues associated with rotator cuff tendons based on an assumption that these cells would be more appropriate for tendon repair. We isolated MSCs from bursa tissue associated with rotator cuff tendons and characterized them for multilineage differentiation in vitro and in vivo. Human bursa was obtained from patients undergoing rotator cuff surgery and cells within were isolated using collagenase and dispase digestion. The cells isolated from the tissues were characterized for osteoblastic, adipogenic, chondrogenic, and tenogenic differentiation in vitro and in vivo. The results showed that the cells isolated from bursa tissue exhibited MSCs characteristics as evidenced by the expression of putative cell surface markers attributed to MSCs. The cells exhibited high proliferative capacity and differentiated toward cells of mesenchymal lineages with high efficiency. Bursa-derived cells expressed markers of tenocytes when treated with bone morphogenetic protein-12 (BMP-12) and assumed aligned morphology in culture. Bursa cells pretreated with BMP-12 and seeded in ceramic scaffolds formed extensive bone, as well as tendon-like tissue in vivo. Bone formation was demonstrated by histological analysis and immunofluorescence for DMP-1 in tissue sections made from the scaffolds seeded with the cells. Tendon-like tissue formed in vivo consisted of parallel collagen fibres typical of tendon tissues. Bursa-derived cells also formed a fibrocartilagenous tissue in the ceramic scaffolds. Taken together, the results demonstrate a new source of MSCs with a high potential for application in tendon repair.
Collapse
Affiliation(s)
- Na Song
- 1 College of Animal Sciences, Jilin University , Changchun, China
| | | | | | | | | |
Collapse
|
168
|
Kim YS, Lee HJ, Ok JH, Park JS, Kim DW. Survivorship of implanted bone marrow-derived mesenchymal stem cells in acute rotator cuff tear. J Shoulder Elbow Surg 2013; 22:1037-45. [PMID: 23246275 DOI: 10.1016/j.jse.2012.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 11/05/2012] [Accepted: 11/11/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND This study examined whether a mesenchymal stem cells (MSCs)-seeded 3-dimensional construct into a tendon defect would promote cellular differentiation and matrix healing. MATERIALS AND METHODS Bone marrow was harvested from the iliac crests of 2 male New Zealand White rabbits. The MSCs were cultured, and an open-cell polylactic acid (OPLA) scaffold was encapsulated with these cells. The injury model was a 5-mm × 5-mm-sized full-thickness window defect in the central part of each rotator cuff tendon. The defects on the right side were grafted with the autologous MSCs-seeded OPLA scaffold implant and a biodegradable suture. The same procedure was done on the left side, except a cell-free OPLA scaffold was used. Three rabbits were used as controls, without treatment of the tendon defect. Samples were harvested at 2, 4, and 6 weeks for analysis, which included evaluation of gross morphology, fluorescent analysis, histologic assessment, and immunohistochemistry studies. RESULTS The expression of immunohistochemical stainings for collagen I was higher in the scaffold with MSCs than in the scaffold without MSCs. The expression of collagen II, however, was not different between the scaffolds with and without MSCs. CONCLUSIONS Even though this is a short-term study, we demonstrated that many MSCs in the scaffold survived after implantation in an acute rabbit rotator cuff defect. Furthermore, the generation of type I collagen increased more in the scaffold with MSCs than it did in the scaffold without MSCs. MSCs are thought to promote tendon healing by producing type I collagen when they are applied at the tendon defect.
Collapse
Affiliation(s)
- Yang-Soo Kim
- Department of Orthopedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | | | | | | | | |
Collapse
|
169
|
Guerquin MJ, Charvet B, Nourissat G, Havis E, Ronsin O, Bonnin MA, Ruggiu M, Olivera-Martinez I, Robert N, Lu Y, Kadler KE, Baumberger T, Doursounian L, Berenbaum F, Duprez D. Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J Clin Invest 2013; 123:3564-76. [PMID: 23863709 DOI: 10.1172/jci67521] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 05/21/2013] [Indexed: 12/27/2022] Open
Abstract
Tendon formation and repair rely on specific combinations of transcription factors, growth factors, and mechanical parameters that regulate the production and spatial organization of type I collagen. Here, we investigated the function of the zinc finger transcription factor EGR1 in tendon formation, healing, and repair using rodent animal models and mesenchymal stem cells (MSCs). Adult tendons of Egr1-/- mice displayed a deficiency in the expression of tendon genes, including Scx, Col1a1, and Col1a2, and were mechanically weaker compared with their WT littermates. EGR1 was recruited to the Col1a1 and Col2a1 promoters in postnatal mouse tendons in vivo. Egr1 was required for the normal gene response following tendon injury in a mouse model of Achilles tendon healing. Forced Egr1 expression programmed MSCs toward the tendon lineage and promoted the formation of in vitro-engineered tendons from MSCs. The application of EGR1-producing MSCs increased the formation of tendon-like tissues in a rat model of Achilles tendon injury. We provide evidence that the ability of EGR1 to promote tendon differentiation is partially mediated by TGF-β2. This study demonstrates EGR1 involvement in adult tendon formation, healing, and repair and identifies Egr1 as a putative target in tendon repair strategies.
Collapse
|
170
|
Juneja SC. Cellular distribution and gene expression profile during flexor tendon graft repair: A novel tissue engineering approach(*). J Tissue Eng 2013; 4:2041731413492741. [PMID: 23762501 PMCID: PMC3677358 DOI: 10.1177/2041731413492741] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
To understand scar and adhesion formation during postsurgical period of intrasynovial tendon graft healing, a murine model of flexor digitorum longus tendon graft repair was developed, by utilizing flexor digitorum longus tendon allograft from donor Rosa26/+ mouse, and the healing process at days 3, 7, 14, 21, 28, and 35 post surgery of host wild-type mouse was followed. Using X-gal staining, β-galactosidase positive cells of allograft origin were detectable in tissue sections of grafted tendon post surgery. Graft healing was assessed for the cellular density, scar and adhesion formation, and their interaction with surrounding tissue. From histological analysis, it was evident that the healing of intrasynovial flexor digitorum longus tendon graft takes place in an interactive environment of donor graft, host tendon, and host surrounding tissue. A total of 32 genes, analyzed by RNA analysis, expressed during healing process. Particularly, Alk1, Postn, Tnc, Tppp3, and Mkx will be further investigated for therapeutical value in reducing scars and adhesions.
Collapse
Affiliation(s)
- Subhash C Juneja
- The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA ; Division of Orthopaedic Surgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
171
|
Manning C, Schwartz A, Liu W, Xie J, Havlioglu N, Sakiyama-Elbert S, Silva M, Xia Y, Gelberman R, Thomopoulos S. Controlled delivery of mesenchymal stem cells and growth factors using a nanofiber scaffold for tendon repair. Acta Biomater 2013; 9:6905-14. [PMID: 23416576 DOI: 10.1016/j.actbio.2013.02.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/02/2013] [Accepted: 02/05/2013] [Indexed: 12/11/2022]
Abstract
Outcomes after tendon repair are often unsatisfactory, despite improvements in surgical techniques and rehabilitation methods. Recent studies aimed at enhancing repair have targeted the paucicellular nature of tendon for enhancing repair; however, most approaches for delivering growth factors and cells have not been designed for dense connective tissues such as tendon. Therefore, we developed a scaffold capable of delivering growth factors and cells in a surgically manageable form for tendon repair. Platelet-derived growth factor BB (PDGF-BB), along with adipose-derived mesenchymal stem cells (ASCs), were incorporated into a heparin/fibrin-based delivery system (HBDS). This hydrogel was then layered with an electrospun nanofiber poly(lactic-co-glycolic acid) (PLGA) backbone. The HBDS allowed for the concurrent delivery of PDGF-BB and ASCs in a controlled manner, while the PLGA backbone provided structural integrity for surgical handling and tendon implantation. In vitro studies verified that the cells remained viable, and that sustained growth factor release was achieved. In vivo studies in a large animal tendon model verified that the approach was clinically relevant, and that the cells remained viable in the tendon repair environment. Only a mild immunoresponse was seen at dissection, histologically, and at the mRNA level; fluorescently labeled ASCs and the scaffold were found at the repair site 9days post-operatively; and increased total DNA was observed in ASC-treated tendons. The novel layered scaffold has the potential for improving tendon healing due to its ability to deliver both cells and growth factors simultaneously in a surgically convenient manner.
Collapse
|
172
|
Huang TF, Yew TL, Chiang ER, Ma HL, Hsu CY, Hsu SH, Hsu YT, Hung SC. Mesenchymal stem cells from a hypoxic culture improve and engraft Achilles tendon repair. Am J Sports Med 2013; 41:1117-25. [PMID: 23539044 DOI: 10.1177/0363546513480786] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (MSCs) from humans cultured under hypoxic conditions increase bone healing capacity. HYPOTHESIS Rat MSCs cultured under hypoxic conditions increase the tendon healing potential after transplantation into injured Achilles tendons. STUDY DESIGN Controlled laboratory study. METHODS Biomechanical testing, histological analysis, and bromodeoxyuridine (BrdU) labeling/collagen immunohistochemistry were performed to demonstrate that augmentation of an Achilles tendon rupture site with hypoxic MSCs increases healing capacity compared with normoxic MSCs and controls. Fifty Sprague-Dawley rats were used for the experiments, with 2 rats as the source of bone marrow MSCs. The cut Achilles tendons in the rats were equally divided into 3 groups: hypoxic MSC, normoxic MSC, and nontreated (vehicle control). The uncut tendons served as normal uncut controls. Outcome measures included mechanical testing in 24 rats, histological analysis, and BrdU labeling/collagen immunohistochemistry in another 24 rats. RESULTS The ultimate failure load in the hypoxic MSC group was significantly greater than that in the nontreated or normoxic MSC group at 2 weeks after incision (2.1 N/mm(2) vs 1.1 N/mm(2) or 1.9 N/mm(2), respectively) and at 4 weeks after incision (5.5 N/mm(2) vs 1.7 N/mm(2) or 2.7 N/mm(2), respectively). The ultimate failure load in the hypoxic MSC group at 4 weeks after incision (5.5 N/mm(2)) was close to but still significantly less than that of the uncut tendon (7.2 N/mm(2)). Histological analysis as determined by the semiquantitative Bonar histopathological grading scale revealed that the hypoxic MSC group underwent a significant improvement in Achilles tendon healing both at 2 and 4 weeks when compared with the nontreated or normoxic MSC group via statistical analysis. Immunohistochemistry further demonstrated that the hypoxic and normoxic MSC groups had stronger immunostaining for type I and type III collagen than did the nontreated group both at 2 and 4 weeks after incision. Moreover, BrdU labeling of MSCs before injection further determined the incorporation and retention of transplanted cells at the rupture site. CONCLUSION Transplantation of hypoxic MSCs may be a better and more readily available treatment than normoxic MSCs for Achilles tendon ruptures. CLINICAL RELEVANCE The present study provides evidence that transplantation of hypoxic MSCs may be a promising therapy for the treatment of Achilles tendon ruptures.
Collapse
Affiliation(s)
- Tung-Fu Huang
- Department of Surgery, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Baumgarten KM, Oliver HA, Foley J, Chen DG, Autenried P, Duan S, Heiser P. Human growth hormone may be detrimental when used to accelerate recovery from acute tendon-bone interface injuries. J Bone Joint Surg Am 2013; 95:783-9. [PMID: 23636184 DOI: 10.2106/jbjs.l.00222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND There have been few scientific studies that have examined usage of human growth hormone to accelerate recovery from injury. The hypothesis of this study was that human growth hormone would accelerate tendon-to-bone healing compared with control animals treated with placebo in a rat model of acute rotator cuff injury repair. METHODS Seventy-two rats underwent repair of acute rotator cuff injuries and were randomized into the following postoperative dosing regimens: placebo, and human growth hormone at 0.1, 1, 2, 5, and 10 mg/kg/day, administered subcutaneously once per day for fourteen days (Protocol 1). An additional twenty-four rats were randomized to receive either (1) placebo or (2) human growth hormone at 5 mg/kg, administered subcutaneously twice per day for seven days preoperatively and twenty-eight days postoperatively (Protocol 2). All rats were killed twenty-eight days postoperatively. Mechanical testing was performed. Ultimate stress, ultimate force, stiffness, energy to failure, and ultimate distension were determined. RESULTS For Protocol 1, analysis of variance testing showed no significant difference between the groups with regard to ultimate stress, ultimate force, stiffness, energy to failure, or ultimate distension. In Protocol 2, ultimate force to failure was significantly worse in the human growth hormone group compared with the placebo group (21.1 ± 5.85 versus 26.3 ± 5.47 N; p = 0.035). Failure was more likely to occur through the bone than the tendon-bone interface in the human growth hormone group compared with the placebo group (p = 0.001). No significant difference was found for ultimate stress, ultimate force, stiffness, energy to failure, or ultimate distension between the groups in Protocol 2. CONCLUSIONS In this rat model of acute tendon-bone injury repair, daily subcutaneous postoperative human growth hormone treatment for fourteen days failed to demonstrate a significant difference in any biomechanical parameter compared with placebo. Furthermore, subcutaneous administration of 5 mg/kg of human growth hormone twice daily from seven days preoperatively until twenty-eight days postoperatively demonstrated lower loads to ultimate failure and a higher risk of bone fracture failure compared with placebo.
Collapse
Affiliation(s)
- Keith M Baumgarten
- Orthopedic Institute, Section of Sports Medicine and Shoulder Surgery, 810 East 23rd Street, Sioux Falls, SD 57117, USA.
| | | | | | | | | | | | | |
Collapse
|
174
|
Intraoperative biologische Augmentation an Sehnen und Enthesen. ARTHROSKOPIE 2013. [DOI: 10.1007/s00142-012-0735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
175
|
Lu HH, Thomopoulos S. Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng 2013; 15:201-26. [PMID: 23642244 DOI: 10.1146/annurev-bioeng-071910-124656] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue-to-bone interface, and concludes with a summary of challenges and future directions.
Collapse
Affiliation(s)
- Helen H Lu
- Columbia University, Department of Biomedical Engineering, New York, NY 10027, USA.
| | | |
Collapse
|
176
|
Beitzel K, McCarthy MBR, Cote MP, Durant TJS, Chowaniec DM, Solovyova O, Russell RP, Arciero RA, Mazzocca AD. Comparison of mesenchymal stem cells (osteoprogenitors) harvested from proximal humerus and distal femur during arthroscopic surgery. Arthroscopy 2013; 29:301-8. [PMID: 23290182 DOI: 10.1016/j.arthro.2012.08.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 08/17/2012] [Accepted: 08/22/2012] [Indexed: 02/02/2023]
Abstract
PURPOSE The aim of this study was to examine the relations between age, gender, and number of viable mesenchymal stem cells (MSCs) in concentrated bone marrow (BM) obtained from the proximal humerus and distal femur during arthroscopic surgery. METHODS BM was aspirated from either the proximal humerus (n = 55) or distal femur (n = 29) during arthroscopic surgery in 84 patients (51.3 ± 11.6 years). MSCs were obtained from fractionated bone marrow after a 5-minute spin at 1,500 rpm. Volume of BM and number of nucleated cells (NCs) were calculated, and samples were cultured for 6 days, after which point colony-forming units (CFUs) were quantified and fluorescence-activated cell sorting (FACS) analysis was performed. Simple linear regression was used to explore relations between age, gender, volume of aspirated BM, and MSCs per milliliter. RESULTS BM aspirations yielded a mean quantity of 22.6 ± 12.3 mL. After centrifugation, 30.0 ± 16.7 × 10(6) nucleated cells/mL of concentrated BM were harvested. The proximal humerus provided 38.7 ± 52.6 × 10(6), and the distal femur, 25.9 ± 14.3 × 10(6), for an overall 766.3 ± 545.3 MSCs/mL of concentrated BM (proximal humerus: 883.9 ± 577.6, distal femur: 551.3 ± 408.1). Values did not significantly differ by age, gender, or donor site. CONCLUSIONS Arthroscopic aspiration of bone marrow from the proximal humerus and distal femur is a reproducible technique and yields reliable concentrations of MSCs. The use of an intraoperative concentration method resulted in consistent amounts of MSCs in all clinically relevant age groups without a significant drop of the number of isolated MSCs. CLINICAL RELEVANCE Human MSCs derived from concentrated bone marrow aspirate are a promising biological addition that may have practical use in the future of soft tissue augmentation. Arthroscopic techniques for bone marrow aspiration that do not require an additional surgical site for aspiration (e.g., iliac crest) or a second operative procedure may facilitate future use of MSCs in arthroscopic surgery.
Collapse
Affiliation(s)
- Knut Beitzel
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Madry H, Kohn D, Cucchiarini M. Direct FGF-2 gene transfer via recombinant adeno-associated virus vectors stimulates cell proliferation, collagen production, and the repair of experimental lesions in the human ACL. Am J Sports Med 2013; 41:194-202. [PMID: 23172005 DOI: 10.1177/0363546512465840] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Basic fibroblast growth factor (FGF-2) is a powerful stimulator of fibroblast proliferation and type I/III collagen production. HYPOTHESIS Overexpression of FGF-2 via direct recombinant adeno-associated virus (rAAV) vector-mediated gene transfer enhances the healing of experimental lesions to the human anterior cruciate ligament (ACL). STUDY DESIGN Controlled laboratory study. METHODS rAAV vectors carrying a human FGF-2 sequence or the lacZ marker gene were applied to primary human ACL fibroblasts in vitro and to intact or experimentally injured human ACL explants in situ to evaluate the efficacy and duration of transgene expression and the potential effects of FGF-2 treatment upon the proliferative, metabolic, and regenerative activities in these systems. RESULTS Sustained, effective dose-dependent lacZ expression was achieved in all systems tested (up to 96% ± 2% in vitro and 80%-85% in situ for at least 30 days). rAAV allowed for continuous FGF-2 production both in vitro and in the intact ACL in situ (32.7 ± 1.4 and 33.1 ± 0.8 pg/mL/24 h, respectively, ie, up to 41-fold more than in the controls at day 30; always P ≤ .001), leading to significantly and durably enhanced levels of proliferation and type I/III collagen production vis-à-vis lacZ (at least 3- and 4-fold increases at day 30, respectively; always P ≤ .001). Most notably, rAAV FGF-2 promoted a significant, long-term production of the factor in experimental ACL lesions (92.7 ± 3.9 pg/mL/24 h, ie, about 5-fold more than in the controls; P ≤ .001) associated with enhanced levels of proliferation and type I/III collagen synthesis (at least 2- and 4-fold increases at day 30, respectively; always P ≤ .001). Remarkably, the FGF-2 treatment allowed for a decrease in the amplitude of such lesions possibly because of the increased expression in contractile α-smooth muscle actin, ligament-specific transcription factor scleraxis, and nuclear factor-κB for proliferation and collagen deposition, which are all markers commonly induced in response to injury. CONCLUSION Efficient, stable FGF-2 expression via rAAV enhances the healing of experimental human ACL lesions by activating key cellular and metabolic processes. CLINICAL RELEVANCE This approach has potential value for the development of novel, effective treatments for ligament reconstruction.
Collapse
Affiliation(s)
- Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | | | | |
Collapse
|
178
|
Gross G, Hoffmann A. Therapeutic Strategies for Tendon Healing Based on Novel Biomaterials, Factors and Cells. Pathobiology 2013; 80:203-10. [DOI: 10.1159/000347059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
179
|
Protzman NM, Stopyra GA, Hoffman JK. Biologically enhanced healing of the human rotator cuff: 8-month postoperative histological evaluation. Orthopedics 2013; 36:38-41. [PMID: 23276334 DOI: 10.3928/01477447-20121217-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Given the high percentage of persistent rotator cuff defects, investigators have begun exploring techniques that use biologic adjuvants to recreate a biomechanically equivalent layer of connective tissue. To evaluate the efficacy of a mesenchymal stem cell, platelet-rich plasma, and dermal allograft construct, a histological comparison of native rotator cuff tissue and biologically enhanced rotator cuff tissue was performed. The evaluation indicated that this treatment modality in conjunction with an adjusted rehabilitation protocol may successfully recreate a transition zone and restore a synovial lining similar to native tissue.
Collapse
Affiliation(s)
- Nicole M Protzman
- Department of Clinical Education and Research, Coordinated Health, 2775 Schoenersville Rd, Bethlehem, PA 18017, USA.
| | | | | |
Collapse
|
180
|
Abstract
The rotator cuff enthesis is not reestablished after a rotator cuff repair. Instead, a scar-mediated healing response occurs at the tendon-bone interface, which is notably weaker than the native enthesis and thus more prone to failure. Biological augmentation through growth factors, AASs, biomimetic scaffolds, or siRNA therapy has the potential to enhance the healing response. The ultimate key, however, is in determining which of these enables a more regenerative healing response of the native tissue rather than enhanced production of scar tissue. In addition, the optimal combination of factors, dosing, and delivery methods remains to be clearly elucidated. Biological augmentation and tissue engineering for tendon healing remains promising, but much work still needs to be done.
Collapse
|
181
|
Spaas JH, Guest DJ, Van de Walle GR. Tendon Regeneration in Human and Equine Athletes. Sports Med 2012; 42:871-90. [DOI: 10.1007/bf03262300] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
182
|
Gumucio JP, Davis ME, Bradley JR, Stafford PL, Schiffman CJ, Lynch EB, Claflin DR, Bedi A, Mendias CL. Rotator cuff tear reduces muscle fiber specific force production and induces macrophage accumulation and autophagy. J Orthop Res 2012; 30:1963-70. [PMID: 22696414 PMCID: PMC3449033 DOI: 10.1002/jor.22168] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/21/2012] [Indexed: 02/04/2023]
Abstract
Full-thickness tears to the rotator cuff can cause severe pain and disability. Untreated tears progress in size and are associated with muscle atrophy and an infiltration of fat to the area, a condition known as "fatty degeneration." To improve the treatment of rotator cuff tears, a greater understanding of the changes in the contractile properties of muscle fibers and the molecular regulation of fatty degeneration is essential. Using a rat model of rotator cuff injury, we measured the force generating capacity of individual muscle fibers and determined changes in muscle fiber type distribution that develop after a full thickness rotator cuff tear. We also measured the expression of mRNA and miRNA transcripts involved in muscle atrophy, lipid accumulation, and matrix synthesis. We hypothesized that a decrease in specific force of rotator cuff muscle fibers, an accumulation of type IIb fibers, and an upregulation in fibrogenic, adipogenic, and inflammatory gene expression occur in torn rotator cuff muscles. Thirty days following rotator cuff tear, we observed a reduction in muscle fiber force production, an induction of fibrogenic, adipogenic, and autophagocytic mRNA and miRNA molecules, and a dramatic accumulation of macrophages in areas of fat accumulation.
Collapse
Affiliation(s)
- Jonathan P Gumucio
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor
| | - Max E Davis
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor
| | - Joshua R Bradley
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor
| | | | - Corey J Schiffman
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor
| | - Evan B Lynch
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor
| | - Dennis R Claflin
- Department of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor,Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Asheesh Bedi
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor
| | - Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor,Corresponding author: Christopher L Mendias, PhD, Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI 48109-2200, , 734-764-3250 office, 734-647-0003 fax
| |
Collapse
|
183
|
Chen HS, Chen YL, Harn HJ, Lin JS, Lin SZ. Stem cell therapy for tendon injury. Cell Transplant 2012; 22:677-84. [PMID: 23051852 DOI: 10.3727/096368912x655118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tendon injury may occur suddenly or progressively, and can be divided into tendon rupture or tendinopathy based on the severity of injury. It is frequently found in professional or nonprofessional people who are making repetitive movements. In aged people, tendon degeneration becomes obvious; their tendon injuries are then frequently evident. No effective therapies for tendon injury are currently available. In this article, we review the tendon structure, mechanisms of tendon injury, and tendon healing process. More importantly, cell-based therapies for tendon injury are fully addressed, which will play an important role for tendon therapy in the near future.
Collapse
Affiliation(s)
- Hsin-Shui Chen
- Department of Physical Medicine and Rehabilitation, China Medical University Beigang Hospital, Yunlin, Taiwan, ROC
| | | | | | | | | |
Collapse
|
184
|
Schaer M, Schober M, Berger S, Boileau P, Zumstein MA. Biologically based strategies to augment rotator cuff tears. INTERNATIONAL JOURNAL OF SHOULDER SURGERY 2012; 6:51-60. [PMID: 22787334 PMCID: PMC3391785 DOI: 10.4103/0973-6042.96995] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lesions of the rotator cuff (RC) are among the most frequent tendon injuries. In spite of the developments in both open and arthroscopic surgery, RC repair still very often fails. In order to reduce the failure rate after surgery, several experimental in vitro and in vivo therapy methods have been developed for biological improvement of the reinsertion. This article provides an overview of the current evidence for augmentation of RC reconstruction with growth factors. Furthermore, potential future therapeutic approaches are discussed. We performed a comprehensive search of the PubMed database using various combinations of the keywords “tendon,” “rotator cuff,” “augmentation,” “growth factor,” “platelet-rich fibrin,” and “platelet-rich plasma” for publications up to 2011. Given the linguistic capabilities of the research team, we considered publications in English, German, French, and Spanish. We excluded literature reviews, case reports, and letters to the editor.
Collapse
Affiliation(s)
- M Schaer
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern, Switzerland
| | | | | | | | | |
Collapse
|
185
|
Montgomery SR, Petrigliano FA, Gamradt SC. Failed Rotator Cuff Surgery, Evaluation and Decision Making. Clin Sports Med 2012; 31:693-712. [DOI: 10.1016/j.csm.2012.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
186
|
Affiliation(s)
- Pramod B. Voleti
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6081;
| | - Mark R. Buckley
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6081;
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6081;
| |
Collapse
|
187
|
Ahmad Z, Wardale J, Brooks R, Henson F, Noorani A, Rushton N. Exploring the application of stem cells in tendon repair and regeneration. Arthroscopy 2012; 28:1018-29. [PMID: 22381688 DOI: 10.1016/j.arthro.2011.12.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 11/23/2011] [Accepted: 12/02/2011] [Indexed: 02/08/2023]
Abstract
PURPOSE To conduct a systematic review of the current evidence for the effects of stem cells on tendon healing in preclinical studies and human studies. METHODS A systematic search of the PubMed, CINAHL (Cumulative Index to Nursing and Allied Health Literature), Cochrane, and Embase databases was performed for stem cells and tendons with their associated terminology. Data validity was assessed, and data were collected on the outcomes of trials. RESULTS A total of 27 preclinical studies and 5 clinical studies met the inclusion criteria. Preclinical studies have shown that stem cells are able to survive and differentiate into tendon cells when placed into a new tendon environment, leading to regeneration and biomechanical benefit to the tendon. Studies have been reported showing that stem cell therapy can be enhanced by molecular signaling adjunct, mechanical stimulation of cells, and the use of augmentation delivery devices. Studies have also shown alternatives to the standard method of bone marrow-derived mesenchymal stem cell therapy. Of the 5 human studies, only 1 was a randomized controlled trial, which showed that skin-derived tendon cells had a greater clinical benefit than autologous plasma. One cohort study showed the benefit of stem cells in rotator cuff tears and another in lateral epicondylitis. Two of the human studies showed how stem cells were successfully extracted from the humerus and, when tagged with insulin, became tendon cells. CONCLUSIONS The current evidence shows that stem cells can have a positive effect on tendon healing. This is most likely because stem cells have regeneration potential, producing tissue that is similar to the preinjury state, but the results can be variable. The use of adjuncts such as molecular signaling, mechanical stimulation, and augmentation devices can potentially enhance stem cell therapy. Initial clinical trials are promising, with adjuncts for stem cell therapy in development.
Collapse
Affiliation(s)
- Zafar Ahmad
- Orthopaedic Research Unit, Addenbrooke's Hospital, Cambridge, England.
| | | | | | | | | | | |
Collapse
|
188
|
Killian ML, Cavinatto L, Galatz LM, Thomopoulos S. Recent advances in shoulder research. Arthritis Res Ther 2012; 14:214. [PMID: 22709417 PMCID: PMC3446497 DOI: 10.1186/ar3846] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Shoulder pathology is a growing concern for the aging population, athletes, and laborers. Shoulder osteoarthritis and rotator cuff disease represent the two most common disorders of the shoulder leading to pain, disability, and degeneration. While research in cartilage regeneration has not yet been translated clinically, the field of shoulder arthroplasty has advanced to the point that joint replacement is an excellent and viable option for a number of pathologic conditions in the shoulder. Rotator cuff disease has been a significant focus of research activity in recent years, as clinicians face the challenge of poor tendon healing and irreversible changes associated with rotator cuff arthropathy. Future treatment modalities involving biologics and tissue engineering hold further promise to improve outcomes for patients suffering from shoulder pathologies.
Collapse
Affiliation(s)
- Megan L Killian
- Department of Orthopaedic Surgery, Washington University, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
189
|
Rotator cuff: biology and current arthroscopic techniques. Knee Surg Sports Traumatol Arthrosc 2012; 20:1003-11. [PMID: 22270674 DOI: 10.1007/s00167-012-1901-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/10/2012] [Indexed: 12/19/2022]
Abstract
UNLABELLED The present article summarizes current trends in arthroscopic rotator cuff repairs focusing on the used repair technique, potential influencing factors on the results, and long-term outcome after reconstruction of the rotator cuff. Moreover, different treatment options for the treatment for irreparable rotator cuff ruptures were described, and the results of additional augmentation of the repairs with platelet-rich plasma were critically analyzed. Based on the current literature, double-row repairs did not achieve superior clinical results compared to single-row repairs neither in the clinical results nor in the re-rupture rate. Multiple factors such as age, fatty infiltration, and initial rupture size might influence the results. If the rupture is not repairable, various options were described including cuff debridement, partial repair, tuberoplasty, or tendon transfers. The additional augmentation with platelet-rich plasma did not reveal any significant differences in the healing rate compared to conventional rotator cuff repairs. LEVEL OF EVIDENCE IV.
Collapse
|
190
|
Abstract
Failure of rotator cuff repair is a well-documented problem. Successful repair is impeded by muscle atrophy, fat infiltration, devascularization, and scar tissue formation throughout the fibrocartilagenous transition zone. This case study exemplifies a technique to biologically augment rotator cuff healing. Clinically, pain and function improved. Postoperative magnetic resonance imaging evaluation confirmed construct integrity. Biological enhancement of the healing process and physiologically based alterations in rehabilitation protocols can successfully treat complicated rotator cuff tears. Prospective studies with larger sample sizes and continued follow-up are necessary to assess the definitive efficacy of this treatment modality.
Collapse
Affiliation(s)
- Nicole M Gordon
- Department of Clinical Education and Research, Coordinated Health, 2775 Schoenersville Rd, Bethlehem, PA 18017, USA.
| | | | | |
Collapse
|
191
|
Beitzel K, Chowaniec DM, McCarthy MB, Cote MP, Russell RP, Obopilwe E, Imhoff AB, Arciero RA, Mazzocca AD. Stability of double-row rotator cuff repair is not adversely affected by scaffold interposition between tendon and bone. Am J Sports Med 2012; 40:1148-54. [PMID: 22374944 DOI: 10.1177/0363546512437835] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Rotator cuff reconstructions may be improved by adding growth factors, cells, or other biologic factors into the repair zone. This usually requires a biological carrier (scaffold) to be integrated into the construct and placed in the area of tendon-to-bone healing. This needs to be done without affecting the constructs mechanics. Hypothesis/ PURPOSE The hypothesis was that scaffold placement, as an interposition, has no adverse effects on biomechanical properties of double-row rotator cuff repair. The purpose of this study was to examine the effect of scaffold interposition on the initial strength of rotator cuff repairs. STUDY DESIGN Controlled laboratory study. METHODS Twenty-five fresh-frozen shoulders (mean age: 65.5 ± 8.9 years) were randomly assigned to 5 groups. Groups were chosen to represent a broad spectrum of commonly used scaffold types: (1) double-row repair without augmentation, (2) double-row repair with interposition of a fibrin clot (Viscogel), (3) double-row repair with interposition of a collagen scaffold (Mucograft) between tendon and bone, (4) double-row repair with interposition of human dermis patch (ArthroFlex) between tendon and bone, and (5) double-row repair with human dermis patch (ArthroFlex) placed on top of the repair. Cyclic loading to measure displacement was performed to 3000 cycles at 1 Hz with an applied 10- to 100-N load. The ultimate load to failure was determined at a rate of 31 mm/min. RESULTS There were no significant differences in mean displacement under cyclic loading, slope, or energy absorbed to failure between all groups (P = .128, P = .981, P = .105). Ultimate load to failure of repairs that used the collagen patch as an interposition (573.3 ± 75.6 N) and a dermis patch on top of the reconstruction (575.8 ± 22.6 N) was higher compared with the repair without a scaffold (348.9 ± 98.8 N; P = .018 and P = .025). No significant differences were found for repairs with the fibrin clot as an interposition (426.9 ± 103.6 N) and the decellularized dermis patch as an interposition (469.9 ± 148.6 N; P = .73 and P = .35). CONCLUSION Scaffold augmentation did not adversely affect the zero time strength of the tested standard double-row rotator cuff repairs. An increased ultimate load to failure was observed for 2 of the augmentation methods (collagen patch as an interposition and decellularized dermis patch on top of the reconstruction) compared with the nonaugmented repairs. CLINICAL RELEVANCE Scaffolds intended for application of growth factors or cellular components in a repair situation did not adversely jeopardize the stability of the operative construct.
Collapse
Affiliation(s)
- Knut Beitzel
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Beitzel K, Mazzocca A. Möglichkeiten der biologischen Augmentation von RM-Rekonstruktionen. ARTHROSKOPIE 2012. [DOI: 10.1007/s00142-011-0671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
193
|
Mendias CL, Gumucio JP, Bakhurin KI, Lynch EB, Brooks SV. Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts. J Orthop Res 2012; 30:606-12. [PMID: 21913219 PMCID: PMC3245815 DOI: 10.1002/jor.21550] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 08/22/2011] [Indexed: 02/04/2023]
Abstract
Scleraxis is a basic helix-loop-helix transcription factor that plays a central role in promoting fibroblast proliferation and matrix synthesis during the embryonic development of tendons. Mice with a targeted inactivation of scleraxis (Scx(-/-)) fail to properly form limb tendons, but the role that scleraxis has in regulating the growth and adaptation of tendons of adult organisms is unknown. To determine if scleraxis expression changes in response to a physiological growth stimulus to tendons, we subjected adult mice that express green fluorescent protein (GFP) under the control of the scleraxis promoter (ScxGFP) to a 6-week-treadmill training program designed to induce adaptive growth in Achilles tendons. Age matched sedentary ScxGFP mice were used as controls. Scleraxis expression was sparsely observed in the epitenon region of sedentary mice, but in response to treadmill training, scleraxis was robustly expressed in fibroblasts that appeared to be emerging from the epitenon and migrating into the superficial regions of tendon fascicles. Treadmill training also led to an increase in scleraxis, tenomodulin, and type I collagen gene expression as measured by qPCR. These results suggest that in addition to regulating the embryonic formation of limb tendons, scleraxis also appears to play an important role in the adaptation of adult tendons to physiological loading.
Collapse
Affiliation(s)
- Christopher L Mendias
- Orthopaedic Surgery, University of Michigan, Ann Arbor, 48109,Kinesiology, University of Michigan, Ann Arbor, 48109,Corresponding author Christopher Mendias, PhD, ATC, University of Michigan, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI 48109-2200, 734-764-3250 office, 734-647-0003 fax
| | - Jonathan P Gumucio
- Orthopaedic Surgery, University of Michigan, Ann Arbor, 48109,Kinesiology, University of Michigan, Ann Arbor, 48109
| | | | - Evan B Lynch
- Orthopaedic Surgery, University of Michigan, Ann Arbor, 48109
| | - Susan V Brooks
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, 48109,Biomedical Engineering, University of Michigan, Ann Arbor, 48109
| |
Collapse
|
194
|
Moran CJ, Barry FP, Maher SA, Shannon FJ, Rodeo SA. Advancing regenerative surgery in orthopaedic sports medicine: the critical role of the surgeon. Am J Sports Med 2012; 40:934-44. [PMID: 22085730 DOI: 10.1177/0363546511426677] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The constant desire to improve outcomes in orthopaedic sports medicine requires us to continuously consider the challenges faced in the surgical repair or reconstruction of soft tissue and cartilaginous injury. In many cases, surgical efforts targeted at restoring normal anatomy and functional status are ultimately impaired by the biological aspect of the natural history of these injuries, which acts as an obstacle to a satisfactory repair process after surgery. The clinical management of sports injuries and the delivery of appropriate surgical intervention are continuously evolving, and it is likely that the principles of regenerative medicine will have an increasing effect in this specialized field of orthopaedic practice going forward. Ongoing advances in arthroscopy and related surgical techniques should facilitate this process. In contrast to the concept of engineered replacement of entire tissues, it is probable that the earliest effect of regenerative strategies seen in clinical practice will involve biological augmentation of current operative techniques via a synergistic process that might be best considered "regenerative surgery." This article provides an overview of the principles of regenerative surgery in cartilage repair and related areas of orthopaedic surgery sports medicine. The possibilities and challenges of a gradual yet potential paradigm shift in treatment through the increased use of biological augmentation are considered. The translational process and critical role to be played by the specialist surgeon are also addressed. We conclude that increased understanding of the potential and challenges of regenerative surgery should allow those specializing in orthopaedic surgery sports medicine to lead the way in advancing the frontiers of biological strategies to enhance modern clinical care in an evidence-based manner.
Collapse
Affiliation(s)
- Cathal J Moran
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.
| | | | | | | | | |
Collapse
|
195
|
Abstract
Stem cell research plays an important role in orthopedic regenerative medicine today. Current literature provides us with promising results from animal research in the fields of bone, tendon, and cartilage repair. While early clinical results are already published for bone and cartilage repair, the data about tendon repair is limited to animal studies. The success of these techniques remains inconsistent in all three mentioned areas. This may be due to different application techniques varying from simple mesenchymal stem cell injection up to complex tissue engineering. However, the ideal carrier for the stem cells still remains controversial. This paper aims to provide a better understanding of current basic research and clinical data concerning stem cell research in bone, tendon, and cartilage repair. Furthermore, a focus is set on different stem cell application techniques in tendon reconstruction, cartilage repair, and filling of bone defects.
Collapse
|
196
|
Nixon AJ, Watts AE, Schnabel LV. Cell- and gene-based approaches to tendon regeneration. J Shoulder Elbow Surg 2012; 21:278-94. [PMID: 22244071 DOI: 10.1016/j.jse.2011.11.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 02/06/2023]
Abstract
Repair of rotator cuff tears in experimental models has been significantly improved by the use of enhanced biologic approaches, including platelet-rich plasma, bone marrow aspirate, growth factor supplements, and cell- and gene-modified cell therapy. Despite added complexity, cell-based therapies form an important part of enhanced repair, and combinations of carrier vehicles, growth factors, and implanted cells provide the best opportunity for robust repair. Bone marrow-derived mesenchymal stem cells provide a stimulus for repair in flexor tendons, but application in rotator cuff repair has not shown universally positive results. The use of scaffolds such as platelet-rich plasma, fibrin, and synthetic vehicles and the use of gene priming for stem cell differentiation and local anabolic and anti-inflammatory impact have both provided essential components for enhanced tendon and tendon-to-bone repair in rotator cuff disruption. Application of these research techniques in human rotator cuff injury has generally been limited to autologous platelet-rich plasma, bone marrow concentrate, or bone marrow aspirates combined with scaffold materials. Cultured mesenchymal progenitor therapy and gene-enhanced function have not yet reached clinical trials in humans. Research in several animal species indicates that the concept of gene-primed stem cells, particularly embryonic stem cells, combined with effective culture conditions, transduction with long-term integrating vectors carrying anabolic growth factors, and development of cells conditioned by use of RNA interference gene therapy to resist matrix metalloproteinase degradation, may constitute potential advances in rotator cuff repair. This review summarizes cell- and gene-enhanced cell research for tendon repair and provides future directions for rotator cuff repair using biologic composites.
Collapse
Affiliation(s)
- Alan J Nixon
- Comparative Orthopaedics Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
197
|
Gulotta LV, Chaudhury S, Wiznia D. Stem cells for augmenting tendon repair. Stem Cells Int 2011; 2012:291431. [PMID: 22190960 PMCID: PMC3236359 DOI: 10.1155/2012/291431] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/02/2011] [Indexed: 12/11/2022] Open
Abstract
Tendon healing is fraught with complications such as reruptures and adhesion formation due to the formation of scar tissue at the injury site as opposed to the regeneration of native tissue. Stem cells are an attractive option in developing cell-based therapies to improve tendon healing. However, several questions remain to be answered before stem cells can be used clinically. Specifically, the type of stem cell, the amount of cells, and the proper combination of growth factors or mechanical stimuli to induce differentiation all remain to be seen. This paper outlines the current literature on the use of stem cells for tendon augmentation.
Collapse
Affiliation(s)
- Lawrence V. Gulotta
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021, USA
| | - Salma Chaudhury
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021, USA
| | - Daniel Wiznia
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021, USA
| |
Collapse
|
198
|
Gulotta LV, Wiznia D, Cunningham M, Fortier L, Maher S, Rodeo SA. What's new in orthopaedic research. J Bone Joint Surg Am 2011; 93:2136-41. [PMID: 22262389 DOI: 10.2106/jbjs.k.00981] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Lawrence V Gulotta
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
199
|
Abstract
Rotator cuff repair is a common orthopedic procedure. Despite advances in surgical technique, the rotator cuff tendons often fail to heal after surgery. In recent years, a number of biologic strategies have been developed and tested to augment healing after rotator cuff repair. These strategies include allograft, extracellular matrices (ECMs), platelet rich plasma (PRP), growth factors, stem cells, and gene therapy. This chapter reviews the most current research on biologic augmentation of rotator cuff repair using these methods.
Collapse
Affiliation(s)
- Scott R Montgomery
- Orthopaedic Surgery Education Office, David Geffen School of Medicine at UCLA, Room 76-143 CHS 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA,
| | | | | |
Collapse
|
200
|
Alberton P, Popov C, Prägert M, Kohler J, Shukunami C, Schieker M, Docheva D. Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis. Stem Cells Dev 2011; 21:846-58. [PMID: 21988170 DOI: 10.1089/scd.2011.0150] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tendons and ligaments (T/L) are dense connective tissues of mesodermal origin. During embryonic development, the tendon-specific cells descend from a sub-set of mesenchymal progenitors condensed in the syndetome, a dorsolateral domain of the sclerotome. These cells are defined by the expression of the transcription factor scleraxis (Scx), which regulates tendon formation and several other characteristic genes, such as collagen type I, decorin, fibromodulin, and tenomodulin (Tnmd). In contrast to other mesenchymal progenitors, the genealogy and biology of the tenogenic lineage is not yet fully understood due to the lack of simple and efficient protocols enabling generation of progenitors in vitro. Here, we investigated whether the expression of Scx can lead to the direct commitment of mesenchymal stem cells (MSCs) into tendon progenitors. First, MSC derived from human bone marrow (hMSC) were lentivirally transduced with FLAG-Scx cDNA to establish 2 clonal cell lines, hMSC-Scx and hMSC-Mock. Subsequent to Scx transduction, hMSC underwent cell morphology change and had significantly reduced proliferation and clonogenicity. Gene expression analysis demonstrated that collagen type I and several T/L-related proteoglycans were upregulated in hMSC-Scx cells. When stimulated toward 3 different mesenchymal lineages, hMSC-Scx cells failed to differentiate into chondrocytes and osteoblasts, whereas adipogenic differentiation still occurred. Lastly, we detected a remarkable upregulation of the T/L differentiation gene Tnmd in hMSC-Scx. From these results, we conclude that Scx delivery results in the direct programming of hMSC into tendon progenitors and that the newly generated hMSC-Scx cell line can be a powerful and useful tool in T/L research.
Collapse
Affiliation(s)
- Paolo Alberton
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | | | | | | | | | | | | |
Collapse
|