151
|
Toledo SLDO, Guedes JVM, Alpoim PN, Rios DRA, Pinheiro MDB. Sickle cell disease: Hemostatic and inflammatory changes, and their interrelation. Clin Chim Acta 2019; 493:129-137. [PMID: 30825426 DOI: 10.1016/j.cca.2019.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/23/2022]
Abstract
Sickle cell disease, the most common genetic blood disorder in the world, has high clinical variability, negatively impacts quality of life and contributes to early mortality. Sickled erythrocytes cause blood flow obstruction, hemolysis, and several hemostatic changes that promote coagulation. These events, in turn, induce chronic inflammation, characterized by elevated plasma levels of pro-inflammatory markers, which aggravates the already unfavorable state of the circulatory system. Empirical evidence indicates that the hemostatic and inflammatory systems continuously interact with each other and thereby further propagate the hypercoagulability and inflammatory conditions. In this review article, we discuss the pathophysiological aspects of sickle cell disease and the hemostatic and inflammatory changes that underlie its pathogenesis.
Collapse
Affiliation(s)
- Sílvia L de O Toledo
- Federal University of São João del-Rei (UFSJ), Dona Lindu Center-West Campus, Sebastião Gonçalves Coelho Street, 400, Chanadour, 35501-296 Divinópolis, MG, Brazil
| | - João V M Guedes
- Federal University of São João del-Rei (UFSJ), Dona Lindu Center-West Campus, Sebastião Gonçalves Coelho Street, 400, Chanadour, 35501-296 Divinópolis, MG, Brazil
| | - Patrícia N Alpoim
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (MG), Brazil
| | - Danyelle R A Rios
- Federal University of São João del-Rei (UFSJ), Dona Lindu Center-West Campus, Sebastião Gonçalves Coelho Street, 400, Chanadour, 35501-296 Divinópolis, MG, Brazil
| | - Melina de B Pinheiro
- Federal University of São João del-Rei (UFSJ), Dona Lindu Center-West Campus, Sebastião Gonçalves Coelho Street, 400, Chanadour, 35501-296 Divinópolis, MG, Brazil.
| |
Collapse
|
152
|
DeGregorio-Rocasolano N, Martí-Sistac O, Gasull T. Deciphering the Iron Side of Stroke: Neurodegeneration at the Crossroads Between Iron Dyshomeostasis, Excitotoxicity, and Ferroptosis. Front Neurosci 2019; 13:85. [PMID: 30837827 PMCID: PMC6389709 DOI: 10.3389/fnins.2019.00085] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
In general, iron represents a double-edged sword in metabolism in most tissues, especially in the brain. Although the high metabolic demands of brain cells require iron as a redox-active metal for ATP-producing enzymes, the brain is highly vulnerable to the devastating consequences of excessive iron-induced oxidative stress and, as recently found, to ferroptosis as well. The blood-brain barrier (BBB) protects the brain from fluctuations in systemic iron. Under pathological conditions, especially in acute brain pathologies such as stroke, the BBB is disrupted, and iron pools from the blood gain sudden access to the brain parenchyma, which is crucial in mediating stroke-induced neurodegeneration. Each brain cell type reacts with changes in their expression of proteins involved in iron uptake, efflux, storage, and mobilization to preserve its internal iron homeostasis, with specific organelles such as mitochondria showing specialized responses. However, during ischemia, neurons are challenged with excess extracellular glutamate in the presence of high levels of extracellular iron; this causes glutamate receptor overactivation that boosts neuronal iron uptake and a subsequent overproduction of membrane peroxides. This glutamate-driven neuronal death can be attenuated by iron-chelating compounds or free radical scavenger molecules. Moreover, vascular wall rupture in hemorrhagic stroke results in the accumulation and lysis of iron-rich red blood cells at the brain parenchyma and the subsequent presence of hemoglobin and heme iron at the extracellular milieu, thereby contributing to iron-induced lipid peroxidation and cell death. This review summarizes recent progresses made in understanding the ferroptosis component underlying both ischemic and hemorrhagic stroke subtypes.
Collapse
Affiliation(s)
- Núria DeGregorio-Rocasolano
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Octavi Martí-Sistac
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Teresa Gasull
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
153
|
Lecouffe-Desprets M, Graveleau J, Artifoni M, Connault J, Agard C, Pottier P, Hamidou M, Néel A. [Hemolytic disorders and venous thrombosis: An update]. Rev Med Interne 2019; 40:232-237. [PMID: 30773236 DOI: 10.1016/j.revmed.2018.10.387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/04/2018] [Accepted: 10/18/2018] [Indexed: 01/05/2023]
Abstract
Many factors can contribute to the risk of venous thrombosis observed in hemolytic diseases. Some mechanisms are related to hemolysis by itself, while others seem more specific to each disease. Despite recent advances in the quantification of this risk and in understanding its physiopathology, the association of hemolysis with venous thrombosis is often unknown. The purpose of this general review is to clarify the main pro-thrombotic mechanisms during hemolysis and to synthesize the clinical data currently available. We will focus on the main types of hemolytic pathologies encountered in current practice, namely paroxysmal nocturnal hemoglobinuria, hemoglobinopathies, auto-immune hemolytic anemia and thrombotic microangiopathies.
Collapse
Affiliation(s)
- M Lecouffe-Desprets
- Service de médecine interne, CHU de Nantes, 1, place Alexis-Ricordeau, 44093 Nantes, France
| | - J Graveleau
- Service de médecine interne, CHU de Nantes, 1, place Alexis-Ricordeau, 44093 Nantes, France
| | - M Artifoni
- Service de médecine interne, CHU de Nantes, 1, place Alexis-Ricordeau, 44093 Nantes, France
| | - J Connault
- Service de médecine interne, CHU de Nantes, 1, place Alexis-Ricordeau, 44093 Nantes, France
| | - C Agard
- Service de médecine interne, CHU de Nantes, 1, place Alexis-Ricordeau, 44093 Nantes, France
| | - P Pottier
- Service de médecine interne, CHU de Nantes, 1, place Alexis-Ricordeau, 44093 Nantes, France
| | - M Hamidou
- Service de médecine interne, CHU de Nantes, 1, place Alexis-Ricordeau, 44093 Nantes, France
| | - A Néel
- Service de médecine interne, CHU de Nantes, 1, place Alexis-Ricordeau, 44093 Nantes, France.
| |
Collapse
|
154
|
Abstract
IMPACT STATEMENT Sickle cell disease (SCD) is one of the most common inherited diseases and is associated with a reduced life expectancy and acute and chronic complications, including frequent painful vaso-occlusive episodes that often require hospitalization. At present, treatment of SCD is limited to hematopoietic stem cell transplant, transfusion, and limited options for pharmacotherapy, based principally on hydroxyurea therapy. This review highlights the importance of intracellular cGMP-dependent signaling pathways in SCD pathophysiology; modulation of these pathways with soluble guanylate cyclase (sGC) stimulators or phosphodiesterase (PDE) inhibitors could potentially provide vasorelaxation and anti-inflammatory effects, as well as elevate levels of anti-sickling fetal hemoglobin.
Collapse
Affiliation(s)
- Nicola Conran
- Hematology Center, University of Campinas – UNICAMP,
Cidade Universitária, Campinas-SP 13083-878-SP, Brazil
| | - Lidiane Torres
- Hematology Center, University of Campinas – UNICAMP,
Cidade Universitária, Campinas-SP 13083-878-SP, Brazil
| |
Collapse
|
155
|
Abstract
PURPOSE OF REVIEW Hemolytic anemias caused by premature destruction of red blood cells occur in many disorders including hemoglobinopathies, autoimmune conditions, during infection or following reaction to drugs or transfusions. Recent studies which will be reviewed here have uncovered several novel mechanisms by which hemolysis can alter immunological functions and increase the risk of severe complications in hemolytic disorders. RECENT FINDINGS Plasma-free heme can induce the formation of neutrophil extracellular traps (NETs) through reactive oxygen species signaling. Although NETs protect the host against infections, in patients with sickle disease, they are associated with vaso-occlusive crises. Heme may increase host susceptibility to infections by inducing heme oxygenase 1 (HO-1) in immature neutrophils, thereby inhibiting oxidative burst required for clearance of engulfed bacteria. In addition, heme impairs macrophage phagocytosis and microbial clearance through inhibition of cytoskeletal remodeling. Hemolysis can also favor anti-inflammatory immune cell polarization by inhibiting dendritic cell maturation necessary for effector T-cell responses, inducing differentiation of monocytes into red pulp macrophages, important for iron recycling from senescent erythrocytes, and driving regulatory T-cell expansion through modulation of HO-1 expression in nonclassical monocytes. SUMMARY Hemolysis breakdown products show remarkable effects on the regulation of immune cell differentiation and function.
Collapse
|
156
|
Sun G, Lu Y, Zhao L, Xia W, Zhang H, Wang L, Zhang L, Wen A. Hemin impairs resolution of inflammation via microRNA-144-3p-dependent downregulation of ALX/FPR2. Transfusion 2018; 59:196-206. [PMID: 30499593 DOI: 10.1111/trf.14991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 07/03/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND The pathomechanisms of complications due to blood transfusion are not fully understood. Elevated levels of heme derived from stored RBCs are thought to be associated with transfusion reactions, especially inflammatory responses. Recently, the proinflammatory effect of heme has been widely studied. However, it is still unknown whether heme can influence the resolution of inflammation, a key step of inflammatory response. STUDY DESIGN AND METHODS A murine model of self-limited peritonitis was used, and resolution was assessed by resolution indices. Western blot, quantitative reverse transcriptase polymerase chain reaction, chemotaxis assay, luciferase reporter assay, and lentivirus infections were used to investigate possible mediating mechanisms in neutrophils. RESULTS The administration of hemin by intraperitoneal injection significantly increased the leukocyte infiltration and prolonged the resolution interval by approximately 7 hours in mouse peritonitis. In vitro, hemin significantly downregulated ALX/FPR2 protein levels (p < 0.05), a key resolution receptor, leading to the suppression of proresolution responses triggered by the proresolution ligand resolvin D1. Subsequently, miR-144-3p, selected by prediction databases, was found to be significantly upregulated by hemin (p < 0.05). The inhibition of miR-144-3p attenuated the inhibitory effect of hemin on lipoxin A4 receptor (ALX)/formyl peptide receptor 2 (FPR2) protein expression (p < 0.05). Luciferase reporter assay confirmed that miR-144-3p directly bound ALX/FPR2 3'-UTR. MiR-144-3p overexpression significantly downregulated ALX/FPR2 protein levels, whereas miR-144-3p inhibition led to a significant increase in ALX/FPR2 (p < 0.05). CONCLUSION Our results suggest that hemin prolongs resolution in self-limited inflammation, and this action is associated with downregulation of ALX/FPR2 mediated by hemin-induced miR-144-3p. These findings demonstrate a novel mechanism of hemin derived from stored RBCs for inflammatory response.
Collapse
Affiliation(s)
- Guixiang Sun
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yao Lu
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lu Zhao
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wenjun Xia
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Han Zhang
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Linfeng Wang
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Linjing Zhang
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Aiqing Wen
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
157
|
Audia S, Bach B, Samson M, Lakomy D, Bour JB, Burlet B, Guy J, Duvillard L, Branger M, Leguy-Seguin V, Berthier S, Michel M, Bonnotte B. Venous thromboembolic events during warm autoimmune hemolytic anemia. PLoS One 2018; 13:e0207218. [PMID: 30408135 PMCID: PMC6224177 DOI: 10.1371/journal.pone.0207218] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/26/2018] [Indexed: 12/30/2022] Open
Abstract
Thrombotic manifestations are a hallmark of many auto-immune diseases (AID), specially of warm autoimmune hemolytic anemia (wAIHA), as 15 to 33% of adults with wAIHA experience venous thromboembolic events (VTE). However, beyond the presence of positive antiphospholipid antibodies and splenectomy, risk factors for developing a VTE during wAIHA have not been clearly identified. The aim of this retrospective study was to characterize VTEs during wAIHA and to identify risk factors for VTE. Forty-eight patients with wAIHA were included, among whom 26 (54%) had secondary wAIHA. Eleven (23%) patients presented at least one VTE, that occurred during an active phase of the disease for 10/11 patients (90%). The frequency of VTE was not different between primary and secondary AIHA (23.7 vs. 19.2%; p = 0.5). The Padua prediction score based on traditional risk factors was not different between patients with and without VTE. On multivariate analysis, total bilirubin ≥ 40 μmol/L [odds ratio (OR) = 7.4; p = 0.02] and leucocyte count above 7x109/L (OR = 15.7; p = 0.02) were significantly associated with a higher risk of thrombosis. Antiphospholipid antibodies were screened in 9 out the 11 patients who presented a VTE and were negative. Thus, the frequency of VTE is high (23%) during wAIHA and VTE preferentially occur within the first weeks of diagnosis. As no clinically relevant predictive factors of VTE could be identified, the systematic use of a prophylactic anticoagulation should be recommended in case of active hemolysis and its maintenance after hospital discharge should be considered. The benefit of a systematic screening for VTE and its procedure remain to be determined.
Collapse
Affiliation(s)
- Sylvain Audia
- Department of Internal Medicine and Clinical Immunology, Constitutive Referral Center for Autoimmune Cytopenias, University Hospital, Dijon, France
- * E-mail:
| | - Benoit Bach
- Department of Internal Medicine and Clinical Immunology, Constitutive Referral Center for Autoimmune Cytopenias, University Hospital, Dijon, France
| | - Maxime Samson
- Department of Internal Medicine and Clinical Immunology, Constitutive Referral Center for Autoimmune Cytopenias, University Hospital, Dijon, France
| | - Daniela Lakomy
- Immunology laboratory, University Hospital, Dijon, France
| | | | | | - Julien Guy
- Hematobiology, University Hospital, Dijon, France
| | | | | | - Vanessa Leguy-Seguin
- Department of Internal Medicine and Clinical Immunology, Constitutive Referral Center for Autoimmune Cytopenias, University Hospital, Dijon, France
| | - Sabine Berthier
- Department of Internal Medicine and Clinical Immunology, Constitutive Referral Center for Autoimmune Cytopenias, University Hospital, Dijon, France
| | - Marc Michel
- Department of Internal Medicine, Referral Center for Autoimmune Cytopenias, Henri Mondor University Hospital, Creteil, France
| | - Bernard Bonnotte
- Department of Internal Medicine and Clinical Immunology, Constitutive Referral Center for Autoimmune Cytopenias, University Hospital, Dijon, France
| |
Collapse
|
158
|
Gómez-Moreno D, Adrover JM, Hidalgo A. Neutrophils as effectors of vascular inflammation. Eur J Clin Invest 2018; 48 Suppl 2:e12940. [PMID: 29682731 DOI: 10.1111/eci.12940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
Vascular inflammation underlies most forms of cardiovascular disease, which remains a prevalent cause of death among the global population. Advances in the biology of neutrophils, as well as insights into their dynamics in tissues, have revealed that these cells are prominent drivers of vascular inflammation though derailed activation within blood vessels. The development of powerful imaging techniques, as well as identification of cells and molecules that regulate their activation within vessels, including platelets and catecholamines, has been instrumental to better understand the mechanisms through which neutrophils protect or damage the organism. Other advances in our understanding of how these leucocytes exert detrimental functions on neighbouring cells, including the formation of DNA-based extracellular traps, constitute milestones in defining neutrophil-driven inflammation. Here, we review emerging mechanisms that regulate intravascular activation and effector functions of neutrophils, and discuss specific pathologies in which these processes are relevant. We argue that identification of pathways and mechanisms specifically engaged within the vasculature may provide effective therapies to treat this prevalent group of pathologies.
Collapse
Affiliation(s)
- Diego Gómez-Moreno
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José María Adrover
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
159
|
Nyakundi BB, Tóth A, Balogh E, Nagy B, Erdei J, Ryffel B, Paragh G, Cordero MD, Jeney V. Oxidized hemoglobin forms contribute to NLRP3 inflammasome-driven IL-1β production upon intravascular hemolysis. Biochim Biophys Acta Mol Basis Dis 2018; 1865:464-475. [PMID: 30389578 DOI: 10.1016/j.bbadis.2018.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022]
Abstract
Damage associated molecular patterns (DAMPs) are released form red blood cells (RBCs) during intravascular hemolysis (IVH). Extracellular heme, with its pro-oxidant, pro-inflammatory and cytotoxic effects, is sensed by innate immune cells through pattern recognition receptors such as toll-like receptor 4 and nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3), while free availability of heme is strictly controlled. Here we investigated the involvement of different hemoglobin (Hb) forms in hemolysis-associated inflammatory responses. We found that after IVH most of the extracellular heme molecules are localized in oxidized Hb forms. IVH was associated with caspase-1 activation and formation of mature IL-1β in plasma and in the liver of C57BL/6 mice. We showed that ferrylHb (FHb) induces active IL-1β production in LPS-primed macrophages in vitro and triggered intraperitoneal recruitment of neutrophils and monocytes, caspase-1 activation and active IL-1β formation in the liver of C57BL/6 mice. NLRP3 deficiency provided a survival advantage upon IVH, without influencing the extent of RBC lysis or the accumulation of oxidized Hb forms. However, both hemolysis-induced and FHb-induced pro-inflammatory responses were largely attenuated in Nlrp3-/- mice. Taken together, FHb is a potent trigger of NLRP3 activation and production of IL-1β in vitro and in vivo, suggesting that FHb may contribute to hemolysis-induced inflammation. Identification of RBC-derived DAMPs might allow us to develop new therapeutic approaches for hemolytic diseases.
Collapse
Affiliation(s)
- Benard Bogonko Nyakundi
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Tóth
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Enikő Balogh
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Erdei
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bernhard Ryffel
- Experimental and Molecular Immunology and Neurogenetics, The National Center for Scientific Research, Orleans, France; Institute of Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - György Paragh
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mario D Cordero
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, Granada, Spain
| | - Viktória Jeney
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
160
|
Sundd P, Gladwin MT, Novelli EM. Pathophysiology of Sickle Cell Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:263-292. [PMID: 30332562 DOI: 10.1146/annurev-pathmechdis-012418-012838] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the discovery of sickle cell disease (SCD) in 1910, enormous strides have been made in the elucidation of the pathogenesis of its protean complications, which has inspired recent advances in targeted molecular therapies. In SCD, a single amino acid substitution in the β-globin chain leads to polymerization of mutant hemoglobin S, impairing erythrocyte rheology and survival. Clinically, erythrocyte abnormalities in SCD manifest in hemolytic anemia and cycles of microvascular vaso-occlusion leading to end-organ ischemia-reperfusion injury and infarction. Vaso-occlusive events and intravascular hemolysis promote inflammation and redox instability that lead to progressive small- and large-vessel vasculopathy. Based on current evidence, the pathobiology of SCD is considered to be a vicious cycle of four major processes, all the subject of active study and novel therapeutic targeting: ( a) hemoglobin S polymerization, ( b) impaired biorheology and increased adhesion-mediated vaso-occlusion, ( c) hemolysis-mediated endothelial dysfunction, and ( d) concerted activation of sterile inflammation (Toll-like receptor 4- and inflammasome-dependent innate immune pathways). These molecular, cellular, and biophysical processes synergize to promote acute and chronic pain and end-organ injury and failure in SCD. This review provides an exhaustive overview of the current understanding of the molecular pathophysiology of SCD, how this pathophysiology contributes to complications of the central nervous and cardiopulmonary systems, and how this knowledge is being harnessed to develop current and potential therapies.
Collapse
Affiliation(s)
- Prithu Sundd
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA; .,Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Sickle Cell Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Mark T Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA; .,Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Sickle Cell Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Enrico M Novelli
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Sickle Cell Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
161
|
Abstract
In the 100 years since sickle cell anemia (SCA) was first described in the medical literature, studies of its molecular and pathophysiological basis have been at the vanguard of scientific discovery. By contrast, the translation of such knowledge into treatments that improve the lives of those affected has been much too slow. Recent years, however, have seen major advances on several fronts. A more detailed understanding of the switch from fetal to adult hemoglobin and the identification of regulators such as BCL11A provide hope that these findings will be translated into genomic-based approaches to the therapeutic reactivation of hemoglobin F production in patients with SCA. Meanwhile, an unprecedented number of new drugs aimed at both the treatment and prevention of end-organ damage are now in the pipeline, outcomes from potentially curative treatments such as allogeneic hematopoietic stem cell transplantation are improving, and great strides are being made in gene therapy, where methods employing both antisickling β-globin lentiviral vectors and gene editing are now entering clinical trials. Encouragingly, after a century of neglect, the profile of the vast majority of those with SCA in Africa and India is also finally improving.
Collapse
Affiliation(s)
- Thomas N Williams
- Department of Epidemiology and Demography, KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Medicine, Imperial College London, London W2 1NY, United Kingdom;
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1589, USA;
| |
Collapse
|
162
|
Kapoor S, Opneja A, Nayak L. The role of neutrophils in thrombosis. Thromb Res 2018; 170:87-96. [PMID: 30138777 DOI: 10.1016/j.thromres.2018.08.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
Despite significant evidence implicating an important role for neutrophils in thrombosis, their impact on the thrombotic process has remained a matter of controversy. Until 2010, platelets, coagulation factors, fibrinogen and monocytes were implicated in the thrombotic process. Several studies conducted over the last decade now support the growing notion that neutrophils indeed do contribute significantly to this process. Neutrophils can contribute to pathologic venous and arterial thrombosis or 'immunothrombosis' by the release of neutrophil extracellular traps (NETs) and NET release is emerging as a major contributor to thrombogenesis in pathologic situations such as sepsis and malignancy. Further, blood-cell derived microparticles, including those from neutrophils, have been implicated in thrombus formation. Finally, inflammasome activation in the neutrophil identifies another important mechanism that may be operative in neutrophil-driven risk for thrombosis. The knowledge of these roles of neutrophils in thrombosis may pave the road for novel anti-thrombotic agents in the future that do not affect hemostasis.
Collapse
Affiliation(s)
- Sargam Kapoor
- University Hospitals Cleveland Medical Center, Division of Hematology and Oncology, United States; Case Western Reserve University, Department of Medicine, United States
| | - Aman Opneja
- University Hospitals Cleveland Medical Center, Division of Hematology and Oncology, United States; Case Western Reserve University, Department of Medicine, United States
| | - Lalitha Nayak
- University Hospitals Cleveland Medical Center, Division of Hematology and Oncology, United States; Case Western Reserve University, Department of Medicine, United States.
| |
Collapse
|
163
|
Brittain JE, Anea C, Desai P, Delaney J, McDonald A, Looney SW, Key NS, Parise LV, Ataga KI. Effect of eptifibatide on inflammation during acute pain episodes in sickle cell disease. Am J Hematol 2018; 93:E99-E101. [PMID: 29322543 DOI: 10.1002/ajh.25032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | - Ciprian Anea
- Vascular Biology Center, Augusta University; Augusta Georgia
| | - Payal Desai
- Division of Hematology, Department of Medicine; The Ohio State University; Chapel Hill North Carolina
| | - Jack Delaney
- Division of Hematology and Oncology, Department of Medicine; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
| | - Adam McDonald
- Division of Hematology and Oncology, Department of Medicine; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
| | - Stephen W. Looney
- Department of Biostatistics and Epidemiology; Augusta University; Augusta Georgia
| | - Nigel S. Key
- Division of Hematology and Oncology, Department of Medicine; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
| | - Leslie V. Parise
- Department of Biochemistry & Biophysics; University of North Carolina; Chapel Hill North Carolina
| | - Kenneth I. Ataga
- Division of Hematology and Oncology, Department of Medicine; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
| |
Collapse
|
164
|
Middleton EA, Rondina MT, Schwertz H, Zimmerman GA. Amicus or Adversary Revisited: Platelets in Acute Lung Injury and Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2018; 59:18-35. [PMID: 29553813 PMCID: PMC6039872 DOI: 10.1165/rcmb.2017-0420tr] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets are essential cellular effectors of hemostasis and contribute to disease as circulating effectors of pathologic thrombosis. These are their most widely known biologic activities. Nevertheless, recent observations demonstrate that platelets have a much more intricate repertoire beyond these traditional functions and that they are specialized for contributions to vascular barrier integrity, organ repair, antimicrobial host defense, inflammation, and activities across the immune continuum. Paradoxically, on the basis of clinical investigations and animal models of disease, some of these newly discovered activities of platelets appear to contribute to tissue injury. Studies in the last decade indicate unique interactions of platelets and their precursor, the megakaryocyte, in the lung and implicate platelets as essential effectors in experimental acute lung injury and clinical acute respiratory distress syndrome. Additional discoveries derived from evolving work will be required to precisely define the contributions of platelets to complex subphenotypes of acute lung injury and to determine if these remarkable and versatile blood cells are therapeutic targets in acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Elizabeth A. Middleton
- Division of Pulmonary and Critical Care Medicine, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Matthew T. Rondina
- Division of General Internal Medicine, Department of Internal Medicine
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Hansjorg Schwertz
- Division of Vascular Surgery, Department of Surgery, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A. Zimmerman
- Division of Pulmonary and Critical Care Medicine, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
165
|
Chunilal SD, Wood EM. Red cell transfusion and clinical outcomes in acute pulmonary embolism: Harmful therapy or an indicator of sicker patients with poor prognosis? Respirology 2018; 23:887-888. [PMID: 29890567 DOI: 10.1111/resp.13331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Sanjeev D Chunilal
- Department of Haematology, Monash Health, Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Erica M Wood
- Department of Haematology, Monash Health, Melbourne, VIC, Australia.,Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
166
|
Haemin-induced cell death in human monocytic cells is consistent with ferroptosis. Transfus Apher Sci 2018; 57:524-531. [PMID: 29859670 DOI: 10.1016/j.transci.2018.05.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/29/2018] [Accepted: 05/25/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Iron overload is a major issue for transfusion-dependent patients. Repeated transfusions result in the loading of large amounts of haem-derived iron on macrophages, and the haemin in turn induces cell death and the generation of reactive oxygen species (ROS) in both murine macrophages and human monocytic THP-1 cells. This haemin-induced cell death process has been shown to be iron-dependent. Thus, we hypothesized that haemin-induced THP-1 cell death is a result of ferroptosis, an iron-dependent mechanism of cell death regulation. MATERIAL AND METHODS Human monocytic THP-1 cells were treated with haemin, and haemin-induced cell death and ROS generation were assessed using flow cytometry. RESULTS Haemin-induced THP-1 cell death showed a necrosis pattern, and treatment with iron chelators suppressed both haemin-induced cell death and ROS generation. Treatment with ferrostatin-1, a ferroptosis inhibitor, suppressed haemin-induced cell death without affecting ROS generation, whereas erastin, a ferroptosis inducer, enhanced both haemin-induced cell death and ROS generation. DISCUSSION Our findings support haemin-induced cell death as an example of ferroptosis. Therefore, ferroptosis inhibitors may be useful for the treatment or prevention of transfusion iron overload.
Collapse
|
167
|
Abstract
Neutrophils are essential to the homeostatic mission of safeguarding host tissues, responding rapidly and diversely to breaches of the host's barriers to infection, and returning tissues to a sterile state. In response to specific stimuli, neutrophils extrude modified chromatin structures decorated with specific cytoplasmic and granular proteins called neutrophil extracellular traps (NETs). Several pathways lead to this unique form of cell death (NETosis). Extracellular chromatin may have evolved to defend eukaryotic organisms against infection, and its release has at least three functions: trapping and killing of microbes, amplifying immune responses, and inducing coagulation. Here we review neutrophil development and heterogeneity with a focus on NETs, NET formation, and their relevance in host defense and disease.
Collapse
|
168
|
Abstract
The primary β-globin gene mutation that causes sickle cell disease (SCD) has significant pathophysiological consequences that result in hemolytic events and the induction of the inflammatory processes that ultimately lead to vaso-occlusion. In addition to their role in the initiation of the acute painful vaso-occlusive episodes that are characteristic of SCD, inflammatory processes are also key components of many of the complications of the disease including autosplenectomy, acute chest syndrome, pulmonary hypertension, leg ulcers, nephropathy and stroke. We, herein, discuss the events that trigger inflammation in the disease, as well as the mechanisms, inflammatory molecules and cells that propagate these inflammatory processes. Given the central role that inflammation plays in SCD pathophysiology, many of the therapeutic approaches currently under pre-clinical and clinical development for the treatment of SCD endeavor to counter aspects or specific molecules of these inflammatory processes and it is possible that, in the future, we will see anti-inflammatory drugs being used either together with, or in place of, hydroxyurea in those SCD patients for whom hematopoietic stem cell transplants and evolving gene therapies are not a viable option.
Collapse
Affiliation(s)
- Nicola Conran
- Hematology Center, University of Campinas - UNICAMP, Cidade Universitária, Campinas-SP, Brazil
| | - John D Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
169
|
Massive Ovarian Edema in a Girl with Hemoglobin SC Disease. Case Rep Pathol 2018; 2018:4193248. [PMID: 29725550 PMCID: PMC5872624 DOI: 10.1155/2018/4193248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 02/13/2018] [Indexed: 11/17/2022] Open
Abstract
Massive ovarian edema is a benign tumor like lesion of the ovary. The widely accepted mechanism is disruption of vascular drainage resulting in accumulation of fluid within the stroma and enlargement of the ovary. We report a case of massive ovarian edema in a teenage girl with hemoglobin SC disease. A 16-year-old female with hemoglobin SC disease was admitted with right lower quadrant pain. An ultrasound and CT scan showed a large, heterogeneous solid, and cystic pelvic mass. Due to the size and the possibility of malignancy, the patient underwent a salpingo-oophorectomy. The mass was an 8.3 cm hemorrhagic cyst with some solid areas. Histologic exam showed diffuse edema with scattered entrapped follicles and a narrow rim of normal appearing ovarian stroma. Dilated and occluded capillaries were seen along with hemorrhage and sickled red blood cells but no necrosis was identified. These histologic features were consistent with massive ovarian edema. Massive ovarian edema is thought to be caused by disturbance of the vascular outflow resulting in fluid buildup in the stroma. It is most often attributed to intermittent ovarian torsion that disrupts capillary and venous flow, but arterial flow is maintained. Rare cases of massive ovarian edema caused by tumor emboli or external compression by tumors have been reported, but this is the first case of a patient with hemoglobin SC disease developing vasoocclusions resulting in this lesion.
Collapse
|
170
|
Abstract
Non-adherence and deformability are the key intrinsic biomechanical features of the red blood cell (RBC), which allow it to tightly squeeze and pass through even the narrowest of microcirculatory networks. Blockage of microcirculatory flow, also known as vaso-occlusion, is a consequence of abnormal cellular adhesion to the vascular endothelium. In sickle cell disease (SCD), an inherited anaemia, even though RBCs have been shown to be heterogeneous in adhesiveness and deformability, this has not been studied in the context of physiologically relevant dynamic shear gradients at the microscale. We developed a microfluidic system that simulates physiologically relevant shear gradients of microcirculatory blood flow at a constant single volumetric flow rate. Using this system, shear dependent adhesion of RBCs from 28 subjects with SCD and from 11 healthy subjects was investigated using vascular endothelial protein functionalized microchannels. We defined a new term, RBC Shear Gradient Microfluidic Adhesion (SiGMA) index to assess shear dependent RBC adhesion in a subject-specific manner. We have shown for the first time that shear dependent adhesion of RBCs is heterogeneous in a microfluidic flow model, which correlates clinically with inflammatory markers and iron overload in subjects with SCD. This study reveals the complex dynamic interactions between RBC-mediated microcirculatory occlusion and clinical outcomes in SCD. These interactions may also be relevant to other microcirculatory disorders and microvascular diseases.
Collapse
Affiliation(s)
- Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Glennan 616B, 10900 Euclid Ave., Cleveland, OH, USA.
| | - Jane A Little
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA and Seidman Cancer Center at University Hospitals, Case Medical Center, Cleveland, OH, USA
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Glennan 616B, 10900 Euclid Ave., Cleveland, OH, USA. and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA and Department of Orthopaedics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
171
|
Vallelian F, Schaer CA, Deuel JW, Ingoglia G, Humar R, Buehler PW, Schaer DJ. Revisiting the putative role of heme as a trigger of inflammation. Pharmacol Res Perspect 2018; 6:e00392. [PMID: 29610666 PMCID: PMC5878102 DOI: 10.1002/prp2.392] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/11/2018] [Indexed: 12/23/2022] Open
Abstract
Activation of the innate immune system by free heme has been proposed as one of the principal consequences of cell‐free hemoglobin (Hb) exposure. Nonetheless, in the absence of infection, heme exposures within a hematoma, during hemolysis, or upon systemic administration of Hb (eg, as a Hb‐based oxygen carrier) are typically not accompanied by uncontrolled inflammation, challenging the assumption that heme is a major proinflammatory mediator in vivo. Because of its hydrophobic nature, heme liberated from oxidized hemoglobin is rapidly transferred to alternative protein‐binding sites (eg, albumin) or to hydrophobic lipid compartments minimizing protein‐free heme under in vivo equilibrium conditions. We demonstrate that the capacity of heme to activate human neutrophil granulocytes strictly depends on the availability of non protein‐associated heme. In human endothelial cells as well as in mouse macrophage cell cultures and in mouse models of local and systemic heme exposure, protein‐associated heme or Hb do not induce inflammatory gene expression over a broad range of exposure conditions. Only experiments in protein‐free culture medium demonstrated a weak capacity of heme‐solutions to induce toll‐like receptor‐(TLR4) dependent TNF‐alpha expression in macrophages. Our data suggests that the equilibrium‐state of free and protein‐associated heme critically determines the proinflammatory capacity of the metallo‐porphyrin. Based on these data it appears unlikely that inflammation‐promoting equilibrium conditions could ever occur in vivo.
Collapse
Affiliation(s)
| | | | - Jeremy W Deuel
- Division of Internal Medicine University of Zurich Zurich Switzerland
| | - Giada Ingoglia
- Division of Internal Medicine University of Zurich Zurich Switzerland
| | - Rok Humar
- Division of Internal Medicine University of Zurich Zurich Switzerland
| | - Paul W Buehler
- Center of Biologics Evaluation and Research (CBER) FDA Silver Spring MD USA
| | - Dominik J Schaer
- Division of Internal Medicine University of Zurich Zurich Switzerland
| |
Collapse
|
172
|
Faes C, Sparkenbaugh EM, Pawlinski R. Hypercoagulable state in sickle cell disease. Clin Hemorheol Microcirc 2018; 68:301-318. [DOI: 10.3233/ch-189013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Camille Faes
- Interuniversity Laboratory of Human Movement Biology EA7424, Vascular biology and Red Blood Cell Team, University Claude Bernard Lyon1, Villeurbanne, France; Laboratory of Excellence “GR-Ex, ” Paris, France
| | - Erica M. Sparkenbaugh
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rafal Pawlinski
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
173
|
The potential adverse effects of haemolysis. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 15:218-221. [PMID: 28518048 DOI: 10.2450/2017.0311-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/13/2016] [Indexed: 12/25/2022]
Abstract
Haemolysis occurs in many haematologic and non-haematologic diseases. Transfusion of packed red blood cells (pRBCs) can result in intravascular haemolysis, in which the RBCs are destroyed within the circulation, and extravascular haemolysis, in which RBCs are phagocytosed in the monocyte-macrophage system. This happens especially after RBCs have been stored under refrigerated conditions for long periods. The clinical implications and the relative contribution of intra- vs extra-vascular haemolysis are still a subject of debate. They have been associated with adverse effects in animal models, but it remains to be determined whether these may be involved in mediating adverse effects in humans.
Collapse
|
174
|
Martins R, Knapp S. Heme and hemolysis in innate immunity: adding insult to injury. Curr Opin Immunol 2018; 50:14-20. [DOI: 10.1016/j.coi.2017.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/04/2017] [Indexed: 12/11/2022]
|
175
|
Vogel S, Thein SL. Platelets at the crossroads of thrombosis, inflammation and haemolysis. Br J Haematol 2018; 180:761-767. [PMID: 29383704 DOI: 10.1111/bjh.15117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Platelets play a critical role at the interphase of thrombosis and inflammation, key features in haemolysis-associated disorders. Exercising this role requires expression of pattern recognition receptors by platelets, including toll-like receptor 4 (TLR4) and nucleotide-binding domain leucine rich repeat containing protein 3 (NLRP3), the latter forming intraplatelet multiprotein inflammasome complexes. Platelets are a potential target of various damage-associated molecular pattern (DAMP) molecules, such as free haem, a degradation by-product of haemoglobin oxidation during haemolysis, and high-mobility group box 1 (HMGB1), a DNA-binding protein released by dying or stressed cells and activated platelets. We have recently identified platelet TLR4, NLRP3, and Bruton tyrosine kinase (BTK) as critical regulators of platelet aggregation and thrombus formation, suggesting that the BTK inhibitor ibrutinib is a potential therapeutic target. Increasing evidence suggests that these and other DAMP-driven signalling mechanisms employed by platelets might be key in mediating inflammation and thrombosis encountered in haemolytic disorders. However, the precise regulatory triggers and their clinical relevance are poorly understood. We provide new insights into these less-well characterised platelet mechanisms, which are potentially targetable in haemolytic disorders.
Collapse
Affiliation(s)
- Sebastian Vogel
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
176
|
Arsenic trioxide promoting ETosis in acute promyelocytic leukemia through mTOR-regulated autophagy. Cell Death Dis 2018; 9:75. [PMID: 29362482 PMCID: PMC5833714 DOI: 10.1038/s41419-017-0018-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
Abstract
Despite the high efficacy and safety of arsenic trioxide (ATO) in treating acute promyelocytic leukemia (APL) and eradicating APL leukemia-initiating cells (LICs), the mechanism underlying its selective cytotoxicity remains elusive. We have recently demonstrated that APL cells undergo a novel cell death program, termed ETosis, through autophagy. However, the role of ETosis in ATO-induced APL LIC eradication remains unclear. For this study, we evaluated the effects of ATO on ETosis and the contributions of drug-induced ETosis to APL LIC eradication. In NB4 cells, ATO primarily increased ETosis at moderate concentrations (0.5–0.75 μM) and stimulated apoptosis at higher doses (1.0–2.0 μM). Furthermore, ATO induced ETosis through mammalian target of rapamycin (mTOR)-dependent autophagy, which was partially regulated by reactive oxygen species. Additionally, rapamycin-enhanced ATO-induced ETosis in NB4 cells and APL cells from newly diagnosed and relapsed patients. In contrast, rapamycin had no effect on apoptosis in these cells. We also noted that PML/RARA oncoprotein was effectively cleared with this combination. Intriguingly, activation of autophagy with rapamycin-enhanced APL LIC eradication clearance by ATO in vitro and in a xenograft APL model, while inhibition of autophagy spared clonogenic cells. Our current results show that ATO exerts antileukemic effects at least partially through ETosis and targets LICs primarily through ETosis. Addition of drugs that target the ETotic pathway could be a promising therapeutic strategy to further eradicate LICs and reduce relapse.
Collapse
|
177
|
Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nat Med 2018; 24:232-238. [PMID: 29309057 DOI: 10.1038/nm.4462] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/29/2017] [Indexed: 12/15/2022]
Abstract
Rhabdomyolysis is a serious syndrome caused by skeletal muscle injury and the subsequent release of breakdown products from damaged muscle cells into systemic circulation. The muscle damage most often results from strenuous exercise, muscle hypoxia, medications, or drug abuse and can lead to life-threatening complications, such as acute kidney injury (AKI). Rhabdomyolysis and the AKI complication can also occur during crush syndrome, an emergency condition that commonly occurs in victims of natural disasters, such as earthquakes, and man-made disasters, such as wars and terrorism. Myoglobin released from damaged muscle is believed to trigger renal dysfunction in this form of AKI. Recently, macrophages were implicated in the disease pathogenesis of rhabdomyolysis-induced AKI, but the precise molecular mechanism remains unclear. In the present study, we show that macrophages released extracellular traps (ETs) comprising DNA fibers and granule proteins in a mouse model of rhabdomyolysis. Heme-activated platelets released from necrotic muscle cells during rhabdomyolysis enhanced the production of macrophage extracellular traps (METs) through increasing intracellular reactive oxygen species generation and histone citrullination. Here we report, for the first time to our knowledge, this unanticipated role for METs and platelets as a sensor of myoglobin-derived heme in rhabdomyolysis-induced AKI. This previously unknown mechanism might be targeted for treatment of the disease. Finally, we found a new therapeutic tool for prevention of AKI after rhabdomyolysis, which might rescue some sufferers of this pathology.
Collapse
|
178
|
Abstract
PURPOSE OF REVIEW Interactions between neutrophils and platelets contribute to the progression of thromboinflammatory disease. However, the regulatory mechanism governing these interactions is poorly understood. The present review focuses on the crucial role of Ser/Thr protein kinase B (AKT)β-NADPH oxidase 2 (NOX2) signaling in regulating neutrophil and platelet activation and their heterotypic interactions under thromboinflammatory conditions. RECENT FINDINGS Growing evidence has shown that platelets, leukocytes, and blood coagulation need to be considered to treat thromboinflammatory disease in which inflammation and thrombosis occur concurrently. In addition to plasma proteins and intracellular signaling molecules, extracellular reactive oxygen species (ROS) produced from activated leukocytes could be an important factor in the pathophysiology of thromboinflammatory disease. Recent studies reveal that AKT2-NOX2 signaling has critical roles in Ca mobilization, ROS generation, degranulation, and control of the ligand-binding function of cell surface molecules, thereby promoting heterotypic cell-cell interactions in thromboinflammation. These findings have provided novel insights into attractive therapeutic targets for the prevention and treatment of thromboinflammatory disease. SUMMARY Recent discoveries concerning molecular mechanisms regulating neutrophil-platelet interactions have bridged some gaps in our knowledge of the complicated signaling pathways exacerbating thromboinflammatory conditions.
Collapse
|
179
|
Abstract
Damage-associated molecular patterns (DAMPs) or alarmins are endogenous danger signals that are derived from damaged cells and extracellular matrix degradation, capable of triggering innate immune response to promote tissue damage repair. Hemolytic or hemorrhagic episodes are often associated with inflammation, even when infectious agents are absent, suggesting that damaged red blood cells (RBCs) release DAMPs.Hemoglobin (Hb) composes 96% of the dry weight of RBCs; therefore upon hemolysis, tremendous amounts of Hb are released into the extracellular milieu. Hb oxidation occurs outside the protective environment of RBCs, leading to the formation of different Hb oxidation products and heme. Heme acts as a prototypic DAMP participating in toll-like receptor as well as intracellular nucleotide-binding oligomerization domain-like receptor signaling. Oxidized Hb forms also possess some inflammatory actions independently of their heme releasing capability. Non-Hb-derived DAMPs such as ATP, interleukin-33, heat shock protein 70, as well as RBC membrane-derived microparticles might also contribute to the innate immune response triggered by hemolysis/hemorrhage.In this chapter we will discuss the inflammatory properties of RBC-derived DAMPs with a particular focus on Hb derivatives, as well as therapeutic potential of the endogenous Hb and heme-binding proteins haptoglobin and hemopexin in the prevention of hemolysis/hemorrhage-associated inflammation.
Collapse
Affiliation(s)
- Viktória Jeney
- Faculty of Medicine, Department of Internal Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
180
|
Targeting novel mechanisms of pain in sickle cell disease. Blood 2017; 130:2377-2385. [PMID: 29187376 DOI: 10.1182/blood-2017-05-782003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Patients with sickle cell disease (SCD) suffer from intense pain that can start during infancy and increase in severity throughout life, leading to hospitalization and poor quality of life. A unique feature of SCD is vaso-occlusive crises (VOCs) characterized by episodic, recurrent, and unpredictable episodes of acute pain. Microvascular obstruction during a VOC leads to impaired oxygen supply to the periphery and ischemia reperfusion injury, inflammation, oxidative stress, and endothelial dysfunction, all of which may perpetuate a noxious microenvironment leading to pain. In addition to episodic acute pain, patients with SCD also report chronic pain. Current treatment of moderate to severe pain in SCD is mostly reliant upon opioids; however, long-term use of opioids is associated with multiple side effects. This review presents up-to-date developments in our understanding of the pathobiology of pain in SCD. To help focus future research efforts, major gaps in knowledge are identified regarding how sickle pathobiology evokes pain, pathways specific to chronic and acute sickle pain, perception-based targets of "top-down" mechanisms originating from the brain and neuromodulation, and how pain affects the sickle microenvironment and pathophysiology. This review also describes mechanism-based targets that may help develop novel therapeutic and/or preventive strategies to ameliorate pain in SCD.
Collapse
|
181
|
Tran H, Gupta M, Gupta K. Targeting novel mechanisms of pain in sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:546-555. [PMID: 29222304 PMCID: PMC6142592 DOI: 10.1182/asheducation-2017.1.546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Patients with sickle cell disease (SCD) suffer from intense pain that can start during infancy and increase in severity throughout life, leading to hospitalization and poor quality of life. A unique feature of SCD is vaso-occlusive crises (VOCs) characterized by episodic, recurrent, and unpredictable episodes of acute pain. Microvascular obstruction during a VOC leads to impaired oxygen supply to the periphery and ischemia reperfusion injury, inflammation, oxidative stress, and endothelial dysfunction, all of which may perpetuate a noxious microenvironment leading to pain. In addition to episodic acute pain, patients with SCD also report chronic pain. Current treatment of moderate to severe pain in SCD is mostly reliant upon opioids; however, long-term use of opioids is associated with multiple side effects. This review presents up-to-date developments in our understanding of the pathobiology of pain in SCD. To help focus future research efforts, major gaps in knowledge are identified regarding how sickle pathobiology evokes pain, pathways specific to chronic and acute sickle pain, perception-based targets of "top-down" mechanisms originating from the brain and neuromodulation, and how pain affects the sickle microenvironment and pathophysiology. This review also describes mechanism-based targets that may help develop novel therapeutic and/or preventive strategies to ameliorate pain in SCD.
Collapse
Affiliation(s)
- Huy Tran
- Vascular Biology Center, Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN; and
| | - Mihir Gupta
- Department of Neurosurgery, University of California San Diego, La Jolla, CA
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN; and
| |
Collapse
|
182
|
Ansari J, Moufarrej YE, Pawlinski R, Gavins FNE. Sickle cell disease: a malady beyond a hemoglobin defect in cerebrovascular disease. Expert Rev Hematol 2017; 11:45-55. [PMID: 29207881 DOI: 10.1080/17474086.2018.1407240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Sickle cell disease (SCD) is a devastating monogenic disorder that presents as a multisystem illness and affects approximately 100,000 individuals in the United States alone. SCD management largely focuses on primary prevention, symptomatic treatment and targeting of hemoglobin polymerization and red blood cell sickling. Areas covered: This review will discuss the progress of SCD over the last few decades, highlighting some of the clinical (mainly cerebrovascular) and psychosocial challenges of SCD in the United States. In addition, focus will also be made on the evolving science and management of this inherited disease. Expert commentary: Until recently hydroxyurea (HU) has been the only FDA approved therapy for SCD. However, advancing understanding of SCD pathophysiology has led to multiple clinical trials targeting SCD related thrombo-inflammation, abnormal endothelial biology, increased oxidant stress and sickle cell mutation. Yet, despite advancing understanding, available therapies are limited. SCD also imposes great psychosocial challenges for the individual and the affected community, which has previously been under-recognized. This has created a pressing need for complementary adjuvant therapies with repurposed and novel drugs, in addition to the establishment of comprehensive clinics focusing on both the medical treatment and the psychosocial issues associated with SCD.
Collapse
Affiliation(s)
- Junaid Ansari
- a Department of Molecular and Cellular Physiology , Louisiana State University Health Sciences Center - Shreveport , Shreveport , LA , USA
| | - Youmna E Moufarrej
- b Louisiana State University School of Medicine - Shreveport , Shreveport , LA , USA
| | - Rafal Pawlinski
- c Department of Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Felicity N E Gavins
- a Department of Molecular and Cellular Physiology , Louisiana State University Health Sciences Center - Shreveport , Shreveport , LA , USA
| |
Collapse
|
183
|
Louie JE, Anderson CJ, Fayaz M. Fomani K, Henry A, Killeen T, Mohandas N, Yazdanbakhsh K, Belcher JD, Vercellotti GM, Shi PA. Case series supporting heme detoxification via therapeutic plasma exchange in acute multiorgan failure syndrome resistant to red blood cell exchange in sickle cell disease. Transfusion 2017; 58:470-479. [DOI: 10.1111/trf.14407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/08/2017] [Accepted: 10/08/2017] [Indexed: 01/25/2023]
Affiliation(s)
- James E. Louie
- Long Island Jewish Medical Center, Northwell Health; New Hyde Park New York
| | - Caitlin J. Anderson
- Lindley F. Kimball Research Institute, New York Blood Center; New York New York
| | | | - Alonye Henry
- Lindley F. Kimball Research Institute, New York Blood Center; New York New York
| | - Trevor Killeen
- Department of Hematology, Oncology, and Transplantation; University of Minnesota Medical School; Minneapolis Minnesota
| | - Narla Mohandas
- Lindley F. Kimball Research Institute, New York Blood Center; New York New York
| | - Karina Yazdanbakhsh
- Lindley F. Kimball Research Institute, New York Blood Center; New York New York
| | - John D. Belcher
- Department of Hematology, Oncology, and Transplantation; University of Minnesota Medical School; Minneapolis Minnesota
| | - Gregory M. Vercellotti
- Department of Hematology, Oncology, and Transplantation; University of Minnesota Medical School; Minneapolis Minnesota
| | - Patricia A. Shi
- Lindley F. Kimball Research Institute, New York Blood Center; New York New York
| |
Collapse
|
184
|
Quintela-Carvalho G, Luz NF, Celes FS, Zanette DL, Andrade D, Menezes D, Tavares NM, Brodskyn CI, Prates DB, Gonçalves MS, de Oliveira CI, Almeida RP, Bozza MT, Andrade BB, Borges VM. Heme Drives Oxidative Stress-Associated Cell Death in Human Neutrophils Infected with Leishmania infantum. Front Immunol 2017; 8:1620. [PMID: 29218050 PMCID: PMC5703736 DOI: 10.3389/fimmu.2017.01620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/08/2017] [Indexed: 11/25/2022] Open
Abstract
Free heme is an inflammatory molecule capable of inducing migration and activation of neutrophils. Here, we examine the heme-driven oxidative stress-associated cell death mechanisms in human neutrophils infected with Leishmania infantum, an etiologic agent of visceral leishmaniasis (VL). We first performed exploratory analyses in a population of well characterized treatment-naïve VL patients as well as uninfected controls, who were part of previously reported studies. We noted a positive correlation between serum concentrations of heme with heme oxygenase-1 (HO-1) and lactate deydrogenase, as well as, a negative correlation between heme values and peripheral blood neutrophils counts. Moreover, in vitro infection with L. infantum in the presence of heme enhanced parasite burden in neutrophils, while increasing the production of reactive oxygen species and release of neutrophilic enzymes. Additional experiments demonstrated that treatment of infected neutrophils with ferrous iron (Fe+2), a key component of the heme molecule, resulted in increased parasite survival without affecting neutrophil activation status. Furthermore, stimulation of infected neutrophils with heme triggered substantial increases in HO-1 mRNA expression as well as in superoxide dismutase-1 enzymatic activity. Heme, but not Fe+2, induced oxidative stress-associated cell death. These findings indicate that heme promotes intracellular L. infantum survival via activation of neutrophil function and oxidative stress. This study opens new perspectives for the understanding of immunopathogenic mechanisms involving neutrophils in VL.
Collapse
Affiliation(s)
- Graziele Quintela-Carvalho
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia Baiano (IFBaiano), Santa Inês, Brazil
| | - Nívea F Luz
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Fabiana S Celes
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Dalila L Zanette
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Daniela Andrade
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Diego Menezes
- Instituto de Tecnologia e Pesquisa (ITP), Aracaju, Brazil
| | - Natália M Tavares
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Claudia I Brodskyn
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Deboraci B Prates
- Departamento de Biomorfologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Marilda S Gonçalves
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Camila I de Oliveira
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Roque P Almeida
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe (UFS), Aracaju, Brazil
| | - Marcelo T Bozza
- Departamento de Imunologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno B Andrade
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Valeria M Borges
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| |
Collapse
|
185
|
Extracellular histones induce erythrocyte fragility and anemia. Blood 2017; 130:2884-2888. [PMID: 29133350 DOI: 10.1182/blood-2017-06-790519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/05/2017] [Indexed: 12/16/2022] Open
Abstract
Extracellular histones have been shown to play an important pathogenic role in many diseases, primarily through their cytotoxicity toward nucleated cells and their ability to promote platelet activation with resultant thrombosis and thrombocytopenia. In contrast, little is known about the effect of extracellular histones on erythrocyte function. We demonstrate in this study that histones promote erythrocyte aggregation, sedimentation, and using a novel in vitro shear stress model, we show that histones induce erythrocyte fragility and lysis in a concentration-dependent manner. Furthermore, histones impair erythrocyte deformability based on reduced passage of erythrocytes through an artificial spleen. These in vitro results were mirrored in vivo with the injection of histones inducing anemia within minutes of administration, with a concomitant increase in splenic hemoglobin content. Thrombocytopenia and leukopenia were also observed. These findings suggest that histones binding to erythrocytes may contribute to the elevated erythrocyte sedimentation rates observed in inflammatory conditions. Furthermore, histone-induced increases in red blood cell lysis and splenic clearance may be a significant factor in the unexplained anemias seen in critically ill patients.
Collapse
|
186
|
Stolla M, Henrichs K, Cholette JM, Pietropaoli AP, Phipps RP, Spinelli SL, Blumberg N. Haem is associated with thrombosis in neonates and infants undergoing cardiac surgery for congenital heart disease. Vox Sang 2017; 113:72-75. [PMID: 29044674 DOI: 10.1111/vox.12606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Haem levels are associated with thrombosis in a variety of diseases, as well as being a contributing cause of thrombotic events in animal models. MATERIALS AND METHODS We retrospectively analyzed samples from 39 children who underwent cardiac surgery with cardiopulmonary bypass, including 15 children who developed a postoperative thrombosis and 24 controls. RESULTS Patients who developed thrombosis postoperatively had statistically significant higher average haem levels over time (presurgery to 12 h postsurgery) compared to patients who did not develop thrombosis. CONCLUSION Higher cell-free total haem levels are associated with a higher risk of thrombosis in a paediatric cardiac surgical cohort.
Collapse
Affiliation(s)
- M Stolla
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA.,Bloodworks Northwest Research Institute, Seattle, WA, USA.,Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - K Henrichs
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
| | - J M Cholette
- Department of Pediatrics, Critical Care and Cardiology, University of Rochester, Rochester, NY, USA
| | - A P Pietropaoli
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, University of Rochester, Rochester, NY, USA
| | - R P Phipps
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA.,Department of Pediatrics, Critical Care and Cardiology, University of Rochester, Rochester, NY, USA.,Department of Medicine, Division of Pulmonary & Critical Care Medicine, University of Rochester, Rochester, NY, USA.,Environmental Medicine, Lung Biology and Disease Program, University of Rochester, Rochester, NY, USA
| | - S L Spinelli
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
| | - N Blumberg
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
187
|
Abstract
Neutrophils are innate immune phagocytes that have a central role in immune defence. Our understanding of the role of neutrophils in pathogen clearance, immune regulation and disease pathology has advanced dramatically in recent years. Web-like chromatin structures known as neutrophil extracellular traps (NETs) have been at the forefront of this renewed interest in neutrophil biology. The identification of molecules that modulate the release of NETs has helped to refine our view of the role of NETs in immune protection, inflammatory and autoimmune diseases and cancer. Here, I discuss the key findings and concepts that have thus far shaped the field of NET biology.
Collapse
|
188
|
Deoxyribonuclease 1 reduces pathogenic effects of cigarette smoke exposure in the lung. Sci Rep 2017; 7:12128. [PMID: 28935869 PMCID: PMC5608940 DOI: 10.1038/s41598-017-12474-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/08/2017] [Indexed: 12/31/2022] Open
Abstract
Our aim was to investigate if deoxyribonuclease (DNase) 1 is a potential therapeutic agent to reduce pathogenic effects of cigarette smoke exposure in the lung. Cigarette smoke causes protease imbalance with excess production of proteases, which is a key process in the pathogenesis of emphysema. The mechanisms responsible for this effect are not well-defined. Our studies demonstrate both in vitro and in vivo that cigarette smoke significantly increases the expression of neutrophil and macrophage extracellular traps with coexpression of the pathogenic proteases, neutrophil elastase and matrix metalloproteinases 9 and 12. This response to cigarette smoke was significantly reduced by the addition of DNase 1, which also significantly decreased macrophage numbers and lung proteolysis. DNase 1, a treatment currently in clinical use, can diminish the pathogenic effects of cigarette smoke.
Collapse
|
189
|
Shilo NR, Morris CR. Pathways to pulmonary hypertension in sickle cell disease: the search for prevention and early intervention. Expert Rev Hematol 2017; 10:875-890. [PMID: 28817980 DOI: 10.1080/17474086.2017.1364989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Pulmonary hypertension (PH) develops in a significant number of patients with sickle cell disease (SCD), resulting in increased morbidity and mortality. This review focuses on PH pathophysiology, risk stratification, and new recommendations for screening and treatment for patients with SCD. Areas covered: An extensive PubMed literature search was performed. While the pathophysiology of PH in SCD is yet to be fully deciphered, it is known that the etiology is multifactorial; hemolysis, hypercoagulability, hypoxemia, ischemic-reperfusion injury, oxidative stress, and genetic susceptibility all contribute in varying degrees to endothelial dysfunction. Hemolysis, in particular, seems to play a key role by inciting an imbalance in the regulatory axis of nitric oxide and arginine metabolism. Systematic risk stratification starting in childhood based on clinical features and biomarkers that enable early detection is necessary. Multi-faceted, targeted interventions, before irreversible vasculopathy develops, will allow for improved patient outcomes and life expectancy. Expert commentary: Despite progress in our understanding of PH in SCD, clinically proven therapies remain elusive and additional controlled clinical trials are needed. Prevention of disease starts in childhood, a critical window for intervention. Given the complex and multifactorial nature of SCD, patients will ultimately benefit from combination therapies that simultaneously targets multiple mechanisms.
Collapse
Affiliation(s)
- Natalie R Shilo
- a Department of Pediatrics, Division of Pulmonary Medicine , University of Connecticut Heath Center , Farmington , CT , USA
| | - Claudia R Morris
- b Department of Pediatrics, Division of Pediatric Emergency Medicine, Emory-Children's Center for Cystic Fibrosis and Airways Disease Research , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
190
|
Jeffery U, Ruterbories L, Hanel R, LeVine DN. Cell-Free DNA and DNase Activity in Dogs with Immune-Mediated Hemolytic Anemia. J Vet Intern Med 2017; 31:1441-1450. [PMID: 28833583 PMCID: PMC5598899 DOI: 10.1111/jvim.14808] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/04/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022] Open
Abstract
Background Immune‐mediated hemolytic anemia (IMHA) in dogs has a high risk of thrombosis and is associated with marked neutrophilia and necrosis. Cell death and release of neutrophil extracellular traps contribute to increased serum concentrations of cell‐free DNA, and in human autoimmune disease reduced DNase activity further increases cell‐free DNA. Free DNA in blood has prothrombotic properties and could contribute to hypercoagulability in IMHA. Hypothesis Cell‐free DNA is elevated and DNase activity reduced in dogs with IMHA compared to healthy dogs. Animals Dogs presenting to two referral hospitals with IMHA (n = 28) and healthy controls (n = 20). Methods Prospective observational study. Blood was collected and death and thrombotic events occurring in the first 14 days after hospitalization recorded. DNA was extracted from plasma with a commercial kit and quantified by PicoGreen fluorescence. DNase activity of serum was measured by radial diffusion assay. Results Cell‐free DNA was significantly higher in cases (median: 45 ng/mL, range: 10–2334 ng/mL) than controls (26 ng/mL, range 1–151 ng/mL, P = 0.0084). DNase activity was not different between cases and controls (P = 0.36). Four cases died and there were five suspected or confirmed thrombotic events. Cell‐free DNA concentration was associated with death (odds ratio for upper quartile versus lower 3 quartiles: 15; 95% confidence interval 1.62–201; P = 0.03) but not thrombosis (P = 0.57). Conclusions and Clinical Importance Cell‐free DNA is elevated in dogs with IMHA and likely reflects increased release rather than impaired degradation of DNA. Cell‐free DNA concentration is potentially associated with death and might be a prognostic indicator, but this requires confirmation in a larger population.
Collapse
Affiliation(s)
- U Jeffery
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - L Ruterbories
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - R Hanel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - D N LeVine
- Department of Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA
| |
Collapse
|
191
|
Ohbuchi A, Kono M, Kitagawa K, Takenokuchi M, Imoto S, Saigo K. Quantitative analysis of hemin-induced neutrophil extracellular trap formation and effects of hydrogen peroxide on this phenomenon. Biochem Biophys Rep 2017; 11:147-153. [PMID: 28955779 PMCID: PMC5614717 DOI: 10.1016/j.bbrep.2017.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Formation of neutrophil extracellular traps (NETs) can perpetuate sterile inflammation; thus, it is important to clarify their pathophysiological characteristics. Free heme, derived via hemolysis, is a major contributor to organ damage, and reportedly induces neutrophil activation as well as reactive oxygen species (ROS) production and NET formation. For this study, we examined hemin (Fe3+ -protoporphyrin IX)-induced NET formation quantitatively in vitro as well as the effects of oxidative stress. NETs formed in vitro from cultured neutrophils were quantitatively detected by using nuclease treatment and Sytox Green, a nucleic acid stain. Hemin-induced NET production was found to be in a dose-dependent manner, NADPH oxidase-dependent and toll-like receptor (TLR)-4 independent. Additionally, the iron molecule in the porphyrin ring was considered essential for the formation of NETs. In the presence of low concentrations of hydrogen peroxide, low concentrations of hemin-induced NETs were enhanced, unlike those of phorbol myristate acetate (PMA)-induced NETs. Quantitative analysis of NET formation may prove to be a useful tool for investigating NET physiology, and hemin could function as a possible therapeutic target for hemolysis-related events.
Collapse
Key Words
- DPI, diphenyleneiodonium
- ELISA, Enzyme-Linked Immuno-Sorbent Assay
- Extracellular trap
- HO-1, heme oxygenase-1
- Hemin
- Hydrogen peroxide
- LPS, lipopolysaccharide
- MPO, myeloperoxidase
- NADPH oxidase, nicotinamide adenine dinucleotide phosphate oxidase
- NET, neutrophil extracellular traps
- Neutrophil
- PAD4, peptidylarginine deiminases 4
- PMA, phorbol myristate acetate
- Quantitative detection
- ROS, reactive oxygen species
- TAK-242 (PubChem CID: 11703255)
- TLR, toll-like receptor
- diphenylene iodonium (PubChem CID: 3101)
- hemin (PubChem CID: 121225420)
- hydrogen peroxide (PubChem CID: 784)
- phorbol myristate acetate (PubChem CID: 22833501)
- polymyxin B (PubChem CID: 4868)
- protoporphyrin IX (PubChem CID: 4971)
- sytox green (PubChem CID: 46863923)
Collapse
Affiliation(s)
- Ayako Ohbuchi
- Faculty of Pharmacological Sciences, Himeji Dokkyo University, 7-2-1 Kamiono, Himeji, Hyogo 670-8524, Japan
| | - Mari Kono
- Scientific Research Division, Scientific Affairs, Sysmex Corporation, 1-3-2 Murotani, Nishi-ku, Kobe, Hyogo 651-2241, Japan
| | - Kaihei Kitagawa
- Faculty of Pharmacological Sciences, Himeji Dokkyo University, 7-2-1 Kamiono, Himeji, Hyogo 670-8524, Japan
| | - Mariko Takenokuchi
- Faculty of Pharmacological Sciences, Himeji Dokkyo University, 7-2-1 Kamiono, Himeji, Hyogo 670-8524, Japan
| | - Shion Imoto
- Department of Health Science, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata-ku, Kobe, Hyogo 653-0838, Japan
| | - Katsuyasu Saigo
- Faculty of Pharmacological Sciences, Himeji Dokkyo University, 7-2-1 Kamiono, Himeji, Hyogo 670-8524, Japan
- Corresponding author.
| |
Collapse
|
192
|
Circulating dsDNA, endothelial injury, and complement activation in thrombotic microangiopathy and GVHD. Blood 2017; 130:1259-1266. [PMID: 28705839 DOI: 10.1182/blood-2017-05-782870] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/04/2017] [Indexed: 12/25/2022] Open
Abstract
Transplant-associated thrombotic microangiopathy (TA-TMA) is a common and poorly recognized complication of hematopoietic stem cell transplantation (HSCT) associated with excessive complement activation, likely triggered by endothelial injury. An important missing piece is the link between endothelial injury and complement activation. We hypothesized that neutrophil extracellular traps (NETs) mechanistically link endothelial damage with complement activation and subsequent TA-TMA. Neutrophil activation releases granule proteins together with double-stranded DNA (dsDNA) to form extracellular fibers known as NETs. NETs have been shown to activate complement and can be assessed in humans by quantification of dsDNA in serum. We measured levels of dsDNA, as a surrogate for NETs in 103 consecutive pediatric allogeneic transplant recipients at day 0, +14, +30, +60, and +100. A spike in dsDNA production around day +14 during engraftment was associated with subsequent TA-TMA development. Peak dsDNA production around day +14 was associated with interleukin-8-driven neutrophil recovery. Increased dsDNA levels at days +30, +60, and +100 were also associated with increased mortality and gastrointestinal graft-versus-host disease (GVHD). NETs may serve as a mechanistic link between endothelial injury and complement activation. NET formation may be one mechanism contributing to the clinical overlap between GVHD and TA-TMA.
Collapse
|
193
|
Ma R, Xie R, Yu C, Si Y, Wu X, Zhao L, Yao Z, Fang S, Chen H, Novakovic V, Gao C, Kou J, Bi Y, Thatte HS, Yu B, Yang S, Zhou J, Shi J. Phosphatidylserine-mediated platelet clearance by endothelium decreases platelet aggregates and procoagulant activity in sepsis. Sci Rep 2017; 7:4978. [PMID: 28694452 PMCID: PMC5504060 DOI: 10.1038/s41598-017-04773-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
The mechanisms that eliminate activated platelets in inflammation-induced disseminated intravascular coagulation (DIC) in micro-capillary circulation are poorly understood. This study explored an alternate pathway for platelet disposal mediated by endothelial cells (ECs) through phosphatidylserine (PS) and examined the effect of platelet clearance on procoagulant activity (PCA) in sepsis. Platelets in septic patients demonstrated increased levels of surface activation markers and apoptotic vesicle formation, and also formed aggregates with leukocytes. Activated platelets adhered were and ultimately digested by ECs in vivo and in vitro. Blocking PS on platelets or αvβ3 integrin on ECs attenuated platelet clearance resulting in increased platelet count in a mouse model of sepsis. Furthermore, platelet removal by ECs resulted in a corresponding decrease in platelet-leukocyte complex formation and markedly reduced generation of factor Xa and thrombin on platelets. Pretreatment with lactadherin significantly increased phagocytosis of platelets by approximately 2-fold, diminished PCA by 70%, prolonged coagulation time, and attenuated fibrin formation by 50%. Our results suggest that PS-mediated clearance of activated platelets by the endothelium results in an anti-inflammatory, anticoagulant, and antithrombotic effect that contribute to maintaining platelet homeostasis during acute inflammation. These results suggest a new therapeutic target for impeding the development of DIC.
Collapse
Affiliation(s)
- Ruishuang Ma
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin Medical University, Harbin, China
| | - Rui Xie
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China.,Department of Medicine of the Third Hospital, Harbin Medical University, Harbin, China
| | - Chengyuan Yu
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - Yu Si
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - Lu Zhao
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - Zhipeng Yao
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - Shaohong Fang
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin Medical University, Harbin, China
| | - He Chen
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Valerie Novakovic
- Departments of Research VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| | - Chunyan Gao
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - Junjie Kou
- Department of Cardiology of the Second Hospital, Harbin Medical University, Harbin, China
| | - Yayan Bi
- Departments of Cardiology of the First Hospital, Harbin Medical University, Harbin, China
| | - Hemant S Thatte
- Departments of Surgery, Brigham and Women's Hospital, VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Yu
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin Medical University, Harbin, China
| | - Shufen Yang
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin Medical University, Harbin, China.
| | - Jin Zhou
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China.
| | - Jialan Shi
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China. .,Departments of Surgery, Brigham and Women's Hospital, VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
194
|
Abstract
Sickle cell disease (SCD) is a hematologic disorder caused by a well-characterized point mutation in the β-globin gene. Abnormal polymerization of hemoglobin tetramers results in the formation of sickle red blood cells that leads to vascular occlusions, hemolytic anemia, vascular inflammation and cumulative, multiple organ damage. Ongoing activation of coagulation is another hallmark of SCD. Recent studies strongly suggested that hypercoagulation in SCD is not just a secondary event but contributes directly to the disease pathophysiology. In this article we summarize mechanisms leading to the activation of coagulation, review data indicating direct contribution of coagulation to the pathology of SCD and, we discuss the anticoagulation as a possible treatment strategy to attenuate the disease progression.
Collapse
Affiliation(s)
- E Sparkenbaugh
- University of North Carolina, School of Medicine, Division of Hematology and Oncology, Chapel Hill, NC, USA
| | - R Pawlinski
- University of North Carolina, School of Medicine, Division of Hematology and Oncology, Chapel Hill, NC, USA
| |
Collapse
|
195
|
Kim M, Alapan Y, Adhikari A, Little JA, Gurkan UA. Hypoxia-enhanced adhesion of red blood cells in microscale flow. Microcirculation 2017; 24:10.1111/micc.12374. [PMID: 28387057 PMCID: PMC5679205 DOI: 10.1111/micc.12374] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The advancement of microfluidic technology has facilitated the simulation of physiological conditions of the microcirculation, such as oxygen tension, fluid flow, and shear stress in these devices. Here, we present a micro-gas exchanger integrated with microfluidics to study RBC adhesion under hypoxic flow conditions mimicking postcapillary venules. METHODS We simulated a range of physiological conditions and explored RBC adhesion to endothelial or subendothelial components (FN or LN). Blood samples were injected into microchannels at normoxic or hypoxic physiological flow conditions. Quantitative evaluation of RBC adhesion was performed on 35 subjects with homozygous SCD. RESULTS Significant heterogeneity in RBC adherence response to hypoxia was seen among SCD patients. RBCs from a HEA population showed a significantly greater increase in adhesion compared to RBCs from a HNA population, for both FN and LN. CONCLUSIONS The approach presented here enabled the control of oxygen tension in blood during microscale flow and the quantification of RBC adhesion in a cost-efficient and patient-specific manner. We identified a unique patient population in which RBCs showed enhanced adhesion in hypoxia in vitro. Clinical correlates suggest a more severe clinical phenotype in this subgroup.
Collapse
Affiliation(s)
- Myeongseop Kim
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Yunus Alapan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Anima Adhikari
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Jane A. Little
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Seidman Cancer Center at University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Umut A. Gurkan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
196
|
Brandalise SR, Assis R, Laranjeira ABA, Yunes JA, de Campos-Lima PO. Low-dose methotrexate in sickle-cell disease: a pilot study with rationale borrowed from rheumatoid arthritis. Exp Hematol Oncol 2017. [PMID: 28638723 PMCID: PMC5474854 DOI: 10.1186/s40164-017-0078-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Inflammation is a major feature of sickle cell disease (SCD). Low-dose methotrexate (MTX) has long been used in chronic inflammatory diseases. This pilot study examined the MTX effect on acute vaso-occlusive pain crises (VOC) in SCD patients. Methods Fourteen adults on hydroxyurea with severe and refractory VOC received one intramuscular injection of 10 mg of MTX per week for 12 weeks. A single weekly dose of 5 mg of leucovorin was administered orally 48 h after each MTX injection. The primary outcome was reduction in number/intensity of acute pain episodes. The secondary outcomes were improvement of quality of life (QOL) and reduction of the inflammatory status. Results MTX did not significantly change the median VOC frequency (12 before vs 10.5 during treatment, P = 0.6240) or the median McGill pain index (45 at week 0 vs 39.5 at week 12, P = 0.9311). However, there was a decrease of ≥50% in chronic pain resulting from avascular osteonecrosis (AVN) in 5 out of 7 patients with radiologic evidence of AVN, with the perception of longer pain-free periods. There was a 44.4% median gain in physical function in the SF-36 QOL questionnaire (P = 0.0198). MTX treatment up-regulated two C-X-C motif chemokines (CXCL), CXCL10 (P = 0.0463) and CXCL12 (P < 0.0001), without significant effect on 14 additional plasma inflammatory markers. Adverse events: One individual had fever of unknown origin. Respiratory tract infections were recorded in five patients. Among the latter, one also had dengue fever and another had a central venous line infection and died of pneumonia and septic shock. Three patients with previous history of hydroxyurea-induced hematological toxicity developed low blood platelet counts while receiving simultaneously MTX and hydroxyurea. Conclusions Although MTX did not reduce acute VOC frequency/intensity, it decreased chronic pain and led to QOL improvement. Trial registrationhttp://www.who.int/ictrp/en/ and http://www.ensaiosclinicos.gov.br, RBR-2s9xvn, 19 December 2016, retrospectively registered Electronic supplementary material The online version of this article (doi:10.1186/s40164-017-0078-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silvia R Brandalise
- Boldrini Children's Center, Rua Dr. Gabriel Porto 1270, Cidade Universitaria, Campinas, SP 13083-210 Brazil.,Department of Pediatrics, School of Medicine, State University of Campinas, Campinas, SP Brazil
| | - Rosemary Assis
- Department of Psychology, Paulista University, Campinas, SP Brazil
| | | | - José Andrés Yunes
- Boldrini Children's Center, Rua Dr. Gabriel Porto 1270, Cidade Universitaria, Campinas, SP 13083-210 Brazil
| | - Pedro O de Campos-Lima
- Boldrini Children's Center, Rua Dr. Gabriel Porto 1270, Cidade Universitaria, Campinas, SP 13083-210 Brazil
| |
Collapse
|
197
|
Changes in novel haematological parameters following thermal injury: A prospective observational cohort study. Sci Rep 2017; 7:3211. [PMID: 28607467 PMCID: PMC5468303 DOI: 10.1038/s41598-017-03222-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/24/2017] [Indexed: 12/15/2022] Open
Abstract
The mortality caused by sepsis is high following thermal injury. Diagnosis is difficult due to the ongoing systemic inflammatory response. Previous studies suggest that cellular parameters may show promise as diagnostic markers of sepsis. The aim of this study was to evaluate the effect of thermal injury on novel haematological parameters and to study their association with clinical outcomes. Haematological analysis was performed using a Sysmex XN-1000 analyser on blood samples acquired on the day of the thermal injury to 12 months post-injury in 39 patients (15–95% TBSA). Platelet counts had a nadir at day 3 followed by a rebound thrombocytosis at day 21, with nadir values significantly lower in septic patients. Measurements of extended neutrophil parameters (NEUT-Y and NEUT-RI) demonstrated that septic patients had significantly higher levels of neutrophil nucleic acid content. A combination of platelet impedance count (PLT-I) and NEUT-Y at day 3 post-injury exhibited good discriminatory power for the identifying septic patients (AUROC = 0.915, 95% CI [0.827, 1.000]). Importantly, the model had improved performance when adjusted for mortality with an AUROC of 0.974 (0.931, 1.000). A combination of PLT-I and NEUT-Y show potential for the early diagnosis of sepsis post-burn injury. Importantly, these tests can be performed rapidly and require a small volume of whole blood highlighting their potential utility in clinical practice.
Collapse
|
198
|
Preissner KT, Herwald H. Extracellular nucleic acids in immunity and cardiovascular responses: between alert and disease. Thromb Haemost 2017; 117:1272-1282. [PMID: 28594050 DOI: 10.1160/th-16-11-0858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/07/2017] [Indexed: 12/18/2022]
Abstract
Severe inflammatory complications are a potential consequence in patients with predetermined conditions of infections, pulmonary diseases, or cardiovascular disorders. Notably, the amplitude of the inflammatory response towards these complications can dictate the disease progression and outcome. During the recent years, evidence from basic research as well as from clinical studies has identified self-extracellular nucleic acids as important players in the crosstalk between immunity and cardiovascular diseases. These stress- or injury-induced endogenous polymeric macromolecules not only serve as "alarmins" or "Danger-associated molecular patterns" (DAMPs), but their functional repertoire goes far beyond such activities in innate immunity. In fact, (patho-) physiological functions of self-extracellular DNA and RNA are associated and in many cases causally related to arterial and venous thrombosis, atherosclerosis, ischemia-reperfusion injury or tumour progression. Yet, the underlying molecular mechanisms are far from being completely understood. Interestingly enough, however, novel antagonistic approaches in vitro and in vivo, particularly using natural endonucleases or synthetic nucleic acid binding polymers, appear to be promising and safe therapeutic options for future studies. The aim of this review article is to provide an overview of the current state of (patho-) physiological functions of self-extracellular nucleic acids with special emphasis on their role as beneficial / alerting or adverse / damaging factors in connection with immune responses, inflammation, thrombosis, and cardiovascular diseases.
Collapse
Affiliation(s)
- Klaus T Preissner
- Klaus T. Preissner, PhD, Department of Biochemistry, Medical School, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany, Tel.: +49 641 994 7500, E-mail:
| | | |
Collapse
|
199
|
Pieterse E, Rother N, Garsen M, Hofstra JM, Satchell SC, Hoffmann M, Loeven MA, Knaapen HK, van der Heijden OWH, Berden JHM, Hilbrands LB, van der Vlag J. Neutrophil Extracellular Traps Drive Endothelial-to-Mesenchymal Transition. Arterioscler Thromb Vasc Biol 2017; 37:1371-1379. [PMID: 28495931 DOI: 10.1161/atvbaha.117.309002] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE An excessive release and impaired degradation of neutrophil extracellular traps (NETs) leads to the continuous exposure of NETs to the endothelium in a variety of hematologic and autoimmune disorders, including lupus nephritis. This study aims to unravel the mechanisms through which NETs jeopardize vascular integrity. APPROACH AND RESULTS Microvascular and macrovascular endothelial cells were exposed to NETs, and subsequent effects on endothelial integrity and function were determined in vitro and in vivo. We found that endothelial cells have a limited capacity to internalize NETs via the receptor for advanced glycation endproducts. An overflow of the phagocytic capacity of endothelial cells for NETs resulted in the persistent extracellular presence of NETs, which rapidly altered endothelial cell-cell contacts and induced vascular leakage and transendothelial albumin passage through elastase-mediated proteolysis of the intercellular junction protein VE-cadherin. Furthermore, NET-associated elastase promoted the nuclear translocation of junctional β-catenin and induced endothelial-to-mesenchymal transition in cultured endothelial cells. In vivo, NETs could be identified in kidney samples of diseased MRL/lpr mice and patients with lupus nephritis, in whom the glomerular presence of NETs correlated with the severity of proteinuria and with glomerular endothelial-to-mesenchymal transition. CONCLUSIONS These results indicate that an excess of NETs exceeds the phagocytic capacity of endothelial cells for NETs and promotes vascular leakage and endothelial-to-mesenchymal transition through the degradation of VE-cadherin and the subsequent activation of β-catenin signaling. Our data designate NET-associated elastase as a potential therapeutic target in the prevention of endothelial alterations in diseases characterized by aberrant NET release.
Collapse
Affiliation(s)
- Elmar Pieterse
- From the Nephrology Research Laboratory, Department of Nephrology (E.P., N.R., M.G., J.M.H., M.A.L., J.H.M.B., L.B.H., J.v.d.V.), Department of Rheumatology (H.K.K.), and Department of Obstetrics & Gynecology (O.W.H.v.d.H.), Radboud University Medical Center, Nijmegen, The Netherlands; Academic Renal Unit, School of Clinical Science, University of Bristol, United Kingdom (S.C.S.); and Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University of Erlangen-Nuremberg, Germany (M.H.)
| | - Nils Rother
- From the Nephrology Research Laboratory, Department of Nephrology (E.P., N.R., M.G., J.M.H., M.A.L., J.H.M.B., L.B.H., J.v.d.V.), Department of Rheumatology (H.K.K.), and Department of Obstetrics & Gynecology (O.W.H.v.d.H.), Radboud University Medical Center, Nijmegen, The Netherlands; Academic Renal Unit, School of Clinical Science, University of Bristol, United Kingdom (S.C.S.); and Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University of Erlangen-Nuremberg, Germany (M.H.)
| | - Marjolein Garsen
- From the Nephrology Research Laboratory, Department of Nephrology (E.P., N.R., M.G., J.M.H., M.A.L., J.H.M.B., L.B.H., J.v.d.V.), Department of Rheumatology (H.K.K.), and Department of Obstetrics & Gynecology (O.W.H.v.d.H.), Radboud University Medical Center, Nijmegen, The Netherlands; Academic Renal Unit, School of Clinical Science, University of Bristol, United Kingdom (S.C.S.); and Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University of Erlangen-Nuremberg, Germany (M.H.)
| | - Julia M Hofstra
- From the Nephrology Research Laboratory, Department of Nephrology (E.P., N.R., M.G., J.M.H., M.A.L., J.H.M.B., L.B.H., J.v.d.V.), Department of Rheumatology (H.K.K.), and Department of Obstetrics & Gynecology (O.W.H.v.d.H.), Radboud University Medical Center, Nijmegen, The Netherlands; Academic Renal Unit, School of Clinical Science, University of Bristol, United Kingdom (S.C.S.); and Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University of Erlangen-Nuremberg, Germany (M.H.)
| | - Simon C Satchell
- From the Nephrology Research Laboratory, Department of Nephrology (E.P., N.R., M.G., J.M.H., M.A.L., J.H.M.B., L.B.H., J.v.d.V.), Department of Rheumatology (H.K.K.), and Department of Obstetrics & Gynecology (O.W.H.v.d.H.), Radboud University Medical Center, Nijmegen, The Netherlands; Academic Renal Unit, School of Clinical Science, University of Bristol, United Kingdom (S.C.S.); and Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University of Erlangen-Nuremberg, Germany (M.H.)
| | - Markus Hoffmann
- From the Nephrology Research Laboratory, Department of Nephrology (E.P., N.R., M.G., J.M.H., M.A.L., J.H.M.B., L.B.H., J.v.d.V.), Department of Rheumatology (H.K.K.), and Department of Obstetrics & Gynecology (O.W.H.v.d.H.), Radboud University Medical Center, Nijmegen, The Netherlands; Academic Renal Unit, School of Clinical Science, University of Bristol, United Kingdom (S.C.S.); and Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University of Erlangen-Nuremberg, Germany (M.H.)
| | - Markus A Loeven
- From the Nephrology Research Laboratory, Department of Nephrology (E.P., N.R., M.G., J.M.H., M.A.L., J.H.M.B., L.B.H., J.v.d.V.), Department of Rheumatology (H.K.K.), and Department of Obstetrics & Gynecology (O.W.H.v.d.H.), Radboud University Medical Center, Nijmegen, The Netherlands; Academic Renal Unit, School of Clinical Science, University of Bristol, United Kingdom (S.C.S.); and Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University of Erlangen-Nuremberg, Germany (M.H.)
| | - Hanneke K Knaapen
- From the Nephrology Research Laboratory, Department of Nephrology (E.P., N.R., M.G., J.M.H., M.A.L., J.H.M.B., L.B.H., J.v.d.V.), Department of Rheumatology (H.K.K.), and Department of Obstetrics & Gynecology (O.W.H.v.d.H.), Radboud University Medical Center, Nijmegen, The Netherlands; Academic Renal Unit, School of Clinical Science, University of Bristol, United Kingdom (S.C.S.); and Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University of Erlangen-Nuremberg, Germany (M.H.)
| | - Olivier W H van der Heijden
- From the Nephrology Research Laboratory, Department of Nephrology (E.P., N.R., M.G., J.M.H., M.A.L., J.H.M.B., L.B.H., J.v.d.V.), Department of Rheumatology (H.K.K.), and Department of Obstetrics & Gynecology (O.W.H.v.d.H.), Radboud University Medical Center, Nijmegen, The Netherlands; Academic Renal Unit, School of Clinical Science, University of Bristol, United Kingdom (S.C.S.); and Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University of Erlangen-Nuremberg, Germany (M.H.)
| | - Jo H M Berden
- From the Nephrology Research Laboratory, Department of Nephrology (E.P., N.R., M.G., J.M.H., M.A.L., J.H.M.B., L.B.H., J.v.d.V.), Department of Rheumatology (H.K.K.), and Department of Obstetrics & Gynecology (O.W.H.v.d.H.), Radboud University Medical Center, Nijmegen, The Netherlands; Academic Renal Unit, School of Clinical Science, University of Bristol, United Kingdom (S.C.S.); and Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University of Erlangen-Nuremberg, Germany (M.H.)
| | - Luuk B Hilbrands
- From the Nephrology Research Laboratory, Department of Nephrology (E.P., N.R., M.G., J.M.H., M.A.L., J.H.M.B., L.B.H., J.v.d.V.), Department of Rheumatology (H.K.K.), and Department of Obstetrics & Gynecology (O.W.H.v.d.H.), Radboud University Medical Center, Nijmegen, The Netherlands; Academic Renal Unit, School of Clinical Science, University of Bristol, United Kingdom (S.C.S.); and Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University of Erlangen-Nuremberg, Germany (M.H.)
| | - Johan van der Vlag
- From the Nephrology Research Laboratory, Department of Nephrology (E.P., N.R., M.G., J.M.H., M.A.L., J.H.M.B., L.B.H., J.v.d.V.), Department of Rheumatology (H.K.K.), and Department of Obstetrics & Gynecology (O.W.H.v.d.H.), Radboud University Medical Center, Nijmegen, The Netherlands; Academic Renal Unit, School of Clinical Science, University of Bristol, United Kingdom (S.C.S.); and Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University of Erlangen-Nuremberg, Germany (M.H.).
| |
Collapse
|
200
|
Ballas SK. From total blood exchange to erythrocytapheresis and back to treat complications of sickle cell disease. Transfusion 2017; 57:2277-2280. [PMID: 28470719 DOI: 10.1111/trf.14154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/01/2017] [Accepted: 04/02/2017] [Indexed: 12/16/2022]
Abstract
Erythrocytapheresis is an important procedure in the management of certain complications of sickle cell disease, including acute stroke, stroke prevention, acute chest syndrome, and multiorgan failure. Erythrocytapheresis in sickle cell disease simply entails the removal of the patient's red blood cells containing the abnormal sickle hemoglobin and replacing them with normal red blood cells carrying normal hemoglobin. In these procedures, the patient's plasma is not exchanged but is returned to the patient. Several studies have demonstrated that the plasma of patients with sickle cell disease contains several components that increase blood viscosity and initiate or promote vaso-occlusion. These factors include increased levels of globulins, especially immunoglobulin G, acute-phase reactants, fibrinogen, coagulation factors, inflammatory mediators, and heme in the steady state and increase further during painful crises. This may explain why, in certain complications of sickle cell disease, such as acute chest syndrome, hepatic crisis, and priapism, erythrocytapheresis by itself may not be effective despite repetitive cycles of red blood cell exchange. The use of therapeutic plasma exchange in addition to erythrocytapheresis in these situations seems to be useful in resolving them more efficiently. The role of therapeutic plasma exchange in the management of certain complications of sickle cell disease needs further evaluation. This commentary addresses the role of therapeutic plasma exchange in the management of complications of sickle cell disease.
Collapse
Affiliation(s)
- Samir K Ballas
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|