151
|
Yeh CH, Moles R, Nicot C. Clinical significance of microRNAs in chronic and acute human leukemia. Mol Cancer 2016; 15:37. [PMID: 27179712 PMCID: PMC4867976 DOI: 10.1186/s12943-016-0518-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/01/2016] [Indexed: 01/01/2023] Open
Abstract
Small non-coding microRNAs (miRNAs) are epigenetic regulators that target specific cellular mRNA to modulate gene expression patterns and cellular signaling pathways. miRNAs are involved in a wide range of biological processes and are frequently deregulated in human cancers. Numerous miRNAs promote tumorigenesis and cancer progression by enhancing tumor growth, angiogenesis, invasion and immune evasion, while others have tumor suppressive effects (Hayes, et al., Trends Mol Med 20(8): 460-9, 2014; Stahlhut and Slack, Genome Med 5 (12): 111, 2013). The expression profile of cancer miRNAs can be used to predict patient prognosis and clinical response to treatment (Bouchie, Nat Biotechnol 31(7): 577, 2013). The majority of miRNAs are intracellular localized, however circulating miRNAs have been detected in various body fluids and represent new biomarkers of solid and hematologic cancers (Fabris and Calin, Mol Oncol 10(3):503-8, 2016; Allegra, et al., Int J Oncol 41(6): 1897-912, 2012). This review describes the clinical relevance of miRNAs, lncRNAs and snoRNAs in the diagnosis, prognosis and treatment response in patients with chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML) and acute adult T-cell leukemia (ATL).
Collapse
Affiliation(s)
- Chien-Hung Yeh
- Department of Pathology, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Ramona Moles
- Department of Pathology, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Christophe Nicot
- Department of Pathology, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
152
|
Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol 2016; 49:5-32. [PMID: 27175518 PMCID: PMC4902075 DOI: 10.3892/ijo.2016.3503] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects.
Collapse
|
153
|
Larrea E, Sole C, Manterola L, Goicoechea I, Armesto M, Arestin M, Caffarel MM, Araujo AM, Araiz M, Fernandez-Mercado M, Lawrie CH. New Concepts in Cancer Biomarkers: Circulating miRNAs in Liquid Biopsies. Int J Mol Sci 2016; 17:ijms17050627. [PMID: 27128908 PMCID: PMC4881453 DOI: 10.3390/ijms17050627] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022] Open
Abstract
The effective and efficient management of cancer patients relies upon early diagnosis and/or the monitoring of treatment, something that is often difficult to achieve using standard tissue biopsy techniques. Biological fluids such as blood hold great possibilities as a source of non-invasive cancer biomarkers that can act as surrogate markers to biopsy-based sampling. The non-invasive nature of these “liquid biopsies” ultimately means that cancer detection may be earlier and that the ability to monitor disease progression and/or treatment response represents a paradigm shift in the treatment of cancer patients. Below, we review one of the most promising classes of circulating cancer biomarkers: microRNAs (miRNAs). In particular, we will consider their history, the controversy surrounding their origin and biology, and, most importantly, the hurdles that remain to be overcome if they are really to become part of future clinical practice.
Collapse
Affiliation(s)
- Erika Larrea
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Carla Sole
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Lorea Manterola
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Ibai Goicoechea
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Armesto
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Arestin
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María M Caffarel
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Angela M Araujo
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Araiz
- Hematology Department, Donostia Hospital, 20014 San Sebastián, Spain.
| | | | - Charles H Lawrie
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
154
|
miR-29s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget 2016; 6:12837-61. [PMID: 25968566 PMCID: PMC4536984 DOI: 10.18632/oncotarget.3805] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
A wealth of studies has highlighted the biological complexity of hematologic malignancies and the role of dysregulated signal transduction pathways. Along with the crucial role of genetic abnormalities, epigenetic aberrations are nowadays emerging as relevant players in cancer development, and significant research efforts are currently focusing on mechanisms by which histone post-translational modifications, DNA methylation and noncoding RNAs contribute to the pathobiology of cancer. As a consequence, these studies have provided the rationale for the development of epigenetic drugs, such as histone deacetylase inhibitors and demethylating compounds, some of which are currently in advanced phase of pre-clinical investigation or in clinical trials. In addition, a more recent body of evidence indicates that microRNAs (miRNAs) might target effectors of the epigenetic machinery, which are aberrantly expressed or active in cancers, thus reverting those epigenetic abnormalities driving tumor initiation and progression. This review will focus on the broad epigenetic activity triggered by members of the miR-29 family, which underlines the potential of miR-29s as candidate epi-therapeutics for the treatment of hematologic malignancies.
Collapse
|
155
|
miR-29b and miR-198 overexpression in CD8+ T cells of renal cell carcinoma patients down-modulates JAK3 and MCL-1 leading to immune dysfunction. J Transl Med 2016; 14:84. [PMID: 27063186 PMCID: PMC4827202 DOI: 10.1186/s12967-016-0841-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 03/28/2016] [Indexed: 12/28/2022] Open
Abstract
Background Mammalian microRNAs (miR) regulate the expression of genes relevant for the development of adaptive and innate immunity against cancer. Since T cell dysfunction has previously been reported in patients with renal cell carcinoma (RCC; clear cell type), we aimed to analyze these immune cells for genetic and protein differences when compared to normal donor T cells freshly after isolation and 35 days after in vitro stimulation (IVS) with HLA-matched RCC tumor cells. Methods We investigated gene expression profiles of tumor-reactive CD8+ T cells obtained from RCC patient and compared with their HLA-matched healthy sibling donors using a microarray approach. In addition, miRNAs analysis was performed in a validation cohort of peripheral blood CD8+ T cells from 25 RCC patients compared to 15 healthy volunteers. Results We observed that CD8+ T cells from RCC patients expressed reduced levels of anti-apoptotic and proliferation-associated gene products when compared with normal donor T cells both pre- and post-IVS. In particular, JAK3 and MCL-1 were down-regulated in patient CD8+ T cells versus their normal counterparts, likely due to defective suppressor activity of miR-29b and miR-198 in RCC CD8+ T cells. Indeed, specific inhibition of miR-29b or miR-198 in peripheral blood mononuclear cells (PBMCs) isolated from RCC patients, resulted in the up-regulation of JAK3 and MCL-1 proteins and significant improvement of cell survival in vitro. Conclusions Our results suggest that miR-29b and miR-198 dysregulation in RCC patient CD8+ T cells is associated with dysfunctional immunity and foreshadow the development of miR-targeted therapeutics to correct such T cell defects in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0841-9) contains supplementary material, which is available to authorized users.
Collapse
|
156
|
Kirimura S, Kurata M, Nakagawa Y, Onishi I, Abe-Suzuki S, Abe S, Yamamoto K, Kitagawa M. Role of microRNA-29b in myelodysplastic syndromes during transformation to overt leukaemia. Pathology 2016; 48:233-41. [PMID: 27020498 DOI: 10.1016/j.pathol.2016.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/06/2015] [Accepted: 12/08/2015] [Indexed: 12/30/2022]
Abstract
Chromosome 7q32 is a frequently deleted region in myelodysplastic syndromes (MDSs) and encodes the microRNAs (miRNAs) miR-29a/miR-29b. Both miR-29s down-regulate the anti-apoptotic protein myeloid cell leukaemia 1 (MCL-1) in acute myeloid leukaemia. Thus, to investigate the role of miR-29s in the transformation of MDS to overt leukaemia (OL), we analysed the relationship between miR-29 expression and MCL-1 expression. MiR-29b expression was down-regulated in refractory anaemia and OL bone marrow as compared to that in control bone marrow. MCL-1 expression level in OL was significantly higher than that in refractory anaemia with excess blasts and a negative correlation was observed between miR-29b and MCL-1 messenger RNA expression levels in OL samples. Immunohistochemical analysis showed that the MCL-1 positive rate among MDS bone marrow CD34 positive cells significantly increased during transformation to OL. Additionally, MCL-1 positive cells were negative for cleaved caspase 3, which indicated that these cells avoided apoptosis. Reduced miR-29b expression in MDS bone marrow cells might trigger transformation to OL via overexpression of MCL-1 in blastic cells.
Collapse
Affiliation(s)
- Susumu Kirimura
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasunori Nakagawa
- Department of Hematology, Japanese Red Cross Medical Centre, Tokyo, Japan
| | - Iichiroh Onishi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiho Abe-Suzuki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinya Abe
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
157
|
Lu T, Lin Z, Ren J, Yao P, Wang X, Wang Z, Zhang Q. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction. PLoS One 2016; 11:e0149751. [PMID: 26930565 PMCID: PMC4773022 DOI: 10.1371/journal.pone.0149751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/04/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs. METHODS AND RESULTS Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye) could firmly bind to the surface of adherent cells (Hela) and suspended cells (K562) even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein) to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it. CONCLUSIONS These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.
Collapse
Affiliation(s)
- Ting Lu
- Division of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Zongwei Lin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jianwei Ren
- Health Division of Guard Bureau, General Staff Department of Chinese PLA, Beijing, China
| | - Peng Yao
- Traditional Chinese Medicine Department, Jinan Firefighting Hospital, Jinan, China
| | - Xiaowei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Zhe Wang
- Division of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Qunye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
158
|
Hemmatzadeh M, Mohammadi H, Jadidi-Niaragh F, Asghari F, Yousefi M. The role of oncomirs in the pathogenesis and treatment of breast cancer. Biomed Pharmacother 2016; 78:129-139. [DOI: 10.1016/j.biopha.2016.01.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/18/2022] Open
|
159
|
Galimov A, Merry TL, Luca E, Rushing EJ, Mizbani A, Turcekova K, Hartung A, Croce CM, Ristow M, Krützfeldt J. MicroRNA-29a in Adult Muscle Stem Cells Controls Skeletal Muscle Regeneration During Injury and Exercise Downstream of Fibroblast Growth Factor-2. Stem Cells 2016; 34:768-80. [PMID: 26731484 DOI: 10.1002/stem.2281] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 09/23/2015] [Accepted: 10/31/2015] [Indexed: 01/18/2023]
Abstract
The expansion of myogenic progenitors (MPs) in the adult muscle stem cell niche is critical for the regeneration of skeletal muscle. Activation of quiescent MPs depends on the dismantling of the basement membrane and increased access to growth factors such as fibroblast growth factor-2 (FGF2). Here, we demonstrate using microRNA (miRNA) profiling in mouse and human myoblasts that the capacity of FGF2 to stimulate myoblast proliferation is mediated by miR-29a. FGF2 induces miR-29a expression and inhibition of miR-29a using pharmacological or genetic deletion decreases myoblast proliferation. Next generation RNA sequencing from miR-29a knockout myoblasts (Pax7(CE/+) ; miR-29a(flox/flox) ) identified members of the basement membrane as the most abundant miR-29a targets. Using gain- and loss-of-function experiments, we confirm that miR-29a coordinately regulates Fbn1, Lamc1, Nid2, Col4a1, Hspg2 and Sparc in myoblasts in vitro and in MPs in vivo. Induction of FGF2 and miR-29a and downregulation of its target genes precedes muscle regeneration during cardiotoxin (CTX)-induced muscle injury. Importantly, MP-specific tamoxifen-induced deletion of miR-29a in adult skeletal muscle decreased the proliferation and formation of newly formed myofibers during both CTX-induced muscle injury and after a single bout of eccentric exercise. Our results identify a novel miRNA-based checkpoint of the basement membrane in the adult muscle stem cell niche. Strategies targeting miR-29a might provide useful clinical approaches to maintain muscle mass in disease states such as ageing that involve aberrant FGF2 signaling.
Collapse
Affiliation(s)
- Artur Galimov
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Troy L Merry
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Edlira Luca
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Elisabeth J Rushing
- Institute of Neuropathology, University Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Amir Mizbani
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Katarina Turcekova
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Angelika Hartung
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Carlo M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, Ohio, USA
| | - Michael Ristow
- Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jan Krützfeldt
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
160
|
Bhise NS, Chauhan L, Shin M, Cao X, Pounds S, Lamba V, Lamba JK. MicroRNA-mRNA Pairs Associated with Outcome in AML: From In Vitro Cell-Based Studies to AML Patients. Front Pharmacol 2016; 6:324. [PMID: 26858643 PMCID: PMC4729948 DOI: 10.3389/fphar.2015.00324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/30/2015] [Indexed: 12/22/2022] Open
Abstract
Cytarabine is the primary chemotherapeutic agent used for treatment of acute myeloid leukemia (AML). Disease relapse after initial remission remains one of the most pressing therapeutic challenges in the treatment of AML. Relapsed disease is often resistant to cytarabine and subsequent salvage therapy is ineffective. Recent studies have shown that some microRNAs (miRNAs) are associated with prognosis, but have not yet explored the role of miRNAs in cellular response to cytarabine. We identified 20 miRNAs that associate with the in vitro cytarabine chemo-sensitivity or apoptotic response of eight AML cell lines. Out of the 20 miRNAs, data on 18 miRNAs was available in AML patients from The Cancer Genome Atlas database. Our stepwise-integrated analyses (step 1 - miRNA-target mRNA that were significantly correlated in AML patients; step 2 - mRNAs from step 1 with significant association with overall survival (OS)) identified 23 unique miRNA-mRNA pairs predictive of OS in AML patients. As expected HOX genes (HOXA9, HOXB7, and HOXA10) were identified to be regulated by miRs as well as predictive of worse OS. Additionally, miR107-Myb, miR-378-granzyme B involved in granzyme signaling and miR10a-MAP4K4 were identified to be predictive of outcome through integrated analysis. Although additional functional validations to establish clinical/pharmacologic importance of miRNA-mRNA pairs are needed, our results from RNA electrophoretic mobility shift assay confirmed binding of miR-10a, miR-378, and miR-107 with their target genes GALNT1, GZMB, and MYB, respectively. Integration of pathogenic and pharmacologically significant miRNAs and miRNA-mRNA relationships identified in our study opens up opportunities for development of targeted/miRNA-directed therapies.
Collapse
Affiliation(s)
- Neha S Bhise
- Department of Pharmacotherapy and Translational Research, University of FloridaGainesville, FL, USA; Department of Experimental and Clinical Pharmacology, University of MinnesotaMinneapolis, MN, USA
| | - Lata Chauhan
- Department of Pharmacotherapy and Translational Research, University of Florida Gainesville, FL, USA
| | - Miyoung Shin
- Department of Pharmacotherapy and Translational Research, University of Florida Gainesville, FL, USA
| | - Xueyuan Cao
- Department of Biostatistics, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Vishal Lamba
- Department of Pharmacotherapy and Translational Research, University of Florida Gainesville, FL, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, University of Florida Gainesville, FL, USA
| |
Collapse
|
161
|
Chen J, Yang F, Yu X, Yu Y, Gong Y. Cyclosporine A promotes cell proliferation, collagen and α-smooth muscle actin expressions in rat gingival fibroblasts by Smad3 activation and miR-29b suppression. J Periodontal Res 2016; 51:735-747. [PMID: 26738448 DOI: 10.1111/jre.12350] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/28/2022]
Affiliation(s)
- J. Chen
- Department of Stomatology; Zhongshan Hospital; Fudan University; Shanghai China
| | - F. Yang
- Department of Stomatology; Zhongshan Hospital; Fudan University; Shanghai China
| | - X. Yu
- Department of Stomatology; Zhongshan Hospital; Fudan University; Shanghai China
| | - Y. Yu
- Department of Stomatology; Zhongshan Hospital; Fudan University; Shanghai China
| | - Y. Gong
- Department of Stomatology; Zhongshan Hospital; Fudan University; Shanghai China
| |
Collapse
|
162
|
Bretschneider M, Busch B, Mueller D, Nolze A, Schreier B, Gekle M, Grossmann C. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells. FASEB J 2016; 30:1610-22. [PMID: 26728178 DOI: 10.1096/fj.15-271254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/11/2015] [Indexed: 12/17/2022]
Abstract
Inappropriately activated mineralocorticoid receptor (MR) is a risk factor for vascular remodeling with unclear molecular mechanism. Recent findings suggest that post-transcriptional regulation by micro-RNAs (miRs) may be involved. Our aim was to search for MR-dependent miRs in vascular smooth muscle cells (VSMCs) and to explore the underlying molecular mechanism and the pathologic relevance. We detected that aldosteroneviathe MR reduces miR-29bin vivoin murine aorta and in human primary and cultured VSMCs (ED50= 0.07 nM) but not in endothelial cells [quantitative PCR (qPCR), luciferase assays]. This effect was mediated by an increased decay of miR-29b in the cytoplasm with unchanged miR-29 family member or primary-miR levels. Decreased miR-29b led to an increase in extracellular matrix measured by ELISA and qPCR and enhanced VSMC migration in single cell-tracking experiments. Additionally, cell proliferation and the apoptosis/necrosis ratio (caspase/lactate dehydrogenase assay) was modulated by miR-29b. Enhanced VSMC migration by aldosterone required miR-29b regulation. Control experiments were performed with scrambled RNA and empty plasmids, by comparing aldosterone-stimulated with vehicle-incubated cells. Overall, our findings provide novel insights into the molecular mechanism of aldosterone-mediated vascular pathogenesis by identifying miR-29b as a pathophysiologic relevant target of activated MR in VSMCs and by highlighting the importance of miR processing for miR regulation.-Bretschneider, M., Busch, B., Mueller, D., Nolze, A., Schreier, B., Gekle, M., Grossmann, C. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Maria Bretschneider
- *Julius Bernstein Institute of Physiology and Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Bianca Busch
- *Julius Bernstein Institute of Physiology and Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Daniel Mueller
- *Julius Bernstein Institute of Physiology and Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Nolze
- *Julius Bernstein Institute of Physiology and Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Barbara Schreier
- *Julius Bernstein Institute of Physiology and Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michael Gekle
- *Julius Bernstein Institute of Physiology and Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Grossmann
- *Julius Bernstein Institute of Physiology and Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
163
|
The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation. Leukemia 2015; 30:789-99. [PMID: 26536822 DOI: 10.1038/leu.2015.308] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 01/13/2023]
Abstract
Changes in the enzymatic activity of protein arginine methyltransferase (PRMT) 5 have been associated with cancer; however, the protein's role in acute myeloid leukemia (AML) has not been fully evaluated. Here, we show that increased PRMT5 activity enhanced AML growth in vitro and in vivo while PRMT5 downregulation reduced it. In AML cells, PRMT5 interacted with Sp1 in a transcription repressor complex and silenced miR-29b preferentially via dimethylation of histone 4 arginine residue H4R3. As Sp1 is also a bona fide target of miR-29b, the miR silencing resulted in increased Sp1. This event in turn led to transcription activation of FLT3, a gene that encodes a receptor tyrosine kinase. Inhibition of PRMT5 via sh/siRNA or a first-in-class small-molecule inhibitor (HLCL-61) resulted in significantly increased expression of miR-29b and consequent suppression of Sp1 and FLT3 in AML cells. As a result, significant antileukemic activity was achieved. Collectively, our data support a novel leukemogenic mechanism in AML where PRMT5 mediates both silencing and transcription of genes that participate in a 'yin-yang' functional network supporting leukemia growth. As FLT3 is often mutated in AML and pharmacologic inhibition of PRMT5 appears feasible, the PRMT5-miR-29b-FLT3 network should be further explored as a novel therapeutic target for AML.
Collapse
|
164
|
Tutar L, Tutar E, Özgür A, Tutar Y. Therapeutic Targeting of microRNAs in Cancer: Future Perspectives. Drug Dev Res 2015; 76:382-388. [PMID: 26435382 DOI: 10.1002/ddr.21273] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Preclinical Research The discovery of microRNAs (miRNAs) and their link with cancer has opened a new era in cancer therapeutics. Approximately, 18 - 24 nucleotides long, miRNAs can up-regulate or down-regulate gene expression in many cancer types and are respectively categorized as oncogenes (oncomirs) or tumor suppressors. Expression profiles of miRNAs with biomarker potential can be used for the classification, diagnosis, therapeutic treatment, and prognosis of different cancer types. miRNA mimics and miRNA antagonists are the two main approaches to miRNA-based cancer therapies that respectively inhibit oncomirs or restore the expression of tumor suppressive miRNAs. This review serves to provide some general insight into miRNA biogenesis, cancer related miRNAs, and miRNA therapeutics.
Collapse
Affiliation(s)
- Lütfi Tutar
- Faculty of Science and Letters, Department of Biology, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Esen Tutar
- Graduate School of Natural and Applied Sciences, Department of Bioengineering and Sciences, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Aykut Özgür
- Faculty of Natural Sciences and Engineering, Department of Bioengineering, Gaziosmanpasa University, Tokat, Turkey
| | - Yusuf Tutar
- Faculty of Pharmacy, Department of Basic Sciences, Division of Biochemistry, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
165
|
Oliveira LH, Schiavinato JL, Fráguas MS, Lucena-Araujo AR, Haddad R, Araújo AG, Dalmazzo LF, Rego EM, Covas DT, Zago MA, Panepucci RA. Potential roles of microRNA-29a in the molecular pathophysiology of T-cell acute lymphoblastic leukemia. Cancer Sci 2015; 106:1264-77. [PMID: 26251039 PMCID: PMC4637998 DOI: 10.1111/cas.12766] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/08/2015] [Accepted: 08/03/2015] [Indexed: 12/26/2022] Open
Abstract
Recent evidence has shown that deregulated expression of members of the microRNA-29 (miR-29) family may play a critical role in human cancer, including hematological malignancies. However, the roles of miR-29 in the molecular pathophysiology of T-cell acute lymphoblastic leukemia (T-ALL) has not been investigated. Here, we show that lower levels of miR-29a were significantly associated with higher blast counts in the bone marrow and with increased disease-free survival in T-ALL patients. Furthermore, miR-29a levels are extremely reduced in T-ALL cells compared to normal T cells. Microarray analysis following introduction of synthetic miR-29a mimics into Jurkat cells revealed the downregulation of several predicted targets (CDK6, PXDN, MCL1, PIK3R1, and CXXC6), including targets with roles in active and passive DNA demethylation (such as DNMT3a, DNMT3b, and members of the TET family and TDG). Restoring miR-29a levels in Jurkat and Molt-4 T-ALL cells led to the demethylation of many genes commonly methylated in T-ALL. Overall, our results suggest that reduced miR-29a levels may contribute to the altered epigenetic status of T-ALL, highlighting its relevance in the physiopathology of this disease.
Collapse
Affiliation(s)
- Lucila H Oliveira
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Josiane L Schiavinato
- Department of Genetics, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Mariane S Fráguas
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | | | - Rodrigo Haddad
- School of Ceilandia, University of BrasiliaBrasilia, Brazil
| | - Amélia G Araújo
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Leandro F Dalmazzo
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
| | - Eduardo M Rego
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Dimas T Covas
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Marco A Zago
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Rodrigo A Panepucci
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Department of Genetics, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| |
Collapse
|
166
|
Han C, Chen X, Zhuang R, Xu M, Liu S, Li Q. miR-29a promotes myocardial cell apoptosis induced by high glucose through down-regulating IGF-1. Int J Clin Exp Med 2015; 8:14352-14362. [PMID: 26550421 PMCID: PMC4613106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/01/2015] [Indexed: 06/05/2023]
Abstract
This study was aimed to investigate the role of miR-29a in myocardial cell apoptosis induced by high glucose. Myocardial cells were cultured in normal (5.6 mmol/l) or high glucose medium (30 mmol/l). The apoptotic rate of myocardial cells was evaluated using flow cytometry. The mRNA levels of Bax, Bcl-2, miR-29a, and IGF-1 were determined using real-time quantitative PCR (RT-qPCR). The level of IGF-1 in the culture medium was analyzed using enzyme-linked immunosorbent assay (ELISA). The interaction sites between miR-29a and IGF-1 was analyzed using the the Targetscan program. The regulatory effect of miR-29a on the expression of IGF-1 was investigated using dual luciferase reporter system. The results showed that the expression of miR-29a and the Bax/Bcl-2 ratio in myocardial cells were significantly increased after the cells were cultured in high glucose medium for 72 h, which was consistent with increased apoptosis of myocardial cells. The expression of IGF-1 in myocardial cells was significantly decreased after the cells were cultured in high glucose medium for 72 and 96 h. Targetscan identified a potential binding site on the 3'-UTR of IGF-1 for miR-29a. We also observed that miR-29a mimic and miR-29a inhibitor reduced and increased the expression of IGF-1 in myocardial cells cultured in high glucose medium, respectively. Dual luciferase reporter analysis showed that miR-29a significantly reduced the fluorescence intensity of wild-type psichek2-IGF-1-3'UTR-WT but the fluorescence intensity of mutant psichek2-IGF-1-3'UTR-MT was not significantly affected. In conclusions, the expression of miR-29a in myocardial cells cultured in high glucose medium was significantly increased, which down-regulated IGF-1 and increased myocardial cell apoptosis.
Collapse
Affiliation(s)
- Chunli Han
- The Fifth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, 519000, China
| | - Xiaochao Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Renwei Zhuang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Mingtong Xu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, 510275, China
| | | | - Qiwen Li
- The First People’s Hospital of ShundeFoshan, 528300, China
| |
Collapse
|
167
|
Millar JA, Valdés R, Kacharia FR, Landfear SM, Cambronne ED, Raghavan R. Coxiella burnetii and Leishmania mexicana residing within similar parasitophorous vacuoles elicit disparate host responses. Front Microbiol 2015; 6:794. [PMID: 26300862 PMCID: PMC4528172 DOI: 10.3389/fmicb.2015.00794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/21/2015] [Indexed: 12/24/2022] Open
Abstract
Coxiella burnetii is a bacterium that thrives in an acidic parasitophorous vacuole (PV) derived from lysosomes. Leishmania mexicana, a eukaryote, has also independently evolved to live in a morphologically similar PV. As Coxiella and Leishmania are highly divergent organisms that cause different diseases, we reasoned that their respective infections would likely elicit distinct host responses despite producing phenotypically similar parasite-containing vacuoles. The objective of this study was to investigate, at the molecular level, the macrophage response to each pathogen. Infection of THP-1 (human monocyte/macrophage) cells with Coxiella and Leishmania elicited disparate host responses. At 5 days post-infection, when compared to uninfected cells, 1057 genes were differentially expressed (746 genes up-regulated and 311 genes down-regulated) in C. burnetii infected cells, whereas 698 genes (534 genes up-regulated and 164 genes down-regulated) were differentially expressed in L. mexicana infected cells. Interestingly, of the 1755 differentially expressed genes identified in this study, only 126 genes (~7%) are common to both infections. We also discovered that 1090 genes produced mRNA isoforms at significantly different levels under the two infection conditions, suggesting that alternate proteins encoded by the same gene might have important roles in host response to each infection. Additionally, we detected 257 micro RNAs (miRNAs) that were expressed in THP-1 cells, and identified miRNAs that were specifically expressed during Coxiella or Leishmania infections. Collectively, this study identified host mRNAs and miRNAs that were influenced by Coxiella and/or Leishmania infections, and our data indicate that although their PVs are morphologically similar, Coxiella and Leishmania have evolved different strategies that perturb distinct host processes to create and thrive within their respective intracellular niches.
Collapse
Affiliation(s)
- Jess A Millar
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR USA
| | - Raquel Valdés
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR USA
| | - Fenil R Kacharia
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR USA
| | - Scott M Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR USA
| | - Eric D Cambronne
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR USA
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR USA
| |
Collapse
|
168
|
Burke SL, Hammell M, Ambros V. Robust Distal Tip Cell Pathfinding in the Face of Temperature Stress Is Ensured by Two Conserved microRNAS in Caenorhabditis elegans. Genetics 2015; 200:1201-18. [PMID: 26078280 PMCID: PMC4574240 DOI: 10.1534/genetics.115.179184] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/10/2015] [Indexed: 12/26/2022] Open
Abstract
Biological robustness, the ability of an organism to maintain a steady-state output as genetic or environmental inputs change, is critical for proper development. MicroRNAs have been implicated in biological robustness mechanisms through their post-transcriptional regulation of genes and gene networks. Previous research has illustrated examples of microRNAs promoting robustness as part of feedback loops and genetic switches and by buffering noisy gene expression resulting from environmental and/or internal changes. Here we show that the evolutionarily conserved microRNAs mir-34 and mir-83 (homolog of mammalian mir-29) contribute to the robust migration pattern of the distal tip cells in Caenorhabditis elegans by specifically protecting against stress from temperature changes. Furthermore, our results indicate that mir-34 and mir-83 may modulate the integrin signaling involved in distal tip cell migration by potentially targeting the GTPase cdc-42 and the beta-integrin pat-3. Our findings suggest a role for mir-34 and mir-83 in integrin-controlled cell migrations that may be conserved through higher organisms. They also provide yet another example of microRNA-based developmental robustness in response to a specific environmental stress, rapid temperature fluctuations.
Collapse
Affiliation(s)
- Samantha L Burke
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Molly Hammell
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
169
|
Yu F, Lu Z, Chen B, Dong P, Zheng J. microRNA-150: a promising novel biomarker for hepatitis B virus-related hepatocellular carcinoma. Diagn Pathol 2015. [PMID: 26215970 PMCID: PMC4517483 DOI: 10.1186/s13000-015-0369-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Chronic hepatitis B virus (HBV) infection is a known major etiological factor for hepatocellular carcinoma (HCC) development. Alpha-fetoprotein (AFP) is widely used to detect primary HCC, whereas its sensitivity and specificity are not satisfying. Recently, circulating microRNAs (miRNAs) have been reported to be promising biomarkers for diagnosing and monitoring cancers. This study was conducted to detect the application of serum miR-150 in the diagnosis and prognosis of HBV-related HCC. Methods The expression of miR-150 was evaluated using a real-time quantitative RT-PCR in 350 serum samples (120 samples from controls, 110 from chronic hepatitis B (CHB) patients and 120 samples from HCC patients. Results Serum miR-150 levels were significantly reduced in HCC patients, compared with healthy controls (P < 0.0001) and CHB patients (P < 0.0001). Serum miR-150 levels were increased after surgical operation (P < 0.0001) and decreased after tumor recurrence (P < 0.0001). Receiver operating characteristic curve (ROC) analyses suggested that serum miR-150 had significant diagnostic value for HBV-related HCC. It yielded an area under the curve (AUC) of ROC of 0.931 with 82.5 % sensitivity and 83.7 % specificity in discriminating HCC from healthy controls, and an AUC of ROC of 0.881 with 79.1 % sensitivity and 76.5 % specificity in discriminating HCC from CHB patients. Moreover, Kaplan-Meier curve analysis revealed that HCC patients with lower serum miR-150 had a significantly shortened overall survival (P < 0.0001). Univariate and Multivariable Cox regression analysis indicated that serum miR-150 level was an independent risk factor for overall survival (P < 0.0001 and P = 0.015, respectively). Conclusions Serum miR-150 can serve as a non-invasive biomarker for the diagnosis and prognosis of HCC patients.
Collapse
Affiliation(s)
- Fujun Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, No.2 FuXue lane, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, No.2 FuXue lane, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Bicheng Chen
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, No.2 FuXue lane, Wenzhou, 325000, People's Republic of China
| | - Peihong Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, No.2 FuXue lane, Wenzhou, 325000, Zhejiang, People's Republic of China.
| | - Jianjian Zheng
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, No.2 FuXue lane, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
170
|
Norozi F, Ahmadzadeh A, Shahjahani M, Shahrabi S, Saki N. Twist as a new prognostic marker in hematological malignancies. Clin Transl Oncol 2015. [DOI: 10.1007/s12094-015-1357-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
171
|
Zong Y, Yu P, Cheng H, Wang H, Wang X, Liang C, Zhu H, Qin Y, Qin C. miR-29c regulates NAV3 protein expression in a transgenic mouse model of Alzheimer's disease. Brain Res 2015. [PMID: 26212654 DOI: 10.1016/j.brainres.2015.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The microRNA-29 family (miRNA-29s) has three mature members, miR-29a, miR-29b and miR-29c, which have been implicated in the regulation of the pathogenesis of Alzheimer's disease (AD). The miR-29 family members exhibit differential regulation in various diseases and different subcellular distribution. In the present study, we initially investigated differential expression of miR-29c in the hippocampus and the frontal cortex of the young APPswe/PSΔE9 mouse brain, accompanied by inverse expression of neurone navigator 3 (NAV3), a regulator of axon guidance. We observed that miR-29c directly mediated downregulation of NAV3 protein expression in vitro. The mouse NAV3 mRNA has a functional miR-29c binding site in the 3' UTR, which localized in the position between 830-836 bp of 3'UTR region, slightly different from human NAV3 mRNA binding site. These observations suggest that miR-29c may be involved in neurodegenerative processes by regulating NAV3 expression in the young AD mouse.
Collapse
Affiliation(s)
- Yuanyuan Zong
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, PR China
| | - Pin Yu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC), No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 10021, PR China
| | - Hongxia Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, PR China
| | - Hailin Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC), No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 10021, PR China
| | - Xiaoying Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC), No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 10021, PR China
| | - Chunlian Liang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC), No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 10021, PR China
| | - Hua Zhu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC), No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 10021, PR China
| | - Yejun Qin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, PR China.
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC), No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 10021, PR China.
| |
Collapse
|
172
|
Liu H, Wang B, Lin J, Zhao L. microRNA-29b: an emerging player in human cancer. Asian Pac J Cancer Prev 2015; 15:9059-64. [PMID: 25422179 DOI: 10.7314/apjcp.2014.15.21.9059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs (miRNAs) are ubiquitously expressed small, non-coding RNAs that negatively regulate gene expression at a post transcriptional/translational level. They have emerging as playing crucial roles in cancer at all stages ranging from initiation to metastasis. As a tumor suppressor miRNA, aberrant expression of microRNA-29b (miR-29b) has been detected in various types of cancer, and its disturbance is related with tumor development and progression. In this review, we summarize the latest findings with regard to the tumor suppressor signature of miR-29b and its regulatory mechanisms. Our review highlights the diverse relationships between miR-29b and its target genes in malignant tumors.
Collapse
Affiliation(s)
- Hao Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, China E-mail :
| | | | | | | |
Collapse
|
173
|
Aberrant expression of miR-9/9* in myeloid progenitors inhibits neutrophil differentiation by post-transcriptional regulation of ERG. Leukemia 2015; 30:229-37. [PMID: 26174629 DOI: 10.1038/leu.2015.183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023]
Abstract
Aberrant post-transcriptional regulation by microRNAs (miRNAs) has been shown to be involved in the pathogenesis of acute myeloid leukemia (AML). In a previous study, we performed a large functional screen using a retroviral barcoded miRNA expression library. Here, we report that overexpression of miR-9/9* in myeloid 32D cell line (32D-miR-9/9*) had profound impact on granulocyte colony-stimulating factor-induced differentiation. Further in vitro studies showed that enforced expression of miR-9/9* blocked normal neutrophil development in 32D and in primary murine lineage-negative bone marrow cells. We examined the expression of miR-9/9* in a cohort of 647 primary human AMLs. In most cases, miR-9 and miR-9* were significantly upregulated and their expression levels varied according to AML subtype, with the highest expression in MLL-related leukemias harboring 11q23 abnormalities and the lowest expression in AML cases with t(8;21) and biallelic mutations in CEBPA. Gene expression profiling of AMLs with high expression of miR-9/9* and 32D-miR-9/9* identified ETS-related gene (Erg) as the only common potential target. Upregulation of ERG in 32D cells rescued miR-9/9*-induced block in neutrophil differentiation. Taken together, this study demonstrates that miR-9/9* are aberrantly expressed in most of AML cases and interfere with normal neutrophil differentiation by downregulation of ERG.
Collapse
|
174
|
Kavitha N, Vijayarathna S, Jothy SL, Oon CE, Chen Y, Kanwar JR, Sasidharan S. MicroRNAs: biogenesis, roles for carcinogenesis and as potential biomarkers for cancer diagnosis and prognosis. Asian Pac J Cancer Prev 2015; 15:7489-97. [PMID: 25292018 DOI: 10.7314/apjcp.2014.15.18.7489] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs of 20-24 nucleotides that play important roles in carcinogenesis. Accordingly, miRNAs control numerous cancer-relevant biological events such as cell proliferation, cell cycle control, metabolism and apoptosis. In this review, we summarize the current knowledge and concepts concerning the biogenesis of miRNAs, miRNA roles in cancer and their potential as biomarkers for cancer diagnosis and prognosis including the regulation of key cancer-related pathways, such as cell cycle control and miRNA dysregulation. Moreover, microRNA molecules are already receiving the attention of world researchers as therapeutic targets and agents. Therefore, in-depth knowledge of microRNAs has the potential not only to identify their roles in cancer, but also to exploit them as potential biomarkers for cancer diagnosis and identify therapeutic targets for new drug discovery.
Collapse
Affiliation(s)
- Nowroji Kavitha
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia E-mail :
| | | | | | | | | | | | | |
Collapse
|
175
|
Taylor MA, Schiemann WP. Therapeutic Opportunities for Targeting microRNAs in Cancer. MOLECULAR AND CELLULAR THERAPIES 2015; 2:1-13. [PMID: 25717380 PMCID: PMC4337831 DOI: 10.1186/2052-8426-2-30] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that can function as either powerful tumor promoters or suppressors in numerous types of cancer. The ability of miRs to target multiple genes and biological signaling pathways has created intense interest in their potential clinical utility as predictive and diagnostic biomarkers, and as innovative therapeutic agents. Recently, accumulating preclinical studies have illustrated the feasibility of slowing tumor progression by either overexpressing tumor suppressive miRNAs, or by neutralizing the activities of oncogenic miRNAs in cell- and animal-based models of cancer. Here we highlight prominent miRNAs that may represent potential therapeutic targets in human malignancies, as well as review current technologies available for inactivating or restoring miRNA activity in clinical settings.
Collapse
Affiliation(s)
- Molly A Taylor
- Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield, UK
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
176
|
Li P, Xie XB, Chen Q, Pang GL, Luo W, Tu JC, Zheng F, Liu SM, Han L, Zhang JK, Luo XY, Zhou X. MiRNA-15a mediates cell cycle arrest and potentiates apoptosis in breast cancer cells by targeting synuclein-γ. Asian Pac J Cancer Prev 2015; 15:6949-54. [PMID: 25169552 DOI: 10.7314/apjcp.2014.15.16.6949] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies have indicated that microRNA-15a (miR-15a) is dysregulated in breast cancer (BC). We aimed to evaluate the expression of miR-15a in BC tissues and corresponding para-carcinoma tissues. We also focused on effects of miR-15a on cellular behavior of MDA-MB-231 and expression of its target gene synuclein-γ (SNCG). MATERIALS AND METHODS The expression levels of miR-15a were analysed in BC formalin fixed paraffin embedded (FFPE) tissues by microarray and quantitative real-time PCR. CCK-8 assays, cell cycle and apoptosis assays were used to explore the potential functions of miR-15a in MDA-MB-231 human BC cells. A luciferase reporter assay confirmed direct targets. RESULTS Downregulation of miR-15a was detected in most primary BCs. Ectopic expression of miR-15a promoted proliferation and suppressed apoptosis in vivo. Further studies indicated that miR-15a may directly interact with the 3'-untranslated region (3'-UTR) of SNCG mRNA, downregulating its mRNA and protein expression levels. SNCG expression was negatively correlated with miR-15a expression. CONCLUSIONS MiR-15a has a critical role in mediating cell cycle arrest and promoting cell apoptosis of BC, probably by directly targeting SNCG. Thus, it may be involved in development and progression of BC.
Collapse
Affiliation(s)
- Ping Li
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China E-mail :
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Chen J, Sun D, Chu H, Gong Z, Zhang C, Gong B, Li Y, Li N, Jiang L. Screening of differential microRNA expression in gastric signet ring cell carcinoma and gastric adenocarcinoma and target gene prediction. Oncol Rep 2015; 33:2963-2971. [PMID: 25964059 DOI: 10.3892/or.2015.3935] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/10/2015] [Indexed: 01/15/2023] Open
Abstract
Gastric signet ring cell carcinoma (GSRCC) is a unique pathological type of gastric carcinoma that is extremely invasive and has a poor prognosis after diagnosis. The expression of microRNAs has been closely linked to the carcinogenesis of gastric cancer and has been considered as a powerful prognostic marker. Distinctive expression of miRNAs in GSRCC was investigated in the present study. Samples of GSRCC were compared to that of intestinal gastric adenocarcinoma using Agilent microarray technique, and two differentially expressed miRNAs were identified, hsa-miR-665 and hsa-miR‑95. qRT-PCR verification showed downregulation of both miRNAs in signet ring cell carcinoma and upregulation in gastric adenocarcinoma, which was not consistent with the results obtained by the microarray. Target gene prediction using online databases conferred two strong candidate genes, GLI2 and PLCG1. GO/KO analysis of these two genes showed close correlations with carcinogenesis and chemoresistance. It was concluded that hsa-miR-665 and hsa-miR-95 were downregulated in GSRCC but upregulated in intestinal gastric adenocarcinoma, and the relatively differential expression of the miRNAs negatively controlling their target genes could be closely related to the high invasive metastasis and chemoresistance of GSRCC.
Collapse
Affiliation(s)
- Jian Chen
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Di Sun
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Hongjin Chu
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Zhaohua Gong
- Department of Oncology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Chenglin Zhang
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Benjiao Gong
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yan Li
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ning Li
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Lixin Jiang
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
178
|
Cushing L, Costinean S, Xu W, Jiang Z, Madden L, Kuang P, Huang J, Weisman A, Hata A, Croce CM, Lü J. Disruption of miR-29 Leads to Aberrant Differentiation of Smooth Muscle Cells Selectively Associated with Distal Lung Vasculature. PLoS Genet 2015; 11:e1005238. [PMID: 26020233 PMCID: PMC4447351 DOI: 10.1371/journal.pgen.1005238] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/26/2015] [Indexed: 12/11/2022] Open
Abstract
Differentiation of lung vascular smooth muscle cells (vSMCs) is tightly regulated during development or in response to challenges in a vessel specific manner. Aberrant vSMCs specifically associated with distal pulmonary arteries have been implicated in the pathogenesis of respiratory diseases, such as pulmonary arterial hypertension (PAH), a progressive and fatal disease, with no effective treatment. Therefore, it is highly relevant to understand the underlying mechanisms of lung vSMC differentiation. miRNAs are known to play critical roles in vSMC maturation and function of systemic vessels; however, little is known regarding the role of miRNAs in lung vSMCs. Here, we report that miR-29 family members are the most abundant miRNAs in adult mouse lungs. Moreover, high levels of miR-29 expression are selectively associated with vSMCs of distal vessels in both mouse and human lungs. Furthermore, we have shown that disruption of miR-29 in vivo leads to immature/synthetic vSMC phenotype specifically associated with distal lung vasculature, at least partially due to the derepression of KLF4, components of the PDGF pathway and ECM-related genes associated with synthetic phenotype. Moreover, we found that expression of FBXO32 in vSMCs is significantly upregulated in the distal vasculature of miR-29 null lungs. This indicates a potential important role of miR-29 in smooth muscle cell function by regulating FBXO32 and SMC protein degradation. These results are strongly supported by findings of a cell autonomous role of endogenous miR-29 in promoting SMC differentiation in vitro. Together, our findings suggested a vessel specific role of miR-29 in vSMC differentiation and function by targeting several key negative regulators. The pathogenesis of some vascular diseases, such as PAH is selectively associated with aberrant differentiation and proliferation of vSMCs of distal arteries. While significant progresses have been made in understanding the core mechanism of differentiation and proliferation of vSMCs, little is known regarding vessel specific regulations. By investigating the expression and function of miR-29 in vivo, we found a vessel selective enriched expression and function of miR-29 during mouse lung development. Interestingly, disruption of miR-29 results in defects in vSMCs differentiation of distal vessels, reminiscent of vSMC phenotype observed in the early stage of PAH in which immature/synthetic vSMCs of distal arteries failed to differentiate and were unable to tune down the expression of collagens and other extracellular-related genes. This is the first evidence that miR-29 selectively regulates vSMCs differentiation and vessel wall formation. Future implications are to study the expression and function of miR-29 in human pulmonary vascular diseases, which might lead to establishing miR-29 as a therapeutic target for disease intervention.
Collapse
Affiliation(s)
- Leah Cushing
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Stefan Costinean
- Department of Pathology, Ohio State Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Wei Xu
- Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
| | - Zhihua Jiang
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lindsey Madden
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Pingping Kuang
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jingshu Huang
- Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
| | - Alexandra Weisman
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Akiko Hata
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Jining Lü
- Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
179
|
Zhang K, Zhao S, Wang Q, Yang HS, Zhu J, Ma R. Identification of microRNAs in Nipple Discharge as Potential Diagnostic Biomarkers for Breast Cancer. Ann Surg Oncol 2015; 22 Suppl 3:S536-44. [PMID: 25976861 DOI: 10.1245/s10434-015-4586-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Intraductal breast cancer is generally difficult to diagnose because of a lack of an efficient method for detection. The purpose of this study was to reveal and validate the differential expression of microRNAs (miRNAs) in nipple discharge from intraductal papilloma patients and identify miRNAs as novel potential biomarkers for primary breast cancer. METHODS Nipple discharge samples were collected from three intraductal carcinoma breast cancer patients and three intraductal papilloma patients. The initial screening of miRNA expression was performed with an Axon GenePix 4000B microarray scanner using a novel approach to label miRNAs. The expression levels of the miRNAs selected from the initial screening were further examined by quantitative real-time polymerase chain reaction (qRT-PCR) in 21 validation samples (8 carcinomas and 13 benign tumors). An independent t test was used to detect significant correlations between the miRNA expression levels and breast cancer. RESULTS Microarray profiling demonstrated that three miRNAs were markedly up-regulated and three miRNAs were down-regulated in the intraductal carcinoma breast cancer patients compared to the papilloma group. The qRT-PCR analysis further verified that four miRNAs (miR-4484, miR-K12-5-5p, miR-3646, and miR-4732-5p) might serve as potential tumor biomarkers for breast cancer detection. CONCLUSION The novel approach of using a microarray scanner is applicable for studying biomarkers in nipple discharge containing small amounts of miRNA. miRNAs could serve as potential tumor biomarkers that can assist in breast cancer screening. Up-regulation of miR-4484, miR-K12-5-5p, and miR-3646 in nipple discharge may be a predictor of malignant breast cancer.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Song Zhao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qing Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Hsin-Sheng Yang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Jiang Zhu
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Rong Ma
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
180
|
Gulino R, Forte S, Parenti R, Memeo L, Gulisano M. MicroRNA and pediatric tumors: Future perspectives. Acta Histochem 2015; 117:339-54. [PMID: 25765112 DOI: 10.1016/j.acthis.2015.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/02/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
Abstract
A better understanding of pediatric tumor biology is needed to allow the development of less toxic and more efficient therapies, as well as to provide novel reliable biomarkers for diagnosis and risk stratification. The emerging role of microRNAs in controlling key pathways implicated in tumorigenesis makes their use in diagnostics a powerful novel tool for the early detection, risk assessment and prognosis, as well as for the development of innovative anticancer therapies. This perspective would be more urgent for the clinical management of pediatric cancer. In this review, we focus on the involvement of microRNAs in the biology of the main childhood tumors, describe their clinical significance and discuss their potential use as novel therapeutic tools and targets.
Collapse
Affiliation(s)
- Rosario Gulino
- IOM Ricerca s.r.l., Via Penninazzo 11, 95029 Viagrande, Italy.
| | - Stefano Forte
- IOM Ricerca s.r.l., Via Penninazzo 11, 95029 Viagrande, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 64, 95127 Catania, Italy
| | - Lorenzo Memeo
- IOM Ricerca s.r.l., Via Penninazzo 11, 95029 Viagrande, Italy
| | - Massimo Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 64, 95127 Catania, Italy
| |
Collapse
|
181
|
Zhou JD, Yang L, Zhu XW, Wen XM, Yang J, Guo H, Chen Q, Yao DM, Ma JC, Lin J, Qian J. Clinical significance of up-regulated ID1 expression in Chinese de novo acute myeloid leukemia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5336-5344. [PMID: 26191235 PMCID: PMC4503106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
To investigate the clinical significance of ID1 expression in Chinese de novo AML patients. Real-time quantitative PCR was carried out to detect the status of ID1 expression in 102 de novo AML patients and 28 controls. ID1 transcript level was significantly increased in AML compared to normal controls (p=0.029). The age in the patients with high ID1 expression is significantly older than in those with low ID1 expression (p=0.044). ID1 overexpression occurred with the highest frequency in the patients with poor karyotype (7/7, 100%), lower frequency in the patients with intermediate karyotype (28/60, 47%), and the lowest frequency in the patients with favorable karyotype (12/31, 39%). Both whole AML and non-M3 patients with high ID1 expression had significantly lower rate of complete remission than those with low ID1 expression (p=0.007 and 0.038). ID1 high-expressed patients showed significantly shorter overall survival (OS) than ID1 low-expressed patients in both whole AML and non-M3 according to Kaplan-Meier analysis (p=0.007 and 0.040). However, multivariate analysis indicated that ID1 overexpression was not an independent risk factor in both whole AML and non-M3 patients. However, the adverse impact of ID1 overexpression on outcome was revealed by both Kaplan-Meier analysis and multivariate analysis in the non-M3 patients less than 60 years old. Our study reveals that ID1 overexpression may be associated with higher risk karyotype classification and act as an independent risk factor in young non-M3 patients.
Collapse
MESH Headings
- Adolescent
- Adult
- Age Factors
- Aged
- Aged, 80 and over
- Asian People/genetics
- Biomarkers, Tumor/genetics
- Case-Control Studies
- Chi-Square Distribution
- Child
- China/epidemiology
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Inhibitor of Differentiation Protein 1/genetics
- Kaplan-Meier Estimate
- Karyotype
- Leukemia, Myeloid, Acute/ethnology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Multivariate Analysis
- Real-Time Polymerase Chain Reaction
- Remission Induction
- Reverse Transcriptase Polymerase Chain Reaction
- Risk Factors
- Time Factors
- Treatment Outcome
- Up-Regulation
- Young Adult
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Lei Yang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Xiao-Wen Zhu
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jing Yang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Hong Guo
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Qin Chen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
182
|
Deregulation between miR-29b/c and DNMT3A is associated with epigenetic silencing of the CDH1 gene, affecting cell migration and invasion in gastric cancer. PLoS One 2015; 10:e0123926. [PMID: 25874772 PMCID: PMC4398372 DOI: 10.1371/journal.pone.0123926] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/09/2015] [Indexed: 12/26/2022] Open
Abstract
The de-regulation of the miR-29 family and DNA methyltransferase 3A (DNMT3A) is associated with gastric cancer (GC). While increasing evidence indicates miR-29b/c could regulate DNA methylation by targeting DNMT3A, it is currently unknown if epigenetic silencing of miR-29b/c via promoter hypermethylation in GC is caused by abnormal expression of DNMT3A. Thus, we aimed to evaluate whether cross-talk regulation exists between miR-29b/c and DNMT3A and whether it is associated with a malignant phenotype in GC. First, wound healing and Transwell assays revealed that miR-29b/c suppresses tumor metastasis in GC. A luciferase reporter assay demonstrated that DNMT3A is a direct target of miR-29b/c. We used bisulfite genomic sequencing to analyze the DNA methylation status of miR-29b/c. The percentage of methylated CpGs was significantly decreased in DNMT3A-depleted cells compared to the controls. Furthermore, the involvement of DNMT3A in promoting GC cell migration was associated with the promoter methylation-mediated repression of CDH1. In 50 paired clinical GC tissue specimens, decreased miR-29b/c was significantly correlated with the degree of differentiation and invasion of the cells and was negatively correlated with DNMT3A expression. Together, our preliminary results suggest that the following process may be involved in GC tumorigenesis. miR-29b/c suppresses the downstream gene DNMT3A, and in turn, miR-29b/c is suppressed by DNMT3A in a DNA methylation-dependent manner. The de-regulation of both of miR-29b/c and DNMT3A leads to the epigenetic silencing of CDH1 and contributes to the metastasis phenotype in GC. This finding reveals that DNA methylation-associated silencing of miR-29b/c is critical for GC development and thus may be a therapeutic target.
Collapse
|
183
|
Li J, Wan X, Qiang W, Li T, Huang W, Huang S, Wu D, Li Y. MiR-29a suppresses prostate cell proliferation and induces apoptosis via KDM5B protein regulation. Int J Clin Exp Med 2015; 8:5329-39. [PMID: 26131109 PMCID: PMC4483968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
Small regulatory RNAs, known as microRNAs, regulate gene expression at the post-transcriptional level; such as protein translation inhibition or mRNA degradation. Altered miRNA expressions have been implicated in various cancers. In present studies, it was demonstrated that microRNA-29a (miR-29a) expressions were significantly lower in prostate cancer (PCa) patient samples, but the role of microRNA-29s in PCa remains unclear. KDM5B was highly expressed in PCa cancer cells. Bioinformatics analysis revealed a conserved target site for miR-29a in the 3-untranslated region (UTR) of KDM5B. Gain-of-function studies using mature miR-29a were performed to investigate cell proliferation and apoptosis in two PCa cell lines (LNCaP and PC-3). We utilized gene expression analysis and in silico database analysis to identify miR-29a-mediated molecular pathways and targets. We showed that miR-29a significantly suppressed the activity of a lucifarice reporter containing KDM5B-3'UTR, which was not observed in cells transfected with mutated KDM5B-3'UTR. Gene expression data demonstrated that KDM5B expression was lower in noncancerous prostatic cell WPMY-1 than in the four PCa cell lines (LNCaP, 22RV1, PC-3 and DU145). Moreover, the enforced expression of miR-29a in PC-3 and LNCaP cells inhibited proliferation, and induced apoptosis by repressing the expression of KDM5B. This study revealed that the aberrant expression of miR-29a in PCa cells regulated KDM5B expression levels associated with tumor dissemination. These findings may be utilized in developing novel therapeutic tools for PCa.
Collapse
Affiliation(s)
- Junliang Li
- Department of Urology, Tongji Hospital, Tongji University School of MedicineShanghai 200433, People’s Republic of China
| | - Xuechao Wan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan UniversityShanghai 200433, People’s Republic of China
| | - Wu Qiang
- Department of Urology, Tongji Hospital, Tongji University School of MedicineShanghai 200433, People’s Republic of China
| | - Tao Li
- Department of Urology, Tongji Hospital, Tongji University School of MedicineShanghai 200433, People’s Republic of China
| | - Wenhua Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan UniversityShanghai 200433, People’s Republic of China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, Tongji University School of MedicineShanghai 200433, People’s Republic of China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, Tongji University School of MedicineShanghai 200433, People’s Republic of China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan UniversityShanghai 200433, People’s Republic of China
| |
Collapse
|
184
|
Takahashi RU, Miyazaki H, Ochiya T. The Roles of MicroRNAs in Breast Cancer. Cancers (Basel) 2015; 7:598-616. [PMID: 25860815 PMCID: PMC4491673 DOI: 10.3390/cancers7020598] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) constitute a large family of small, approximately 20–22 nucleotide, non-coding RNAs that regulate the expression of target genes, mainly at the post-transcriptional level. Accumulating lines of evidence have indicated that miRNAs play important roles in the maintenance of biological homeostasis and that aberrant expression levels of miRNAs are associated with the onset of many diseases, including cancer. In various cancers, miRNAs play important roles in tumor initiation, drug resistance and metastasis. Recent studies reported that miRNAs could also be secreted via small endosome-derived vesicles called exosomes, which are derived from multiple cell types, including dendritic cells, lymphocytes, and tumor cells. Exosomal miRNAs play an important role in cell-to-cell communication and have been investigated as prognostic and diagnostic biomarkers. In this review, we summarize the major findings related to the functions of miRNAs in breast cancer, which is the most frequent cancer in women, and discuss the potential clinical uses of miRNAs, including their roles as therapeutic targets and diagnostic markers.
Collapse
Affiliation(s)
- Ryou-U Takahashi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hiroaki Miyazaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
185
|
Liu K, Liu Y, Lau JL, Min J. Epigenetic targets and drug discovery Part 2: Histone demethylation and DNA methylation. Pharmacol Ther 2015; 151:121-40. [PMID: 25857453 DOI: 10.1016/j.pharmthera.2015.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
Chromatin structure is dynamically modulated by various chromatin modifications, such as histone/DNA methylation and demethylation. We have reviewed histone methyltransferases and methyllysine binders in terms of small molecule screening and drug discovery in the first part of this review series. In this part, we will summarize recent progress in chemical probe and drug discovery of histone demethylases and DNA methyltransferases. Histone demethylation and DNA methylation have attracted a lot of attention regarding their biology and disease implications. Correspondingly, many small molecule compounds have been designed to modulate the activity of histone demethylases and DNA methyltransferases, and some of them have been developed into therapeutic drugs or put into clinical trials.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Johnathan L Lau
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
186
|
Yin LH, Zheng XQ, Li HY, Bi LX, Shi YF, Ye AF, Wu JB, Gao SM. Epigenetic deregulated miR-375 contributes to the constitutive activation of JAK2/STAT signaling in myeloproliferative neoplasm. Leuk Res 2015; 39:471-8. [DOI: 10.1016/j.leukres.2015.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/19/2014] [Accepted: 01/18/2015] [Indexed: 12/19/2022]
|
187
|
Robaina MC, Mazzoccoli L, Arruda VO, Reis FRDS, Apa AG, de Rezende LMM, Klumb CE. Deregulation of DNMT1, DNMT3B and miR-29s in Burkitt lymphoma suggests novel contribution for disease pathogenesis. Exp Mol Pathol 2015; 98:200-7. [PMID: 25746661 DOI: 10.1016/j.yexmp.2015.03.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/23/2015] [Accepted: 03/02/2015] [Indexed: 12/24/2022]
Abstract
Methylation of CpG islands in promoter gene regions is frequently observed in lymphomas. DNA methylation is established by DNA methyltransferases (DNMTs). DNMT1 maintains methylation patterns, while DNMT3A and DNMT3B are critical for de novo DNA methylation. Little is known about the expression of DNMTs in lymphomas. DNMT3A and 3B genes can be regulated post-transcriptionally by miR-29 family. Here, we demonstrated for the first time the overexpression of DNMT1 and DNMT3B in Burkitt lymphoma (BL) tumor samples (69% and 86%, respectively). Specifically, the treatment of two BL cell lines with the DNMT inhibitor 5-aza-dC decreased DNMT1 and DNMT3B protein levels and inhibited cell growth. Additionally, miR-29a, miR-29b and miR-29c levels were significantly decreased in the BL tumor samples. Besides, the ectopic expression of miR-29a, miR-29b and miR-29c reduced the DNMT3B expression and miR-29a and miR-29b lead to increase of p16(INK4a) mRNA expression. Altogether, our data suggest that deregulation of DNMT1, DNMT3B and miR29 may be involved in BL pathogenesis.
Collapse
Affiliation(s)
- Marcela C Robaina
- Programa de Pesquisa em Hemato-Oncologia Molecular, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Luciano Mazzoccoli
- Programa de Pesquisa em Hemato-Oncologia Molecular, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Viviane Oliveira Arruda
- Programa de Pesquisa em Hemato-Oncologia Molecular, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | | | | | - Claudete Esteves Klumb
- Programa de Pesquisa em Hemato-Oncologia Molecular, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.
| |
Collapse
|
188
|
Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer 2015; 112:957-62. [PMID: 25742467 PMCID: PMC4366906 DOI: 10.1038/bjc.2015.85] [Citation(s) in RCA: 538] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 12/11/2022] Open
Abstract
Apoptotic cell death inhibits oncogenesis at multiple stages, ranging from transformation to metastasis. Consequently, in order for cancer to develop and progress, apoptosis must be inhibited. Cell death also plays major roles in cancer treatment, serving as the main effector function of many anti-cancer therapies. In this review, we discuss the role of apoptosis in the development and treatment of cancer. Specifically, we focus upon the mitochondrial pathway of apoptosis—the most commonly deregulated form of cell death in cancer. In this process, mitochondrial outer membrane permeabilisation or MOMP represents the defining event that irrevocably commits a cell to die. We provide an overview of how this pathway is regulated by BCL-2 family proteins and describe ways in which cancer cells can block it. Finally, we discuss exciting new approaches aimed at specifically inducing mitochondrial apoptosis in cancer cells, outlining their potential pitfalls, while highlighting their considerable therapeutic promise.
Collapse
|
189
|
Zhao Z, Wang L, Song W, Cui H, Chen G, Qiao F, Hu J, Zhou R, Fan H. Reduced miR-29a-3p expression is linked to the cell proliferation and cell migration in gastric cancer. World J Surg Oncol 2015; 13:101. [PMID: 25889078 PMCID: PMC4363339 DOI: 10.1186/s12957-015-0513-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/14/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play an important role in a tumor-suppressive or oncogenic manner in carcinogenesis. Alteration expression patterns of miRNAs in gastric cancer (GC) are associated with cancer initiation and progression. In the present study, we evaluated miR-29a-3p expression pattern and its function in gastric carcinogenesis. METHODS The expression of miR-29a-3p in GC tissue samples and cell lines was detected by quantitative real-time PCR (qRT-PCR). After transfected with miR-29a-3p mimics or inhibitor, the cell proliferation, cell migration, and invasion ability were assessed by CCK-8 assay, wound healing assay, and Trans-well assay, respectively. The level of CDK2, CDK4, CDK6, and CyclinD1 were determined by qRT-PCR and Western blot. RESULTS Compared with the corresponding non-tumor tissues, miR-29a-3p showed a significant down-regulated expression in tumor tissues. In vitro functional assays demonstrated that enforced miR-29a-3p expression inhibited cell proliferation by reducing the expression of CDK2, CDK4, and CDK6. Wound healing and Transwell assays revealed that miR-29a-3p suppressed tumor metastasis in GC. CONCLUSIONS Our preliminary results suggest that altered expression of miR-29a-3p is involved in gastric cancer process. The present study provides the first insight into the specific role of miR-29a-3p in gastric carcinogenesis.
Collapse
Affiliation(s)
- Zhujiang Zhao
- Department of Genetics & Developmental Biology, the Medical School of Southeast University and Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, 2 Sipailou, Xuanwu, Nanjing, 210009, China.
| | - Ling Wang
- Department of Genetics & Developmental Biology, the Medical School of Southeast University and Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, 2 Sipailou, Xuanwu, Nanjing, 210009, China.
| | - Wei Song
- Department of Genetics & Developmental Biology, the Medical School of Southeast University and Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, 2 Sipailou, Xuanwu, Nanjing, 210009, China.
| | - He Cui
- Department of Genetics & Developmental Biology, the Medical School of Southeast University and Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, 2 Sipailou, Xuanwu, Nanjing, 210009, China.
| | - Gang Chen
- Jiangning Hospital, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210000, China.
| | - Fengchang Qiao
- Department of Genetics & Developmental Biology, the Medical School of Southeast University and Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, 2 Sipailou, Xuanwu, Nanjing, 210009, China.
| | - Jiaojiao Hu
- Department of Genetics & Developmental Biology, the Medical School of Southeast University and Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, 2 Sipailou, Xuanwu, Nanjing, 210009, China.
| | - Rongping Zhou
- Jiangning Hospital, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210000, China.
| | - Hong Fan
- Department of Genetics & Developmental Biology, the Medical School of Southeast University and Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, 2 Sipailou, Xuanwu, Nanjing, 210009, China.
| |
Collapse
|
190
|
HABATA SHUTARO, IWASAKI MASAHIRO, SUGIO ASUKA, SUZUKI MIWA, TAMATE MASATO, SATOHISA SEIRO, TANAKA RYOICHI, SAITO TSUYOSHI. BAG3 increases the invasiveness of uterine corpus carcinoma cells by suppressing miR-29b and enhancing MMP2 expression. Oncol Rep 2015; 33:2613-21. [DOI: 10.3892/or.2015.3831] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/17/2015] [Indexed: 11/05/2022] Open
|
191
|
Yan B, Guo Q, Fu FJ, Wang Z, Yin Z, Wei YB, Yang JR. The role of miR-29b in cancer: regulation, function, and signaling. Onco Targets Ther 2015; 8:539-548. [PMID: 25767398 PMCID: PMC4354468 DOI: 10.2147/ott.s75899] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs with the capacity to regulate gene expression post-transcriptionally. The miRNA-29 family consists of miR-29a, miR-29b, and miR-29c, among which miR-29b is the most highly expressed and is found at two genomic loci. Recently, numerous studies have demonstrated that aberrant expression of miR-29b is common in the majority of human cancers. miR-29b is known to critically affect cancer progression by functioning as a tumor suppressor. However, it may also act as an oncogene under certain conditions. In this review, we illustrate the role of miR-29b in cancer regulation, function, and signaling. This is the first review highlighting the role of miR-29b in cancer. Our review aims to summarize the effects of miR-29b on cancer activity and its interactions with target genes and signaling pathways, as well as to provide therapeutic implications for overcoming cancer chemoresistance.
Collapse
Affiliation(s)
- Bin Yan
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Qiong Guo
- Department of Urology, The Central Hospital of Changsha, Changsha, People’s Republic of China
| | - Fa-jun Fu
- Department of Urology, The Central Hospital of Changsha, Changsha, People’s Republic of China
| | - Zhao Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Zhuo Yin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yong-bao Wei
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Jin-rui Yang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
192
|
Fluctuating expression of microRNAs in adenovirus infected cells. Virology 2015; 478:99-111. [PMID: 25744056 DOI: 10.1016/j.virol.2015.01.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 12/15/2022]
Abstract
The changes in cellular microRNA (miRNA) expression during the course of an adenovirus type 2 infection in human lung fibroblast were studied by deep RNA sequencing. Expressions of 175 miRNAs with over 100 transcripts per million nucleotides were changed more than 1.5-fold. The expression patterns of these miRNAs changed dramatically during the course of the infection, from upregulation of the miRNAs known as tumor suppressors (such as miR-22, miR-320, let-7, miR-181b, and miR-155) and down-regulation of oncogenic miRNAs (such as miR-21 and miR-31) early to downregulation of tumor suppressor miRNAs (such as let-7 family, mir-30 family, 23/27 cluster) and upregulation of oncogenic miRNAs (include miR-125, miR-27, miR-191) late after infection. The switch in miRNA expression pattern occurred when adenovirus DNA replication started. Furthermore, deregulation of cellular miRNA expression was a step-wise and special sets of miRNAs were deregulated in different phases of infection.
Collapse
|
193
|
Jinlong S, Lin F, Yonghui L, Li Y, Weidong W. Identification of let-7a-2-3p or/and miR-188-5p as prognostic biomarkers in cytogenetically normal acute myeloid leukemia. PLoS One 2015; 10:e0118099. [PMID: 25646775 PMCID: PMC4315415 DOI: 10.1371/journal.pone.0118099] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/05/2015] [Indexed: 11/18/2022] Open
Abstract
Cytogenetically normal acute myeloid leukemia (CN-AML) is the largest and most heterogeneous AML subgroup. It lacks sensitive and specific biomarkers. Emerging evidences have suggested that microRNAs are involved in the pathogenesis of various leukemias. This paper evaluated the association between microRNA expression and prognostic outcome for CN-AML, based on the RNA/microRNA sequencing data of CN-AML patients. High let-7a-2-3p expression and low miR-188-5p expression were identified to be significantly associated with longer overall survival (OS) and event free survival (EFS) for CN-AML, independently or in a combined way. Their prognostic values were further confirmed in European Leukemia Net (ELN) genetic categories. Also, in multivariable analysis with other known risk factors, high let-7a-2-3p and low miR-188-5p expression remained to be associated with longer OS and EFS. In addition, the prognostic value of these two microRNAs was confirmed in patients who received hematopoietic stem cell transplantation (HSCT). To gain more biological insights of the underlying mechanisms, we derived the genome-wide differential gene/microRNA signatures associated with the expression of let-7a-2-3p and miR-188-5p. Several common microRNA signatures indicating favorable outcome in previous studies were up-regulated in both high let-7a-2-3p expressers and low miR-188-5p expressers, including miR-135a, miR-335 and miR-125b and all members of miR-181 family. Additionally, common up-regulated genes included FOSB, IGJ, SNORD50A and ZNF502, and FOSB was a known favorable signature in AML. These common signatures further confirmed the underlying common mechanisms for these two microRNAs value as favorable prognostic biomarkers. We concluded that high let-7a-2-3p and low miR-188-5p expression could be potentially used as favorably prognostic biomarkers independently or in a combined way in CN-AML patients, whether they received HSCT or not.
Collapse
Affiliation(s)
- Shi Jinlong
- Medical Engineering Division, Hainan Branch, Chinese PLA General Hospital, Sanya, Hainan, China
- Medical Engineering Support Center, Chinese PLA General Hospital, Beijing, China
| | - Fu Lin
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, China
| | - Li Yonghui
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Yu Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
- * E-mail: (WWD); (YL)
| | - Wang Weidong
- Medical Engineering Support Center, Chinese PLA General Hospital, Beijing, China
- * E-mail: (WWD); (YL)
| |
Collapse
|
194
|
Sandhu R, Roll JD, Rivenbark AG, Coleman WB. Dysregulation of the epigenome in human breast cancer: contributions of gene-specific DNA hypermethylation to breast cancer pathobiology and targeting the breast cancer methylome for improved therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:282-92. [PMID: 25541331 DOI: 10.1016/j.ajpath.2014.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancers (including basal-like and claudin-low molecular subtypes) represent 20% to 25% of all breast cancers, but disproportionately contribute to breast cancer-associated death. We have identified a novel fundamental biological property of triple-negative breast cancers: most triple-negative breast cancers express aberrant DNA hypermethylation due to overexpression of DNA methyltransferase 3b (and hyperactivity of the DNA methyltransferase enzymes). DNA methyltransferase 3b overexpression occurs secondary to loss of miRNA-mediated post-transcriptional regulation. The resulting hyperactivity of DNA methyltransferase 3b produces concurrent DNA methylation-dependent silencing of numerous critical gene targets (including tumor suppressors and pro-apoptotic genes) and resistance to cytotoxic chemotherapy. This observation presents new opportunities for development of innovative treatment strategies on the basis of the epigenome as a novel therapeutic target in triple-negative breast cancers. Epigenetic therapy represents a new principle in cancer treatment in which restoration of critical molecular pathways occurs secondary to reexpression of silenced genes that encode negative mediators of cancer cell growth.
Collapse
Affiliation(s)
- Rupninder Sandhu
- Department of Pathology and Laboratory Medicine, Curriculum in Toxicology, UNC Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - J Devon Roll
- Department of Pathology and Laboratory Medicine, Curriculum in Toxicology, UNC Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ashley G Rivenbark
- Department of Pathology and Laboratory Medicine, Curriculum in Toxicology, UNC Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - William B Coleman
- Department of Pathology and Laboratory Medicine, Curriculum in Toxicology, UNC Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
195
|
miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood 2015; 125:2206-16. [PMID: 25634742 DOI: 10.1182/blood-2014-06-585273] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/21/2015] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic stem cells (HSCs) possess the ability to generate all hematopoietic cell types and to self-renew over long periods, but the mechanisms that regulate their unique properties are incompletely understood. Herein, we show that homozygous deletion of the miR-29a/b-1 bicistron results in decreased numbers of hematopoietic stem and progenitor cells (HSPCs), decreased HSC self-renewal, and increased HSC cell cycling and apoptosis. The HSPC phenotype is specifically due to loss of miR-29a, because miR-29b expression is unaltered in miR-29a/b-1-null HSCs, and only ectopic expression of miR-29a restores HSPC function both in vitro and in vivo. HSCs lacking miR-29a/b-1 exhibit widespread transcriptional dysregulation and adopt gene expression patterns similar to normal committed progenitors. A number of predicted miR-29 target genes, including Dnmt3a, are significantly upregulated in miR-29a/b-1-null HSCs. The loss of negative regulation of Dnmt3a by miR-29a is a major contributor to the miR-29a/b-1-null HSPC phenotype, as both in vitro Dnmt3a short hairpin RNA knockdown assays and a genetic haploinsufficiency model of Dnmt3a restored the frequency and long-term reconstitution capacity of HSCs from miR-29a/b-1-deficient mice. Overall, these data demonstrate that miR-29a is critical for maintaining HSC function through its negative regulation of Dnmt3a.
Collapse
|
196
|
Zhao H, Wilkie T, Deol Y, Sneh A, Ganju A, Basree M, Nasser MW, Ganju RK. miR-29b defines the pro-/anti-proliferative effects of S100A7 in breast cancer. Mol Cancer 2015; 14:11. [PMID: 25622979 PMCID: PMC4314775 DOI: 10.1186/s12943-014-0275-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION S100A7 (Psoriasin) is an inflammatory protein known to be upregulated in breast cancer. However, the role of S100A7 in breast cancer has been elusive, since both pro- and anti-proliferative roles have been reported in different types of breast cancer cells and animal models. To date, the mechanism by which S100A7 differentially regulates breast cancer cell proliferation is still not clear. METHODS We used Gene Functional Enrichment Analysis to search for the determining factor of S100A7 differential regulation. We confirmed the factor and elaborated its regulating mechanism using in vitro cell culture. We further verified the findings using xenografts of human breast cancer cells in nude mice. RESULTS In the present study, we show that S100A7 significantly upregulates the expression of miR-29b in Estrogen Receptor (ER)-positive breast cancer cells (represented by MCF7), and significantly downregulates miR-29b in ER-negative cells (represented by MDA-MB-231) [Corrected]. The differential regulation of miR-29b by S100A7 in ER-positive and ER-negative breast cancer is supported by the gene expression analysis of TCGA invasive breast cancer dataset. miR-29b transcription is inhibited by NF-κB, and NF-κB activation is differentially regulated by S100A7 in ER-positive and ER-negative breast cancer cells. This further leads to differential regulation of PI3K p85α and CDC42 expression, p53 activation and p53-associated anti-proliferative pathways. Reversing the S100A7-caused changes of miR-29b expression by transfecting exogenous miR-29b or miR-29b-Decoy can inhibit the effects of S100A7 on in vitro cell proliferation and tumor growth in nude mice. CONCLUSIONS The distinct modulations of the NF-κB - miR-29b - p53 pathway make S100A7 an oncogene in ER-negative and a cancer-suppressing gene in ER-positive breast cancer cells, with miR-29b being the determining regulatory factor.
Collapse
Affiliation(s)
- Helong Zhao
- Department of Pathology, The Ohio State University Wexner Medical Center, 840 BRT, 460W 12th Ave, Columbus, OH, 43210, USA.
| | - Tasha Wilkie
- Department of Pathology, The Ohio State University Wexner Medical Center, 840 BRT, 460W 12th Ave, Columbus, OH, 43210, USA.
| | - Yadwinder Deol
- Department of Pathology, The Ohio State University Wexner Medical Center, 840 BRT, 460W 12th Ave, Columbus, OH, 43210, USA.
| | - Amita Sneh
- Department of Pathology, The Ohio State University Wexner Medical Center, 840 BRT, 460W 12th Ave, Columbus, OH, 43210, USA.
| | - Akaansha Ganju
- Department of Pathology, The Ohio State University Wexner Medical Center, 840 BRT, 460W 12th Ave, Columbus, OH, 43210, USA.
| | - Mustafa Basree
- Department of Pathology, The Ohio State University Wexner Medical Center, 840 BRT, 460W 12th Ave, Columbus, OH, 43210, USA.
| | - Mohd W Nasser
- Department of Pathology, The Ohio State University Wexner Medical Center, 840 BRT, 460W 12th Ave, Columbus, OH, 43210, USA.
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University Wexner Medical Center, 840 BRT, 460W 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
197
|
Aguiñiga-Sánchez I, Soto-Hernández M, Cadena-Iñiguez J, Ruíz-Posadas LDM, Cadena-Zamudio JD, González-Ugarte AK, Steider BW, Santiago-Osorio E. Fruit extract from a Sechium edule hybrid induce apoptosis in leukaemic cell lines but not in normal cells. Nutr Cancer 2015; 67:250-7. [PMID: 25611564 DOI: 10.1080/01635581.2015.989370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The antiproliferative potential of a crude extract from the chayote hybrid H-837-07-GISeM® and its potential for apoptosis induction were assessed in leukaemic cell lines and normal mouse bone marrow mononuclear cells (BM-MNCs). The extract strongly inhibited the proliferation of the P388, J774, and WEHI-3 cell lines (with an IC50 below 1.3 μg·mL(-1)), reduced cell viability, and induced apoptotic body production, phosphatidylserine translocation, and DNA fragmentation. However, the extract had no effect on BM-MNCs. We postulate that these properties make the extract a good candidate for an anti-tumour agent for clinical use.
Collapse
Affiliation(s)
- Itzen Aguiñiga-Sánchez
- a Postgraduate College , Texcoco , Mexico ; Mexican Interdisciplinary Research Group on Sechium , Texcoco , Mexico Estate , Mexico ; and School of Higher Education of Zaragoza, National Autonomous University of Mexico , Mexico City , Mexico
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Testa U, Pelosi E. MicroRNAs expressed in hematopoietic stem/progenitor cells are deregulated in acute myeloid leukemias. Leuk Lymphoma 2015; 56:1466-74. [PMID: 25242094 DOI: 10.3109/10428194.2014.955019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNAs are key regulators of hematopoiesis, specifically involved in regulating the maintenance of stemness of primitive hematopoietic progenitor cells (HPCs) and the early and late stages of hematopoietic differentiation. Some microRNAs have been found to be expressed in hematopoietic stem cells (HSCs) and primitive HPCs, and play a relevant role in regulation of the early steps of hematopoietic cell differentiation. Notable examples of these microRNAs are given by miR-22, miR-29, miR-125 and miR-126. These HSC/HPC-regulating microRNAs are often deregulated in some subsets of acute myeloid leukemia (AML), with pathogenic, diagnostic and prognostic implications. Therefore, elucidation of the pattern of microRNA expression at the level of the early stages of hematopoietic cell differentiation has essential implications, not only for elucidation of the molecular bases of the early stages of hematopoietic differentiation, but also for a better understanding of the pathogenic mechanisms underlying AML.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità , Rome , Italy
| | | |
Collapse
|
199
|
Yuan L, Zhou C, Lu Y, Hong M, Zhang Z, Zhang Z, Chang Y, Zhang C, Li X. IFN-γ-mediated IRF1/miR-29b feedback loop suppresses colorectal cancer cell growth and metastasis by repressing IGF1. Cancer Lett 2015; 359:136-47. [PMID: 25592039 DOI: 10.1016/j.canlet.2015.01.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 02/08/2023]
Abstract
To investigate the clinicopathological significance and underlying mechanism of microRNA-29b (miR-29b) in colorectal cancer (CRC), the role of miR-29b was investigated using in vivo and in vitro assays. Luciferase reporter assays were conducted to determine the association between miR-29b and the insulin-like growth factor 1 (IGF1) 3' untranslated region (3'UTR). Chromatin immunoprecipitation (ChIP) assays were employed to assess the direct binding of interferon regulatory factor 1 (IRF1) to miR-29b. We found that interferon (IFN)-γ could induce miR-29b by recruiting IRF1 to binding sites in the miR-29b promoter. A low level of miR-29b was significantly associated with an aggressive phenotype. MiR-29b inhibited CRC cell growth and invasion. IGF1, an activator of PI3K/Akt signaling, was confirmed as a novel target of miR-29b. Moreover, miR-29b increased IRF1 expression, and the inhibition of miR-29b suppressed IFN-γ-induced apoptosis. We elucidated the potential signaling pathway, IFN-γ/IRF1/miR-29b/IGF1, and its implication for CRC tumorigenesis. A positive feedback loop between IRF1 and miR-29b may contribute to the sensitivity of CRC cells to IFN-γ. Targeting miR-29b may provide a strategy for blocking CRC growth and metastasis.
Collapse
Affiliation(s)
- Li Yuan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, NO.1838 Guangzhou Road, Guangzhou 510515, China
| | - Chang Zhou
- Department of Anatomy and Histology, Guangdong Pharmaceutical University, No. 280 Outer Ring East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yanxia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, NO.1838 Guangzhou Road, Guangzhou 510515, China
| | - Min Hong
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, NO.1838 Guangzhou Road, Guangzhou 510515, China
| | - Zuoyang Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, NO.1838 Guangzhou Road, Guangzhou 510515, China
| | - Zheying Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, NO.1838 Guangzhou Road, Guangzhou 510515, China
| | - Yaya Chang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, NO.1838 Guangzhou Road, Guangzhou 510515, China
| | - Chao Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, NO.1838 Guangzhou Road, Guangzhou 510515, China
| | - Xuenong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, NO.1838 Guangzhou Road, Guangzhou 510515, China.
| |
Collapse
|
200
|
Inoue A, Yamamoto H, Uemura M, Nishimura J, Hata T, Takemasa I, Ikenaga M, Ikeda M, Murata K, Mizushima T, Doki Y, Mori M. MicroRNA-29b is a Novel Prognostic Marker in Colorectal Cancer. Ann Surg Oncol 2014; 22 Suppl 3:S1410-8. [PMID: 25472644 DOI: 10.1245/s10434-014-4255-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Indexed: 12/15/2022]
Abstract
PURPOSE Recent studies have suggested that microRNA-29 (miR-29) family members may play important roles in human cancer by regulating cell proliferation, differentiation, apoptosis, migration, and invasion. The present study aimed to investigate the clinical significance and biological function of miR-29b in colorectal cancer (CRC). METHODS Real-time polymerase chain reaction was used to quantify miR-29b expression. The association between miR-29b and survival was evaluated in 245 patients with CRC. We transfected an miR-29b mimetic into CRC cells to explore the functional role of miR-29b in vitro, based on a proliferation assay, flow cytometry, and Western blotting. RESULTS In clinical samples of CRC, miR-29b expression was significantly reduced in tumor tissues compared with normal mucosa (p < 0.012). Multivariate survival analyses indicated that miR-29b expression was an independent prognostic factor for disease-free survival (p = 0.026), lymph node metastasis (p = 0.004), and pathological T classification (p = 0.002). In a multivariate analysis of 5-year overall survival, we found a similar association between lymph node metastasis, pathological T classification, venous invasion, and miR-29b expression (p = 0.013). In vitro, low Ki-67-positive staining showed that administration of the mimic-miR-29b reduced proliferation of CRC cells. An Annexin V apoptosis assay and flow cytometric analysis revealed that miR-29b induced apoptosis and arrested the cell cycle at the G1/S transition. Moreover, miR-29b inhibited the expression of MCL1 and CDK6. CONCLUSIONS Our findings indicated that miR-29b may be a useful, novel, prognostic marker and may play important roles in regulating apoptosis and cell cycle in CRC.
Collapse
Affiliation(s)
- Akira Inoue
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Mamoru Uemura
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Junichi Nishimura
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taishi Hata
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ichiro Takemasa
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | - Masataka Ikeda
- Department of Surgery, National Hospital Organization, Osaka National Hospital, Osaka, Japan
| | - Kohei Murata
- Department of Surgery, Suita Municipal Hospital, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|