151
|
Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 2019; 18:585-608. [DOI: 10.1038/s41573-019-0028-1] [Citation(s) in RCA: 493] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
152
|
Wyatt KD, Bram RJ. Immunotherapy in pediatric B-cell acute lymphoblastic leukemia. Hum Immunol 2019; 80:400-408. [DOI: 10.1016/j.humimm.2019.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
|
153
|
Functionally Defective T Cells After Chemotherapy of B-Cell Malignancies Can Be Activated by the Tetravalent Bispecific CD19/CD3 Antibody AFM11. J Immunother 2019; 42:180-188. [DOI: 10.1097/cji.0000000000000267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
154
|
Multifunctional Natural Killer Cell Engagers Targeting NKp46 Trigger Protective Tumor Immunity. Cell 2019; 177:1701-1713.e16. [PMID: 31155232 DOI: 10.1016/j.cell.2019.04.041] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/19/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Over the last decade, various new therapies have been developed to promote anti-tumor immunity. Despite interesting clinical results in hematological malignancies, the development of bispecific killer-cell-engager antibody formats directed against tumor cells and stimulating anti-tumor T cell immunity has proved challenging, mostly due to toxicity problems. We report here the generation of trifunctional natural killer (NK) cell engagers (NKCEs), targeting two activating receptors, NKp46 and CD16, on NK cells and a tumor antigen on cancer cells. Trifunctional NKCEs were more potent in vitro than clinical therapeutic antibodies targeting the same tumor antigen. They had similar in vivo pharmacokinetics to full IgG antibodies and no off-target effects and efficiently controlled tumor growth in mouse models of solid and invasive tumors. Trifunctional NKCEs thus constitute a new generation of molecules for fighting cancer. VIDEO ABSTRACT.
Collapse
|
155
|
Rabe JL, Gardner L, Hunter R, Fonseca JA, Dougan J, Gearheart CM, Leibowitz MS, Lee-Miller C, Baturin D, Fosmire SP, Zelasko SE, Jones CL, Slansky JE, Rupji M, Dwivedi B, Henry CJ, Porter CC. IL12 Abrogates Calcineurin-Dependent Immune Evasion during Leukemia Progression. Cancer Res 2019; 79:3702-3713. [PMID: 31142509 DOI: 10.1158/0008-5472.can-18-3800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/25/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
Exploitation of the immune system has emerged as an important therapeutic strategy for acute lymphoblastic leukemia (ALL). However, the mechanisms of immune evasion during leukemia progression remain poorly understood. We sought to understand the role of calcineurin in ALL and observed that depletion of calcineurin B (CnB) in leukemia cells dramatically prolongs survival in immune-competent but not immune-deficient recipients. Immune-competent recipients were protected from challenge with leukemia if they were first immunized with CnB-deficient leukemia, suggesting robust adaptive immunity. In the bone marrow (BM), recipients of CnB-deficient leukemia harbored expanded T-cell populations as compared with controls. Gene expression analyses of leukemia cells extracted from the BM identified Cn-dependent significant changes in the expression of immunoregulatory genes. Increased secretion of IL12 from CnB-deficient leukemia cells was sufficient to induce T-cell activation ex vivo, an effect that was abolished when IL12 was neutralized. Strikingly, recombinant IL12 prolonged survival of mice challenged with highly aggressive B-ALL. Moreover, gene expression analyses from children with ALL showed that patients with higher expression of either IL12A or IL12B exhibited prolonged survival. These data suggest that leukemia cells are dependent upon calcineurin for immune evasion by restricting the regulation of proinflammatory genes, particularly IL12. SIGNIFICANCE: This report implicates calcineurin as an intracellular signaling molecule responsible for immune evasion during leukemia progression and raises the prospect of re-examining IL12 as a therapeutic in leukemia.
Collapse
Affiliation(s)
- Jennifer L Rabe
- Molecular Biology Program, University of Colorado Denver, Aurora, Colorado
| | - Lori Gardner
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Rae Hunter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Jairo A Fonseca
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Jodi Dougan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | | | | | - Cathy Lee-Miller
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Dmitry Baturin
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Susan P Fosmire
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Susan E Zelasko
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Courtney L Jones
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Jill E Slansky
- Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, Colorado
| | - Manali Rupji
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Curtis J Henry
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Georgia
| | - Christopher C Porter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Georgia
| |
Collapse
|
156
|
Hijazi Y, Klinger M, Kratzer A, Wu B, Baeuerle PA, Kufer P, Wolf A, Nagorsen D, Zhu M. Pharmacokinetic and Pharmacodynamic Relationship of Blinatumomab in Patients with Non-Hodgkin Lymphoma. ACTA ACUST UNITED AC 2019; 13:55-64. [PMID: 29773068 PMCID: PMC6327122 DOI: 10.2174/1574884713666180518102514] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/05/2018] [Accepted: 05/16/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Blinatumomab is a bispecific T-cell engager (BiTE®) antibody construct targeting CD3ε on T cells and CD19 on B cells. We describe the relationship between pharmacokinetics (PK) of blinatumomab and pharmacodynamic (PD) changes in peripheral lymphocytes, serum cytokines, and tumor size in patients with non-Hodgkin lymphoma (NHL). METHODS In a phase 1 study, 76 patients with relapsed/refractory NHL received blinatumomab by continuous intravenous infusion at various doses (0.5 to 90 µg/m2/day). PD changes were analyzed with respect to dose, blinatumomab concentration at steady state (Css), and cumulative area under the concentration-versus-time curve (AUCcum). RESULTS B-cell depletion occurred within 48 hours at doses ≥5 µg/m2/day, followed first-order kinetics, and was blinatumomab exposure-dependent. Change in tumor size depended on systemic blinatumomab exposure and treatment duration and could be fitted to an Emax model, which predicted a 50% reduction in tumor size at AUCcum of ≥1,340 h×µg/L and Css of ≥1,830 pg/mL, corresponding to a blinatumomab dose of 47 µg/m2/day for 28 days. The magnitude of transient cytokine elevation, observed within 1-2 days of infusion start, was dose-dependent, with less pronounced elevation at low starting doses. CONCLUSION B-lymphocyte depletion following blinatumomab infusion was exposure-dependent. Transient cytokine elevation increased with dose; it was less pronounced at low starting doses. Tumor response was a function of exposure, suggesting utility for the PK/PD relationship in dose selection for future studies, including NHL and other malignant settings.
Collapse
Affiliation(s)
| | | | | | - Benjamin Wu
- Amgen Inc., Thousand Oaks, CA, United States
| | | | - Peter Kufer
- Amgen Research (Munich) GmbH, Munich, Germany
| | | | | | - Min Zhu
- Amgen Inc., Thousand Oaks, CA, United States
| |
Collapse
|
157
|
Exposure-adjusted adverse events comparing blinatumomab with chemotherapy in advanced acute lymphoblastic leukemia. Blood Adv 2019; 2:1522-1531. [PMID: 29954814 DOI: 10.1182/bloodadvances.2018019034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/25/2018] [Indexed: 11/20/2022] Open
Abstract
In the phase 3 TOWER study, blinatumomab demonstrated an overall survival benefit over standard-of-care chemotherapy (SOC) in adults with relapsed or refractory (r/r) Philadelphia chromosome-negative (Ph-) B-precursor acute lymphoblastic leukemia (ALL). Nearly all patients in both treatment arms experienced an adverse event (AE), and the incidence rate of serious AEs was higher for blinatumomab. However, as treatment exposure differed between the 2 arms, we conducted an exploratory safety analysis comparing exposure-adjusted event rates (EAERs) of blinatumomab vs SOC. Analyses were conducted for all patients who received therapy (safety population). Patients received a median (range) of 2 cycles (1-9) of blinatumomab (N = 267) vs 1 cycle (1-4) of SOC (N = 109). Grade ≥3 AE rates were generally higher in cycle 1 of blinatumomab than in cycle 2 (76% vs 37%). After adjusting for time on treatment, EAERs of grade ≥3 were significantly lower for blinatumomab vs SOC overall (10.73 vs 45.27 events per patient-year; P < .001) and for events of clinical interest, including infections (1.63 vs 6.49 events per patient-year; P < .001), cytopenias (3.64 vs 20.07 events per patient-year; P < .001), and neurologic events (0.38 vs 0.95 events per patient-year; P = .008). The EAER of grade ≥3 cytokine-release syndrome was higher for blinatumomab than for SOC (0.16 vs 0 events per patient-year; P = .038). These data further support the role of blinatumomab as an efficacious and well-tolerated treatment option for patients with r/r Ph- ALL. This trial was registered at www.clinicaltrials.gov as #NCT02013167.
Collapse
|
158
|
Cytokine Release Syndrome: An Overview on its Features and Management. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
159
|
Duell J, Lammers PE, Djuretic I, Chunyk AG, Alekar S, Jacobs I, Gill S. Bispecific Antibodies in the Treatment of Hematologic Malignancies. Clin Pharmacol Ther 2019; 106:781-791. [PMID: 30770546 PMCID: PMC6766786 DOI: 10.1002/cpt.1396] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/03/2019] [Indexed: 12/24/2022]
Abstract
Monoclonal antibody therapies are an important approach for the treatment of hematologic malignancies, but typically show low single‐agent activity. Bispecific antibodies, however, redirect immune cells to the tumor for subsequent lysis, and preclinical and accruing clinical data support single‐agent efficacy of these agents in hematologic malignancies, presaging an exciting era in the development of novel bispecific formats. This review discusses recent developments in this area, highlighting the challenges in delivering effective immunotherapies for patients.
Collapse
Affiliation(s)
- Johannes Duell
- Department of Internal Medicine II, Universitätsklinikum, Würzburg, Germany
| | | | | | | | | | | | - Saar Gill
- Blood and Marrow Transplantation Program, Abramson Cancer Center and the Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
160
|
Monoclonal Antibodies in Multiple Sclerosis: Present and Future. Biomedicines 2019; 7:biomedicines7010020. [PMID: 30875812 PMCID: PMC6466331 DOI: 10.3390/biomedicines7010020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 01/09/2023] Open
Abstract
The global incidence of multiple sclerosis (MS) appears to be increasing. Although it may not be associated with a high mortality rate, this disease has a high morbidity rate which affects the quality of life of patients and reduces their ability to do their activities of daily living. Thankfully, the development of novel disease modifying therapies continues to increase. Monoclonal antibodies (MABs) have become a mainstay of MS treatment and they are likely to continue to be developed for the treatment of this disease. Specifically, MABs have proven to be some of the most efficacious treatments at reducing relapses and the inflammation in MS patients, including the first treatment for primary progressive MS and are being explored as reparative/remyelinating agents as well. These relatively new treatments will be reviewed here to help evaluate their efficacy, adverse events, immunogenicity, and benefit-risk ratios in the treatment of the diverse spectrum of MS. The focus will be on MABs that are currently approved or may be approved in the near future.
Collapse
|
161
|
Sun M, Zhang H. Therapeutic antibodies for mantle cell lymphoma: A brand-new era ahead. Heliyon 2019; 5:e01297. [PMID: 31016256 PMCID: PMC6475712 DOI: 10.1016/j.heliyon.2019.e01297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 12/16/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a heterogeneous aggressive disease and remains incurable with current chemotherapies. The development of monoclonal antibody (mAb) has led to substantial achievement in immunotherapeutic strategies for B-cell lymphomas including MCL. Nonetheless, progress in the clinical use of mAbs is hindered by poor efficacy, off-target toxicities and drug resistance. Thus, novel mAbs engineering and approaches to improve target specificity and enhance affinity and potency are required. In this review, we highlight the latest advances of therapeutic antibodies in MCL, alone or in combination with other strategies and agents, with a particular focus on the current challenges and future prospective.
Collapse
Affiliation(s)
- Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650031, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650031, China
| |
Collapse
|
162
|
Yu L, Wang J. T cell-redirecting bispecific antibodies in cancer immunotherapy: recent advances. J Cancer Res Clin Oncol 2019; 145:941-956. [PMID: 30798356 DOI: 10.1007/s00432-019-02867-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/18/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Globally, cancer is a critical illness which seriously threatens human health. T-cell-based cancer immunotherapy for some patients has demonstrated impressive achievements including chimeric antigen receptor T cells, immune checkpoint inhibitors and T cell-redirecting bispecific antibodies (TRBAs). TRBAs recruit T cells to lyse cancer cells bypassing the antigen presentation through the major histocompatibility complex pathways. In this review we summarized the TRBAs formats, biophysical characteristics, the preclinical and clinical trial results, as well as the challenges faced by TRBAs in tumour therapy. METHODS Herein the relevant literature and clinical trials from the PubMed and ClinicalTrials.gov database. RESULTS The advances in protein engineering technology have generated diverse TRBAs format which can be classified into two categories: IgG-like TRBAs and non-IgG-like TRBAs. Multiple applications of TRBAs showed encouraging curative effect and entered clinical trials for lymphoid malignancy and solid tumour. CONCLUSIONS TRBA is a powerful tool for the cancer treatment and the clinical studies showed potent anti-tumour efficacy in hematologic malignancies. Although the clinical outcomes of TRBAs in solid tumours are less satisfied than hematologic malignancies, many preclinical antibodies and combination therapies are being evaluated.
Collapse
Affiliation(s)
- Lin Yu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| |
Collapse
|
163
|
Patel SY, Carbone J, Jolles S. The Expanding Field of Secondary Antibody Deficiency: Causes, Diagnosis, and Management. Front Immunol 2019; 10:33. [PMID: 30800120 PMCID: PMC6376447 DOI: 10.3389/fimmu.2019.00033] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
Antibody deficiency or hypogammaglobulinemia can have primary or secondary etiologies. Primary antibody deficiency (PAD) is the result of intrinsic genetic defects, whereas secondary antibody deficiency may arise as a consequence of underlying conditions or medication use. On a global level, malnutrition, HIV, and malaria are major causes of secondary immunodeficiency. In this review we consider secondary antibody deficiency, for which common causes include hematological malignancies, such as chronic lymphocytic leukemia or multiple myeloma, and their treatment, protein-losing states, and side effects of a number of immunosuppressive agents and procedures involved in solid organ transplantation. Secondary antibody deficiency is not only much more common than PAD, but is also being increasingly recognized with the wider and more prolonged use of a growing list of agents targeting B cells. SAD may thus present to a broad range of specialties and is associated with an increased risk of infection. Early diagnosis and intervention is key to avoiding morbidity and mortality. Optimizing treatment requires careful clinical and laboratory assessment and may involve close monitoring of risk parameters, vaccination, antibiotic strategies, and in some patients, immunoglobulin replacement therapy (IgRT). This review discusses the rapidly evolving list of underlying causes of secondary antibody deficiency, specifically focusing on therapies targeting B cells, alongside recent advances in screening, biomarkers of risk for the development of secondary antibody deficiency, diagnosis, monitoring, and management.
Collapse
Affiliation(s)
- Smita Y. Patel
- Clinical Immunology Department, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Javier Carbone
- Clinical Immunology Department, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| |
Collapse
|
164
|
Del Bufalo F, Merli P, Alessi I, Locatelli F. B-cell depleting immunotherapies: therapeutic opportunities and toxicities. Expert Rev Clin Immunol 2019; 15:497-509. [PMID: 30681371 DOI: 10.1080/1744666x.2019.1573672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The last few years have witnessed what can certainly be defined as a 'period of renaissance' for immunotherapy in the field of hematological malignancies. In particular, antibody-mediated and cell-mediated immunotherapy have significantly changed the treatment approach of patients with B-cell lymphoproliferative disorders. These therapies, initially employed in patients with refractory/relapsed disease, are now integrated in the treatment of newly diagnosed patients. Together with the therapeutic success, we have also learnt that these innovative therapies can induce relevant, sometimes life-threatening or even fatal, side effects. Areas covered: In this review article, we analyzed the applicative therapeutic scenario and the peculiar toxicities associated with approaches of immunotherapy, paying particular attention to the new emerging side effects, substantially unknown before the introduction of these therapies. Expert commentary: Both monoclonal antibodies and cell therapy with lymphocytes genetically modified to be redirected against leukemia targets through the transduction with chimeric antigen receptors (CARs) have obtained unprecedented success in rescuing patients with resistant B-cell malignancies. Complications, such as neurotoxicity, cytokine release syndrome or persistent B-cell lymphopenia, must always be taken into consideration and diagnosed in a timely manner in patients with B-cell neoplasms to guarantee optimal management, thus avoiding they blunting the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Francesca Del Bufalo
- a Department of Pediatric Hematology and Oncology, Cellular and Gene Therapy , IRCCS Ospedale Pediatrico Bambino Gesù , Rome , Italy
| | - Pietro Merli
- a Department of Pediatric Hematology and Oncology, Cellular and Gene Therapy , IRCCS Ospedale Pediatrico Bambino Gesù , Rome , Italy
| | - Iside Alessi
- a Department of Pediatric Hematology and Oncology, Cellular and Gene Therapy , IRCCS Ospedale Pediatrico Bambino Gesù , Rome , Italy
| | - Franco Locatelli
- a Department of Pediatric Hematology and Oncology, Cellular and Gene Therapy , IRCCS Ospedale Pediatrico Bambino Gesù , Rome , Italy.,b Department of Pediatrics , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
165
|
Kaur M, Drake AC, Hu G, Rudnick S, Chen Q, Phennicie R, Attar R, Nemeth J, Gaudet F, Chen J. Induction and Therapeutic Targeting of Human NPM1c + Myeloid Leukemia in the Presence of Autologous Immune System in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 202:1885-1894. [PMID: 30710044 DOI: 10.4049/jimmunol.1800366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022]
Abstract
Development of targeted cancer therapy requires a thorough understanding of mechanisms of tumorigenesis as well as mechanisms of action of therapeutics. This is challenging because by the time patients are diagnosed with cancer, early events of tumorigenesis have already taken place. Similarly, development of cancer immunotherapies is hampered by a lack of appropriate small animal models with autologous human tumor and immune system. In this article, we report the development of a mouse model of human acute myeloid leukemia (AML) with autologous immune system for studying early events of human leukemogenesis and testing the efficacy of immunotherapeutics. To develop such a model, human hematopoietic stem/progenitor cells (HSPC) are transduced with lentiviruses expressing a mutated form of nucleophosmin (NPM1), referred to as NPM1c. Following engraftment into immunodeficient mice, transduced HSPCs give rise to human myeloid leukemia, whereas untransduced HSPCs give rise to human immune cells in the same mice. The de novo AML, with CD123+ leukemic stem or initiating cells (LSC), resembles NPM1c+ AML from patients. Transcriptional analysis of LSC and leukemic cells confirms similarity of the de novo leukemia generated in mice with patient leukemia and suggests Myc as a co-operating factor in NPM1c-driven leukemogenesis. We show that a bispecific conjugate that binds both CD3 and CD123 eliminates CD123+ LSCs in a T cell-dependent manner both in vivo and in vitro. These results demonstrate the utility of the NPM1c+ AML model with an autologous immune system for studying early events of human leukemogenesis and for evaluating efficacy and mechanism of immunotherapeutics.
Collapse
Affiliation(s)
- Mandeep Kaur
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Adam C Drake
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Guangan Hu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Qingfeng Chen
- Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673
| | - Ryan Phennicie
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ricardo Attar
- Janssen Pharmaceuticals, Inc., Springhouse, PA 19477; and
| | - Jeffrey Nemeth
- Janssen Pharmaceuticals, Inc., Springhouse, PA 19477; and
| | | | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
166
|
Aldoss I, Khaled SK, Budde E, Stein AS. Cytokine Release Syndrome With the Novel Treatments of Acute Lymphoblastic Leukemia: Pathophysiology, Prevention, and Treatment. Curr Oncol Rep 2019; 21:4. [PMID: 30666425 DOI: 10.1007/s11912-019-0753-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW T cell-based therapies (blinatumomab and CAR T cell therapy) have produced unprecedented responses in relapsed and refractory (r/r) acute lymphoblastic leukemia (ALL) but is accompanied with significant toxicities, of which one of the most common and serious is cytokine release syndrome (CRS). Here we will review the pathophysiology, prevention, and treatment of CRS. RECENT FINDINGS Efforts have been initiated to define and grade cytokine release syndrome (CRS), to identify patients at risk, to describe biomarkers that predict onset and severity, to understand the pathophysiology, and to prevent and treat severe cases to reduce T cell immunotherapy-related morbidity and mortality. Optimizing the timing of T cell-based therapies in ALL, identifying new biomarkers, and investigating novel anti-cytokine agents that have anti-CRS activity are likely to be fruitful avenues of study.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Gehr Family Center for Leukemia Research, City of Hope, 1500 Duarte Rd, Duarte, CA, 91010, USA
| | - Samer K Khaled
- Gehr Family Center for Leukemia Research, City of Hope, 1500 Duarte Rd, Duarte, CA, 91010, USA
| | - Elizabeth Budde
- Gehr Family Center for Leukemia Research, City of Hope, 1500 Duarte Rd, Duarte, CA, 91010, USA
| | - Anthony S Stein
- Gehr Family Center for Leukemia Research, City of Hope, 1500 Duarte Rd, Duarte, CA, 91010, USA.
| |
Collapse
|
167
|
Kuchimanchi M, Zhu M, Clements JD, Doshi S. Exposure-response analysis of blinatumomab in patients with relapsed/refractory acute lymphoblastic leukaemia and comparison with standard of care chemotherapy. Br J Clin Pharmacol 2019; 85:807-817. [PMID: 30645768 PMCID: PMC6422642 DOI: 10.1111/bcp.13864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/24/2022] Open
Abstract
Aims The relationship between blinatumomab exposure and efficacy endpoints (occurrence of complete remission [CR] and duration of overall survival [OS]) or adverse events (occurrence of cytokine release syndrome [CRS] and neurological events) were investigated in adult patients with relapsed/refractory acute lymphoblastic leukaemia (r/r ALL) receiving blinatumomab or standard of care (SOC) chemotherapy to evaluate appropriateness of the blinatumomab dosing regimen. Methods Exposure, efficacy and safety data from adult patients (n = 646) with r/r ALL receiving stepwise (9 then 28 μg/day, 4‐week cycle) continuous intravenous infusion (n = 537) of blinatumomab or SOC (n = 109) chemotherapy were pooled from phase 2 and 3 studies. The occurrence of CR, neurological and CRS events, and duration of OS were analysed using Cox proportional hazards models or logistic regression, as appropriate. Confounding factors were tested multivariately as needed. Results Blinatumomab steady‐state concentration following 28 μg/day dosing was associated with the probability of achieving CR (odds ratio and 95% confidence interval: 1.073 [1.033–1.114]), and a longer duration of OS compared to SOC (hazard ratio and 95% confidence interval: 0.954 [0.936–0.973], P < .05) in multivariate analyses. The exposure–safety analyses indicated that blinatumomab steady‐state concentration following the 9 or 28 μg/day dose was not associated with increased probability of CRS or neurological events, after accounting for blinatumomab treatment effect (P > .05). Conclusions Blinatumomab step‐dosing regimen of 9/28 μg/day provided treatment benefit in achieving CR and increasing the duration of OS over SOC and was appropriate in management of CRS and neurological events in patients with r/r ALL.
Collapse
Affiliation(s)
- Mita Kuchimanchi
- Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, CA, 91320, USA
| | - Min Zhu
- Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, CA, 91320, USA
| | - John D Clements
- Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, CA, 91320, USA
| | - Sameer Doshi
- Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, CA, 91320, USA
| |
Collapse
|
168
|
Rothschilds AM, Wittrup KD. What, Why, Where, and When: Bringing Timing to Immuno-Oncology. Trends Immunol 2019; 40:12-21. [DOI: 10.1016/j.it.2018.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 01/27/2023]
|
169
|
Bond DA, Dotson E, Awan FT, Baiocchi RA, Blum KA, Maddocks K. Febrile Hypotensive Reactions Following ABVD Chemotherapy in Patients With EBV-associated Classical Hodgkin Lymphoma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 19:e123-e128. [PMID: 30594446 PMCID: PMC7104725 DOI: 10.1016/j.clml.2018.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/22/2018] [Indexed: 11/28/2022]
Affiliation(s)
- David A Bond
- Department of Internal Medicine, Division of Hematology, Arthur G. James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Emily Dotson
- Department of Pharmacy, The Ohio State University, Columbus, OH
| | - Farrukh T Awan
- Department of Hematology and Medical Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Robert A Baiocchi
- Department of Internal Medicine, Division of Hematology, Arthur G. James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Kristie A Blum
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Kami Maddocks
- Department of Internal Medicine, Division of Hematology, Arthur G. James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH.
| |
Collapse
|
170
|
Jain T, Litzow MR. No free rides: management of toxicities of novel immunotherapies in ALL, including financial. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:25-34. [PMID: 30504288 PMCID: PMC6246022 DOI: 10.1182/asheducation-2018.1.25] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Therapeutic options for acute lymphoblastic leukemia, especially in the relapsed/refractory setting, have expanded significantly in recent times. However, this comes at the cost of toxicities: medical as well as financial. We highlight some of the unique toxicities associated with the novel agents to apprise our readers about what to expect, how to recognize them, and how to manage these toxicities. One of the toxicities seen with inotuzumab, a CD22 antibody drug conjugate, is sinusoidal obstruction syndrome, which can be fatal in >80% of patients if associated with multiorgan failure. Blinatumomab, a monoclonal antibody targeting CD19, is associated with cytokine release syndrome (CRS) and neurotoxicity, both of which require prompt recognition and management primarily with corticosteroids. CRS and neurotoxicity are more common and more severe with chimeric antigen receptor T-cell therapy (CAR-T). The fact that CAR-T cannot be discontinued on demand adds a layer of complexity to the management of related toxicities of this therapy. Tocilizumab, an interleukin-6 receptor blocker, is used to treat severe CRS from CAR-T, whereas corticosteroids remain the mainstay for neurotoxicity management. Although effective, these drugs carry a high price tag, and we review the available data on cost-effectiveness of these agents, keeping in mind that median follow-up on most of these studies is limited and that long-term data on durability of response remain to be seen.
Collapse
MESH Headings
- Antibodies, Bispecific/economics
- Antibodies, Bispecific/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/economics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Costs and Cost Analysis
- Hepatic Veno-Occlusive Disease/chemically induced
- Hepatic Veno-Occlusive Disease/economics
- Hepatic Veno-Occlusive Disease/pathology
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/economics
- Immunotherapy, Adoptive/methods
- Inotuzumab Ozogamicin
- Neurotoxicity Syndromes/economics
- Neurotoxicity Syndromes/immunology
- Neurotoxicity Syndromes/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/economics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Receptors, Chimeric Antigen
Collapse
Affiliation(s)
- Tania Jain
- Adult Bone Marrow Transplantation Service, Memorial Sloan-Kettering Cancer Center, New York, NY; and
| | - Mark R. Litzow
- Division of Hematology and Bone Marrow Transplant, Mayo Clinic, Rochester, MN
| |
Collapse
|
171
|
Yu J, Wang W, Huang H. Efficacy and safety of bispecific T-cell engager (BiTE) antibody blinatumomab for the treatment of relapsed/refractory acute lymphoblastic leukemia and non-Hodgkin’s lymphoma: a systemic review and meta-analysis. Hematology 2018; 24:199-207. [PMID: 30479190 DOI: 10.1080/16078454.2018.1549802] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jian Yu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Wen Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
172
|
Jain T, Litzow MR. No free rides: management of toxicities of novel immunotherapies in ALL, including financial. Blood Adv 2018; 2:3393-3403. [PMID: 30482769 PMCID: PMC6258912 DOI: 10.1182/bloodadvances.2018020198] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/13/2018] [Indexed: 12/27/2022] Open
Abstract
Therapeutic options for acute lymphoblastic leukemia, especially in the relapsed/refractory setting, have expanded significantly in recent times. However, this comes at the cost of toxicities: medical as well as financial. We highlight some of the unique toxicities associated with the novel agents to apprise our readers about what to expect, how to recognize them, and how to manage these toxicities. One of the toxicities seen with inotuzumab, a CD22 antibody drug conjugate, is sinusoidal obstruction syndrome, which can be fatal in >80% of patients if associated with multiorgan failure. Blinatumomab, a monoclonal antibody targeting CD19, is associated with cytokine release syndrome (CRS) and neurotoxicity, both of which require prompt recognition and management primarily with corticosteroids. CRS and neurotoxicity are more common and more severe with chimeric antigen receptor T-cell therapy (CAR-T). The fact that CAR-T cannot be discontinued on demand adds a layer of complexity to the management of related toxicities of this therapy. Tocilizumab, an interleukin-6 receptor blocker, is used to treat severe CRS from CAR-T, whereas corticosteroids remain the mainstay for neurotoxicity management. Although effective, these drugs carry a high price tag, and we review the available data on cost-effectiveness of these agents, keeping in mind that median follow-up on most of these studies is limited and that long-term data on durability of response remain to be seen.
Collapse
Affiliation(s)
- Tania Jain
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Mark R Litzow
- Division of Hematology and Bone Marrow Transplant, Mayo Clinic, Rochester, MN
| |
Collapse
|
173
|
Algeri M, Del Bufalo F, Galaverna F, Locatelli F. Current and future role of bispecific T-cell engagers in pediatric acute lymphoblastic leukemia. Expert Rev Hematol 2018; 11:945-956. [PMID: 30358451 DOI: 10.1080/17474086.2018.1540928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The clinical application of immunotherapy has resulted into a significant improvement in the outcome of children with relapsed/refractory B-cell precursor acute lymphoblastic leukemia (r/r BCP-ALL). In this setting, the use of bispecific T-cell-engager antibodies (BiTEs), such as blinatumomab, which harness the cytotoxic activity of T cells against CD19-positive lymphoblasts, has emerged as a most promising and impactful strategy. Areas covered: This review discusses the main structural and functional features of BiTEs, as well as the current status of their clinical application in childhood ALL. Moreover, future prospects to increase the efficacy of BiTEs are addressed. Expert commentary: The promising results obtained in patients with advanced BCP-ALL pave the way for further improvement in the context of less resistant/advanced disease. Future research is rapidly progressing on several aspects, including the use of blinatumomab in first-line protocols, identification of factors predicting response, use of combinatorial approaches and bioengineering of new molecules with dual specificity or increased potency, stability and half-life. The results of these studies, expected to be available in the next future, will provide further advancement in the development of effective, impactful, targeted immunotherapy for treatment of childhood BCP-ALL, with the concrete potential to revolutionize the clinical practice.
Collapse
Affiliation(s)
- Mattia Algeri
- a Department of Pediatric Hematology and Oncology , IRCCS, Ospedale Pediatrico Bambino Gesù , Rome , Italy
| | - Francesca Del Bufalo
- a Department of Pediatric Hematology and Oncology , IRCCS, Ospedale Pediatrico Bambino Gesù , Rome , Italy
| | - Federica Galaverna
- a Department of Pediatric Hematology and Oncology , IRCCS, Ospedale Pediatrico Bambino Gesù , Rome , Italy
| | - Franco Locatelli
- a Department of Pediatric Hematology and Oncology , IRCCS, Ospedale Pediatrico Bambino Gesù , Rome , Italy.,b Department of Pediatrics , University of Pavia , Pavia , Italy
| |
Collapse
|
174
|
Zhang J, Medeiros LJ, Young KH. Cancer Immunotherapy in Diffuse Large B-Cell Lymphoma. Front Oncol 2018; 8:351. [PMID: 30250823 PMCID: PMC6140403 DOI: 10.3389/fonc.2018.00351] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022] Open
Abstract
Remarkable progress has been made in the field of cancer immunotherapy in the past few years. Immunotherapy has become a standard treatment option for patients with various cancers, including melanoma, lymphoma, and carcinomas of the lungs, kidneys, bladder, and head and neck. Promising immunotherapy approaches, such as chimeric antigen receptor (CAR) T cell therapy and therapeutic blockade of immune checkpoints, in particular cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 pathway (PD-1/PD-L1), have boosted the development of new therapeutic regimens for patients with cancer. Immunotherapeutic strategies for diffuse large B-cell lymphoma (DLBCL) include monoclonal anti-CD20 antibody (rituximab), monoclonal anti-PD-1 antibodies (nivolumab and pembrolizumab), monoclonal anti-PD-L1 antibodies (avelumab, durvalumab, and atezolizumab) and chimeric antigen receptor (CAR) T cell therapy. In this review, we outline the latest highlights and progress in using immunotherapy to treat patients with DLBCL, with a focus on the therapeutic blockade of PD-1/PD-L1 and CAR T cell therapy in DLBCL. We also discuss current clinical trials of PD-1/PD-L1 and CAR T cell therapy and review the challenges and opportunities of using immunotherapy for the treatment of DLBCL.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
175
|
Stein AM, Peletier LA. Predicting the Onset of Nonlinear Pharmacokinetics. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:670-677. [PMID: 30196577 PMCID: PMC6202475 DOI: 10.1002/psp4.12316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/27/2018] [Indexed: 01/08/2023]
Abstract
When analyzing the pharmacokinetics (PK) of drugs, one is often faced with concentration C vs. time curves, which display a sharp transition at a critical concentration Ccrit. For C > Ccrit, the curve displays linear clearance and for C < Ccrit clearance increases in a nonlinear manner as C decreases. Often, it is important to choose a high enough dose such that PK remains linear in order to help ensure that continuous target engagement is achieved throughout the duration of therapy. In this article, we derive a simple expression for Ccrit for models involving linear and nonlinear (saturable) clearance, such as Michaelis‐Menten and target‐mediated drug disposition (TMDD) models. Study Highlights
Collapse
Affiliation(s)
- Andrew M Stein
- Novartis Institute for BioMedical Research, Cambridge, MA, USA
| | | |
Collapse
|
176
|
Cho SF, Anderson KC, Tai YT. Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy. Front Immunol 2018; 9:1821. [PMID: 30147690 PMCID: PMC6095983 DOI: 10.3389/fimmu.2018.01821] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023] Open
Abstract
The approval of the first two monoclonal antibodies targeting CD38 (daratumumab) and SLAMF7 (elotuzumab) in late 2015 for treating relapsed and refractory multiple myeloma (RRMM) was a critical advance for immunotherapies for multiple myeloma (MM). Importantly, the outcome of patients continues to improve with the incorporation of this new class of agents with current MM therapies. However, both antigens are also expressed on other normal tissues including hematopoietic lineages and immune effector cells, which may limit their long-term clinical use. B cell maturation antigen (BCMA), a transmembrane glycoprotein in the tumor necrosis factor receptor superfamily 17 (TNFRSF17), is expressed at significantly higher levels in all patient MM cells but not on other normal tissues except normal plasma cells. Importantly, it is an antigen targeted by chimeric antigen receptor (CAR) T-cells, which have already shown significant clinical activities in patients with RRMM who have undergone at least three prior treatments, including a proteasome inhibitor and an immunomodulatory agent. Moreover, the first anti-BCMA antibody–drug conjugate also has achieved significant clinical responses in patients who failed at least three prior lines of therapy, including an anti-CD38 antibody, a proteasome inhibitor, and an immunomodulatory agent. Both BCMA targeting immunotherapies were granted breakthrough status for patients with RRMM by FDA in Nov 2017. Other promising BCMA-based immunotherapeutic macromolecules including bispecific T-cell engagers, bispecific molecules, bispecific or trispecific antibodies, as well as improved forms of next generation CAR T cells, also demonstrate high anti-MM activity in preclinical and even early clinical studies. Here, we focus on the biology of this promising MM target antigen and then highlight preclinical and clinical data of current BCMA-targeted immunotherapies with various mechanisms of action. These crucial studies will enhance selective anti-MM response, transform the treatment paradigm, and extend disease-free survival in MM.
Collapse
Affiliation(s)
- Shih-Feng Cho
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
177
|
Mølgaard K, Harwood SL, Compte M, Merino N, Bonet J, Alvarez-Cienfuegos A, Mikkelsen K, Nuñez-Prado N, Alvarez-Mendez A, Sanz L, Blanco FJ, Alvarez-Vallina L. Bispecific light T-cell engagers for gene-based immunotherapy of epidermal growth factor receptor (EGFR)-positive malignancies. Cancer Immunol Immunother 2018; 67:1251-1260. [PMID: 29869168 PMCID: PMC11028287 DOI: 10.1007/s00262-018-2181-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 05/28/2018] [Indexed: 12/25/2022]
Abstract
The recruitment of T-cells by bispecific antibodies secreted from adoptively transferred, gene-modified autologous cells has shown satisfactory results in preclinical cancer models. Even so, the approach's translation into the clinic will require incremental improvements to its efficacy and reduction of its toxicity. Here, we characterized a tandem T-cell recruiting bispecific antibody intended to benefit gene-based immunotherapy approaches, which we call the light T-cell engager (LiTE), consisting of an EGFR-specific single-domain VHH antibody fused to a CD3-specific scFv. We generated two LiTEs with the anti-EGFR VHH and the anti-CD3 scFv arranged in both possible orders. Both constructs were well expressed in mammalian cells as highly homogenous monomers in solution with molecular weights of 43 and 41 kDa, respectively. In situ secreted LiTEs bound the cognate antigens of both parental antibodies and triggered the specific cytolysis of EGFR-expressing cancer cells without inducing T-cell activation and cytotoxicity spontaneously or against EGFR-negative cells. Light T-cell engagers are, therefore, suitable for future applications in gene-based immunotherapy approaches.
Collapse
Affiliation(s)
- Kasper Mølgaard
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark
| | - Seandean L Harwood
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark
| | - Marta Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222, Madrid, Spain
| | - Nekane Merino
- CIC bioGUNE, Parque Tecnológico de Bizkaia 800, 48160, Derio, Spain
| | - Jaume Bonet
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne, Station 19, 1015, Lausanne, Switzerland
| | - Ana Alvarez-Cienfuegos
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222, Madrid, Spain
| | - Kasper Mikkelsen
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark
| | - Natalia Nuñez-Prado
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark
| | - Ana Alvarez-Mendez
- Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222, Madrid, Spain
| | - Francisco J Blanco
- CIC bioGUNE, Parque Tecnológico de Bizkaia 800, 48160, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain
| | - Luis Alvarez-Vallina
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark.
| |
Collapse
|
178
|
Hickey JW, Kosmides AK, Schneck JP. Engineering Platforms for T Cell Modulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:277-362. [PMID: 30262034 DOI: 10.1016/bs.ircmb.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cells are crucial contributors to mounting an effective immune response and increasingly the focus of therapeutic interventions in cancer, infectious disease, and autoimmunity. Translation of current T cell immunotherapies has been hindered by off-target toxicities, limited efficacy, biological variability, and high costs. As T cell therapeutics continue to develop, the application of engineering concepts to control their delivery and presentation will be critical for their success. Here, we outline the engineer's toolbox and contextualize it with the biology of T cells. We focus on the design principles of T cell modulation platforms regarding size, shape, material, and ligand choice. Furthermore, we review how application of these design principles has already impacted T cell immunotherapies and our understanding of T cell biology. Recent, salient examples from protein engineering, synthetic particles, cellular and genetic engineering, and scaffolds and surfaces are provided to reinforce the importance of design considerations. Our aim is to provide a guide for immunologists, engineers, clinicians, and the pharmaceutical sector for the design of T cell-targeting platforms.
Collapse
Affiliation(s)
- John W Hickey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan P Schneck
- Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
179
|
Affiliation(s)
- John A Zaia
- Center for Gene Therapy, Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope, Duarte, California, USA.
| |
Collapse
|
180
|
Pulte ED, Vallejo J, Przepiorka D, Nie L, Farrell AT, Goldberg KB, McKee AE, Pazdur R. FDA Supplemental Approval: Blinatumomab for Treatment of Relapsed and Refractory Precursor B-Cell Acute Lymphoblastic Leukemia. Oncologist 2018; 23:1366-1371. [PMID: 30018129 PMCID: PMC6291336 DOI: 10.1634/theoncologist.2018-0179] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/26/2018] [Indexed: 11/20/2022] Open
Abstract
In 2017, the Food and Drug Administration granted accelerated approval of blinatumomab for the treatment of relapsed or refractory precursor B‐cell acute lymphoblastic leukemia. This article focuses on evidence to support conversion from accelerated to regular approval of blinatumomab. On July 11, 2017, the Food and Drug Administration granted approval for blinatumomab for the treatment of relapsed or refractory (R/R) precursor B‐cell acute lymphoblastic leukemia (ALL). Blinatumomab is a bispecific CD19‐directed CD3 T‐cell engager. The basis for the approval included results from two clinical trials, TOWER and ALCANTARA. TOWER, a randomized trial comparing overall survival in patients with Philadelphia chromosome (Ph)‐negative R/R ALL receiving blinatumomab versus standard‐of‐care (SOC) chemotherapy, demonstrated a hazard ratio of 0.71 favoring blinatumomab (p = .012; median survival, 7.7 months with blinatumomab and 4.0 months with SOC chemotherapy). Complete remission (CR) rates were 34% for patients receiving blinatumomab and 16% for those receiving SOC. Adverse events were consistent with those observed in prior trials, with cytokine release syndrome and some neurologic events, including tremor, encephalopathy, peripheral neuropathy, and depression, observed more frequently in the blinatumomab arm, whereas neutropenia and infection were less common among patients receiving blinatumomab. Depression emerged as a rare but potentially severe neurologic event associated with blinatumomab. In ALCANTARA, a single‐arm trial of blinatumomab in patients with Ph‐positive R/R ALL, the CR rate was 31%, and adverse events were similar to those observed previously in Ph‐negative R/R ALL. These results support conversion from accelerated to regular approval of blinatumomab for R/R ALL and broadening of the intended population to include both Ph‐positive and Ph‐negative precursor B‐cell R/R ALL. Implications for Practice. In TOWER, a randomized trial in patients with relapsed or refractory Philadelphia chromosome (Ph)‐negative precursor B‐cell acute lymphoblastic leukemia (ALL), treatment with blinatumomab showed superiority over conventional chemotherapy for complete remission (CR) rate (34% vs. 16%) and survival (3.7‐month improvement in median; hazard ratio, 0.71). In ALCANTARA, a single‐arm trial of blinatumomab for treatment of relapsed or refractory Ph‐positive precursor B‐cell ALL, the CR rate was 31%. Blinatumomab is now approved for treatment of relapsed or refractory precursor B‐cell ALL that is Ph positive or Ph negative.
Collapse
Affiliation(s)
- E Dianne Pulte
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jonathon Vallejo
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Donna Przepiorka
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lei Nie
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ann T Farrell
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kirsten B Goldberg
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Amy E McKee
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Richard Pazdur
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
181
|
Antiviral Activity of HIV gp120-Targeting Bispecific T Cell Engager Antibody Constructs. J Virol 2018; 92:JVI.00491-18. [PMID: 29720517 DOI: 10.1128/jvi.00491-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/19/2018] [Indexed: 11/20/2022] Open
Abstract
Today's gold standard in HIV therapy is combined antiretroviral therapy (cART). It requires strict adherence by patients and lifelong medication, which can lower the viral load below detection limits and prevent HIV-associated immunodeficiency but cannot cure patients. The bispecific T cell-engaging (BiTE) antibody technology has demonstrated long-term relapse-free outcomes in patients with relapsed and refractory acute lymphocytic leukemia. Here, we generated BiTE antibody constructs that target the HIV-1 envelope protein gp120 (HIV gp120) using either the scFv B12 or VRC01, the first two extracellular domains (1 + 2) of human CD4 alone or joined to the single chain variable fragment (scFv) of the antibody 17b fused to an anti-human CD3ε scFv. These engineered human BiTE antibody constructs showed engagement of T cells for redirected lysis of HIV gp120-transfected CHO cells. Furthermore, they substantially inhibited HIV-1 replication in peripheral blood mononuclear cells (PBMCs) as well as in macrophages cocultured with autologous CD8+ T cells, the most potent being the human CD4(1 + 2) BiTE [termed CD(1 + 2) h BiTE] antibody construct and the CD4(1 + 2)L17b BiTE antibody construct. The CD4(1 + 2) h BiTE antibody construct promoted HIV infection of human CD4-/CD8+ T cells. In contrast, the neutralizing B12 and the VRC01 BiTE antibody constructs, as well as the CD4(1 + 2)L17b BiTE antibody construct, did not. Thus, BiTE antibody constructs targeting HIV gp120 are very promising for constraining HIV and warrant further development as novel antiviral therapy with curative potential.IMPORTANCE HIV is a chronic infection well controlled with the current cART. However, we lack a cure for HIV, and the HIV pandemic goes on. Here, we showed in vitro and ex vivo that a BiTE antibody construct targeting HIV gp120 resulted in substantially reduced HIV replication. In addition, these BiTE antibody constructs display efficient killing of gp120-expressing cells and inhibited replication in ex vivo HIV-infected PBMCs or macrophages. We believe that BiTE antibody constructs recognizing HIV gp120 could be a very valuable strategy for a cure of HIV in combination with cART and compounds which reverse latency.
Collapse
|
182
|
Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M, Kochanek M, Böll B, von Bergwelt-Baildon MS. Cytokine release syndrome. J Immunother Cancer 2018; 6:56. [PMID: 29907163 PMCID: PMC6003181 DOI: 10.1186/s40425-018-0343-9] [Citation(s) in RCA: 968] [Impact Index Per Article: 161.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
During the last decade the field of cancer immunotherapy has witnessed impressive progress. Highly effective immunotherapies such as immune checkpoint inhibition, and T-cell engaging therapies like bispecific T-cell engaging (BiTE) single-chain antibody constructs and chimeric antigen receptor (CAR) T cells have shown remarkable efficacy in clinical trials and some of these agents have already received regulatory approval. However, along with growing experience in the clinical application of these potent immunotherapeutic agents comes the increasing awareness of their inherent and potentially fatal adverse effects, most notably the cytokine release syndrome (CRS). This review provides a comprehensive overview of the mechanisms underlying CRS pathophysiology, risk factors, clinical presentation, differential diagnoses, and prognostic factors. In addition, based on the current evidence we give practical guidance to the management of the cytokine release syndrome.
Collapse
Affiliation(s)
- Alexander Shimabukuro-Vornhagen
- Cologne Interventional Immunology, University Hospital of Cologne, Cologne, Germany. .,Intensive Care Program, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany. .,Center of Integrated Oncology Cologne-Bonn, University Hospital of Cologne, Cologne, Germany. .,Intensive Care in Hemato-Oncologic Patients (iCHOP), Cologne, Germany.
| | - Philipp Gödel
- Cologne Interventional Immunology, University Hospital of Cologne, Cologne, Germany.,Intensive Care Program, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Center of Integrated Oncology Cologne-Bonn, University Hospital of Cologne, Cologne, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Translational Cancer Immunology, Gene Centre, University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| | - Hans Joachim Stemmler
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| | - Hans Anton Schlößer
- Cologne Interventional Immunology, University Hospital of Cologne, Cologne, Germany.,Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Max Schlaak
- Department of Dermatology/Venereology, University Hospital of Cologne, Cologne, Germany
| | - Matthias Kochanek
- Intensive Care Program, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Center of Integrated Oncology Cologne-Bonn, University Hospital of Cologne, Cologne, Germany.,Intensive Care in Hemato-Oncologic Patients (iCHOP), Cologne, Germany
| | - Boris Böll
- Intensive Care Program, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Center of Integrated Oncology Cologne-Bonn, University Hospital of Cologne, Cologne, Germany.,Intensive Care in Hemato-Oncologic Patients (iCHOP), Cologne, Germany
| | - Michael S von Bergwelt-Baildon
- Cologne Interventional Immunology, University Hospital of Cologne, Cologne, Germany.,Intensive Care in Hemato-Oncologic Patients (iCHOP), Cologne, Germany.,Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| |
Collapse
|
183
|
Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M, Kochanek M, Böll B, von Bergwelt-Baildon MS. Cytokine release syndrome. J Immunother Cancer 2018. [PMID: 29907163 DOI: 10.1186/s40425-018-0343-9.pmid:29907163;pmcid:pmc6003181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
During the last decade the field of cancer immunotherapy has witnessed impressive progress. Highly effective immunotherapies such as immune checkpoint inhibition, and T-cell engaging therapies like bispecific T-cell engaging (BiTE) single-chain antibody constructs and chimeric antigen receptor (CAR) T cells have shown remarkable efficacy in clinical trials and some of these agents have already received regulatory approval. However, along with growing experience in the clinical application of these potent immunotherapeutic agents comes the increasing awareness of their inherent and potentially fatal adverse effects, most notably the cytokine release syndrome (CRS). This review provides a comprehensive overview of the mechanisms underlying CRS pathophysiology, risk factors, clinical presentation, differential diagnoses, and prognostic factors. In addition, based on the current evidence we give practical guidance to the management of the cytokine release syndrome.
Collapse
Affiliation(s)
- Alexander Shimabukuro-Vornhagen
- Cologne Interventional Immunology, University Hospital of Cologne, Cologne, Germany. .,Intensive Care Program, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany. .,Center of Integrated Oncology Cologne-Bonn, University Hospital of Cologne, Cologne, Germany. .,Intensive Care in Hemato-Oncologic Patients (iCHOP), Cologne, Germany.
| | - Philipp Gödel
- Cologne Interventional Immunology, University Hospital of Cologne, Cologne, Germany.,Intensive Care Program, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Center of Integrated Oncology Cologne-Bonn, University Hospital of Cologne, Cologne, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Translational Cancer Immunology, Gene Centre, University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| | - Hans Joachim Stemmler
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| | - Hans Anton Schlößer
- Cologne Interventional Immunology, University Hospital of Cologne, Cologne, Germany.,Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Max Schlaak
- Department of Dermatology/Venereology, University Hospital of Cologne, Cologne, Germany
| | - Matthias Kochanek
- Intensive Care Program, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Center of Integrated Oncology Cologne-Bonn, University Hospital of Cologne, Cologne, Germany.,Intensive Care in Hemato-Oncologic Patients (iCHOP), Cologne, Germany
| | - Boris Böll
- Intensive Care Program, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Center of Integrated Oncology Cologne-Bonn, University Hospital of Cologne, Cologne, Germany.,Intensive Care in Hemato-Oncologic Patients (iCHOP), Cologne, Germany
| | - Michael S von Bergwelt-Baildon
- Cologne Interventional Immunology, University Hospital of Cologne, Cologne, Germany.,Intensive Care in Hemato-Oncologic Patients (iCHOP), Cologne, Germany.,Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| |
Collapse
|
184
|
Martin NT, Bell JC. Oncolytic Virus Combination Therapy: Killing One Bird with Two Stones. Mol Ther 2018; 26:1414-1422. [PMID: 29703699 PMCID: PMC5986726 DOI: 10.1016/j.ymthe.2018.04.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/29/2018] [Accepted: 04/01/2018] [Indexed: 02/08/2023] Open
Abstract
Over the last 60 years an eclectic collection of microbes has been tested in a variety of pre-clinical models as anti-cancer agents. At the forefront of this research are a number of virus-based platforms that have shown exciting activity in a variety of pre-clinical models and are collectively referred to as oncolytic viruses. Our true understanding of the potential and limitations of this therapeutic modality has been substantially advanced through clinical studies carried out over the last 25 years. Perhaps not surprising, as with all other cancer therapeutics, it has become clear that current oncolytic virus therapeutics on their own are unlikely to be effective in the majority of patients. The greatest therapeutic gains will therefore be made through thoughtful combination strategies built upon an understanding of cancer biology.
Collapse
Affiliation(s)
- Nikolas Tim Martin
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - John Cameron Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
| |
Collapse
|
185
|
Friberg G, Reese D. Blinatumomab (Blincyto): lessons learned from the bispecific t-cell engager (BiTE) in acute lymphocytic leukemia (ALL). Ann Oncol 2018; 28:2009-2012. [PMID: 28379283 DOI: 10.1093/annonc/mdx150] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- G Friberg
- Translational Sciences, Amgen, Inc, Thousand Oaks, California, USA
| | - D Reese
- Translational Sciences, Amgen, Inc, Thousand Oaks, California, USA
| |
Collapse
|
186
|
Wing A, Fajardo CA, Posey AD, Shaw C, Da T, Young RM, Alemany R, June CH, Guedan S. Improving CART-Cell Therapy of Solid Tumors with Oncolytic Virus-Driven Production of a Bispecific T-cell Engager. Cancer Immunol Res 2018; 6:605-616. [PMID: 29588319 PMCID: PMC6688490 DOI: 10.1158/2326-6066.cir-17-0314] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/08/2017] [Accepted: 03/12/2018] [Indexed: 01/23/2023]
Abstract
T cells expressing chimeric antigen receptors (CART) have shown significant promise in clinical trials to treat hematologic malignancies, but their efficacy in solid tumors has been limited. Oncolytic viruses have the potential to act in synergy with immunotherapies due to their immunogenic oncolytic properties and the opportunity of incorporating therapeutic transgenes in their genomes. Here, we hypothesized that an oncolytic adenovirus armed with an EGFR-targeting, bispecific T-cell engager (OAd-BiTE) would improve the outcome of CART-cell therapy in solid tumors. We report that CART cells targeting the folate receptor alpha (FR-α) successfully infiltrated preestablished xenograft tumors but failed to induce complete responses, presumably due to the presence of antigen-negative cancer cells. We demonstrated that OAd-BiTE-mediated oncolysis significantly improved CART-cell activation and proliferation, while increasing cytokine production and cytotoxicity, and showed an in vitro favorable safety profile compared with EGFR-targeting CARTs. BiTEs secreted from infected cells redirected CART cells toward EGFR in the absence of FR-α, thereby addressing tumor heterogeneity. BiTE secretion also redirected CAR-negative, nonspecific T cells found in CART-cell preparations toward tumor cells. The combinatorial approach improved antitumor efficacy and prolonged survival in mouse models of cancer when compared with the monotherapies, and this was the result of an increased BiTE-mediated T-cell activation in tumors. Overall, these results demonstrated that the combination of a BiTE-expressing oncolytic virus with adoptive CART-cell therapy overcomes key limitations of CART cells and BiTEs as monotherapies in solid tumors and encourage its further evaluation in human trials. Cancer Immunol Res; 6(5); 605-16. ©2018 AACR.
Collapse
Affiliation(s)
- Anna Wing
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carlos Alberto Fajardo
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona
| | - Avery D Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carolyn Shaw
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tong Da
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Regina M Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramon Alemany
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Sonia Guedan
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
187
|
Kebenko M, Goebeler ME, Wolf M, Hasenburg A, Seggewiss-Bernhardt R, Ritter B, Rautenberg B, Atanackovic D, Kratzer A, Rottman JB, Friedrich M, Vieser E, Elm S, Patzak I, Wessiepe D, Stienen S, Fiedler W. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors. Oncoimmunology 2018; 7:e1450710. [PMID: 30221040 PMCID: PMC6136859 DOI: 10.1080/2162402x.2018.1450710] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/13/2018] [Accepted: 03/05/2018] [Indexed: 01/01/2023] Open
Abstract
We assessed the tolerability and antitumor activity of solitomab, a bispecific T-cell engager (BiTE®) antibody construct targeting epithelial cell adhesion molecule (EpCAM). Patients with relapsed/refractory solid tumors not amenable to standard therapy received solitomab as continuous IV infusion in a phase 1 dose-escalation study with six different dosing schedules. The primary endpoint was frequency and severity of adverse events (AEs). Secondary endpoints included pharmacokinetics, pharmacodynamics, immunogenicity, and antitumor activity. Sixty-five patients received solitomab at doses between 1 and 96 µg/day for ≥28 days. Fifteen patients had dose-limiting toxicities (DLTs): eight had transient abnormal liver parameters shortly after infusion start or dose escalation (grade 3, n = 4; grade 4, n = 4), and one had supraventricular tachycardia (grade 3); all events resolved with solitomab discontinuation. Six patients had a DLT of diarrhea: four events resolved (grade 3, n = 3; grade 4, n = 1), one (grade 3) was ongoing at the time of treatment-unrelated death, and one (grade 3) progressed to grade 5 after solitomab discontinuation. The maximum tolerated dose was 24 µg/day. Overall, 95% of patients had grade ≥3 treatment-related AEs, primarily diarrhea, elevated liver parameters, and elevated lipase. Solitomab half-life was 4.5 hours; serum levels plateaued within 24 hours. One unconfirmed partial response was observed. In this study of a BiTE® antibody construct targeting solid tumors, treatment of relapsed/refractory EpCAM-positive solid tumors with solitomab was associated with DLTs, including severe diarrhea and increased liver enzymes, which precluded dose escalation to potentially therapeutic levels.
Collapse
Affiliation(s)
- Maxim Kebenko
- Department of Oncology/Hematology, Bone Marrow Transplantation and Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Annette Hasenburg
- Department of Gynecology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | | | | | - Beate Rautenberg
- Department of Gynecology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Djordje Atanackovic
- Department of Oncology/Hematology, Bone Marrow Transplantation and Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Eva Vieser
- Amgen Research (Munich) GmbH, Munich, Germany
| | | | | | | | | | - Walter Fiedler
- Department of Oncology/Hematology, Bone Marrow Transplantation and Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
188
|
Dahlén E, Veitonmäki N, Norlén P. Bispecific antibodies in cancer immunotherapy. Ther Adv Vaccines Immunother 2018; 6:3-17. [PMID: 29998217 DOI: 10.1177/2515135518763280] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/07/2018] [Indexed: 12/29/2022] Open
Abstract
Following the clinical success of immune checkpoint antibodies targeting CTLA-4, PD-1 or PD-L1 in cancer treatment, bispecific antibodies are now emerging as a growing class of immunotherapies with potential to further improve clinical efficacy and safety. We describe three classes of immunotherapeutic bispecific antibodies: (a) cytotoxic effector cell redirectors; (b) tumor-targeted immunomodulators; and (c) dual immunomodulators. Cytotoxic effector cell redirectors are dominated by T-cell redirecting compounds, bispecific compounds engaging a tumor-associated antigen and the T-cell receptor/CD3 complex, thereby redirecting T-cell cytotoxicity to malignant cells. This is the most established class of bispecific immunotherapies, with two compounds having reached the market and numerous compounds in clinical development. Tumor-targeted immunomodulators are bispecific compounds binding to a tumor-associated antigen and an immunomodulating receptor, such as CD40 or 4-1BB. Such compounds are usually designed to be inactive until binding the tumor antigen, thereby localizing immune stimulation to the tumor environment, while minimizing immune activation elsewhere. This is expected to induce powerful activation of tumor-specific T cells with reduced risk of immune-related adverse events. Finally, dual immunomodulators are bispecific compounds that bind two distinct immunomodulating targets, often combining targeting of PD-1 or PD-L1 with that of LAG-3 or TIM-3. The rationale is to induce superior tumor immunity compared to monospecific antibodies to the same targets. In this review, we describe each of these classes of bispecific antibodies, and present examples of compounds in development.
Collapse
Affiliation(s)
- Eva Dahlén
- Alligator Bioscience, 22381 Lund, Sweden
| | | | - Per Norlén
- Alligator Bioscience, 22381 Lund, Sweden
| |
Collapse
|
189
|
5-Azacytidine prevents relapse and produces long-term complete remissions in leukemia xenografts treated with Moxetumomab pasudotox. Proc Natl Acad Sci U S A 2018; 115:E1867-E1875. [PMID: 29432154 DOI: 10.1073/pnas.1714512115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Moxetumomab pasudotox (Moxe) is a chimeric protein composed of an anti-CD22 Fv fused to a portion of Pseudomonas exotoxin A and kills CD22-expressing leukemia cells. It is very active in hairy-cell leukemia, but many children with relapsed/refractory acute lymphoblastic leukemia (ALL) either respond transiently or are initially resistant. Resistance to Moxe in cultured cells is due to low expression of diphthamide genes (DPH), but only two of six ALL blast samples from resistant patients had low DPH expression. To develop a more clinically relevant model of resistance, we treated NSG mice bearing KOPN-8 or Reh cells with Moxe. More than 99.9% of the cancer cells were killed by Moxe, but relapse occurred from discrete bone marrow sites. The resistant cells would no longer grow in cell culture and showed major chromosomal changes and changes in phenotype with greatly decreased CD22. RNA deep sequencing of resistant KOPN-8 blasts revealed global changes in gene expression, indicating dedifferentiation toward less-mature B cell precursors, and showed an up-regulation of myeloid genes. When Moxe was combined with 5-azacytidine, resistance was prevented and survival increased to over 5 months in the KOPN-8 model and greatly improved in the Reh model. We conclude that Moxe resistance in mice is due to a new mechanism that could not be observed using cultured cells and is prevented by treatment with 5-azacytidine.
Collapse
|
190
|
Campagne O, Delmas A, Fouliard S, Chenel M, Chichili GR, Li H, Alderson R, Scherrmann JM, Mager DE. Integrated Pharmacokinetic/Pharmacodynamic Model of a Bispecific CD3xCD123 DART Molecule in Nonhuman Primates: Evaluation of Activity and Impact of Immunogenicity. Clin Cancer Res 2018; 24:2631-2641. [PMID: 29463552 DOI: 10.1158/1078-0432.ccr-17-2265] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/03/2017] [Accepted: 02/15/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Flotetuzumab (MGD006 or S80880) is a bispecific molecule that recognizes CD3 and CD123 membrane proteins, redirecting T cells to kill CD123-expressing cells for the treatment of acute myeloid leukemia. In this study, we developed a mathematical model to characterize MGD006 exposure-response relationships and to assess the impact of its immunogenicity in cynomolgus monkeys.Experimental Design: Thirty-two animals received multiple escalating doses (100-300-600-1,000 ng/kg/day) via intravenous infusion continuously 4 days a week. The model reflects sequential binding of MGD006 to CD3 and CD123 receptors. Formation of the MGD006/CD3 complex was connected to total T cells undergoing trafficking, whereas the formation of the trimolecular complex results in T-cell activation and clonal expansion. Activated T cells were used to drive the peripheral depletion of CD123-positive cells. Anti-drug antibody development was linked to MGD006 disposition as an elimination pathway. Model validation was tested by predicting the activity of MGD006 in eight monkeys receiving continuous 7-day infusions.Results: MGD006 disposition and total T-cell and CD123-positive cell profiles were well characterized. Anti-drug antibody development led to the suppression of T-cell trafficking but did not systematically abolish CD123-positive cell depletion. Target cell depletion could persist after drug elimination owing to the self-proliferation of activated T cells generated during the first cycles. The model was externally validated with the 7-day infusion dosing schedule.Conclusions: A translational model was developed for MGD006 that features T-cell activation and expansion as a key driver of pharmacologic activity and provides a mechanistic quantitative platform to inform dosing strategies in ongoing clinical studies. Clin Cancer Res; 24(11); 2631-41. ©2018 AACR.
Collapse
Affiliation(s)
- Olivia Campagne
- Clinical Pharmacokinetics and Pharmacometrics, Institut de Recherches Internationales Servier, Suresnes, France.,INSERM UMR-S-1144, Universités Paris Descartes-Paris Diderot, Paris, France.,Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Audrey Delmas
- Clinical Pharmacokinetics and Pharmacometrics, Institut de Recherches Internationales Servier, Suresnes, France
| | - Sylvain Fouliard
- Clinical Pharmacokinetics and Pharmacometrics, Institut de Recherches Internationales Servier, Suresnes, France
| | - Marylore Chenel
- Clinical Pharmacokinetics and Pharmacometrics, Institut de Recherches Internationales Servier, Suresnes, France
| | | | - Hua Li
- MacroGenics, Inc., Rockville, Maryland
| | | | | | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York.
| |
Collapse
|
191
|
Feucht J, Kayser S, Gorodezki D, Hamieh M, Döring M, Blaeschke F, Schlegel P, Bösmüller H, Quintanilla-Fend L, Ebinger M, Lang P, Handgretinger R, Feuchtinger T. T-cell responses against CD19+ pediatric acute lymphoblastic leukemia mediated by bispecific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts. Oncotarget 2018; 7:76902-76919. [PMID: 27708227 PMCID: PMC5363558 DOI: 10.18632/oncotarget.12357] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/02/2016] [Indexed: 01/22/2023] Open
Abstract
T-cell immunotherapies are promising options in relapsed/refractory B-precursor acute lymphoblastic leukemia (ALL). We investigated the effect of co-signaling molecules on T-cell attack against leukemia mediated by CD19/CD3-bispecific T-cell engager. Primary CD19+ ALL blasts (n≥10) and physiologic CD19+CD10+ bone marrow precursors were screened for 20 co-signaling molecules. PD-L1, PD-1, LAG-3, CD40, CD86, CD27, CD70 and HVEM revealed different stimulatory and inhibitory profiles of pediatric ALL compared to physiologic cells, with PD-L1 and CD86 as most prominent inhibitory and stimulatory markers. PD-L1 was increased in relapsed ALL patients (n=11) and in ALLs refractory to Blinatumomab (n=5). Exhaustion markers (PD-1, TIM-3) were significantly higher on patients' T cells compared to physiologic controls. T-cell proliferation and effector function was target-cell dependent and correlated to expression of co-signaling molecules. Blockade of inhibitory PD-1-PD-L and CTLA-4-CD80/86 pathways enhanced T-cell function whereas blockade of co-stimulatory CD28-CD80/86 interaction significantly reduced T-cell function. Combination of Blinatumomab and anti-PD-1 antibody was feasible and induced an anti-leukemic in vivo response in a 12-year-old patient with refractory ALL. In conclusion, ALL cells actively regulate T-cell function by expression of co-signaling molecules and modify efficacy of therapeutic T-cell attack against ALL. Inhibitory interactions of leukemia-induced checkpoint molecules can guide future T-cell therapies.
Collapse
Affiliation(s)
- Judith Feucht
- Department of General Pediatrics, Hematology and Oncology, Children's University Hospital Tübingen, Tübingen, Germany.,Memorial Sloan Kettering Cancer Center, Center for Cell Engineering, New York, NY, USA
| | - Simone Kayser
- Department of General Pediatrics, Hematology and Oncology, Children's University Hospital Tübingen, Tübingen, Germany
| | - David Gorodezki
- Department of General Pediatrics, Hematology and Oncology, Children's University Hospital Tübingen, Tübingen, Germany
| | - Mohamad Hamieh
- Memorial Sloan Kettering Cancer Center, Center for Cell Engineering, New York, NY, USA
| | - Michaela Döring
- Department of General Pediatrics, Hematology and Oncology, Children's University Hospital Tübingen, Tübingen, Germany.,Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Franziska Blaeschke
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Patrick Schlegel
- Department of General Pediatrics, Hematology and Oncology, Children's University Hospital Tübingen, Tübingen, Germany
| | - Hans Bösmüller
- Institute of Pathology, University Hospital Tübingen, Tübingen, Germany
| | | | - Martin Ebinger
- Department of General Pediatrics, Hematology and Oncology, Children's University Hospital Tübingen, Tübingen, Germany
| | - Peter Lang
- Department of General Pediatrics, Hematology and Oncology, Children's University Hospital Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of General Pediatrics, Hematology and Oncology, Children's University Hospital Tübingen, Tübingen, Germany
| | - Tobias Feuchtinger
- Department of General Pediatrics, Hematology and Oncology, Children's University Hospital Tübingen, Tübingen, Germany.,Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany
| |
Collapse
|
192
|
Circosta P, Elia AR, Landra I, Machiorlatti R, Todaro M, Aliberti S, Brusa D, Deaglio S, Chiaretti S, Bruna R, Gottardi D, Massaia M, Giacomo FD, Guarini AR, Foà R, Kyriakides PW, Bareja R, Elemento O, Chichili GR, Monteleone E, Moore PA, Johnson S, Bonvini E, Cignetti A, Inghirami G. Tailoring CD19xCD3-DART exposure enhances T-cells to eradication of B-cell neoplasms. Oncoimmunology 2018; 7:e1341032. [PMID: 29632712 DOI: 10.1080/2162402x.2017.1341032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
Many patients with B-cell malignancies can be successfully treated, although tumor eradication is rarely achieved. T-cell-directed killing of tumor cells using engineered T-cells or bispecific antibodies is a promising approach for the treatment of hematologic malignancies. We investigated the efficacy of CD19xCD3 DART bispecific antibody in a broad panel of human primary B-cell malignancies. The CD19xCD3 DART identified 2 distinct subsets of patients, in which the neoplastic lymphocytes were eliminated with rapid or slow kinetics. Delayed responses were always overcome by a prolonged or repeated DART exposure. Both CD4 and CD8 effector cytotoxic cells were generated, and DART-mediated killing of CD4+ cells into cytotoxic effectors required the presence of CD8+ cells. Serial exposures to DART led to the exponential expansion of CD4 + and CD8 + cells and to the sequential ablation of neoplastic cells in absence of a PD-L1-mediated exhaustion. Lastly, patient-derived neoplastic B-cells (B-Acute Lymphoblast Leukemia and Diffuse Large B Cell Lymphoma) could be proficiently eradicated in a xenograft mouse model by DART-armed cytokine induced killer (CIK) cells. Collectively, patient tailored DART exposures can result in the effective elimination of CD19 positive leukemia and B-cell lymphoma and the association of bispecific antibodies with unmatched CIK cells represents an effective modality for the treatment of CD19 positive leukemia/lymphoma.
Collapse
Affiliation(s)
- Paola Circosta
- Molecular Biotechnology Center, University of Torino, Italy, and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy
| | - Angela Rita Elia
- Molecular Biotechnology Center, University of Torino, Italy, and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy
| | - Indira Landra
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy
| | - Rodolfo Machiorlatti
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy
| | - Maria Todaro
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sabrina Aliberti
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy
| | - Davide Brusa
- Department of Medical Sciences, University of Torino, Torino, Italy; Flow Cytometry and Cell Sorting Facility, Human Genetics Foundation, Torino, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Torino, Torino, Italy; Flow Cytometry and Cell Sorting Facility, Human Genetics Foundation, Torino, Italy
| | - Sabina Chiaretti
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University, Rome, Italy
| | - Riccardo Bruna
- University Division of Hematology and Cell Therapy, University of Torino, Ospedale Mauriziano, Torino, Italy
| | - Daniela Gottardi
- University Division of Hematology and Cell Therapy, University of Torino, Ospedale Mauriziano, Torino, Italy
| | - Massimo Massaia
- University Division of Hematology and Cell Therapy, University of Torino, Ospedale Mauriziano, Torino, Italy
| | - Filomena Di Giacomo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.,Division of Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University, Rome, Italy
| | - Anna Rita Guarini
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University, Rome, Italy
| | - Robin Foà
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University, Rome, Italy
| | - Peter W Kyriakides
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rohan Bareja
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, New York, USA[2] Institute for Precision Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, New York, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, New York, USA[2] Institute for Precision Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, New York, USA
| | | | - Emanuele Monteleone
- Molecular Biotechnology Center, University of Torino, Italy, and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy
| | - Paul A Moore
- MacroGenics Inc., 9704 Medical Center Drive, Rockville, MD, USA
| | - Syd Johnson
- MacroGenics Inc., 9704 Medical Center Drive, Rockville, MD, USA
| | - Ezio Bonvini
- MacroGenics Inc., 9704 Medical Center Drive, Rockville, MD, USA
| | - Alessandro Cignetti
- Molecular Biotechnology Center, University of Torino, Italy, and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.,University Division of Hematology and Cell Therapy, University of Torino, Ospedale Mauriziano, Torino, Italy
| | - Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.,Department of Pathology, NYU Cancer Center, New York University School of Medicine, New York, NY
| |
Collapse
|
193
|
Sedykh SE, Prinz VV, Buneva VN, Nevinsky GA. Bispecific antibodies: design, therapy, perspectives. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:195-208. [PMID: 29403265 PMCID: PMC5784585 DOI: 10.2147/dddt.s151282] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibodies (Abs) containing two different antigen-binding sites in one molecule are called bispecific. Bispecific Abs (BsAbs) were first described in the 1960s, the first monoclonal BsAbs were generated in the 1980s by hybridoma technology, and the first article describing the therapeutic use of BsAbs was published in 1992, but the number of papers devoted to BsAbs has increased significantly in the last 10 years. Particular interest in BsAbs is due to their therapeutic use. In the last decade, two BsAbs - catumaxomab in 2009 and blinatumomab in 2014, were approved for therapeutic use. Papers published in recent years have been devoted to various methods of BsAb generation by genetic engineering and chemical conjugation, and describe preclinical and clinical trials of these drugs in a variety of diseases. This review considers diverse BsAb-production methods, describes features of therapeutic BsAbs approved for medical use, and summarizes the prospects of practical application of promising new BsAbs.
Collapse
Affiliation(s)
- Sergey E Sedykh
- Laboratory of Repair Enzymes, Siberian Branch of Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, Novosibirsk State University, Novosibirsk, Russia
| | - Victor V Prinz
- Laboratory of Repair Enzymes, Siberian Branch of Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, Novosibirsk State University, Novosibirsk, Russia
| | - Valentina N Buneva
- Laboratory of Repair Enzymes, Siberian Branch of Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, Novosibirsk State University, Novosibirsk, Russia
| | - Georgy A Nevinsky
- Laboratory of Repair Enzymes, Siberian Branch of Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
194
|
Velasquez MP, Bonifant CL, Gottschalk S. Redirecting T cells to hematological malignancies with bispecific antibodies. Blood 2018; 131:30-38. [PMID: 29118005 PMCID: PMC5755042 DOI: 10.1182/blood-2017-06-741058] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/30/2017] [Indexed: 12/13/2022] Open
Abstract
There is a need to improve outcomes for patients with recurrent and/or refractory hematological malignancies. Immunotherapy holds the promise to meet this need, because it does not rely on the cytotoxic mechanism of conventional therapies. Among different forms of immunotherapy, redirecting T cells to hematological malignancies with bispecific antibodies (BsAbs) is an attractive strategy. BsAbs are an "off-the-shelf" product that is easily scalable in contrast to adoptive T-cell therapies. Among these, the bispecific T-cell engager blinatumomab has emerged as the most successful BsAb to date. It consists of 2 single-chain variable fragments specific for CD19 present on B-cell malignancies and CD3 expressed on almost all T cells. Blinatumomab has shown potent antitumor activity as a single agent, particularly for acute lymphoblastic leukemia, resulting in its US Food and Drug Administration approval. However, although successful in inducing remissions, these are normally short-lived, with median response durations of <1 year. Nevertheless, the success of blinatumomab has reinvigorated the BsAb field, which is bustling with preclinical and clinical studies for not only B-cell-derived lymphoblastic leukemia and lymphoma but also acute myeloid leukemia and multiple myeloma. Here, we will review the successes and challenges of T-cell-targeted BsAbs for the immunotherapy of hematological malignancies with special focus on conducted clinical studies and strategies to improve their efficacy.
Collapse
Affiliation(s)
- Mireya Paulina Velasquez
- Department of Bone Marrow Transplant and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN; and
| | - Challice L Bonifant
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
| | - Stephen Gottschalk
- Department of Bone Marrow Transplant and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN; and
| |
Collapse
|
195
|
Scott EM, Duffy MR, Freedman JD, Fisher KD, Seymour LW. Solid Tumor Immunotherapy with T Cell Engager-Armed Oncolytic Viruses. Macromol Biosci 2018; 18. [PMID: 28902983 DOI: 10.1002/mabi.201700187] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/27/2017] [Indexed: 01/01/2023]
Abstract
Oncolytic viruses (OVs) are novel anticancer agents that combine direct cancer cell killing with the stimulation of antitumor immunity. In addition, OVs can be engineered to deliver biological therapeutics directly to tumors, offering unique opportunities to design multimodal anticancer strategies. Here, a case for arming OVs with bispecific T cell engagers (BiTEs) is put forward. BiTEs redirect the cytotoxicity of polyclonal T cells to target cells of choice, and have demonstrated efficacy against a number of hematological cancers. However, the success of BiTEs in the treatment of solid tumors appears more limited, at least in part due to: (i) poor delivery kinetics and penetration into tumors, and (ii) on-target off-tumor activity, leading to dose-limiting toxicities. Linking the production of BiTEs to OV replication provides an exciting means to restrict production to the tumor site, widen their therapeutic window, and synergize with direct oncolysis. This review summarizes progress thus far in the preclinical development of BiTE-armed OVs, and explores the possibility of cotargeting cancer cells and nontransformed stromal cells.
Collapse
Affiliation(s)
- Eleanor M Scott
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Margaret R Duffy
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Kerry D Fisher
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
196
|
Fleisher B, Ait-Oudhia S. A retrospective examination of the US Food and Drug Administration's clinical pharmacology reviews of oncology biologics for potential use of therapeutic drug monitoring. Onco Targets Ther 2017; 11:113-121. [PMID: 29343970 PMCID: PMC5749565 DOI: 10.2147/ott.s153056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Biologics have gained traction for use in oncology, but have demonstrate clinical variability for efficacy and safety. Therapeutic drug monitoring (TDM) can benefit patients’ outcomes from a biologic therapy when the latter has a defined therapeutic window. A clinically relevant therapeutic window may exist for biologics with established exposure-response (E–R) relationships for efficacy and/or safety and a documented maximum tolerated dose (MTD). Additionally, the inter-individual variability (IIV) on the clearance (CL) parameter could determine risks for patients falling outside the proposed therapeutic window. Materials and methods The US Food and Drug Administration (FDA)-approved oncology biologics between 2005–2016 were reviewed via FDA “Purple Book” (FDA-repository for licensed biologics). Data were extracted from biologics’ pharmacokinetic models available on the clinical pharmacology reviews published on the FDA-Approved Drug Products website. Evaluated features for biologics with established E–R relationships for efficacy and/or safety and MTD include an IIV for the CL and various other covariates including demographic factors, disease factors, blood chemistry, or immunogenicity. Results Five therapies were identified with documented E–R relationships for both efficacy and safety including, Yervoy®(ipilimumab), Zaltrap® (ziv-aflibercept), Portrazza® (necitumumab), Adcetris® (brentuximab-vedotin), and Blincyto® (blinatumomab). The corresponding IIV on CL were: 34%, 33%, 29%, 47%, and 97%, respectively. Among the five therapies, only three had defined MTD including, brentuximab-vedotin, necitumumab, and blinatumomab. Conclusion Of the medications examined, blinatumomab was identified as the anticancer drug with the most available information for the establishment of TDM, and hence, may benefit through the use of TDM to optimize effectiveness and minimize patients’ toxicity. The approach used here may provide a generalizable framework to retrospectively identify anticancer biologics with high IIV that may benefit from TDM to improve patients’ clinical outcome.
Collapse
Affiliation(s)
- Brett Fleisher
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Sihem Ait-Oudhia
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| |
Collapse
|
197
|
Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs 2017; 9:182-212. [PMID: 28071970 PMCID: PMC5297537 DOI: 10.1080/19420862.2016.1268307] [Citation(s) in RCA: 605] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022] Open
Abstract
During the past two decades we have seen a phenomenal evolution of bispecific antibodies for therapeutic applications. The 'zoo' of bispecific antibodies is populated by many different species, comprising around 100 different formats, including small molecules composed solely of the antigen-binding sites of two antibodies, molecules with an IgG structure, and large complex molecules composed of different antigen-binding moieties often combined with dimerization modules. The application of sophisticated molecular design and genetic engineering has solved many of the technical problems associated with the formation of bispecific antibodies such as stability, solubility and other parameters that confer drug properties. These parameters may be summarized under the term 'developability'. In addition, different 'target product profiles', i.e., desired features of the bispecific antibody to be generated, mandates the need for access to a diverse panel of formats. These may vary in size, arrangement, valencies, flexibility and geometry of their binding modules, as well as in their distribution and pharmacokinetic properties. There is not 'one best format' for generating bispecific antibodies, and no single format is suitable for all, or even most of, the desired applications. Instead, the bispecific formats collectively serve as a valuable source of diversity that can be applied to the development of therapeutics for various indications. Here, a comprehensive overview of the different bispecific antibody formats is provided.
Collapse
Affiliation(s)
- Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Im Nonnenwald, Penzberg, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Nobelstraße, Stuttgart, Germany
| |
Collapse
|
198
|
Gantke T, Weichel M, Herbrecht C, Reusch U, Ellwanger K, Fucek I, Eser M, Müller T, Griep R, Molkenthin V, Zhukovsky EA, Treder M. Trispecific antibodies for CD16A-directed NK cell engagement and dual-targeting of tumor cells. Protein Eng Des Sel 2017; 30:673-684. [PMID: 28981915 DOI: 10.1093/protein/gzx043] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/25/2017] [Indexed: 11/12/2022] Open
Abstract
Bispecific antibodies that redirect the lytic activity of cytotoxic immune effector cells, such as T- and NK cells, onto tumor cells have emerged as a highly attractive and clinically validated treatment modality for hematological malignancies. Advancement of this therapeutic concept into solid tumor indications, however, is hampered by the scarcity of targetable antigens that are surface-expressed on tumor cells but demonstrate only limited expression on healthy tissues. To overcome this limitation, the concept of dual-targeting, i.e. the simultaneous targeting of two tumor-expressed surface antigens with limited co-expression on non-malignant cells, with multispecific antibodies has been proposed to increase tumor selectivity of antibody-induced effector cell cytotoxicity. Here, a novel CD16A (FcγRIIIa)-directed trispecific, tetravalent antibody format, termed aTriFlex, is described, that is capable of redirecting NK cell cytotoxicity to two surface-expressed antigens. Using a BCMA/CD200-based in vitro model system, the potential use of aTriFlex antibodies for dual-targeting and selective induction of NK cell-mediated target cell lysis was investigated. Bivalent bispecific target cell binding was found to result in significant avidity gains and up to 17-fold increased in vitro potency. These data suggest trispecific aTriFlex antibodies may support dual-targeting strategies to redirect NK cell cytotoxicity with increased selectivity to enable targeting of solid tumor antigens.
Collapse
Affiliation(s)
- Thorsten Gantke
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Michael Weichel
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Carmen Herbrecht
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Uwe Reusch
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | | | - Ivica Fucek
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Markus Eser
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Thomas Müller
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Remko Griep
- Abcheck s.r.o., Teslova 3, 30100 Plzen, Czech Republic
| | | | - Eugene A Zhukovsky
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany.,Biomunex Pharmaceuticals, 96bis Boulevard Raspail, 75006 Paris, France
| | - Martin Treder
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| |
Collapse
|
199
|
Duell J, Dittrich M, Bedke T, Mueller T, Eisele F, Rosenwald A, Rasche L, Hartmann E, Dandekar T, Einsele H, Topp MS. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia 2017; 31:2181-2190. [PMID: 28119525 PMCID: PMC5629361 DOI: 10.1038/leu.2017.41] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/13/2022]
Abstract
Blinatumomab can induce a complete haematological remission in patients in 46.6% with relapsed/refractory B-precursor acute lymphoblastic leukemia (r/r ALL) resulting in a survival benefit when compared with chemotherapy. Only bone marrow blast counts before therapy have shown a weak prediction of response. Here we investigated the role of regulatory T cells (Tregs), measured by CD4/CD25/FOXP3 expression, in predicting the outcome of immunotherapy with the CD19-directed bispecific T-cell engager construct blinatumomab. Blinatumomab responders (n=22) had an average of 4.82% Tregs (confidence interval (CI): 1.79-8.34%) in the peripheral blood, whereas non-responders (n=20) demonstrated 10.25% Tregs (CI: 3.36-65.9%). All other tested markers showed either no prediction value or an inferior prediction level including blast BM counts and the classical enzyme marker lactate dehydrogenase. With a cutoff of 8.525%, Treg enumeration can identify 100% of all blinatumomab responders and exclude 70% of the non-responders. The effect is facilitated by blinatumomab-activated Tregs, leading to interleukin-10 production, resulting in suppression of T-cell proliferation and reduced CD8-mediated lysis of ALL cells. Proliferation of patients' T cells can be restored by upfront removal of Tregs. Thus, enumeration of Treg identifies r/r ALL patients with a high response rate to blinatumomab. Therapeutic removal of Tregs may convert blinatumomab non-responders to responders.
Collapse
Affiliation(s)
- J Duell
- Medizinische Klinik und Poliklinik II, Universitätsklinik Würzburg, Würzburg, Germany
| | - M Dittrich
- Bioinformatik, Biozentrum, Universität Würzburg, Würzburg, Germany
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - T Bedke
- Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - T Mueller
- Bioinformatik, Biozentrum, Universität Würzburg, Würzburg, Germany
| | - F Eisele
- Medizinische Klinik und Poliklinik II, Universitätsklinik Würzburg, Würzburg, Germany
| | - A Rosenwald
- Institut für Pathologie, Universität Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken (CCC MF), Würzburg, Germany
| | - L Rasche
- Medizinische Klinik und Poliklinik II, Universitätsklinik Würzburg, Würzburg, Germany
| | - E Hartmann
- Institut für Pathologie, Universität Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken (CCC MF), Würzburg, Germany
| | - T Dandekar
- Bioinformatik, Biozentrum, Universität Würzburg, Würzburg, Germany
| | - H Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinik Würzburg, Würzburg, Germany
| | - M S Topp
- Medizinische Klinik und Poliklinik II, Universitätsklinik Würzburg, Würzburg, Germany
| |
Collapse
|
200
|
Harwood SL, Alvarez-Cienfuegos A, Nuñez-Prado N, Compte M, Hernández-Pérez S, Merino N, Bonet J, Navarro R, Van Bergen En Henegouwen PMP, Lykkemark S, Mikkelsen K, Mølgaard K, Jabs F, Sanz L, Blanco FJ, Roda-Navarro P, Alvarez-Vallina L. ATTACK, a novel bispecific T cell-recruiting antibody with trivalent EGFR binding and monovalent CD3 binding for cancer immunotherapy. Oncoimmunology 2017; 7:e1377874. [PMID: 29296540 PMCID: PMC5739562 DOI: 10.1080/2162402x.2017.1377874] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/30/2017] [Accepted: 09/03/2017] [Indexed: 01/06/2023] Open
Abstract
The redirection of T cell activity using bispecific antibodies is one of the most promising cancer immunotherapy approaches currently in development, but it is limited by cytokine storm-related toxicities, as well as the pharmacokinetics and tumor-penetrating capabilities of current bispecific antibody formats. Here, we have engineered the ATTACK (Asymmetric Tandem Trimerbody for T cell Activation and Cancer Killing), a novel T cell-recruiting bispecific antibody which combines three EGFR-binding single-domain antibodies (VHH; clone EgA1) with a single CD3-binding single-chain variable fragment (scFv; clone OKT3) in an intermediate molecular weight package. The two specificities are oriented in opposite directions in order to simultaneously engage cancer cells and T cell effectors, and thereby promote immunological synapse formation. EgA1 ATTACK was expressed as a homogenous, non-aggregating, soluble protein by mammalian cells and demonstrated an enhanced binding to EGFR, but not CD3, when compared to the previously characterized tandem bispecific antibody which has one EgA1 VHH and one OKT3 scFv per molecule. EgA1 ATTACK induced synapse formation and early signaling pathways downstream of TCR engagement at lower concentrations than the tandem VHH-scFv bispecific antibody. Furthermore, it demonstrated extremely potent, dose-dependent cytotoxicity when retargeting human T cells towards EGFR-expressing cells, with an efficacy over 15-fold higher than that of the tandem VHH-scFv bispecific antibody. These results suggest that the ATTACK is an ideal format for the development of the next-generation of T cell-redirecting bispecific antibodies.
Collapse
Affiliation(s)
- Seandean Lykke Harwood
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | | | - Natalia Nuñez-Prado
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain
| | - Sara Hernández-Pérez
- Department of Microbiology I (Immunology), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Nekane Merino
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bizkaia, Derio, Spain
| | - Jaume Bonet
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rocio Navarro
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - Simon Lykkemark
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Kasper Mikkelsen
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Kasper Mølgaard
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Frederic Jabs
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Francisco J Blanco
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bizkaia, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bizkaia, Bilbao, Spain
| | - Pedro Roda-Navarro
- Department of Microbiology I (Immunology), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Luis Alvarez-Vallina
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|