151
|
Abstract
AbstractMultiple myeloma is a plasma cell malignancy that is heterogeneous with respect to its causative molecular abnormalities and the treatment response of patients. The Bcl-2 protein family is critical for myeloma cell survival. ABT-737 is a cell-permeant compound that binds to Bcl-2 and Bcl-xL but not to Mcl-1. Using a myeloma cell line collection (n = 25) representative of different molecular translocations, we showed that ABT-737 effectively kills a subset of cell lines (n = 6), with a median lethal dose ranging from 7 ± 0.4nM to 150 ± 7.5nM. Of interest, all sensitive cell lines harbored a t(11;14). We demonstrated that ABT-737–sensitive and ABT-737–resistant cell lines could be differentiated by the BCL2/MCL1 expression ratio. A screen of a public expression database of myeloma patients indicates that the BCL2/MCL1 ratio of t(11;14) and hyperdiploid patients was significantly higher than in all other groups (P < .001). ABT-737 first induced the disruption of Bcl-2/Bax, Bcl-2/Bik, or Bcl-2/Puma complexes, followed by the disruption of Bcl-2 heterodimers with Bak and Bim. Altogether, the identification of a subset of cell lines and primary cells effectively killed by ABT-737 alone supported the evaluation of ABT-263, an orally active counterpart to ABT-737, for the treatment of t(11;14) and hyperdiploid groups of myeloma harboring a Bcl-2high/Mcl-1low profile.
Collapse
|
152
|
Younan S, Elhoseiny S, Hammam A, Gawdat R, El-Wakil M, Fawzy M. Role of neuropilin-1 and its expression in Egyptian acute myeloid and acute lymphoid leukemia patients. Leuk Res 2011; 36:169-73. [PMID: 21978468 DOI: 10.1016/j.leukres.2011.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/25/2011] [Accepted: 08/18/2011] [Indexed: 12/01/2022]
Abstract
Neuropilins are expressed in tumors vasculature and cells. Their expression is thought to be correlated with tumor angiogenesis and progression. In this study, we analyzed NRP-1 expression level in 40 acute leukemia patients [20 acute myeloid leukemia (AML) and 20 acute lymphoblastic leukemia (ALL)] and 10 healthy controls using Real-Time Quantitative Reverse-Transcriptase Polymerase Chain Reaction (RTQ-PCR) aiming to show Neuropilin-1 (NRP-1) gene expression pattern in acute leukemia patients and its role in disease severity and progression. NRP-1 was expressed in 80% and 95% of ALL and AML respectively with levels higher in patients than controls and in ALL than AML patients. NRP-1 levels were significantly correlated with blast percentage and complete remission. We conclude that NRP-1 is significantly associated with acute leukemia and that its level might serve as an indicator for disease severity and progression. NRP-1 signaling may represent a novel therapeutic approach for the treatment of acute leukemia subsets.
Collapse
Affiliation(s)
- Sarah Younan
- Department of Clinical and Chemical Pathology, Kasr El Aini Hospital, Cairo University, El Saraya Street, Infront of El Manial Palace, Cairo 11451, Egypt.
| | | | | | | | | | | |
Collapse
|
153
|
Miki H, Ozaki S, Nakamura S, Oda A, Amou H, Ikegame A, Watanabe K, Hiasa M, Cui Q, Harada T, Fujii S, Nakano A, Kagawa K, Takeuchi K, Yata K, Sakai A, Abe M, Matsumoto T. KRN5500, a spicamycin derivative, exerts anti‐myeloma effects through impairing both myeloma cells and osteoclasts. Br J Haematol 2011; 155:328-39. [DOI: 10.1111/j.1365-2141.2011.08844.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Hirokazu Miki
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Shuji Ozaki
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
- Department of Internal Medicine, Tokushima Prefectural Central Hospital
| | - Shingen Nakamura
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Asuka Oda
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Hiroe Amou
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Akishige Ikegame
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Keiichiro Watanabe
- Department of Orthodontics and Dentofacial Orthopedics, The University of Tokushima Graduate School of Oral Science
| | - Masahiro Hiasa
- Department of Biomaterials and Bioengineering, The University of Tokushima Graduate School of Oral Science
| | - Qu Cui
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Takeshi Harada
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Shiro Fujii
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Ayako Nakano
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Kumiko Kagawa
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Kyoko Takeuchi
- Division of Transfusion Medicine, Tokushima University Hospital, Tokushima
| | - Ken‐ichiro Yata
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Akira Sakai
- Department of Haematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | - Masahiro Abe
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Toshio Matsumoto
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| |
Collapse
|
154
|
Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90. Mol Cancer 2011; 10:104. [PMID: 21871133 PMCID: PMC3170639 DOI: 10.1186/1476-4598-10-104] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 08/29/2011] [Indexed: 11/18/2022] Open
Abstract
Background Multiple myeloma (MM) is a B-cell malignancy that is largely incurable and is characterized by the accumulation of malignant plasma cells in the bone marrow. Apigenin, a common flavonoid, has been reported to suppress proliferation in a wide variety of solid tumors and hematological cancers; however its mechanism is not well understood and its effect on MM cells has not been determined. Results In this study, we investigated the effects of apigenin on MM cell lines and on primary MM cells. Cell viability assays demonstrated that apigenin exhibited cytotoxicity against both MM cell lines and primary MM cells but not against normal peripheral blood mononuclear cells. Together, kinase assays, immunoprecipitation and western blot analysis showed that apigenin inhibited CK2 kinase activity, decreased phosphorylation of Cdc37, disassociated the Hsp90/Cdc37/client complex and induced the degradation of multiple kinase clients, including RIP1, Src, Raf-1, Cdk4 and AKT. By depleting these kinases, apigenin suppressed both constitutive and inducible activation of STAT3, ERK, AKT and NF-κB. The treatment also downregulated the expression of the antiapoptotic proteins Mcl-1, Bcl-2, Bcl-xL, XIAP and Survivin, which ultimately induced apoptosis in MM cells. In addition, apigenin had a greater effects in depleting Hsp90 clients when used in combination with the Hsp90 inhibitor geldanamycin and the histone deacetylase inhibitor vorinostat. Conclusions Our results suggest that the primary mechanisms by which apigenin kill MM cells is by targeting the trinity of CK2-Cdc37-Hsp90, and this observation reveals the therapeutic potential of apigenin in treating multiple myeloma.
Collapse
|
155
|
Straten PT, Andersen MH. The anti-apoptotic members of the Bcl-2 family are attractive tumor-associated antigens. Oncotarget 2011; 1:239-45. [PMID: 21304176 DOI: 10.18632/oncotarget.100804] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Anti-apoptotic members of the Bcl-2 family (Bcl-2, Bcl-X(L) and Mcl-2) are pivotal regulators of apoptotic cell death. They are all highly overexpressed in cancers of different origin in which they enhance the survival of the cancer cells. Consequently, they represent prime candidates for anti-cancer therapy and specific antisense oligonucleotides or small molecule inhibitors have shown broad anti-cancer activities in pre-clinical models and are currently tested in clinical trials. In addition, immune-mediated tumor destruction is emerging as an interesting modality to treat cancer patients. Notably, spontaneous cellular immune responses against the Bcl-2 family proteins have been identified as frequent features in cancer patients underscoring that these proteins are natural targets for the immune system. Thus, Bcl-2 family may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies, alone or in the combination with conventional therapy. Here, we summarize the current knowledge of Bcl-2 family proteins as T-cell antigens, which has set the stage for the first explorative trial using these antigens in therapeutic vaccinations against cancer, and discuss future opportunities.
Collapse
Affiliation(s)
- Per thor Straten
- Center for Cancer Immune Therapy, Department of Hematology, Herlev University Hospital, Denmark
| | | |
Collapse
|
156
|
Abstract
The introduction of autologous stem cell transplantation combined with the introduction of immunomodulatory drugs (IMiDs) and proteasome inhibitors has significantly improved survival of multiple myeloma patients. However, ultimately the majority of patients will develop refractory disease, indicating the need for new treatment modalities. In preclinical and clinical studies, promising results have been obtained with several monoclonal antibodies (mAbs) targeting the myeloma tumor cell or the bone marrow microenvironment. The mechanisms underlying the therapeutic efficacy of these mAbs include direct induction of tumor cell apoptosis via inhibition or activation of target molecules, complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC). The capability of IMiDs to enhance ADCC and the modulation of various important signaling cascades in myeloma cells by both bortezomib and IMiDs forms the rationale to combine these novel agents with mAbs as new treatment strategies for myeloma patients. In this review, we will give an overview of various mAbs directly targeting myeloma tumor cells or indirectly via effects on the bone marrow microenvironment. Special focus will be on the combination of these mAbs with IMiDs or bortezomib.
Collapse
|
157
|
Distribution of Bim determines Mcl-1 dependence or codependence with Bcl-xL/Bcl-2 in Mcl-1-expressing myeloma cells. Blood 2011; 118:1329-39. [PMID: 21659544 DOI: 10.1182/blood-2011-01-327197] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dependence on Bcl-2 proteins is a common feature of cancer cells and provides a therapeutic opportunity. ABT-737 is an antagonist of antiapoptotic Bcl-2 proteins and therefore is a good predictor of Bcl-x(L)/Bcl-2 dependence. Surprisingly, analysis of Mcl-1-dependent multiple myeloma cell lines revealed codependence on Bcl-2/Bcl-x(L) in half the cells tested. Codependence is not predicted by the expression level of antiapoptotic proteins, rather through interactions with Bim. Consistent with these findings, acquired resistance to ABT-737 results in loss of codependence through redistribution of Bim to Mcl-1. Overall, these results suggest that complex interactions, and not simply expression patterns of Bcl-2 proteins, need to be investigated to understand Bcl-2 dependence and how to better use agents, such as ABT-737.
Collapse
|
158
|
Cho SJ, Kim YJ, Surh YJ, Kim BM, Lee SK. Ibulocydine is a novel prodrug Cdk inhibitor that effectively induces apoptosis in hepatocellular carcinoma cells. J Biol Chem 2011; 286:19662-71. [PMID: 21478145 PMCID: PMC3103345 DOI: 10.1074/jbc.m110.209551] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/07/2011] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is frequently associated with abnormalities in cell cycle regulation, leading to increased activity of cyclin-dependent kinases (Cdks) due to the loss, or low expression of, Cdk inhibitors. In this study, we showed that ibulocydine (an isobutyrate prodrug of the specific Cdk inhibitor, BMK-Y101) is a candidate anti-cancer drug for HCC. Ibulocydine has high activity against Cdk7/cyclin H/Mat1 and Cdk9/cyclin T. Ibulocydine inhibited the growth of HCC cells more effectively than other Cdk inhibitors, including olomoucine and roscovitine, whereas ibulocydine as well as the other Cdk inhibitors and BMK-Y101 minimally influenced the growth of normal hepatocyte cells. Ibulocydine induced apoptosis in HCC cells, most likely by inhibiting Cdk7 and Cdk9. In vitro treatment of HCC cells with ibulocydine rapidly blocked phosphorylation of the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II, a process mediated by Cdk7/9. Anti-apoptotic gene products such as Mcl-1, survivin, and X-linked IAP (XIAP) are crucial for the survival of many cell types, including HCC. Following the inhibition of RNA polymerase II phosphorylation, ibulocydine caused rapid down-regulation of Mcl-1, survivin, and XIAP, thus inducing apoptosis. Furthermore, ibulocydine effectively induced apoptosis in HCC xenografts with no toxic side effects. These results suggest that ibulocydine is a strong candidate anti-cancer drug for the treatment of HCC.
Collapse
Affiliation(s)
- Seung-Ju Cho
- From the Division of Pharmaceutical Biosciences, College of Pharmacy, The Research Institute for Pharmaceutical Sciences, and
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Young-Jong Kim
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Young-Joon Surh
- From the Division of Pharmaceutical Biosciences, College of Pharmacy, The Research Institute for Pharmaceutical Sciences, and
| | - B. Moon Kim
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seung-Ki Lee
- From the Division of Pharmaceutical Biosciences, College of Pharmacy, The Research Institute for Pharmaceutical Sciences, and
| |
Collapse
|
159
|
Sawyer JR. The prognostic significance of cytogenetics and molecular profiling in multiple myeloma. Cancer Genet 2011; 204:3-12. [PMID: 21356186 DOI: 10.1016/j.cancergencyto.2010.11.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/01/2010] [Indexed: 12/28/2022]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterized by very complex cytogenetic and molecular genetic aberrations. In newly diagnosed symptomatic patients, the modal chromosome number is usually either hyperdiploid with multiple trisomies or hypodiploid with one of several types of immunoglobulin heavy chain (Ig) translocations. The chromosome ploidy status and Ig rearrangements are two genetic criteria that are used to help stratify patients into prognostic groups based on the findings of conventional cytogenetics and fluorescence in situ hybridization (FISH). In general, the hypodiploid group with t(4;14)(p16;q32) or t(14;16)(q32;q23) is considered a high-risk group, while the hyperdiploid patients with t(11;14)(q13;q32) are considered a better prognostic group. As the disease progresses, it becomes more proliferative and develops a number of secondary chromosome aberrations. These secondary aberrations commonly involve MYC rearrangements, del(13q), del(17p), and the deletion of 1p and/or amplification of 1q. Of the secondary aberrations, del(17p) is consistently associated with poor prognosis. All of these cytogenetic aberrations and many additional ones are now identified by means of high resolution molecular profiling. Gene expression profiling (GEP), array comparative genomic hybridization (aCGH), and single-nucleotide polymorphism (SNP) arrays have been able to identify novel genetic aberration patterns that have previously gone unrecognized. With the integration of data from these profiling techniques, new subclassifications of MM have been proposed which define distinct molecular genetic subgroups. In this review, the findings from conventional cytogenetics, interphase FISH, GEP, aCGH, and SNP profiles are described to provide the conceptual framework for defining the emerging molecular genetic subgroups with prognostic significance.
Collapse
Affiliation(s)
- Jeffrey R Sawyer
- Department of Pathology and Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
160
|
Abstract
Multiple myeloma (MM) is a clonal B-cell malignancy characterized by the aberrant expansion of plasma cells within the bone marrow, as well as at extramedullary sites. Decades of scientific research are now beginning to unravel the intricate biology that underlies the pathophysiology of MM. In particular, the roles of cellular differentiation, molecular pathogenesis, and oncogenes involved in the natural history of MM are becoming clearer. This has enabled the identification of specific cytokines, adhesion molecules, and stromal cells that affect MM cell development, disease progression, and treatment responses. This review describes our current understanding regarding the biology of MM, and how this has led to a robust pipeline of novel therapeutic agents with the potential to overcome resistance to existing MM therapies and, therefore, further improve outcomes in patients with MM.
Collapse
Affiliation(s)
- Anuj Mahindra
- Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | | | | |
Collapse
|
161
|
Kelly PN, Strasser A. The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ 2011; 18:1414-24. [PMID: 21415859 DOI: 10.1038/cdd.2011.17] [Citation(s) in RCA: 351] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumour development requires a combination of defects that allow nascent neoplastic cells to become self-sufficient for cell proliferation and insensitive to signals that normally restrain cell growth. Among the latter, evasion of programmed cell death (apoptosis) has proven to be critical for the development and sustained growth of many, perhaps all, cancers. Apoptotic cell death is regulated by complex interactions between pro-survival members and two subgroups of pro-apoptotic members of the B-cell lymphoma-2 (Bcl-2) protein family. In this invited review article, we reminisce on the discovery of Bcl-2, the first regulator of cell death identified, we discuss the mechanisms that control apoptotic cell death, focussing on how defects in this process promote the development and sustained growth of tumours and also affect their responses to anticancer therapeutics and, finally, we describe how current knowledge of the regulatory networks of apoptosis is exploited to develop novel approaches for cancer therapy.
Collapse
Affiliation(s)
- P N Kelly
- Molecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia
| | | |
Collapse
|
162
|
Epidermal growth factor regulates Mcl-1 expression through the MAPK-Elk-1 signalling pathway contributing to cell survival in breast cancer. Oncogene 2011; 30:2367-78. [PMID: 21258408 PMCID: PMC3145838 DOI: 10.1038/onc.2010.616] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myeloid cell leukaemia-1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 family that is elevated in a variety of tumour types including breast cancer. In breast tumours, increased Mcl-1 expression correlates with high tumour grade and poor patient survival. We have previously demonstrated that Her-2 levels correspond to increased Mcl-1 expression in breast tumours. Epidermal growth factor (EGF) receptor signalling is frequently deregulated in breast cancer and leads to increased proliferation and survival. Herein, we determined the critical downstream signals responsible for the EGF mediated increase of Mcl-1 and their role in cell survival. We found that both Mcl-1 mRNA and protein levels are rapidly induced upon stimulation with EGF. Promoter analysis revealed that an Elk-1 transcription factor-binding site is critical for EGF activation of the Mcl-1 promoter. Furthermore, we found that knockdown of Elk-1or inhibition of the Erk signalling pathway was sufficient to block EGF upregulation of Mcl-1 and EGF mediated cell survival. Using chromatin immunoprecipitation and biotin labelled probes of the Mcl-1 promoter, we found that Elk-1 and serum response factor are bound to the promoter after EGF stimulation. To determine whether Mcl-1 confers a survival advantage, we found that knockdown of Mcl-1 expression increased apoptosis whereas overexpression of Mcl-1 inhibited drug induced cell death. In human breast tumours, we found a correlation between phosphorylated Elk-1 and Mcl-1 protein levels. These results indicate that the EGF induced activation of Elk-1 is an important mediator of Mcl-1 expression and cell survival and therefore a potential therapeutic target in breast cancer.
Collapse
|
163
|
Rubert J, Qian Z, Andraos R, Guthy DA, Radimerski T. Bim and Mcl-1 exert key roles in regulating JAK2V617F cell survival. BMC Cancer 2011; 11:24. [PMID: 21247487 PMCID: PMC3037340 DOI: 10.1186/1471-2407-11-24] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 01/19/2011] [Indexed: 01/12/2023] Open
Abstract
Background The JAK2V617F mutation plays a major role in the pathogenesis of myeloproliferative neoplasms and is found in the vast majority of patients suffering from polycythemia vera and in roughly every second patient suffering from essential thrombocythemia or from primary myelofibrosis. The V617F mutation is thought to provide hematopoietic stem cells and myeloid progenitors with a survival and proliferation advantage. It has previously been shown that activated JAK2 promotes cell survival by upregulating the anti-apoptotic STAT5 target gene Bcl-xL. In this study, we have investigated the role of additional apoptotic players, the pro-apoptotic protein Bim as well as the anti-apoptotic protein Mcl-1. Methods Pharmacological inhibition of JAK2/STAT5 signaling in JAK2V617F mutant SET-2 and MB-02 cells was used to study effects on signaling, cell proliferation and apoptosis by Western blot analysis, WST-1 proliferation assays and flow cytometry. Cells were transfected with siRNA oligos to deplete candidate pro- and anti-apoptotic proteins. Co-immunoprecipitation assays were performed to assess the impact of JAK2 inhibition on complexes of pro- and anti-apoptotic proteins. Results Treatment of JAK2V617F mutant cell lines with a JAK2 inhibitor was found to trigger Bim activation. Furthermore, Bim depletion by RNAi suppressed JAK2 inhibitor-induced cell death. Bim activation following JAK2 inhibition led to enhanced sequestration of Mcl-1, besides Bcl-xL. Importantly, Mcl-1 depletion by RNAi was sufficient to compromise JAK2V617F mutant cell viability and sensitized the cells to JAK2 inhibition. Conclusions We conclude that Bim and Mcl-1 have key opposing roles in regulating JAK2V617F cell survival and propose that inactivation of aberrant JAK2 signaling leads to changes in Bim complexes that trigger cell death. Thus, further preclinical evaluation of combinations of JAK2 inhibitors with Bcl-2 family antagonists that also tackle Mcl-1, besides Bcl-xL, is warranted to assess the therapeutic potential for the treatment of chronic myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Joëlle Rubert
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | | | | |
Collapse
|
164
|
Hunsucker SA, Magarotto V, Kuhn DJ, Kornblau SM, Wang M, Weber DM, Thomas SK, Shah JJ, Voorhees PM, Xie H, Cornfeld M, Nemeth JA, Orlowski RZ. Blockade of interleukin-6 signalling with siltuximab enhances melphalan cytotoxicity in preclinical models of multiple myeloma. Br J Haematol 2011; 152:579-92. [PMID: 21241278 DOI: 10.1111/j.1365-2141.2010.08533.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Signalling through the interleukin (IL)-6 pathway induces proliferation and drug resistance of multiple myeloma cells. We therefore sought to determine whether the IL-6-neutralizing monoclonal antibody siltuximab, formerly CNTO 328, could enhance the activity of melphalan, and to examine some of the mechanisms underlying this interaction. Siltuximab increased the cytotoxicity of melphalan in KAS-6/1, INA-6, ANBL-6, and RPMI 8226 human myeloma cell lines (HMCLs) in an additive-to-synergistic manner, and sensitized resistant RPMI 8226.LR5 cells to melphalan. These anti-proliferative effects were accompanied by enhanced activation of drug-specific apoptosis in HMCLs grown in suspension, and in HMCLs co-cultured with a human-derived stromal cell line. Siltuximab with melphalan enhanced activation of caspase-8, caspase-9, and the downstream effector caspase-3 compared with either of the single agents. This increased induction of cell death occurred in association with enhanced Bak activation. Neutralization of IL-6 also suppressed signalling through the phosphoinositide 3-kinase/Akt pathway, as evidenced by decreased phosphorylation of Akt, p70 S6 kinase and 4E-BP1. Importantly, the siltuximab/melphalan regimen demonstrated enhanced anti-proliferative effects against primary plasma cells derived from patients with myeloma, monoclonal gammopathy of undetermined significance, and amyloidosis. These studies provide a rationale for translation of siltuximab into the clinic in combination with melphalan-based therapies.
Collapse
Affiliation(s)
- Sally A Hunsucker
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Manohar SM, Rathos MJ, Sonawane V, Rao SV, Joshi KS. Cyclin-dependent kinase inhibitor, P276-00 induces apoptosis in multiple myeloma cells by inhibition of Cdk9-T1 and RNA polymerase II-dependent transcription. Leuk Res 2011; 35:821-30. [PMID: 21216463 DOI: 10.1016/j.leukres.2010.12.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 09/14/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
P276-00 is a novel cyclin-dependent kinase inhibitor especially potent for Cdk9-T1, Cdk4-D1 and Cdk1-B. Multiple myeloma (MM) is a B-cell malignancy characterized by the accumulation of malignant plasma cells. Treatment of MM cell lines with P276-00 resulted in apoptosis that correlated with transcription inhibition and a significant decline in Mcl-1 protein levels with the appearance of cleaved PARP in these cells. In vivo studies of P276-00 confirmed antitumor activity in RPMI-8226 xenograft. These results suggest that P276-00 causes multiple myeloma cell death by disrupting the balance between cell survival and apoptosis through inhibition of transcription and downregulation of Mcl-1.
Collapse
Affiliation(s)
- Sonal M Manohar
- Department of Pharmacology, Piramal Life Sciences Limited, Mumbai, Maharashtra, India
| | | | | | | | | |
Collapse
|
166
|
The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival. Leukemia 2010; 25:538-50. [PMID: 21164517 DOI: 10.1038/leu.2010.289] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-6 and downstream JAK-dependent signaling pathways have critical roles in the pathophysiology of multiple myeloma (MM). We investigated the effects of a novel small-molecule JAK inhibitor (AZD1480) on IL-6/JAK signal transduction and its biological consequences on the human myeloma-derived cell lines U266 and Kms.11. At low micromolar concentrations, AZD1480 blocks cell proliferation and induces apoptosis of myeloma cell lines. These biological responses to AZD1480 are associated with concomitant inhibition of phosphorylation of JAK2, STAT3 and MAPK signaling proteins. In addition, there is inhibition of expression of STAT3 target genes, particularly Cyclin D2. Examination of a wider variety of myeloma cells (RPMI 8226, OPM-2, NCI-H929, Kms.18, MM1.S and IM-9), as well as primary myeloma cells, showed that AZD1480 has broad efficacy. In contrast, viability of normal peripheral blood (PB) mononuclear cells and CD138(+) cells derived from healthy controls was not significantly inhibited. Importantly, AZD1480 induces cell death of Kms.11 cells grown in the presence of HS-5 bone marrow (BM)-derived stromal cells and inhibits tumor growth in a Kms.11 xenograft mouse model, accompanied with inhibition of phospho-FGFR3, phospho-JAK2, phospho-STAT3 and Cyclin D2 levels. In sum, AZD1480 blocks proliferation, survival, FGFR3 and JAK/STAT3 signaling in myeloma cells cultured alone or cocultured with BM stromal cells, and in vivo. Thus, AZD1480 represents a potential new therapeutic agent for patients with MM.
Collapse
|
167
|
Abstract
Non-small-cell lung cancer (NSCLC) is the most deadly type of cancer in the United States and worldwide. Although new therapy is available, the survival rate of NSCLC patients remains low. One hallmark of cancer cells is defects in the apoptotic cell death program. In this study, we investigate the role of B-cell lymphoma 2 (Bcl-2) family members Bcl-2, Bcl-x(L) and Mcl-1, known to regulate cell survival and death, in a panel of fourteen NSCLC cell lines. NSCLC cell lines express high levels of Mcl-1 and Bcl-x(L), but not Bcl-2. Silencing the expression of Mcl-1 with small interfering RNA (siRNA) oligonucleotides potently killed a subgroup of NSCLC cell lines. In contrast, Bcl-x(L) siRNA had no effect in these lines unless Mcl-1 siRNA was also introduced. Interestingly, high MCL1 to BCL-xl messenger RNA determines whether the cells depend on Mcl-1 for survival. We further investigated the role of Mcl-1 in NSCLC cells using a Mcl-1-dependent cell line, H23. The expression of a complementary DNA containing only the coding region of MCL1 rescued H23 cells from the toxicity of a 3' untranslated region (UTR) targeting Mcl-1 siRNA but not a siRNA targeting the coding region of MCL1. Furthermore, we show that Mcl-1 sequesters the BH3-only protein Noxa and Bim and the apoptotic effector Bak. Not surprisingly, Noxa, Bim, or Bak knockdown partially rescued H23 cells from toxicity mediated by Mcl-1 siRNA to different degrees. Collectively, our results indicate that targeting Mcl-1 may improve therapy for a subset of NSCLC patients.
Collapse
|
168
|
Cheng S, Gao N, Zhang Z, Chen G, Budhraja A, Ke Z, Son YO, Wang X, Luo J, Shi X. Quercetin induces tumor-selective apoptosis through downregulation of Mcl-1 and activation of Bax. Clin Cancer Res 2010; 16:5679-91. [PMID: 21138867 PMCID: PMC3069720 DOI: 10.1158/1078-0432.ccr-10-1565] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the in vivo antitumor efficacy of quercetin in U937 xenografts and the functional roles of Mcl-1 and Bax in quercetin-induced apoptosis in human leukemia. EXPERIMENTAL DESIGN Leukemia cells were treated with quercetin, after which apoptosis, Mcl-1 expression, and Bax activation and translocation were evaluated. The efficacy of quercetin as well as Mcl-1 expression and Bax activation were investigated in xenografts of U937 cells. RESULTS Administration of quercetin caused pronounced apoptosis in both transformed and primary leukemia cells but not in normal blood peripheral mononuclear cells. Quercetin-induced apoptosis was accompanied by Mcl-1 downregulation and Bax conformational change and mitochondrial translocation that triggered cytochrome c release. Knockdown of Bax by siRNA reversed quercetin-induced apoptosis and abrogated the activation of caspase and apoptosis. Ectopic expression of Mcl-1 attenuated quercetin-mediated Bax activation, translocation, and cell death. Conversely, interruption of Mcl-1 by siRNA enhanced Bax activation and translocation, as well as lethality induced by quercetin. However, the absence of Bax had no effect on quercetin-mediated Mcl-1 downregulation. Furthermore, in vivo administration of quercetin attenuated tumor growth in U937 xenografts. The TUNEL-positive apoptotic cells in tumor sections increased in quercetin-treated mice as compared with controls. Mcl-1 downregulation and Bax activation were also observed in xenografts. CONCLUSIONS These data suggest that quercetin may be useful for the treatment of leukemia by preferentially inducing apoptosis in leukemia versus normal hematopoietic cells through a process involving Mcl-1 downregulation, which, in turn, potentiates Bax activation and mitochondrial translocation, culminating in apoptosis.
Collapse
Affiliation(s)
- Senping Cheng
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Ning Gao
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Zhuo Zhang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Gang Chen
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Amit Budhraja
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Zunji Ke
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Young-ok Son
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Xin Wang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jia Luo
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Xianglin Shi
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
169
|
Olberding KE, Wang X, Zhu Y, Pan J, Rai SN, Li C. Actinomycin D synergistically enhances the efficacy of the BH3 mimetic ABT-737 by downregulating Mcl-1 expression. Cancer Biol Ther 2010; 10:918-29. [PMID: 20818182 DOI: 10.4161/cbt.10.9.13274] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many types of cancer cells possess the ability to evade apoptosis, leading to their rapid and uncontrolled proliferation. As major regulators of apoptosis, Bcl-2 proteins serve as emerging targets for novel chemotherapeutic strategies. In this study, we examined the involvement of Bcl-2 proteins in apoptosis induced by the chemotherapeutic agent actinomycin D. A dramatic decrease in anti-apoptotic myeloid leukemia cell differentiation protein (Mcl-1) mRNA and protein expression was detected upon actinomycin D treatment. Further, Mcl-l over-expression caused resistance to cell death upon treatment with actinomycin D, implicating a role for the down-regulation of Mcl-1 in actinomycin D-induced apoptosis. We also explored the therapeutic potential of actinomycin D in combination with ABT-737, an experimental agent that inhibits anti-apoptotic Bcl-2 proteins. Actinomycin D sensitized cells to ABT-737 treatment in a Bak- or Bax-dependent manner. Importantly, low concentrations of actinomycin D and ABT-737 were more effective in inducing cell death in transformed cells than their untransformed counterparts. A synergistic effect of actinomycin D and ABT-737 on cell death was observed in several human tumor cell lines. Like actinomycin D treatment, knocking down Mcl-1 expression greatly sensitized tumor cells to ABT-737, and Mcl-1 over-expression abrogated the cytotoxic effect induced by ABT-737 and actinomycin D. These results suggest that the down-regulation of Mcl-1 by actinomycin D is likely responsible for the observed synergistic effect between the two drugs. Overall, our studies provide compelling evidence that the combination of actinomycin D and ABT-737 may lead to an effective cancer treatment strategy.
Collapse
Affiliation(s)
- Kristen E Olberding
- Molecular Targets Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | | | | | | | | | | |
Collapse
|
170
|
Overexpression of PAX5 induces apoptosis in multiple myeloma cells. Int J Hematol 2010; 92:451-62. [PMID: 20882442 DOI: 10.1007/s12185-010-0691-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/26/2010] [Accepted: 09/07/2010] [Indexed: 12/22/2022]
Abstract
PAX5 is an essential transcription factor for the commitment of lymphoid progenitors to the B-lymphocyte lineage. PAX5 suppression results in retrodifferentiation of B lymphocytes to an uncommitted progenitor cell stage, whereas PAX5 suppression in mature B lymphocytes leads to further development into plasma cells. Here, we have analyzed the fate of plasma cell lines following PAX5 reexpression. Human B cell lines were infected with Ad5/F35 adenoviruses encoding either EYFP or PAX5. Expression analysis of specific plasma cell transcription factors (IRF4, Blimp-1 and XBP-1) suggests that PAX5 reexpression does not induce retrodifferentiation of plasma cells into B lymphocytes. Interestingly, the viability of RPMI-8226 and U266 multiple myeloma cell lines markedly declined at 4-7 days post-transduction, whereas other plasma cell lines maintained their viability. Apoptosis analysis through Annexin V measurement also revealed a higher level of apoptosis in PAX5-expressing myeloma cell lines. Finally, Western blot analysis of pro- and anti-apoptotic proteins revealed that the anti-apoptotic protein MCL-1 was down-modulated in PAX5-transduced multiple myeloma cell lines. In conclusion, our results show that the expression of PAX5 in plasma cell lines induces apoptosis exclusively in multiple myelomas. This might represent a potential therapeutic avenue in the treatment of multiple myeloma.
Collapse
|
171
|
Thor Straten P, Andersen MH. The anti-apoptotic members of the Bcl-2 family are attractive tumor-associated antigens. Oncotarget 2010; 1:239-245. [PMID: 21304176 PMCID: PMC3248102 DOI: 10.18632/oncotarget.134] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/09/2010] [Indexed: 11/25/2022] Open
Abstract
Anti-apoptotic members of the Bcl-2 family (Bcl-2, Bcl-X(L) and Mcl-2) are pivotal regulators of apoptotic cell death. They are all highly overexpressed in cancers of different origin in which they enhance the survival of the cancer cells. Consequently, they represent prime candidates for anti-cancer therapy and specific antisense oligonucleotides or small molecule inhibitors have shown broad anti-cancer activities in pre-clinical models and are currently tested in clinical trials. In addition, immune-mediated tumor destruction is emerging as an interesting modality to treat cancer patients. Notably, spontaneous cellular immune responses against the Bcl-2 family proteins have been identified as frequent features in cancer patients underscoring that these proteins are natural targets for the immune system. Thus, Bcl-2 family may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies, alone or in the combination with conventional therapy. Here, we summarize the current knowledge of Bcl-2 family proteins as T-cell antigens, which has set the stage for the first explorative trial using these antigens in therapeutic vaccinations against cancer, and discuss future opportunities.
Collapse
|
172
|
Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells, and enhances drug resistance. Blood 2010; 116:3197-207. [PMID: 20631380 DOI: 10.1182/blood-2010-04-281071] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Diverse human cancers with poor prognosis, including many lymphoid and myeloid malignancies, exhibit high levels of Mcl-1. To explore the impact of Mcl-1 overexpression on the hematopoietic compartment, we have generated vavP-Mcl-1 transgenic mice. Their lymphoid and myeloid cells displayed increased resistance to a variety of cytotoxic agents. Myelopoiesis was relatively normal, but lymphopoiesis was clearly perturbed, with excess mature B and T cells accumulating. Rather than the follicular lymphomas typical of vavP-BCL-2 mice, aging vavP-Mcl-1 mice were primarily susceptible to lymphomas having the phenotype of a stem/progenitor cell (11 of 30 tumors) or pre-B cell (12 of 30 tumors). Mcl-1 overexpression dramatically accelerated Myc-driven lymphomagenesis. Most vavP-Mcl-1/ Eμ-Myc mice died around birth, and transplantation of blood from bitransgenic E18 embryos into unirradiated mice resulted in stem/progenitor cell tumors. Furthermore, lethally irradiated mice transplanted with E13 fetal liver cells from Mcl-1/Myc bitransgenic mice uniformly died of stem/progenitor cell tumors. When treated in vivo with cyclophosphamide, tumors coexpressing Mcl-1 and Myc transgenes were significantly more resistant than conventional Eμ-Myc lymphomas. Collectively, these results demonstrate that Mcl-1 overexpression renders hematopoietic cells refractory to many cytotoxic insults, perturbs lymphopoiesis and promotes malignant transformation of hematopoietic stem and progenitor cells.
Collapse
|
173
|
Du X, Youle RJ, FitzGerald DJ, Pastan I. Pseudomonas exotoxin A-mediated apoptosis is Bak dependent and preceded by the degradation of Mcl-1. Mol Cell Biol 2010; 30:3444-52. [PMID: 20457813 PMCID: PMC2897547 DOI: 10.1128/mcb.00813-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 01/25/2010] [Accepted: 04/29/2010] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas exotoxin A (PE) is a bacterial toxin that arrests protein synthesis and induces apoptosis. Here, we utilized mouse embryo fibroblasts (MEFs) deficient in Bak and Bax to determine the roles of these proteins in cell death induced by PE. PE induced a rapid and dose-dependent induction of apoptosis in wild-type (WT) and Bax knockout (Bax(-/-)) MEFs but failed in Bak knockout (Bak(-/-)) and Bax/Bak double-knockout (DKO) MEFs. Also a loss of mitochondrial membrane potential was observed in WT and Bax(-/-) MEFs, but not in Bak(-/-) or in DKO MEFs, indicating an effect of PE on mitochondrial permeability. PE-mediated inhibition of protein synthesis was identical in all 4 cell lines, indicating that differences in killing were due to steps after the ADP-ribosylation of EF2. Mcl-1, but not Bcl-x(L), was rapidly degraded after PE treatment, consistent with a role for Mcl-1 in the PE death pathway. Bak was associated with Mcl-1 and Bcl-x(L) in MEFs and uncoupled from suppressed complexes after PE treatment. Overexpression of Mcl-1 and Bcl-x(L) inhibited PE-induced MEF death. Our data suggest that Bak is the preferential mediator of PE-mediated apoptosis and that the rapid degradation of Mcl-1 unleashes Bak to activate apoptosis.
Collapse
Affiliation(s)
- Xing Du
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard J. Youle
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - David J. FitzGerald
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
174
|
Tunquist BJ, Woessner RD, Walker DH. Mcl-1 Stability Determines Mitotic Cell Fate of Human Multiple Myeloma Tumor Cells Treated with the Kinesin Spindle Protein Inhibitor ARRY-520. Mol Cancer Ther 2010; 9:2046-56. [DOI: 10.1158/1535-7163.mct-10-0033] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
175
|
Stewart ML, Fire E, Keating AE, Walensky LD. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat Chem Biol 2010; 6:595-601. [PMID: 20562877 PMCID: PMC3033224 DOI: 10.1038/nchembio.391] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 04/26/2010] [Indexed: 11/13/2022]
Abstract
The development of selective inhibitors for discrete anti-apoptotic BCL-2 family proteins implicated in pathologic cell survival remains a formidable but pressing challenge. Precisely tailored compounds would serve as molecular probes and targeted therapies to study and treat human diseases driven by specific anti-apoptotic blockades. In particular, MCL-1 has emerged as a major resistance factor in human cancer. By screening a library of Stabilized Alpha-Helix of BCL-2 domains (SAHBs), we determined that the MCL-1 BH3 helix is itself a potent and exclusive MCL-1 inhibitor. X-ray crystallography and mutagenesis studies defined key binding and specificity determinants, including the capacity to harness the hydrocarbon staple to optimize affinity while preserving selectivity. MCL-1 SAHB directly targets MCL-1, neutralizes its inhibitory interaction with pro-apoptotic BAK, and sensitizes cancer cells to caspase-dependent apoptosis. By leveraging nature’s solution to ligand selectivity, we generated an MCL-1-specific agent that defines the structural and functional features of targeted MCL-1 inhibition.
Collapse
Affiliation(s)
- Michelle L Stewart
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
176
|
Wang X, Sinn AL, Pollok K, Sandusky G, Zhang S, Chen L, Liang J, Crean CD, Suvannasankha A, Abonour R, Sidor C, Bray MR, Farag SS. Preclinical activity of a novel multiple tyrosine kinase and aurora kinase inhibitor, ENMD-2076, against multiple myeloma. Br J Haematol 2010; 150:313-25. [PMID: 20560971 DOI: 10.1111/j.1365-2141.2010.08248.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ENMD-2076 is a novel, orally-active molecule that has been shown to have significant activity against aurora and multiple receptor tyrosine kinases. We investigated the activity of ENMD-2076 against multiple myeloma (MM) cells in vitro and in vivo. ENMD-2076 showed significant cytotoxicity against MM cell lines and primary cells, with minimal cytotoxicity to haematopoietic progenitors. ENMD-2076 inhibited the phosphoinositide 3-kinase/AKT pathway and downregulated survivin and X-linked inhibitor of apoptosis as early as 6 h after treatment. With longer treatment (24-48 h), ENMD-2076 also inhibited aurora A and B kinases, and induced G(2)/M cell cycle arrest. In non-obese diabetic/severe combined immunodeficient mice implanted with H929 human plasmacytoma xenografts, oral treatment with ENMD-2076 (50, 100, 200 mg/kg per day) resulted in a dose-dependent inhibition of tumour growth. Immunohistochemical staining of excised tumours showed significant reduction in phospho-Histone 3 (pH3), Ki-67, and angiogenesis, and also a significant increase in cleaved caspase-3 at all dose levels compared to tumours from vehicle-treated mice. In addition, a significant reduction in p-FGFR3 was observed on Western blot. ENMD-2076 shows significant activity against MM cells in vitro and in vivo, and acts on several pathways important for myeloma cell growth and survival. These results provide preclinical rationale for clinical investigation of ENMD-2076 in MM.
Collapse
Affiliation(s)
- Xiaojing Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Xiang Z, Luo H, Payton JE, Cain J, Ley TJ, Opferman JT, Tomasson MH. Mcl1 haploinsufficiency protects mice from Myc-induced acute myeloid leukemia. J Clin Invest 2010; 120:2109-18. [PMID: 20484815 PMCID: PMC2877934 DOI: 10.1172/jci39964] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 02/03/2010] [Indexed: 11/17/2022] Open
Abstract
Antiapoptotic BCL2 family members have been implicated in the pathogenesis of acute myelogenous leukemia (AML), but the functional significance and relative importance of individual proteins (e.g., BCL2, BCL-XL, and myeloid cell leukemia 1 [MCL1]) remain poorly understood. Here, we examined the expression of BCL2, BCL-XL, and MCL1 in primary human hematopoietic subsets and leukemic blasts from AML patients and found that MCL1 transcripts were consistently expressed at high levels in all samples tested. Consistent with this, Mcl1 protein was also highly expressed in myeloid leukemic blasts in a mouse Myc-induced model of AML. We used this model to test the hypothesis that Mcl1 facilitates AML development by allowing myeloid progenitor cells to evade Myc-induced cell death. Indeed, activation of Myc for 7 days in vivo substantially increased myeloid lineage cell numbers, whereas hematopoietic stem, progenitor, and B-lineage cells were depleted. Furthermore, Mcl1 haploinsufficiency abrogated AML development. In addition, deletion of a single allele of Mcl1 from fully transformed AML cells substantially prolonged the survival of transplanted mice. Conversely, the rapid lethality of disease was restored by coexpression of Bcl2 and Myc in Mcl1-haploinsufficient cells. Together, these data demonstrate a critical and dose-dependent role for Mcl1 in AML pathogenesis in mice and suggest that MCL1 may be a promising therapeutic target in patients with de novo AML.
Collapse
Affiliation(s)
- Zhifu Xiang
- Department of Medicine, Division of Oncology, and
Department of Pathology and Immunology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA.
OncoMed Pharmaceutical Inc., Redwood City, California, USA.
Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Hui Luo
- Department of Medicine, Division of Oncology, and
Department of Pathology and Immunology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA.
OncoMed Pharmaceutical Inc., Redwood City, California, USA.
Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jacqueline E. Payton
- Department of Medicine, Division of Oncology, and
Department of Pathology and Immunology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA.
OncoMed Pharmaceutical Inc., Redwood City, California, USA.
Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jennifer Cain
- Department of Medicine, Division of Oncology, and
Department of Pathology and Immunology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA.
OncoMed Pharmaceutical Inc., Redwood City, California, USA.
Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Timothy J. Ley
- Department of Medicine, Division of Oncology, and
Department of Pathology and Immunology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA.
OncoMed Pharmaceutical Inc., Redwood City, California, USA.
Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Joseph T. Opferman
- Department of Medicine, Division of Oncology, and
Department of Pathology and Immunology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA.
OncoMed Pharmaceutical Inc., Redwood City, California, USA.
Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Michael H. Tomasson
- Department of Medicine, Division of Oncology, and
Department of Pathology and Immunology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA.
OncoMed Pharmaceutical Inc., Redwood City, California, USA.
Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
178
|
Triptolide circumvents drug-resistant effect and enhances 5-fluorouracil antitumor effect on KB cells. Anticancer Drugs 2010; 21:502-13. [DOI: 10.1097/cad.0b013e328337337c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
179
|
Santo L, Vallet S, Hideshima T, Cirstea D, Ikeda H, Pozzi S, Patel K, Okawa Y, Gorgun G, Perrone G, Calabrese E, Yule M, Squires M, Ladetto M, Boccadoro M, Richardson PG, Munshi NC, Anderson KC, Raje N. AT7519, A novel small molecule multi-cyclin-dependent kinase inhibitor, induces apoptosis in multiple myeloma via GSK-3beta activation and RNA polymerase II inhibition. Oncogene 2010; 29:2325-36. [PMID: 20101221 PMCID: PMC3183744 DOI: 10.1038/onc.2009.510] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 11/30/2009] [Accepted: 12/07/2009] [Indexed: 01/08/2023]
Abstract
Dysregulated cell cycling is a universal hallmark of cancer and is often mediated by abnormal activation of cyclin-dependent kinases (CDKs) and their cyclin partners. Overexpression of individual complexes are reported in multiple myeloma (MM), making them attractive therapeutic targets. In this study, we investigate the preclinical activity of a novel small-molecule multi-CDK inhibitor, AT7519, in MM. We show the anti-MM activity of AT7519 displaying potent cytotoxicity and apoptosis; associated with in vivo tumor growth inhibition and prolonged survival. At the molecular level, AT7519 inhibited RNA polymerase II (RNA pol II) phosphorylation, a CDK9, 7 substrate, associated with decreased RNA synthesis confirmed by [(3)H] Uridine incorporation. In addition, AT7519 inhibited glycogen synthase kinase 3beta (GSK-3beta) phosphorylation; conversely pretreatment with a selective GSK-3 inhibitor and shRNA GSK-3beta knockdown restored MM survival, suggesting the involvement of GSK-3beta in AT7519-induced apoptosis. GSK-3beta activation was independent of RNA pol II dephosphorylation confirmed by alpha-amanitin, a specific RNA pol II inihibitor, showing potent inhibition of RNA pol II phosphorylation without corresponding effects on GSK-3beta phosphorylation. These results offer new insights into the crucial, yet controversial role of GSK-3beta in MM and show significant anti-MM activity of AT7519, providing the rationale for its clinical evaluation in MM.
Collapse
Affiliation(s)
- L Santo
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Park IS, Jo JR, Hong H, Nam KY, Kim JB, Hwang SH, Choi MS, Ryu NH, Jang HJ, Lee SH, Kim CS, Kwon TG, Park GY, Park JW, Jang BC. Aspirin induces apoptosis in YD-8 human oral squamous carcinoma cells through activation of caspases, down-regulation of Mcl-1, and inactivation of ERK-1/2 and AKT. Toxicol In Vitro 2010; 24:713-20. [DOI: 10.1016/j.tiv.2010.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/03/2009] [Accepted: 01/25/2010] [Indexed: 01/04/2023]
|
181
|
Cayer MP, Drouin M, Proulx M, Jung D. 2-Methoxyestradiol induce the conversion of human peripheral blood memory B lymphocytes into plasma cells. J Immunol Methods 2010; 355:29-39. [PMID: 20202470 DOI: 10.1016/j.jim.2010.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/24/2010] [Accepted: 02/24/2010] [Indexed: 01/15/2023]
Abstract
2-Methoxyestradiol (2ME), an end-metabolite of 17beta-estradiol, is an antiproliferative agent that is currently being tested in clinical trials for cancer treatment. We hereby report that sub-cytotoxic concentrations of 2ME influence the in vitro proliferation of human peripheral blood B lymphocytes. More surprisingly, we have observed that 2ME induces the conversion of CD138(-) B lymphocytes into CD138(+) cells of phenotype similar to immunoglobulin (Ig)-secreting plasma cells. Normal human B lymphocytes expressing CD138 increased in response to 2ME in a dose-dependent fashion, from 2% at baseline up to 31% in cells cultured in the presence of 0.75 microM 2ME. Moreover, most of the converted cells were also CD27(+) and secreted high levels of IgG (151 microg/10(6)cells/24h). IEF studies revealed that conversion occurred in a polyclonal manner. We then exploited this effect of 2ME to gain further insights into the molecular mechanisms that govern changes in transcription factors involved in plasma cells differentiation. Plasma cells generated by 2ME treatment of normal human B lymphocytes expressed elevated levels of IRF4 and reduced levels of Pax5 and Bcl-6. Similarly, levels of XBP-1 and Blimp-1 transcripts were increased. Our results suggest that the differentiation of peripheral blood B lymphocytes into plasma cells requires a similar modulation of transcription factors expression that for tonsil and bone marrow B lymphocytes.
Collapse
|
182
|
GCS-100, a novel galectin-3 antagonist, modulates MCL-1, NOXA, and cell cycle to induce myeloma cell death. Blood 2010; 115:3939-48. [PMID: 20190189 DOI: 10.1182/blood-2009-10-251660] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GCS-100 is a galectin-3 antagonist with an acceptable human safety profile that has been demonstrated to have an antimyeloma effect in the context of bortezomib resistance. In the present study, the mechanisms of action of GCS-100 are elucidated in myeloma cell lines and primary tumor cells. GCS-100 induced inhibition of proliferation, accumulation of cells in sub-G(1) and G(1) phases, and apoptosis with activation of both caspase-8 and -9 pathways. Dose- and time-dependent decreases in MCL-1 and BCL-X(L) levels also occurred, accompanied by a rapid induction of NOXA protein, whereas BCL-2, BAX, BAK, BIM, BAD, BID, and PUMA remained unchanged. The cell-cycle inhibitor p21(Cip1) was up-regulated by GCS-100, whereas the procycling proteins CYCLIN E2, CYCLIN D2, and CDK6 were all reduced. Reduction in signal transduction was associated with lower levels of activated IkappaBalpha, IkappaB kinase, and AKT as well as lack of IkappaBalpha and AKT activation after appropriate cytokine stimulation (insulin-like growth factor-1, tumor necrosis factor-alpha). Primary myeloma cells showed a direct reduction in proliferation and viability. These data demonstrate that the novel therapeutic molecule, GCS-100, is a potent modifier of myeloma cell biology targeting apoptosis, cell cycle, and intracellular signaling and has potential for myeloma therapy.
Collapse
|
183
|
Mechanisms of resistance against PKC412 in resistant FLT3-ITD positive human acute myeloid leukemia cells. Ann Hematol 2010; 89:653-62. [DOI: 10.1007/s00277-009-0889-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 12/15/2009] [Indexed: 01/24/2023]
|
184
|
Zhang S, Zhau HE, Osunkoya AO, Iqbal S, Yang X, Fan S, Chen Z, Wang R, Marshall FF, Chung LWK, Wu D. Vascular endothelial growth factor regulates myeloid cell leukemia-1 expression through neuropilin-1-dependent activation of c-MET signaling in human prostate cancer cells. Mol Cancer 2010; 9:9. [PMID: 20085644 PMCID: PMC2820018 DOI: 10.1186/1476-4598-9-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 01/19/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Myeloid cell leukemia-1 (Mcl-1) is a member of the Bcl-2 family, which inhibits cell apoptosis by sequestering pro-apoptotic proteins Bim and Bid. Mcl-1 overexpression has been associated with progression in leukemia and some solid tumors including prostate cancer (PCa). However, the regulatory mechanism for Mcl-1 expression in PCa cells remains elusive. RESULTS Immunohistochemical analyses revealed that Mcl-1 expression was elevated in PCa specimens with high Gleason grades and further significantly increased in bone metastasis, suggesting a pivotal role of Mcl-1 in PCa metastasis. We further found that vascular endothelial growth factor (VEGF) is a novel regulator of Mcl-1 expression in PCa cells. Inhibition of endogenous Mcl-1 induced apoptosis, indicating that Mcl-1 is an important survival factor in PCa cells. Neuropilin-1 (NRP1), the "co-receptor" for VEGF165 isoform, was found to be highly expressed in PCa cells, and indispensible in the regulation of Mcl-1. Intriguingly, VEGF165 promoted physical interaction between NRP1 and hepatocyte growth factor (HGF) receptor c-MET, and facilitated c-MET phosphorylation via a NRP1-dependent mechanism. VEGF165 induction of Mcl-1 may involve rapid activation of Src kinases and signal transducers and activators of transcription 3 (Stat3). Importantly, NRP1 overexpression and c-MET activation were positively associated with progression and bone metastasis in human PCa specimens and xenograft tissues. CONCLUSIONS This study demonstrated that Mcl-1 overexpression is associated with PCa bone metastasis. Activation of VEGF165-NRP1-c-MET signaling could confer PCa cells survival advantages by up-regulating Mcl-1, contributing to PCa progression.
Collapse
Affiliation(s)
- Shumin Zhang
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Haiyen E Zhau
- Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Adeboye O Osunkoya
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA,Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Shareen Iqbal
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaojian Yang
- Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhengjia Chen
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ruoxiang Wang
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Fray F Marshall
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Leland WK Chung
- Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daqing Wu
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
185
|
López-Royuela N, Balsas P, Galán-Malo P, Anel A, Marzo I, Naval J. Bim is the key mediator of glucocorticoid-induced apoptosis and of its potentiation by rapamycin in human myeloma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:311-22. [PMID: 19914305 DOI: 10.1016/j.bbamcr.2009.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/20/2009] [Accepted: 11/07/2009] [Indexed: 01/05/2023]
Abstract
Glucocorticoids are widely used in anti-myeloma therapy and their action is potentiated by rapamycin, a mTOR inhibitor. However, the molecular mechanisms underlying these effects remain poorly characterized. We show here that dexamethasone (Dex)-induced apoptosis in MM.1S and OPM-2 cells is characterized by Bax and Bak conformational changes, DeltaPsi(m) loss, cytochrome c release and caspase-3 activation. Rapamycin, which had minimal cytotoxic effect by itself, strongly potentiated Dex-induced apoptosis. Apoptotic gene expression profiling showed an increase in mRNA levels of Bim in MM.1S cells after Dex treatment and further increases in both cell lines when co-treated with rapamycin. Western blot analysis revealed a moderate increase in Bim protein levels in both MM.1S and OPM-2 cells. Immunoprecipitation experiments revealed that most Bim was complexed to Mcl-1 in untreated cells. Upon treatment with Dex, and specially Dex plus rapamycin, Bim-Mcl-1 complex was disrupted and Bim was found associated to a CHAPS-insoluble fraction. Overexpression of Mcl-1 stabilized Bim-Mcl-1 complexes upon treatment with Dex or Dex+rapamycin and fully prevented apoptosis. Gene silencing of Bim inhibited for the most part Dex-induced apoptosis and, to a large extent, apoptosis induced by Dex plus rapamycin. These results, taken together, indicate that Bim protein is the key mediator of apoptosis induced by Dex and also responsible for the potentiating effect of rapamycin, providing molecular criteria for the use of glucocorticoids combined with mTOR inhibitors in myeloma therapy.
Collapse
Affiliation(s)
- Nuria López-Royuela
- Department Bioquimica y Biologia Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
186
|
Sawyer JR, Tian E, Thomas E, Koller M, Stangeby C, Sammartino G, Goosen L, Swanson C, Binz RL, Barlogie B, Shaughnessy J. Evidence for a novel mechanism for gene amplification in multiple myeloma: 1q12 pericentromeric heterochromatin mediates breakage-fusion-bridge cycles of a 1q12 approximately 23 amplicon. Br J Haematol 2009; 147:484-94. [PMID: 19744130 DOI: 10.1111/j.1365-2141.2009.07869.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gene amplification is defined as a copy number (CN) increase in a restricted region of a chromosome arm, and is a mechanism for acquired drug resistance and oncogene activation. In multiple myeloma (MM), high CNs of genes in a 1q12 approximately 23 amplicon have been associated with disease progression and poor prognosis. To investigate the mechanisms for gene amplification in this region in MM, we performed a comprehensive metaphase analysis combining G-banding, fluorescence in situ hybridization, and spectral karyotyping in 67 patients with gain of 1q. In six patients (9%), evidence for at least one breakage-fusion-bridge (BFB) cycle was found. In three patients (4%), extended ladders of 1q12 approximately 23 amplicons were identified. Several key structures that are predicted intermediates in BFB cycles were observed, including: equal-spaced organization of amplicons, inverted repeat organization of amplicons along the same chromosome arm, and deletion of sequences distal to the amplified region. The 1q12 pericentromeric heterochromatin region served as both a recurrent breakpoint as well as a fusion point for sister chromatids, and ultimately bracketed both the proximal and distal boundaries of the amplicon. Our findings provide evidence for a novel BFB mechanism involving 1q12 pericentromeric breakage in the amplification of a large number of genes within a 1q12 approximately 23 amplicon.
Collapse
Affiliation(s)
- Jeffrey R Sawyer
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Lee EF, Czabotar PE, Yang H, Sleebs BE, Lessene G, Colman PM, Smith BJ, Fairlie WD. Conformational changes in Bcl-2 pro-survival proteins determine their capacity to bind ligands. J Biol Chem 2009; 284:30508-17. [PMID: 19726685 DOI: 10.1074/jbc.m109.040725] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antagonists of anti-apoptotic Bcl-2 family members hold promise as cancer therapeutics. Apoptosis is triggered when a peptide containing a BH3 motif or a small molecule BH3 peptidomimetic, such as ABT 737, binds to the relevant Bcl-2 family members. ABT-737 is an antagonist of Bcl-2, Bcl-x(L), and Bcl-w but not of Mcl-1. Here we describe new structures of mutant BH3 peptides bound to Bcl-x(L) and Mcl-1. These structures suggested a rationale for the failure of ABT-737 to bind Mcl-1, but a designed variant of ABT-737 failed to acquire binding affinity for Mcl-1. Rather, it was selective for Bcl-x(L), a result attributable in part to significant backbone refolding and movements of helical segments in its ligand binding site. To date there are few reported crystal structures of organic ligands in complex with their pro-survival protein targets. Our structure of this new organic ligand provided insights into the structural transitions that occur within the BH3 binding groove, highlighting significant differences in the structural properties of members of the Bcl-2 pro-survival protein family. Such differences are likely to influence and be important in the quest for compounds capable of selectively antagonizing the different family members.
Collapse
Affiliation(s)
- Erinna F Lee
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Bahlis NJ, Miao Y, Koc ON, Lee K, Boise LH, Gerson SL. N-Benzoylstaurosporine (PKC412) inhibits Akt kinase inducing apoptosis in multiple myeloma cells. Leuk Lymphoma 2009; 46:899-908. [PMID: 16019536 DOI: 10.1080/10428190500080595] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Multiple myeloma is a clonal malignancy of plasma cells that invariably progresses to a chemoresistant state. The PI3K/Akt pathway mediates signals downstream of several growth factors involved in myeloma pathogenesis, and constitutive activation of Akt was observed in myeloma cells. We now report that a staurosporine derivative, N-benzoylated staurosporine or PKC412, induces cell death in myeloma cell lines (RPMI8226S, U266, MM1S and MM1R) with loss of mitochondrial membrane potential Delta psi m, caspase 3 and PARP cleavage. ZVAD.fmk, but not interleukin-6, rescued these cells from PKC412 effects. Upstream of the mitochondria, PKC412 inhibited Bad phosphorylation and attenuated Akt kinase activity by suppressing its phosphorylation on serine residue in its activation loop. Reduced phosphorylation of downstream Akt substrates GSK3 alpha/beta and FKHR was also noted. Stable transfection of 8226S cells with constitutively active Akt (8226S-myAkt) partially protected against PKC412 cytotoxicity. Primary myeloma cells isolated from refractory myeloma patients (n=4), were equally sensitive to PKC412 treatment. More importantly, PKC412 did not affect CFU-GM or BFU-E colony formation. In summary, our results demonstrate that PKC412 suppresses Akt kinase activation and induces apoptosis in myeloma cell lines, as well as primary resistant cells. PKC412 is an appropriate candidate for novel treatment protocols for multiple myeloma.
Collapse
Affiliation(s)
- Nizar J Bahlis
- University of Calgary, Department of Medicine, Division of Hematology and Hematological Malignancies, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
189
|
Hall BM, Gibson LF. Regulation of Lymphoid and Myeloid Leukemic Cell Survival: Role of Stromal Cell Adhesion Molecules. Leuk Lymphoma 2009; 45:35-48. [PMID: 15061195 DOI: 10.1080/1042819031000139620] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Several laboratories have documented the necessity for direct contact of lymphoid and myeloid leukemic cells with bone marrow stromal cells for optimal survival. Subsequent studies have identified various stromal cell adhesion molecules and soluble factors that facilitate survival through leukemic cell anti-apoptotic signal transduction pathways. This report provides an overview of enhanced leukemic cell survival through adhesive interactions with bone marrow expressed molecules. In addition, we describe the establishment of cloned murine stromal cell lines engineered to constitutively express human VCAM-1 protein on their surface. These stromal cell lines will be useful in studies aimed at better understanding the specific contribution of VCAM-1: VLA-4 signaling in maintenance of residual leukemic disease.
Collapse
Affiliation(s)
- Brett M Hall
- Department of Microbiology, Immunology, and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | | |
Collapse
|
190
|
Dawson MA, Opat SS, Taouk Y, Donovan M, Zammit M, Monaghan K, Horvath N, Roberts AW, Prince HM, Hertzberg M, McLean CA, Spencer A. Clinical and immunohistochemical features associated with a response to bortezomib in patients with multiple myeloma. Clin Cancer Res 2009; 15:714-22. [PMID: 19147779 DOI: 10.1158/1078-0432.ccr-08-1022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Multiple myeloma is an incurable disease with heterogeneous clinical behavior. Bortezomib has offered some patients with relapsed and refractory disease an opportunity for prolonged survival. However, there remains a paucity of data in patients treated with bortezomib that accurately delineates and identifies such patients. This information is crucial to guide management. EXPERIMENTAL DESIGN In this study, we aimed to identify the patients most likely to respond to bortezomib salvage therapy. We analyzed the baseline clinical variables and profiled the baseline expression of a broad range of immunohistochemical markers of cell cycle activity, apoptosis, and angiogenesis in a large cohort of multiply relapsed myeloma patients recruited to one of two prospective multicentre trials assessing the efficacy of bortezomib salvage therapy. RESULTS Using the European Group for Bone Marrow Transplantation criteria, response (complete or partial) to bortezomib salvage therapy was associated with a previous history of complete response to alternative antimyeloma treatment. Patients who expressed cyclin D1 were more likely to achieve a response. In contrast, patients who expressed p16(INK4A), cytoplasmic p53, and the highest intensity of Bcl-2 staining had a poor response. Patients who achieved a response to bortezomib and those patients who expressed cyclin D1 at baseline showed a significant survival advantage. Patients who expressed FGFR3, a poor prognostic marker, responded equally well and had similar outcomes with bortezomib compared with FGFR3-negative patients. CONCLUSIONS Baseline clinical variables and selective immunohistochemical markers expressed by patients may be used effectively to identify patients that are most likely to achieve a meaningful clinical response to bortezomib salvage therapy.
Collapse
Affiliation(s)
- Mark A Dawson
- Clinical Haematology/Bone Marrow Transplant Department, The Alfred Hospital, Commercial Road, Prahran, Melbourne, Victoria, Australia 3181
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Mylin AK, Rasmussen T, Lodahl M, Dahl IM, Knudsen LM. UpregulatedMCL1mRNA expression in multiple myeloma lacks association with survival. Br J Haematol 2009; 144:961-3. [DOI: 10.1111/j.1365-2141.2008.07521.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
192
|
The novel plant-derived agent silvestrol has B-cell selective activity in chronic lymphocytic leukemia and acute lymphoblastic leukemia in vitro and in vivo. Blood 2009; 113:4656-66. [PMID: 19190247 DOI: 10.1182/blood-2008-09-175430] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Therapeutic options for advanced B-cell acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL) are limited. Available treatments can also deplete T lymphocytes, leaving patients at risk of life-threatening infections. In the National Cancer Institute cell line screen, the structurally unique natural product silvestrol produces an unusual pattern of cytotoxicity that suggests activity in leukemia and selectivity for B cells. We investigated silvestrol efficacy using primary human B-leukemia cells, established B-leukemia cell lines, and animal models. In CLL cells, silvestrol LC(50) (concentration lethal to 50%) is 6.9 nM at 72 hours. At this concentration, there is no difference in sensitivity of cells from patients with or without the del(17p13.1) abnormality. In isolated cells and whole blood, silvestrol is more cytotoxic toward B cells than T cells. Silvestrol causes early reduction in Mcl-1 expression due to translational inhibition with subsequent mitochondrial damage, as evidenced by reactive oxygen species generation and membrane depolarization. In vivo, silvestrol causes significant B-cell reduction in Emu-Tcl-1 transgenic mice and significantly extends survival of 697 xenograft severe combined immunodeficient (SCID) mice without discernible toxicity. These data indicate silvestrol has efficacy against B cells in vitro and in vivo and identify translational inhibition as a potential therapeutic target in B-cell leukemias.
Collapse
|
193
|
Bisping G, Wenning D, Kropff M, Gustavus D, Muller-Tidow C, Stelljes M, Munzert G, Hilberg F, Roth GJ, Stefanic M, Volpert S, Mesters RM, Berdel WE, Kienast J. Bortezomib, Dexamethasone, and Fibroblast Growth Factor Receptor 3-Specific Tyrosine Kinase Inhibitor in t(4;14) Myeloma. Clin Cancer Res 2009; 15:520-31. [DOI: 10.1158/1078-0432.ccr-08-1612] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
194
|
Jourdan M, Reme T, Goldschmidt H, Fiol G, Pantesco V, De Vos J, Rossi JF, Hose D, Klein B. Gene expression of anti- and pro-apoptotic proteins in malignant and normal plasma cells. Br J Haematol 2009; 145:45-58. [PMID: 19183193 DOI: 10.1111/j.1365-2141.2008.07562.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The survival of malignant plasma cells is a key event in disease occurrence, progression and chemoresistance. Using DNA-microarrays, we analysed the expression of genes coding for 58 proteins linked with extrinsic and intrinsic apoptotic pathways, caspases and inhibitor of apoptosis proteins. We considered six memory B cells (MBC), seven plasmablasts (PPC), seven bone marrow plasma cells (BMPC) and purified myeloma cells (MMC) from 92 newly-diagnosed patients. Forty out of the 58 probe sets enabled the separation of MBC, PPC and BMPC in three homogeneous clusters, characterized by an elevated expression of TNFRSF10A, TNFRSF10B, BCL2A1, CASP8, CASP9 and PMAIP1 genes for MBC, of FAS, FADD, AIFM1, BIRC5, CASP CASP2, CASP3 and CASP6 for PPC and of BCL2, MCL1, BID, BIRC3 and XIAP for BMPC. Thus, B cell differentiation was associated with change of expression of pro-apoptotic and anti-apoptotic genes. Regarding MMC, the major finding was TRAIL upregulation that might be counteracted by a high osteoprotegerin production by BM stromal cells and a decreased expression of FAS, APAF1 and BNIP3 compared to normal BMPC. Out of the 40 genes, CASP2 and BIRC5 expression in MMC had adverse prognosis in two independent series of previously-untreated patients.
Collapse
Affiliation(s)
- Michel Jourdan
- INSERM U847, Equipe Labellisée LIGUE 2006, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Garcia-Bates TM, Bernstein SH, Phipps RP. Peroxisome proliferator-activated receptor gamma overexpression suppresses growth and induces apoptosis in human multiple myeloma cells. Clin Cancer Res 2008; 14:6414-25. [PMID: 18927280 DOI: 10.1158/1078-0432.ccr-08-0457] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Peroxisome proliferator-activated receptor gamma (PPARgamma) is a transcription factor that regulates immune and inflammatory responses. Our laboratory has shown that normal and malignant B cells, including multiple myeloma, express PPARgamma. Moreover, certain PPARgamma ligands can induce apoptosis in multiple myeloma cells. Because PPARgamma ligands can also have PPARgamma-independent effects, the role of PPARgamma in B-cell malignancies remains poorly understood. To further understand the role of PPARgamma, we examined the functional consequences of its overexpression in human multiple myeloma. EXPERIMENTAL DESIGN In the present work, we developed a lentiviral vector for PPARgamma gene delivery. We transduced multiple myeloma cells with a lentivirus-expressing PPARgamma and studied the involvement of this receptor on cell growth and viability. RESULTS PPARgamma overexpression decreased multiple myeloma cell proliferation and induced spontaneous apoptosis even in the absence of exogenous ligand. These PPARgamma-overexpressing cells were dramatically more sensitive to PPARgamma ligand-induced apoptosis compared with uninfected or LV-empty-infected cells. Apoptosis was associated with the down-regulation of antiapoptotic proteins X-linked inhibitor of apoptosis protein and myeloid cell leukemia-1 as well as induction of caspase-3 activity. Importantly, PPARgamma overexpression-induced cell death was not abrogated by coincubation with bone marrow stromal cells (BMSC), which are known to protect multiple myeloma cells from apoptosis. Additionally, PPARgamma overexpression in multiple myeloma or BMSC inhibited both basal and multiple myeloma-induced interleukin-6 production by BMSC. CONCLUSIONS Our results indicate that PPARgamma negatively controls multiple myeloma growth and viability in part through inhibition of interleukin-6 production by BMSC. As such, PPARgamma is a viable therapeutic target in multiple myeloma.
Collapse
Affiliation(s)
- Tatiana M Garcia-Bates
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
196
|
Balsas P, López-Royuela N, Galán-Malo P, Anel A, Marzo I, Naval J. Cooperation between Apo2L/TRAIL and bortezomib in multiple myeloma apoptosis. Biochem Pharmacol 2008; 77:804-12. [PMID: 19100720 DOI: 10.1016/j.bcp.2008.11.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 11/18/2022]
Abstract
The proteasome inhibitor bortezomib is currently an important drug for treatment of relapsed and refractory multiple myeloma (MM) and for elderly patients. However, cells from some patients show resistance to bortezomib. We have evaluated the possibility of improving bortezomib therapy with Apo2L/TRAIL, a death ligand that induces apoptosis in MM but not in normal cells. Results indicate that cotreatment with low doses of bortezomib significantly increased apoptosis of MM cells showing partial sensitivity to Apo2L/TRAIL. Bortezomib treatment did not significantly alter plasma membrane amount of DR4 and DR5 but increased Apo2L/TRAIL-induced caspase-8 and caspase-3 activation. Apo2L/TRAIL reverted bortezomib-induced up-regulation of beta-catenin, Mcl-1 and FLIP, associated with the enhanced cytotoxicity of combined treatment. More important, some cell lines displaying resistance to bortezomib were sensitive to Apo2L/TRAIL-induced apoptosis. A cell line made resistant by continuous culture of RPMI 8226 cells in the presence of bortezomib (8226/7B) was highly sensitive to Apo2L/TRAIL-induced apoptosis. Moreover, RPMI 8226 cells overexpressing Mcl-1 (8226/Mcl-1) or Bcl-x(L) (8226/Bcl-x(L)) also showed enhanced resistance to bortezomib, but co-treatment with Apo2L/TRAIL reverted this resistance. These results indicate that Apo2L/TRAIL can cooperate with bortezomib to induce apoptosis in myeloma cells and can be an useful adjunct for MM therapy.
Collapse
Affiliation(s)
- Patricia Balsas
- Departamento de Bioquimica, Biologia Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
197
|
Li YP, Zhu HM, Hou XH. Construction and screening of eukaryotic expression plasmids containing short hairpin RNA targeting at the myeloid cell leukemia-1 gene. Shijie Huaren Xiaohua Zazhi 2008; 16:2940-2945. [DOI: 10.11569/wcjd.v16.i26.2940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct eukaryotic expression plasmids containing short hairpin RNA (shRNA) that target at the myeloid cell leukemia-1 (mcl-1) gene, and to select the plasmids that silence mcl-1 gene most efficiently.
METHODS: Three pairs of shRNAs that target at mcl-1 gene were designed. The eukaryotic expression plasmids (named shRNA1-3) were constructed and identified using restriction enzyme analysis and sequencing analysis. The plasmids were then transfected into HepG2 cells via liposome. The transfection rate of recombinant plasmids was measured 48 h after transfection, and mcl-1 mRNA and protein expression was determined using reverse transcriptase-polymerase chain reaction and Western blotting.
RESULTS: The expression plasmids were confirmed by restriction enzyme analysis and sequencing analysis. The transfection rate of recombinant plasmids in HepG2 cells was approximately 64%. Forty-eight hours after transfection, the mcl-1 mRNA and protein levels of shRNA1-3 group (mRNA: 0.61 ± 0.02, 0.56 ± 0.02 and 0.46 ± 0.01, protein: 0.53 ± 0.01, 0.48 ± 0.03 and 0.36 ± 0.01, respectively) were significantly lower than that of the blank control group (mRNA: 0.61 ± 0.02, 0.56 ± 0.02, 0.46 ± 0.01 vs 0.97 ± 0.01; protein: 0.53 ± 0.01, 0.48 ± 0.03, 0.36 ± 0.01 vs 0.90 ± 0.03, all P < 0.01) and that of the negative control group (mRNA: 0.95 ± 0.00, protein: 0.88 ± 0.01, all P < 0.01). Compared with shRNA1 and shRNA2, shRNA3 had the strongest inhibitory effect on mRNA (52.6% vs 36.3%, 42.9% both P < 0.01) and protein level of Mcl-1 (63.2% vs 41.5%, 49.6%, both P < 0.01).
CONCLUSION: The shRNA eukaryotic expression plasmid targeting at mcl-1 gene is constructed and selected successfully. The mcl-1 mRNA and protein expression was suppressed significantly by this given plasmid.
Collapse
|
198
|
Yasuda H, Sugimoto K, Imai H, Isobe Y, Sasaki M, Kojima Y, Nakamura S, Oshimi K. Expression levels of apoptosis-related proteins and Ki-67 in nasal NK / T-cell lymphoma. Eur J Haematol 2008; 82:39-45. [PMID: 18778369 DOI: 10.1111/j.1600-0609.2008.01152.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Nasal natural killer (NK)/T-cell lymphoma is characterized by chemo-resistance, angiodestruction, and aggressive tumor progression. Few studies exist on molecular characteristics of this disease entity. METHODS Expression levels of major apoptosis-related proteins Bcl-2, Bcl-x, Mcl-1, Bax, and a proliferative marker Ki-67 were analyzed in 11 nasal NK/T-cell lymphoma cases by immunohistochemical methods. Nine cases were of NK-cell lineage and two cases were of T-cell lineage. For comparison, 12 follicular lymphoma (FL) cases and 16 diffuse large B-cell lymphoma (DLBCL) cases were also studied. RESULTS AND CONCLUSIONS Bax expression was low in all nasal NK-cell lymphoma cases, which constitute the major population of nasal NK/T-cell lymphoma. Bax expression in nasal NK-cell lymphoma was similar to FL and significantly lower compared with DLBCL. Bcl-2 expression was significantly lower in nasal NK/T-cell lymphoma compared with that of FL and DLBCL. Bcl-x expression was high in all three lymphomas. Two distinct Mcl-1 expression groups existed for nasal NK/T-cell lymphoma (6.2 +/- 5.2% and 59.1 +/- 12.3%, 95% CI). Ki-67 expression was high in nasal NK/T-cell lymphoma, and worse prognostic groups tended to express higher levels of Ki-67. The results suggest a combination of impaired apoptosis and aggressive proliferation in nasal NK/T-cell lymphoma, and may provide explanations for its poor prognosis.
Collapse
Affiliation(s)
- Hajime Yasuda
- Division of Hematology, Department of Medicine, Juntendo University School of Medicine, Tokyo
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Sagawa M, Nakazato T, Uchida H, Ikeda Y, Kizaki M. Cantharidin induces apoptosis of human multiple myeloma cells via inhibition of the JAK/STAT pathway. Cancer Sci 2008; 99:1820-6. [PMID: 18544087 PMCID: PMC11158712 DOI: 10.1111/j.1349-7006.2008.00872.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Multiple myeloma is an incurable B-cell malignancy requiring new therapeutic strategies in clinical settings. Interleukin (IL)-6 signaling pathways play a critical role in the pathogenesis of multiple myeloma. The traditional Chinese medicine cantharidin (CTD) has been shown to inhibit cellular proliferation and induce apoptosis of various cancer cells. The aim of this study was to investigate the possibility of CTD as a novel therapeutic agent for the patients with multiple myeloma. We investigated the in vitro effects of CTD for its antimyeloma activity, and further examined the molecular mechanisms of CTD-induced apoptosis. CTD inhibited the cellular growth of human myeloma cell lines as well as freshly isolated myeloma cells in patients. Cultivation with CTD induced apoptosis of myeloma cells in a cell-cycle-independent manner. Treatment with CTD induced caspase-3, -8, and -9 activities, and it was completely blocked by each caspase inhibitor. We further examined the effect of CTD on the IL-6 signaling pathway in myeloma cells, and found that CTD inhibited phosphorylation of STAT3 at tyrosine 705 residue as early as 1 h after treatment and down-regulated the expression of the antiapoptotic bcl-xL protein. STAT3 directly bound and activated the transcription of bcl-xL gene promoter, resulting in the induction of the expression of bcl-xL in myeloma cells. The essential role of STAT3 in CTD effects was confirmed by transfection with the constitutively active and dominant negative form of STAT3 in U266 cells. In conclusion, we have demonstrated that CTD is a promising candidate to be a new therapeutic agent in signal transduction therapy.
Collapse
Affiliation(s)
- Morihiko Sagawa
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | |
Collapse
|
200
|
Ortiz-Ferrón G, Yerbes R, Eramo A, López-Pérez AI, De Maria R, López-Rivas A. Roscovitine sensitizes breast cancer cells to TRAIL-induced apoptosis through a pleiotropic mechanism. Cell Res 2008; 18:664-76. [PMID: 18458681 DOI: 10.1038/cr.2008.54] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/APO2L) is a member of the TNF gene superfamily that induces apoptosis upon engagement of cognate death receptors. While TRAIL is relatively non-toxic to normal cells, it selectively induces apoptosis in many transformed cells. Nevertheless, breast tumor cells are particularly resistant to the effects of TRAIL. Here we report that, in combination with the cyclin-dependent kinase inhibitor roscovitine, exposure to TRAIL induced marked apoptosis in the majority of TRAIL-resistant breast cancer cell lines examined. Roscovitine facilitated TRAIL death-inducing signaling complex formation and the activation of caspase-8. The cFLIP(L) and cFLIP(S) FLICE-inhibitory proteins were significantly down-regulated following exposure to roscovitine and, indeed, the knockdown of cFLIP isoforms by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis. In addition, we demonstrate that roscovitine strongly suppressed Mcl-1 expression and up-regulated E2F1 protein levels in breast tumor cells. Significantly, the silencing of Mcl-1 by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis. Furthermore, the knockdown of E2F1 protein by siRNA reduced the sensitizing effect of roscovitine in TRAIL-induced apoptosis. In summary, our results reveal a pleitropic mechanism for the pro-apoptotic influence of roscovitine, highlighting its potential as an antitumor agent in breast cancer in combination with TRAIL.
Collapse
Affiliation(s)
- Gustavo Ortiz-Ferrón
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Consejo Superior de Investigaciones Cientificas (CSIC), Avda Américo Vespucio s/n, 41092 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|