151
|
Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:71-87. [DOI: 10.1016/j.bbagrm.2013.12.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 12/31/2022]
|
152
|
van Ommen Kloeke AEE, Gong P, Ellers J, Roelofs D. Effects of a natural toxin on life history and gene expression of Eisenia andrei. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:412-20. [PMID: 24395740 DOI: 10.1002/etc.2446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/20/2013] [Accepted: 10/16/2013] [Indexed: 05/27/2023]
Abstract
Earthworms perform key functions for a healthy soil ecosystem, such as bioturbation. The soil ecosystem can be challenged by natural toxins such as isothiocyanates (ITCs), produced by many commercial crops. Therefore, the effects of 2-phenylethyl ITC were investigated on the earthworm Eisenia andrei using an ecotoxicogenomics approach. Exposure to 2-phenylethyl ITC reduced both survival and reproduction of E. andrei in a dose-dependent manner (median effective concentration [EC50] = 556 nmol/g). Cross-species comparative genomic hybridization validated the applicability of an existing 4 × 44,000 Eisenia fetida microarray to E. andrei. Gene expression profiles revealed the importance of metallothionein (MT) as an early warning signal when E. andrei was exposed to low concentrations of 2-phenylethyl ITC. Alignment of these MT genes with the MT-2 gene of Lumbricus rubellus showed that at least 2 MT gene clusters are present in the Eisenia sp. genome. At high-exposure concentrations, gene expression was mainly affected by inhibiting chitinase activity, inducing an oxidative stress response, and stimulating energy metabolism. Furthermore, analysis by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway implied that the high concentration may have caused impaired light sensitivity, angiogenesis, olfactory perception, learning, and memory. Increased levels of ITCs may be found in the field in the near future. The results presented call for a careful investigation to quantify the risk of such compounds before allowing them to enter the soil on a large scale.
Collapse
|
153
|
Kanamaru C, Yamada Y, Hayashi S, Matsushita T, Suda A, Nagayasu M, Kimura K, Chiba S. Retinal toxicity induced by small-molecule Hsp90 inhibitors in beagle dogs. J Toxicol Sci 2014; 39:59-69. [DOI: 10.2131/jts.39.59] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | | | | | - Atsushi Suda
- Research Division, Chugai Pharmaceutical Co., Ltd
| | | | | | | |
Collapse
|
154
|
Deb R, Sajjanar B, Singh U, Kumar S, Singh R, Sengar G, Sharma A. Effect of heat stress on the expression profile of Hsp90 among Sahiwal (Bos indicus) and Frieswal (Bos indicus × Bos taurus) breed of cattle: a comparative study. Gene 2013; 536:435-40. [PMID: 24333856 DOI: 10.1016/j.gene.2013.11.086] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/12/2013] [Accepted: 11/30/2013] [Indexed: 12/24/2022]
Abstract
We evaluated the effect of thermal challenge on the expression profile of heat shock protein 90 (Hsp90) among Sahiwal (Bos indicus) and Frieswal (Bos indicus × Bos taurus) breeds of cattle. The present investigation was focused on the comparative studies on Hsp90 expression among Frieswal and Sahiwal under in vitro and environmental heat stress. Measured immediately after the in vitro heat shock to the peripheral blood mononuclear cells (PBMCs), the relative expression of Hsp90 mRNA was significantly (P<0.05) higher in Sahiwal compared to those in Frieswal. In later intervals of time, the differences in the expression levels between the two breeds become negligible coming down towards the basal level. A similar pattern was observed in the protein concentration showing significantly (P<0.05) higher levels in Sahiwal compared to those in Frieswal. The second sets of experiments were undertaken during summer months (March to May) when temperature peaked from 37 to 45 °C. During these months, Frieswal cows consistently recorded higher rectal temperatures than the Sahiwal breed. Further during this peak summer stress, Sahiwal showed significantly higher levels of mRNA transcripts as well as protein concentration compared to the Frieswal breed. Our findings also interestingly showed that, the cell viability of PBMC are significantly higher among the Sahiwal than Frieswal. Taken together, the experiments of both induced in vitro and environmental stress conditions indicate that, Sahiwal may express higher levels of Hsp90 then Frieswal to regulate their body temperature and increase cell survivality under heat stressed conditions.
Collapse
Affiliation(s)
- Rajib Deb
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India.
| | - Basavaraj Sajjanar
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| | - Umesh Singh
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| | - Sushil Kumar
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| | - Rani Singh
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| | - G Sengar
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| | - Arjava Sharma
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| |
Collapse
|
155
|
Ding Z, Wu J, Su L, Zhou F, Zhao X, Deng W, Zhang J, Liu S, Wang W, Liu H. Expression of heat shock protein 90 genes during early development and infection in Megalobrama amblycephala and evidence for adaptive evolution in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:683-93. [PMID: 23954722 DOI: 10.1016/j.dci.2013.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/04/2013] [Accepted: 08/05/2013] [Indexed: 05/26/2023]
Abstract
Heat shock protein 90 (HSP90) are highly conserved molecular chaperones, playing a pivotal role in cellular progress. In this study, we reported the characterization of the Hsp90α and Hsp90β genes in Megalobrama amblycephala, the expression profiling during early development, in various healthy tissues and in response to bacterial infection, and the assessment of their adaptive evolution. The Hsp90α cDNA contains an open reading frame (ORF) of 2193 bp encoding 731 amino acids and the Hsp90β cDNA has an ORF of 2184 bp encoding 728 amino acids. Using quantitative real-time PCR (qRT-PCR) analysis, the mRNA of both Hsp90α and Hsp90β reached the highest level at 15th day post-hatch. Using qRT-PCR and Western blot, both Hsp90α and Hsp90β were widely expressed in various healthy tissues and significantly higher in blood than in other tissues. Expression of both Hsp90α and Hsp90β were up-regulated upon bacterial infection and reached the peak level at 4 h post infection. Site model analysis indicated that one positive selection site (T717) in Hsp90α was found, while no positive selection site was observed in Hsp90β. Branch-site model test showed that there were adaptively evolutionary evidences in the branches of Salmoniformes and Gasterosteiformes for Hsp90α gene, and in the branch of Salmoniformes for Hsp90β gene.
Collapse
Affiliation(s)
- Zhujin Ding
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Mohammed SB, Bakheit MA, Ernst M, Ahmed JS, Seitzer U. Identification and Characterization ofTheileria annulataHeat-Shock Protein 90 (HSP90) Isoforms. Transbound Emerg Dis 2013; 60 Suppl 2:137-49. [DOI: 10.1111/tbed.12150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Indexed: 12/27/2022]
Affiliation(s)
- S. B. Mohammed
- Division of Veterinary Infection-Biology and -Immunology, Department of Infection; Research Center Borstel; Borstel Schleswig-Holstein Germany
| | - M. A. Bakheit
- Division of Veterinary Infection-Biology and -Immunology, Department of Infection; Research Center Borstel; Borstel Schleswig-Holstein Germany
| | - M. Ernst
- Division of Veterinary Infection-Biology and -Immunology, Department of Infection; Research Center Borstel; Borstel Schleswig-Holstein Germany
| | - J. S. Ahmed
- Division of Veterinary Infection-Biology and -Immunology, Department of Infection; Research Center Borstel; Borstel Schleswig-Holstein Germany
| | - U. Seitzer
- Division of Veterinary Infection-Biology and -Immunology, Department of Infection; Research Center Borstel; Borstel Schleswig-Holstein Germany
| |
Collapse
|
157
|
Sequence and domain conservation of the coelacanth Hsp40 and Hsp90 chaperones suggests conservation of function. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:359-78. [DOI: 10.1002/jez.b.22541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/13/2013] [Accepted: 08/16/2013] [Indexed: 01/17/2023]
|
158
|
Pantzartzi CN, Drosopoulou E, Scouras ZG. Assessment and reconstruction of novel HSP90 genes: duplications, gains and losses in fungal and animal lineages. PLoS One 2013; 8:e73217. [PMID: 24066039 PMCID: PMC3774752 DOI: 10.1371/journal.pone.0073217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/18/2013] [Indexed: 12/29/2022] Open
Abstract
Hsp90s, members of the Heat Shock Protein class, protect the structure and function of proteins and play a significant task in cellular homeostasis and signal transduction. In order to determine the number of hsp90 gene copies and encoded proteins in fungal and animal lineages and through that key duplication events that this family has undergone, we collected and evaluated Hsp90 protein sequences and corresponding Expressed Sequence Tags and analyzed available genomes from various taxa. We provide evidence for duplication events affecting either single species or wider taxonomic groups. With regard to Fungi, duplicated genes have been detected in several lineages. In invertebrates, we demonstrate key duplication events in certain clades of Arthropoda and Mollusca, and a possible gene loss event in a hymenopteran family. Finally, we infer that the duplication event responsible for the two (a and b) isoforms in vertebrates occurred probably shortly after the split of Hyperoartia and Gnathostomata.
Collapse
Affiliation(s)
- Chrysoula N. Pantzartzi
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Prague, Czech Republic
- * E-mail:
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Zacharias G. Scouras
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
159
|
Expression of heat shock protein (Hsp90) paralogues is regulated by amino acids in skeletal muscle of Atlantic salmon. PLoS One 2013; 8:e74295. [PMID: 24040223 PMCID: PMC3765391 DOI: 10.1371/journal.pone.0074295] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/29/2013] [Indexed: 01/09/2023] Open
Abstract
Heat shock proteins 90 (Hsp90) have an essential role in sarcomere formation and differentiation in skeletal muscle and also act as molecular chaperones during protein folding impacting a wide range of physiological processes. We characterised and provided a phylogenetically consistent nomenclature for the complete repertoire of six Hsp90 paralogues present in duplicated salmonid fish genomes (Hsp90α1a, Hsp90α1b, Hsp90α2a, Hsp90α2b, Hsp90ß1a and Hsp90ß1b). The expression of paralogues in fast skeletal muscle was investigated using in vivo fasting-feeding experiments and primary myogenic cultures. Fasted juvenile Atlantic salmon (Salmo salar) showed a transient 2 to 8-fold increase in the expression of all 4 Hsp90α paralogues within 24h of satiation feeding. Hsp90α1a and hsp90α1b also showed a pronounced secondary increase in expression after 10 days, concomitant with muscle differentiation and the expression of myogenin and sarcomeric proteins (mlc2, myhc). Hsp90ß1b was constitutively expressed whereas Hsp90ß1a expression was downregulated 10-fold between fasted and fed individuals. Hsp90α1a and Hsp90α1b were upregulated 10 to 15-fold concomitant with myotube formation and muscle differentiation in vitro whereas other Hsp90 paralogues showed no change in expression. In cells starved of amino acid (AA) and serum for 72h the addition of AA, but not insulin-like growth factor 1, increased phosphorylation of mTor and expression of all 4 hsp90α paralogues and associated co-chaperones including hsp30, tbcb, pdia4, pdia6, stga and fk504bp1, indicating a general activation of the protein folding response. In contrast, Hsp90ß1a expression in vitro was unresponsive to AA treatment indicating that some other as yet uncharacterised signal(s) regulate its expression in response to altered nutritional state.
Collapse
|
160
|
Cell shape and cardiosphere differentiation: a revelation by proteomic profiling. Biochem Res Int 2013; 2013:730874. [PMID: 24073335 PMCID: PMC3773893 DOI: 10.1155/2013/730874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/08/2013] [Indexed: 01/16/2023] Open
Abstract
Stem cells (embryonic stem cells, somatic stem cells such as neural stem cells, and cardiac stem cells) and cancer cells are known to aggregate and form spheroid structures. This behavior is common in undifferentiated cells and may be necessary for adapting to certain conditions such as low-oxygen levels or to maintain undifferentiated status in microenvironments including stem cell niches. In order to decipher the meaning of this spheroid structure, we established a cardiosphere clone (CSC-21E) derived from the rat heart which can switch its morphology between spheroid and nonspheroid. Two forms, floating cardiospheres and dish-attached flat cells, could be switched reversibly by changing the cell culture condition. We performed differential proteome analysis studies and obtained protein profiles distinct between spherical forms and flat cells. From protein profiling analysis, we found upregulation of glycolytic enzymes in spheroids with some stress proteins switched in expression levels between these two forms. Evidence has been accumulating that certain chaperone/stress proteins are upregulated in concert with cellular changes including proliferation and differentiation. We would like to discuss the possible mechanism of how these aggregates affect cell differentiation and/or other cellular functions.
Collapse
|
161
|
Blacklock K, Verkhivker GM. Differential modulation of functional dynamics and allosteric interactions in the Hsp90-cochaperone complexes with p23 and Aha1: a computational study. PLoS One 2013; 8:e71936. [PMID: 23977182 PMCID: PMC3747073 DOI: 10.1371/journal.pone.0071936] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/10/2013] [Indexed: 12/27/2022] Open
Abstract
Allosteric interactions of the molecular chaperone Hsp90 with a large cohort of cochaperones and client proteins allow for molecular communication and event coupling in signal transduction networks. The integration of cochaperones into the Hsp90 system is driven by the regulatory mechanisms that modulate the progression of the ATPase cycle and control the recruitment of the Hsp90 clientele. In this work, we report the results of computational modeling of allosteric regulation in the Hsp90 complexes with the cochaperones p23 and Aha1. By integrating protein docking, biophysical simulations, modeling of allosteric communications, protein structure network analysis and the energy landscape theory we have investigated dynamics and stability of the Hsp90-p23 and Hsp90-Aha1 interactions in direct comparison with the extensive body of structural and functional experiments. The results have revealed that functional dynamics and allosteric interactions of Hsp90 can be selectively modulated by these cochaperones via specific targeting of the regulatory hinge regions that could restrict collective motions and stabilize specific chaperone conformations. The protein structure network parameters have quantified the effects of cochaperones on conformational stability of the Hsp90 complexes and identified dynamically stable communities of residues that can contribute to the strengthening of allosteric interactions. According to our results, p23-mediated changes in the Hsp90 interactions may provide "molecular brakes" that could slow down an efficient transmission of the inter-domain allosteric signals, consistent with the functional role of p23 in partially inhibiting the ATPase cycle. Unlike p23, Aha1-mediated acceleration of the Hsp90-ATPase cycle may be achieved via modulation of the equilibrium motions that facilitate allosteric changes favoring a closed dimerized form of Hsp90. The results of our study have shown that Aha1 and p23 can modulate the Hsp90-ATPase activity and direct the chaperone cycle by exerting the precise control over structural stability, global movements and allosteric communications in Hsp90.
Collapse
Affiliation(s)
- Kristin Blacklock
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
162
|
Franke J, Eichner S, Zeilinger C, Kirschning A. Targeting heat-shock-protein 90 (Hsp90) by natural products: geldanamycin, a show case in cancer therapy. Nat Prod Rep 2013; 30:1299-323. [PMID: 23934201 DOI: 10.1039/c3np70012g] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering 2005 to 2013. In this review recent progress in the development of heat shock proteins (Hsp90) in oncogenesis is illuminated. Particular emphasis is put on inhibitors such as geldanamycin and analogues that serve as a natural product show case. Hsp90 has emerged as an important target in cancer therapy and/or against pathogenic cells which elicit abnormal Hsp patterns. Competition for ATP by geldanamycin and related compounds abrogate the chaperone function of Hsp90. In this context, this account pursues three topics in detail: a) Hsp90 and its biochemistry, b) Hsp90 and its role in oncogenesis and c) strategies to create compound libraries of structurally complex inhibitors like geldanamycin on which SAR studies and the development of drugs that are currently in different stages of clinical testing rely.
Collapse
Affiliation(s)
- Jana Franke
- Institut für Organische Chemie und Zentrum für Biomolekulare Wirkstoffchemie (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| | | | | | | |
Collapse
|
163
|
Xu J, Xue C, Xue D, Zhao J, Gai J, Guo N, Xing H. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana. PLoS One 2013; 8:e69810. [PMID: 23936107 PMCID: PMC3723656 DOI: 10.1371/journal.pone.0069810] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
Hsp90 is one of the most conserved and abundant molecular chaperones and is an essential component of the protective stress response; however, its roles in abiotic stress responses in soybean (Glycine max) remain obscure. Here, 12 GmHsp90 genes from soybean were identified and found to be expressed and to function differentially under abiotic stresses. The 12 GmHsp90 genes were isolated and named GmHsp90A1-GmHsp90A6, GmHsp90B1, GmHsp90B2, GmHsp90C1.1, GmHsp90C1.2, GmHsp90C2.1 and GmHsp90C2.2 based on their characteristics and high homology to other Hsp90s according to a new nomenclature system. Quantitative real-time PCR expression data revealed that all the genes exhibited higher transcript levels in leaves and could be strongly induced under heat, osmotic and salt stress but not cold stress. Overexpression of five typical genes (GmHsp90A2, GmHsp90A4, GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1) in Arabidopsis thaliana provided useful evidences that GmHsp90 genes can decrease damage of abiotic stresses. In addition, an abnormal accumulation of proline was detected in some transgenic Arabidopsis plants suggested overexpressing GmHsp90s may affect the synthesis and response system of proline. Our work represents a systematic determination of soybean genes encoding Hsp90s, and provides useful evidence that GmHsp90 genes function differently in response to abiotic stresses and may affect the synthesis and response system of proline.
Collapse
Affiliation(s)
- Jinyan Xu
- Key Laboratory of Biology and Genetics and Breeding for Soybean/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture/National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, P.R. China
| | - Chenchen Xue
- Key Laboratory of Biology and Genetics and Breeding for Soybean/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture/National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, P.R. China
| | - Dong Xue
- Key Laboratory of Biology and Genetics and Breeding for Soybean/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture/National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, P.R. China
| | - Jinming Zhao
- Key Laboratory of Biology and Genetics and Breeding for Soybean/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture/National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, P.R. China
| | - Junyi Gai
- Key Laboratory of Biology and Genetics and Breeding for Soybean/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture/National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, P.R. China
| | - Na Guo
- Key Laboratory of Biology and Genetics and Breeding for Soybean/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture/National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, P.R. China
| | - Han Xing
- Key Laboratory of Biology and Genetics and Breeding for Soybean/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture/National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
164
|
Press MO, Li H, Creanza N, Kramer G, Queitsch C, Sourjik V, Borenstein E. Genome-scale co-evolutionary inference identifies functions and clients of bacterial Hsp90. PLoS Genet 2013; 9:e1003631. [PMID: 23874229 PMCID: PMC3708813 DOI: 10.1371/journal.pgen.1003631] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/28/2013] [Indexed: 12/12/2022] Open
Abstract
The molecular chaperone Hsp90 is essential in eukaryotes, in which it facilitates the folding of developmental regulators and signal transduction proteins known as Hsp90 clients. In contrast, Hsp90 is not essential in bacteria, and a broad characterization of its molecular and organismal function is lacking. To enable such characterization, we used a genome-scale phylogenetic analysis to identify genes that co-evolve with bacterial Hsp90. We find that genes whose gain and loss were coordinated with Hsp90 throughout bacterial evolution tended to function in flagellar assembly, chemotaxis, and bacterial secretion, suggesting that Hsp90 may aid assembly of protein complexes. To add to the limited set of known bacterial Hsp90 clients, we further developed a statistical method to predict putative clients. We validated our predictions by demonstrating that the flagellar protein FliN and the chemotaxis kinase CheA behaved as Hsp90 clients in Escherichia coli, confirming the predicted role of Hsp90 in chemotaxis and flagellar assembly. Furthermore, normal Hsp90 function is important for wild-type motility and/or chemotaxis in E. coli. This novel function of bacterial Hsp90 agreed with our subsequent finding that Hsp90 is associated with a preference for multiple habitats and may therefore face a complex selection regime. Taken together, our results reveal previously unknown functions of bacterial Hsp90 and open avenues for future experimental exploration by implicating Hsp90 in the assembly of membrane protein complexes and adaptation to novel environments.
Collapse
Affiliation(s)
- Maximilian O. Press
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Hui Li
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Nicole Creanza
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Günter Kramer
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail: (CQ); (VS); (EB)
| | - Victor Sourjik
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
- * E-mail: (CQ); (VS); (EB)
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Computer Science and Engineering, University of Washington, Seattle, Washington, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- * E-mail: (CQ); (VS); (EB)
| |
Collapse
|
165
|
Rangeshwaran R, Ashwitha K, Sivakumar G, Jalali SK. Analysis of Proteins Expressed by an Abiotic Stress Tolerant Pseudomonas putida (NBAII-RPF9) Isolate Under Saline and High Temperature Conditions. Curr Microbiol 2013; 67:659-67. [DOI: 10.1007/s00284-013-0416-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 06/05/2013] [Indexed: 11/24/2022]
|
166
|
da Silva VCH, Cagliari TC, Lima TB, Gozzo FC, Ramos CHI. Conformational and functional studies of a cytosolic 90 kDa heat shock protein Hsp90 from sugarcane. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 68:16-22. [PMID: 23619240 DOI: 10.1016/j.plaphy.2013.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
Hsp90s are involved in several cellular processes, such as signaling, proteostasis, epigenetics, differentiation and stress defense. Although Hsp90s from different organisms are highly similar, they usually have small variations in conformation and function. Thus, the characterization of different Hsp90s is important to gain insight into the structure-function relationship that makes these chaperones key regulators in protein homeostasis. This work describes the characterization of a cytosolic Hsp90 from sugarcane and its comparison with Hsp90s from other plants. Previous expressed sequence tag (EST) studies in Saccharum spp. (sugarcane) predicted the presence of an mRNA coding for a cytosolic Hsp90. The corresponding cDNA was cloned, and the recombinant protein was purified and its conformation and function characterized. The structural conformation of Hsp90 was assessed by chemical cross-linking and hydrogen/deuterium exchange using mass spectrometry and hydrodynamic assays, which revealed regions accessible to solvent and that Hsp90 is an elongated dimer in solution. The in vivo expression of Hsp90 in sugarcane leaves was confirmed by western blot, and in vitro functional characterization indicated that sugarcane Hsp90 has strong chaperone activity.
Collapse
Affiliation(s)
- Viviane C H da Silva
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
167
|
Carretero-Paulet L, Albert VA, Fares MA. Molecular evolutionary mechanisms driving functional diversification of the HSP90A family of heat shock proteins in eukaryotes. Mol Biol Evol 2013; 30:2035-43. [PMID: 23813917 DOI: 10.1093/molbev/mst113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ubiquitous and conserved cytosolic heat-shock proteins 90 (HSP90A) perform essential functions in the cell. To understand the evolutionary origin of HSP90A functional diversification, we analyzed the distribution of HSP90A family from 54 species representing the main eukaryotic lineages. Three independent HSP90A duplications led to the paralog subfamilies HSP90AA (heat-stress inducible) and HSP90AB (constitutive) and trace back to key time points during vertebrate, seed plant, and yeast evolution. HSP90AA and HSP90AB present divergent selection pressures, positive selection (PS), and signatures of functional divergence (FD) after duplication. The differential evolutionary patterns support different mechanisms for HSP90A functional diversification in vertebrates and seed plants. Mapping of PS and FD residues onto the HSP90A structure suggests the acquisition of novel and/or specialized client protein and/or cochaperone binding functions. We propose these residues as targets for further experimental studies of HSP90A proteins, reported to be capacitors of rapid evolutionary change, and targets for anticancer therapeutics.
Collapse
Affiliation(s)
- Lorenzo Carretero-Paulet
- Institute for Plant Molecular and Cell Biology - IBMCP (CSIC-UPV), Integrative Systems Biology Group, Valencia, Spain.
| | | | | |
Collapse
|
168
|
Salces-Ortiz J, González C, Moreno-Sánchez N, Calvo JH, Pérez-Guzmán MD, Serrano MM. Ovine HSP90AA1 expression rate is affected by several SNPs at the promoter under both basal and heat stress conditions. PLoS One 2013; 8:e66641. [PMID: 23826107 PMCID: PMC3691178 DOI: 10.1371/journal.pone.0066641] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/08/2013] [Indexed: 11/30/2022] Open
Abstract
The aim of this work was to investigate the association between polymorphisms located at the HSP90AA1 ovine gene promoter and gene expression rate under different environmental conditions, using a mixed model approach. Blood samples from 120 unrelated rams of the Manchega sheep breed were collected at three time points differing in environmental conditions. Rams were selected on the basis of their genotype for the transversion G/C located 660 base pairs upstream the gene transcription initiation site. Animals were also genotyped for another set of 6 SNPs located at the gene promoter. Two SNPs, G/C−660 and A/G−444, were associated with gene overexpression resulting from heat stress. The composed genotype CC−660-AG−444 was the genotype having the highest expression rates with fold changes ranging from 2.2 to 3.0. The genotype AG−522 showed the highest expression levels under control conditions with a fold change of 1.4. Under these conditions, the composed genotype CC−601-TT−524-AG−522-TT−468 is expected to be correlated with higher basal expression of the gene according to genotype frequencies and linkage disequilibrium values. Some putative transcription factors were predicted for binding sites where the SNPs considered are located. Since the expression rate of the gene under alternative environmental conditions seems to depend on the composed genotype of several SNPs located at its promoter, a cooperative regulation of the transcription of the HSP90AA1 gene could be hypothesized. Nevertheless epigenetic regulation mechanisms cannot be discarded.
Collapse
Affiliation(s)
- Judit Salces-Ortiz
- Dpto. Mejora Genética animal. Inst. Nac. Invest. Agrarias y Alimentarias, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
169
|
Astakhova LN, Zatsepina OG, Przhiboro AA, Evgen'ev MB, Garbuz DG. Novel arrangement and comparative analysis of hsp90 family genes in three thermotolerant species of Stratiomyidae (Diptera). INSECT MOLECULAR BIOLOGY 2013; 22:284-296. [PMID: 23521688 DOI: 10.1111/imb.12020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The heat shock proteins belonging to the Hsp90 family (Hsp83 in Diptera) play a crucial role in the protection of cells due to their chaperoning functions. We sequenced hsp90 genes from three species of the family Stratiomyidae (Diptera) living in thermally different habitats and characterized by extraordinarily high thermotolerance. The sequence variation and structure of the hsp90 family genes were compared with previously described features of hsp70 copies isolated from the same species. Two functional hsp83 genes were found in the species studied, that are arranged in tandem orientation at least in one of them. This organization was not previously described. Stratiomyidae hsp83 genes share a high level of identity with hsp83 of Drosophila, and the deduced protein possesses five conserved amino acid sequence motifs characteristic of the Hsp90 family as well as the C-terminus MEEVD sequence characteristic of the cytosolic isoform. A comparison of the hsp83 promoters of two Stratiomyidae species from thermally contrasting habitats demonstrated that while both species contain canonical heat shock elements in the same position, only one of the species contains functional GAF-binding elements. Our data indicate that in the same species, hsp83 family genes show a higher evolution rate than the hsp70 family.
Collapse
|
170
|
Singh C, Atri N. Chemo-informatic design of antibiotic geldenamycin analogs to target stress proteins HSP90 of pathogenic protozoan parasites. Bioinformation 2013; 9:329-33. [PMID: 23750075 PMCID: PMC3669783 DOI: 10.6026/97320630009329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 03/25/2013] [Indexed: 11/30/2022] Open
Abstract
Stress proteins HSP90 (Heat shock proteins) are essential molecular chaperones involved in signal transduction, cell cycle control,
stress management, folding and degradation of proteins. HSP90 have been found in a variety of organisms including pathogens
suggesting that they are ancient and conserved proteins. Here, using molecular modeling and docking protocols, antibiotic
Geldenamycin and its analog are targeted to the HSP90 homolog proteins of pathogenic protozoans Plasmodium falciparum,
Leishmania donovani, Trypanosoma brucei and Entamoeba Histolytica. The designed analogs of geldenamycin have shown drug like
property with improved binding affinity to their targets. A decrease in insilico affinity of the analogs for the Human HSP90 target
indicates that they can be used as potential drug candidates.
Collapse
Affiliation(s)
- Chaya Singh
- Department of Bioinformatics (MMV), Banaras Hindu University, India
| | | |
Collapse
|
171
|
Hill JA, Ammar R, Torti D, Nislow C, Cowen LE. Genetic and genomic architecture of the evolution of resistance to antifungal drug combinations. PLoS Genet 2013; 9:e1003390. [PMID: 23593013 PMCID: PMC3617151 DOI: 10.1371/journal.pgen.1003390] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/30/2013] [Indexed: 12/19/2022] Open
Abstract
The evolution of drug resistance in fungal pathogens compromises the efficacy of the limited number of antifungal drugs. Drug combinations have emerged as a powerful strategy to enhance antifungal efficacy and abrogate drug resistance, but the impact on the evolution of drug resistance remains largely unexplored. Targeting the molecular chaperone Hsp90 or its downstream effector, the protein phosphatase calcineurin, abrogates resistance to the most widely deployed antifungals, the azoles, which inhibit ergosterol biosynthesis. Here, we evolved experimental populations of the model yeast Saccharomyces cerevisiae and the leading human fungal pathogen Candida albicans with azole and an inhibitor of Hsp90, geldanamycin, or calcineurin, FK506. To recapitulate a clinical context where Hsp90 or calcineurin inhibitors could be utilized in combination with azoles to render resistant pathogens responsive to treatment, the evolution experiment was initiated with strains that are resistant to azoles in a manner that depends on Hsp90 and calcineurin. Of the 290 lineages initiated, most went extinct, yet 14 evolved resistance to the drug combination. Drug target mutations that conferred resistance to geldanamycin or FK506 were identified and validated in five evolved lineages. Whole-genome sequencing identified mutations in a gene encoding a transcriptional activator of drug efflux pumps, PDR1, and a gene encoding a transcriptional repressor of ergosterol biosynthesis genes, MOT3, that transformed azole resistance of two lineages from dependent on calcineurin to independent of this regulator. Resistance also arose by mutation that truncated the catalytic subunit of calcineurin, and by mutation in LCB1, encoding a sphingolipid biosynthetic enzyme. Genome analysis revealed extensive aneuploidy in four of the C. albicans lineages. Thus, we identify molecular determinants of the transition of azole resistance from calcineurin dependence to independence and establish multiple mechanisms by which resistance to drug combinations evolves, providing a foundation for predicting and preventing the evolution of drug resistance. Fungal infections are a leading cause of mortality worldwide and are difficult to treat due to the limited number of antifungal drugs, whose effectiveness is compromised by the emergence of drug resistance. A powerful strategy to combat drug resistance is combination therapy. Inhibiting the molecular chaperone Hsp90 or its downstream effector calcineurin cripples fungal stress responses and abrogates drug resistance. Here we provide the first analysis of the genetic and genomic changes that underpin the evolution of resistance to antifungal drug combinations in the leading human fungal pathogen, Candida albicans, and model yeast, Saccharomyces cerevisiae. We evolved experimental populations with combinations of inhibitors of Hsp90 or calcineurin and the most widely used antifungal in the clinic, the azoles, which inhibit ergosterol biosynthesis. We harnessed whole-genome sequencing to identify diverse resistance mutations among the 14 lineages that evolved resistance to the drug combination. These included mutations in genes encoding the drug targets, a transcriptional regulator of multidrug transporters, a transcriptional repressor of ergosterol biosynthesis enzymes, and a regulator of sphingolipid biosynthesis. We also identified extensive aneuploidies in several C. albicans lineages. Our study reveals multiple mechanisms by which resistance to drug combination can evolve, suggesting new strategies to combat drug resistance.
Collapse
Affiliation(s)
- Jessica A. Hill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ron Ammar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Dax Torti
- Donnelly Sequencing Centre, University of Toronto, Toronto, Ontario, Canada
| | - Corey Nislow
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
172
|
Prado-Alvarez M, Chollet B, Couraleau Y, Morga B, Arzul I. Heat Shock Protein 90 of Bonamia ostreae
: Characterization and Possible Correlation with Infection of the Flat Oyster, Ostrea edulis. J Eukaryot Microbiol 2013; 60:257-66. [DOI: 10.1111/jeu.12031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/07/2012] [Accepted: 12/07/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Maria Prado-Alvarez
- IFREMER; Laboratoire de Génétique et Pathologie; Avenue de Mus de Loup 17390 La Tremblade France
| | - Bruno Chollet
- IFREMER; Laboratoire de Génétique et Pathologie; Avenue de Mus de Loup 17390 La Tremblade France
| | - Yann Couraleau
- IFREMER; Laboratoire de Génétique et Pathologie; Avenue de Mus de Loup 17390 La Tremblade France
| | - Benjamin Morga
- IFREMER; Laboratoire de Génétique et Pathologie; Avenue de Mus de Loup 17390 La Tremblade France
| | - Isabelle Arzul
- IFREMER; Laboratoire de Génétique et Pathologie; Avenue de Mus de Loup 17390 La Tremblade France
| |
Collapse
|
173
|
Diversity in the origins of proteostasis networks--a driver for protein function in evolution. Nat Rev Mol Cell Biol 2013; 14:237-48. [PMID: 23463216 DOI: 10.1038/nrm3542] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the sequence of a protein largely determines its function, proteins can adopt different folding states in response to changes in the environment, some of which may be deleterious to the organism. All organisms--Bacteria, Archaea and Eukarya--have evolved a protein homeostasis, or proteostasis, network comprising chaperones and folding factors, degradation components, signalling pathways and specialized compartmentalized modules that manage protein folding in response to environmental stimuli and variation. Surveying the origins of proteostasis networks reveals that they have co-evolved with the proteome to regulate the physiological state of the cell, reflecting the unique stresses that different cells or organisms experience, and that they have a key role in driving evolution by closely managing the link between the phenotype and the genotype.
Collapse
|
174
|
Inoue H, Li M, Schnell DJ. An essential role for chloroplast heat shock protein 90 (Hsp90C) in protein import into chloroplasts. Proc Natl Acad Sci U S A 2013; 110:3173-8. [PMID: 23382192 PMCID: PMC3581895 DOI: 10.1073/pnas.1219229110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chloroplast heat shock protein 90 (Hsp90C) represents a highly conserved subfamily of the Hsp90 family of molecular chaperones whose function has not been defined. We identified Hsp90C as a component that interacts with import intermediates of nuclear-encoded preproteins during posttranslational import into isolated chloroplasts. Hsp90C was specifically coprecipitated with a complex of protein import components, including Tic110, Tic40, Toc75, Tic22, and the stromal chaperones, Hsp93 and Hsp70. Radicicol, an inhibitor of Hsp90 ATPase activity, reversibly inhibited the import of a variety of preproteins during translocation across the inner envelope membrane, indicating that Hsp90C functions in membrane translocation into the organelle. Hsp90C is encoded by a single gene in Arabidopsis thaliana, and insertion mutations in the Hsp90C gene are embryo lethal, indicating an essential function for the chaperone in plant viability. On the basis of these results, we propose that Hsp90C functions within a chaperone complex in the chloroplast stroma to facilitate membrane translocation during protein import into the organelle.
Collapse
Affiliation(s)
- Hitoshi Inoue
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | | | - Danny J. Schnell
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
175
|
Piper PW, Millson SH. Spotlight on the microbes that produce heat shock protein 90-targeting antibiotics. Open Biol 2012; 2:120138. [PMID: 23271830 PMCID: PMC3603443 DOI: 10.1098/rsob.120138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a promising cancer drug target as a molecular chaperone critical for stabilization and activation of several of the oncoproteins that drive cancer progression. Its actions depend upon its essential ATPase, an activity fortuitously inhibited with a very high degree of selectivity by natural antibiotics: notably the actinomycete-derived benzoquinone ansamycins (e.g. geldanamycin) and certain fungal-derived resorcyclic acid lactones (e.g. radicicol). The molecular interactions made by these antibiotics when bound within the ADP/ATP-binding site of Hsp90 have served as templates for the development of several synthetic Hsp90 inhibitor drugs. Much attention now focuses on the clinical trials of these drugs. However, because microbes have evolved antibiotics to target Hsp90, it is probable that they often exploit Hsp90 inhibition when interacting with each other and with plants. Fungi known to produce Hsp90 inhibitors include mycoparasitic, as well as plant-pathogenic, endophytic and mycorrhizal species. The Hsp90 chaperone may, therefore, be a prominent target in establishing a number of mycoparasitic (interfungal), fungal pathogen–plant and symbiotic fungus–plant relationships. Furthermore the Hsp90 family proteins of the microbes that produce Hsp90 inhibitor antibiotics are able to reveal how drug resistance can arise by amino acid changes in the highly conserved ADP/ATP-binding site of Hsp90.
Collapse
Affiliation(s)
- Peter W Piper
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| | | |
Collapse
|
176
|
Abstract
Heat-shock protein 90 (Hsp90) is an ubiquitous chaperone that is essential for cell function in that it promotes client-protein folding and stabilization. Its function is tightly controlled by an ATP-dependent large conformational transition between the open and closed states of the Hsp90 dimer. The underlying allosteric pathway has remained largely unknown, but it is revealed here in atomistic detail for the Escherichia coli homolog HtpG. Using force-distribution analysis based on molecular-dynamics simulations (>1 μs in total), we identify an internal signaling pathway that spans from the nucleotide-binding site to an ~2.3-nm-distant region in the HtpG middle domain, that serves as a dynamic hinge region, and to a putative client-protein-binding site in the middle domain. The force transmission is triggered by ATP capturing a magnesium ion and thereby rotating and bending a proximal long α-helix, which represents the major force channel into the middle domain. This allosteric mechanism is, with statistical significance, distinct from the dynamics in the ADP and apo states. Tracking the distribution of forces is likely to be a promising tool for understanding and guiding experiments of complex allosteric proteins in general.
Collapse
Affiliation(s)
- Christian Seifert
- Molecular Biomechanics, Heidelberger Institut für Theoretische Studien gGmbH, Heidelberg, Germany
| | | |
Collapse
|
177
|
Zagouri F, Bournakis E, Koutsoukos K, Papadimitriou CA. Heat shock protein 90 (hsp90) expression and breast cancer. Pharmaceuticals (Basel) 2012; 5:1008-20. [PMID: 24280702 PMCID: PMC3816649 DOI: 10.3390/ph5091008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/30/2012] [Accepted: 09/10/2012] [Indexed: 01/08/2023] Open
Abstract
Hsp90 is an abundant protein in mammalian cells. It forms several discrete complexes, each containing distinct groups of co-chaperones that assist protein folding and refolding during stress, protein transport and degradation. It interacts with a variety of proteins that play key roles in breast neoplasia including estrogen receptors, tumor suppressor p53 protein, angiogenesis transcription factor HIF-1alpha, antiapoptotic kinase Akt, Raf-1 MAP kinase and a variety of receptor tyrosine kinases of the erbB family. Elevated Hsp90 expression has been documented in breast ductal carcinomas contributing to the proliferative activity of breast cancer cells; whilst a significantly decreased Hsp90 expression has been shown in infiltrative lobular carcinomas and lobular neoplasia. Hsp90 overexpression has been proposed as a component of a mechanism through which breast cancer cells become resistant to various stress stimuli. Therefore, pharmacological inhibition of HSPs can provide therapeutic opportunities in the field of cancer treatment. 17-allylamino,17-demethoxygeldanamycin is the first Hsp90 inhibitor that has clinically been investigated in phase II trial, yielding promising results in patients with HER2-overexpressing metastatic breast cancer, whilst other Hsp90 inhibitors (retaspimycin HCL, NVP-AUY922, NVP-BEP800, CNF2024/BIIB021, SNX-5422, STA-9090, etc.) are currently under evaluation.
Collapse
Affiliation(s)
- Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, University of Athens, 80 Vas. Sofias Ave, 11528 Athens, Greece.
| | | | | | | |
Collapse
|
178
|
Khelaifia S, Drancourt M. Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology. Clin Microbiol Infect 2012; 18:841-8. [DOI: 10.1111/j.1469-0691.2012.03913.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
179
|
Liu H, Chen H, Jing J, Ma X. Cloning and characterization of the HSP90 beta gene from Tanichthys albonubes Lin (Cyprinidae): effect of copper and cadmium exposure. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:745-756. [PMID: 21915694 DOI: 10.1007/s10695-011-9556-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 09/04/2011] [Indexed: 05/31/2023]
Abstract
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone important in the maturation of a broad spectrum of proteins. In order to evaluate the effect of copper (Cu(2+)) and cadmium (Cd(2+)) on the expression of HSP90 from Tanichthys albonubes (designated TaHSP90), the full-length complementary DNA (cDNA) of TaHSP90 was cloned using reverse transcription PCR and rapid amplification of cDNA ends (RACE) techniques. A 2,687-bp sequence was sequenced and consisted of an open reading frame (ORF) of 2,181 bp encoding a polypeptide of 727 amino acids with five HSP90 family signatures. Homologous analysis revealed that TaHSP90 gene shared high similarity with other known HSP90 genes and belonged to HSP90β subtype. Fluorescent real-time quantitative PCR was used to examine the expression pattern of TaHSP90β mRNA in different tissues (liver, muscle, gill, fin, eye, ovary, intestine and brain), and the result indicated that TaHSP90β was widely expressed in all examined tissues at different levels. Sensitivity of TaHSP90β to copper and cadmium was examined by exposing fish to different concentrations of Cu(2+) (0, 13.50 and 27.00 μg/L) and Cd(2+) (0, 1.15, 2.31 mg/L) for 24, 48, 72 and 96 h, respectively. The copper treatment induced TaHSP90β expression slight increase only at 24 and 48 h, while cadmium treatment caused slight down-regulation of TaHSP90β only 72 and 96 h. Our data suggest that the cloning and expression analysis of T. albonubes HSP90β gene provided useful molecular information of T. albonubes responses in stress conditions and potential ways to monitor the chronic stressors in T. albonubes culture environments.
Collapse
Affiliation(s)
- Haichao Liu
- College of Fisheries, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, People's Republic of China
| | | | | | | |
Collapse
|
180
|
Navarro B, Gisel A, Rodio ME, Delgado S, Flores R, Di Serio F. Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:991-1003. [PMID: 22332758 DOI: 10.1111/j.1365-313x.2012.04940.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
How viroids, tiny non-protein-coding RNAs (~250-400 nt), incite disease is unclear. One hypothesis is that viroid-derived small RNAs (vd-sRNAs; 21-24 nt) resulting from the host defensive response, via RNA silencing, may target for cleavage cell mRNAs and trigger a signal cascade, eventually leading to symptoms. Peach latent mosaic viroid (PLMVd), a chloroplast-replicating viroid, is particularly appropriate to tackle this question because it induces an albinism (peach calico, PC) strictly associated with variants containing a specific 12-14-nt hairpin insertion. By dissecting albino and green leaf sectors of Prunus persica (peach) seedlings inoculated with PLMVd natural and artificial variants, and cloning their progeny, we have established that the hairpin insertion sequence is involved in PC. Furthermore, using deep sequencing, semi-quantitative RT-PCR and RNA ligase-mediated rapid amplification of cDNA ends (RACE), we have determined that two PLMVd-sRNAs containing the PC-associated insertion (PC-sRNA8a and PC-sRNA8b) target for cleavage the mRNA encoding the chloroplastic heat-shock protein 90 (cHSP90), thus implicating RNA silencing in the modulation of host gene expression by a viroid. Chloroplast malformations previously reported in PC-expressing tissues are consistent with the downregulation of cHSP90, which participates in chloroplast biogenesis and plastid-to-nucleus signal transduction in Arabidopsis. Besides PC-sRNA8a and PC-sRNA8b, both deriving from the less-abundant PLMVd (-) strand, we have identified other PLMVd-sRNAs potentially targeting peach mRNAs. These results also suggest that sRNAs derived from other PLMVd regions may downregulate additional peach genes, ultimately resulting in other symptoms or in a more favorable host environment for viroid infection.
Collapse
Affiliation(s)
- Beatriz Navarro
- Istituto di Virologia Vegetale-CNR, Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
181
|
Tiffany-Castiglioni E, Qian Y. ER chaperone–metal interactions: Links to protein folding disorders. Neurotoxicology 2012; 33:545-57. [DOI: 10.1016/j.neuro.2012.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 01/09/2023]
|
182
|
Li J, Sun L, Xu C, Yu F, Zhou H, Zhao Y, Zhang J, Cai J, Mao C, Tang L, Xu Y, He J. Structure insights into mechanisms of ATP hydrolysis and the activation of human heat-shock protein 90. Acta Biochim Biophys Sin (Shanghai) 2012; 44:300-6. [PMID: 22318716 DOI: 10.1093/abbs/gms001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The activation of molecular chaperone heat-shock protein 90 (Hsp90) is dependent on ATP binding and hydrolysis, which occurs in the N-terminal domains of protein. Here, we have determined three crystal structures of the N-terminal domain of human Hsp90 in native and in complex with ATP and ATP analog, providing a clear view of the catalytic mechanism of ATP hydrolysis by Hsp90. Additionally, the binding of ATP leads the N-terminal domains to be an intermediate state that could be used to partially explain why the isolated N-terminal domain of Hsp90 has very weak ATP hydrolytic activity.
Collapse
Affiliation(s)
- Jian Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Ma KX, Chen GW, Liu DZ. cDNA cloning of heat shock protein 90 gene and protein expression pattern in response to heavy metal exposure and thermal stress in planarian Dugesia japonica. Mol Biol Rep 2012; 39:7203-10. [DOI: 10.1007/s11033-012-1552-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 01/24/2012] [Indexed: 11/28/2022]
|
184
|
Campo D, García-Vázquez E. Evolution in the block: common elements of 5S rDNA organization and evolutionary patterns in distant fish genera. Genome 2011; 55:33-44. [PMID: 22171996 DOI: 10.1139/g11-074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 5S rDNA is organized in the genome as tandemly repeated copies of a structural unit composed of a coding sequence plus a nontranscribed spacer (NTS). The coding region is highly conserved in the evolution, whereas the NTS vary in both length and sequence. It has been proposed that 5S rRNA genes are members of a gene family that have arisen through concerted evolution. In this study, we describe the molecular organization and evolution of the 5S rDNA in the genera Lepidorhombus and Scophthalmus (Scophthalmidae) and compared it with already known 5S rDNA of the very different genera Merluccius (Merluccidae) and Salmo (Salmoninae), to identify common structural elements or patterns for understanding 5S rDNA evolution in fish. High intra- and interspecific diversity within the 5S rDNA family in all the genera can be explained by a combination of duplications, deletions, and transposition events. Sequence blocks with high similarity in all the 5S rDNA members across species were identified for the four studied genera, with evidences of intense gene conversion within noncoding regions. We propose a model to explain the evolution of the 5S rDNA, in which the evolutionary units are blocks of nucleotides rather than the entire sequences or single nucleotides. This model implies a "two-speed" evolution: slow within blocks (homogenized by recombination) and fast within the gene family (diversified by duplications and deletions).
Collapse
Affiliation(s)
- Daniel Campo
- Departamento de Biologia Funcional, Universidad de Oviedo, Spain
| | | |
Collapse
|
185
|
High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system. Proc Natl Acad Sci U S A 2011; 108:20136-41. [PMID: 22114197 DOI: 10.1073/pnas.1113519108] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prokaryotic DNA arrays arranged as clustered regularly interspaced short palindromic repeats (CRISPR), along with their associated proteins, provide prokaryotes with adaptive immunity by RNA-mediated targeting of alien DNA or RNA matching the sequences between the repeats. Here, we present a thorough screening system for the identification of bacterial proteins participating in immunity conferred by the Escherichia coli CRISPR system. We describe the identification of one such protein, high-temperature protein G (HtpG), a homolog of the eukaryotic chaperone heat-shock protein 90. We demonstrate that in the absence of htpG, the E. coli CRISPR system loses its suicidal activity against λ prophage and its ability to provide immunity from lysogenization. Transcomplementation of htpG restores CRISPR activity. We further show that inactivity of the CRISPR system attributable to htpG deficiency can be suppressed by expression of Cas3, a protein that is essential for its activity. Accordingly, we also find that the steady-state level of overexpressed Cas3 is significantly enhanced following HtpG expression. We conclude that HtpG is a newly identified positive modulator of the CRISPR system that is essential for maintaining functional levels of Cas3.
Collapse
|
186
|
Marzec M, Eletto D, Argon Y. GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:774-87. [PMID: 22079671 DOI: 10.1016/j.bbamcr.2011.10.013] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 02/06/2023]
Abstract
Glucose-regulated protein 94 is the HSP90-like protein in the lumen of the endoplasmic reticulum and therefore it chaperones secreted and membrane proteins. It has essential functions in development and physiology of multicellular organisms, at least in part because of this unique clientele. GRP94 shares many biochemical features with other HSP90 proteins, in particular its domain structure and ATPase activity, but also displays distinct activities, such as calcium binding, necessitated by the conditions in the endoplasmic reticulum. GRP94's mode of action varies from the general HSP90 theme in the conformational changes induced by nucleotide binding, and in its interactions with co-chaperones, which are very different from known cytosolic co-chaperones. GRP94 is more selective than many of the ER chaperones and the basis for this selectivity remains obscure. Recent development of molecular tools and functional assays has expanded the spectrum of clients that rely on GRP94 activity, but it is still not clear how the chaperone binds them, or what aspect of folding it impacts. These mechanistic questions and the regulation of GRP94 activity by other proteins and by post-translational modification differences pose new questions and present future research avenues. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
Affiliation(s)
- Michal Marzec
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | |
Collapse
|
187
|
Polymorphisms in the bovine HSP90AB1 gene are associated with heat tolerance in Thai indigenous cattle. Trop Anim Health Prod 2011; 44:921-8. [PMID: 22008953 PMCID: PMC3289787 DOI: 10.1007/s11250-011-9989-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2011] [Indexed: 01/05/2023]
Abstract
Heat shock proteins act as molecular chaperones that have preferentially been transcribed in response to severe perturbations of the cellular homeostasis such as heat stress. Here the traits respiration rate (RR), rectal temperature (RT), pack cell volume (PCV) and the individual heat tolerance coefficient (HTC) were recorded as physiological responses on heat stress (environmental temperatures) in Bos taurus (crossbred Holstein Friesian; HF) and B. indicus (Thai native cattle: White Lamphun; WL and Mountain cattle; MT) animals (n = 47) in Thailand. Polymorphisms of the heat shock protein 90-kDa beta gene (HSP90AB1) were evaluated by comparative sequencing. Nine single nucleotide polymorphisms (SNP) were identified, i.e. three in exons 10 and 11, five in introns 8, 9, 10 and 11, and one in the 3′UTR. The exon 11 SNP g.5082C>T led to a missense mutation (alanine to valine). During the period of extreme heat (in the afternoon) RR and RT were elevated in each of the three breeds, whereas the PCV decreased. Mountain cattle and White Lamphun heifers recorded significantly better physiologic parameters (p < 0.05) in all traits considered, including or particularly HTC than Holstein Friesian heifers. The association analysis revealed that the T allele at SNP g.4338T>C within intron 3 improved the heat tolerance (p < 0.05). Allele T was exclusively found in White Lamphun animals and to 84% in Mountain cattle. Holstein Friesian heifers revealed an allele frequency of only 18%. Polymorphisms within HSP90AB1 were not causative for the physiological responses; however, we propose that they should at least be used as genetic markers to select appropriate breeds for hot climates.
Collapse
|
188
|
Vidale P, Piras FM, Nergadze SG, Bertoni L, Verini-Supplizi A, Adelson D, Guérin G, Giulotto E. Chromosomal assignment of six genes (EIF4G3, HSP90, RBBP6, IL8, TERT, and TERC) in four species of the genus Equus. Anim Biotechnol 2011; 22:119-23. [PMID: 21774619 DOI: 10.1080/10495398.2011.575300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We mapped six genes (EIF4G3, HSP90, RBBP6, IL8, TERT, and TERC) on the chromosomes of Equus caballus, Equus asinus, Equus grevyi, and Equus burchelli by fluorescence in situ hybridization. Our results add six type I markers to the cytogenetic map of these species and provide new information on the comparative genomics of the genus Equus.
Collapse
Affiliation(s)
- Pamela Vidale
- Dipartimento di Genetica e Microbiologia Adriano Buzzati-Traverso, Università di Pavia, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Evolution and function of diverse Hsp90 homologs and cochaperone proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:607-13. [PMID: 22008467 DOI: 10.1016/j.bbamcr.2011.09.020] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 01/02/2023]
Abstract
Members of the Hsp90 molecular chaperone family are found in the cytosol, ER, mitochondria and chloroplasts of eukaryotic cells, as well as in bacteria. These diverse family members cooperate with other proteins, such as the molecular chaperone Hsp70, to mediate protein folding, activation and assembly into multiprotein complexes. All examined Hsp90 homologs exhibit similar ATPase rates and undergo similar conformational changes. One of the key differences is that cytosolic Hsp90 interacts with a large number of cochaperones that regulate the ATPase activity of Hsp90 or have other functions, such as targeting clients to Hsp90. Diverse Hsp90 homologs appear to chaperone different types of client proteins. This difference may reflect either the pool of clients requiring Hsp90 function or the requirement for cochaperones to target clients to Hsp90. This review discusses known functions, similarities and differences between Hsp90 family members and how cochaperones are known to affect these functions. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
190
|
Hsp90 in non-mammalian metazoan model systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:712-21. [PMID: 21983200 DOI: 10.1016/j.bbamcr.2011.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 01/26/2023]
Abstract
The molecular chaperone Hsp90 has been discovered in the heat-shock response of the fruit fly more than 30years ago. Today, it is becoming clear that Hsp90 is in the middle of a regulatory system, participating in the modulation of many essential client proteins and signaling pathways. Exerting these activities, Hsp90 works together with about a dozen of cochaperones. Due to their organismal simplicity and the possibility to influence their genetics on a large scale, many studies have addressed the function of Hsp90 in several multicellular model systems. Defined pathways involving Hsp90 client proteins have been identified in the metazoan model systems of Caenorhabditis elegans, Drosophila melanogaster and the zebrafish Danio rerio. Here, we summarize the functions of Hsp90 during muscle maintenance, development of phenotypic traits and the involvement of Hsp90 in stress responses, all of which were largely uncovered using the model organisms covered in this review. These findings highlight the many specific and general actions of the Hsp90 chaperone machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
191
|
Millson SH, Chua CS, Roe SM, Polier S, Solovieva S, Pearl LH, Sim TS, Prodromou C, Piper PW. Features of the Streptomyces hygroscopicus HtpG reveal how partial geldanamycin resistance can arise with mutation to the ATP binding pocket of a eukaryotic Hsp90. FASEB J 2011; 25:3828-37. [PMID: 21778327 DOI: 10.1096/fj.11-188821] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Much attention is focused on the benzoquinone ansamycins as anticancer agents, with several derivatives of the natural product geldanamycin (GdA) now in clinical trials. These drugs are selective inhibitors of Hsp90, a molecular chaperone vital for many of the activities that drive cancer progression. Mutational changes to their interaction site, the extremely conserved ATP binding site of Hsp90, would mostly be predicted to inactivate the chaperone. As a result, drug resistance should not arise readily this way. Nevertheless, Streptomyces hygroscopicus, the actinomycete that produces GdA, has evolved an Hsp90 family protein (HtpG) that lacks GdA binding. It is altered in certain of the highly conserved amino acids making contacts to this antibiotic in crystal structures of GdA bound to eukaryotic forms of Hsp90. Two of these amino acid changes, located on one side of the nucleotide-binding cleft, weakened GdA/Hsp90 binding and conferred partial GdA resistance when inserted into the endogenous Hsp90 of yeast cells. Crystal structures revealed their main effect to be a weakening of interactions with the C-12 methoxy group of the GdA ansamycin ring. This is the first study to demonstrate that partial GdA resistance is possible by mutation within the ATP binding pocket of Hsp90.
Collapse
Affiliation(s)
- Stefan H Millson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Zhang XZ, Dai LP, Wu ZH, Jian JC, Lu YS. Expression pattern of heat shock protein 90 gene of humphead snapper Lutjanus sanguineus during pathogenic Vibrio harveyi stress. JOURNAL OF FISH BIOLOGY 2011; 79:178-193. [PMID: 21722118 DOI: 10.1111/j.1095-8649.2011.03012.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The full-length cDNA of heat shock protein 90 (HSP90) of humphead snapper Lutjanus sanguineus, designated as rsHSP90, was cloned by rapid amplification of complementary (c)DNA ends (RACE) techniques with the primers designed from the known expressed sequence tag (EST) sequence identified from the subtracted cDNA library of the head kidney of L. sanguineus. Sequence analysis showed that the full-length cDNA of rsHSP90 was 2745 bp, containing a 5' terminal untranslated region (UTR) of 99 bp, a 3' terminal UTR of 471 bp and an open reading frame (ORF) of 2175 bp encoding a polypeptide of 725 amino acids. On the basis of the deduced amino acid sequence, the theoretical molecular mass of rsHSP90 was calculated to be 83·18 kDa with an isoelectric point of 4·79. Moreover, five classical HSP90 family signatures were found in the amino acids sequence of rsHSP90 by PredictProtein. Basic local-alignment search-tool (BLAST) analysis revealed that the amino acids sequence of rsHSP90 had the highest similarity of 97% when compared with other HSP90s. Fluorescent real-time quantitative reverse-transcription (RT)-PCR was used to examine the expression pattern of rsHSP90 in eight kinds of tissues and organs of L. sanguineus challenged with Vibrio harveyi. There was a clear time-dependent expression pattern of rsHSP90 in head kidney, spleen and thymus after bacterial challenge and the expression of messenger (m)RNA reached the maximum level at the time points of 9, 15 and 24 h, respectively. The up-regulated mRNA expression of rsHSP90 in L. sanguineus after bacterial challenge indicated that rsHSP90 was inducible and might be involved in immune response.
Collapse
Affiliation(s)
- X Z Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | | | | | | | | |
Collapse
|
193
|
Wang GF, Wei X, Fan R, Zhou H, Wang X, Yu C, Dong L, Dong Z, Wang X, Kang Z, Ling H, Shen QH, Wang D, Zhang X. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance. THE NEW PHYTOLOGIST 2011; 191:418-431. [PMID: 21488877 DOI: 10.1111/j.1469-8137.2011.03715.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Heat shock protein 90 (Hsp90) molecular chaperones play important roles in plant growth and responses to environmental stimuli. However, little is known about the genes encoding Hsp90s in common wheat. Here, we report genetic and functional analysis of the genes specifying cytosolic Hsp90s in this species. Three groups of homoeologous genes (TaHsp90.1, TaHsp90.2 and TaHsp90.3), encoding three types of cytosolic Hsp90, were isolated. The loci containing TaHsp90.1, TaHsp90.2 and TaHsp90.3 genes were assigned to groups 2, 7 and 5 chromosomes, respectively. TaHsp90.1 genes exhibited higher transcript levels in the stamen than in the leaf, root and culm. TaHsp90.2 and TaHsp90.3 genes were more ubiquitously transcribed in the vegetative and reproductive organs examined. Decreasing the expression of TaHsp90.1 genes through virus-induced gene silencing (VIGS) caused pronounced inhibition of wheat seedling growth, whereas the suppression of TaHsp90.2 or TaHsp90.3 genes via VIGS compromised the hypersensitive resistance response of the wheat variety Suwon 11 to stripe rust fungus. Our work represents the first systematic determination of wheat genes encoding cytosolic Hsp90s, and provides useful evidence for the functional involvement of cytosolic Hsp90s in the control of seedling growth and disease resistance in common wheat.
Collapse
Affiliation(s)
- Guan-Feng Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Xuening Wei
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Renchun Fan
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huanbin Zhou
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Xianping Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunmei Yu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Lingli Dong
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Zhenying Dong
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojie Wang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A & F University, Yangling 712100, China
| | - Zhensheng Kang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A & F University, Yangling 712100, China
| | - Hongqing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian-Hua Shen
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Daowen Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangqi Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
194
|
Aruda AM, Baumgartner MF, Reitzel AM, Tarrant AM. Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:665-675. [PMID: 21419129 DOI: 10.1016/j.jinsphys.2011.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 05/30/2023]
Abstract
Calanoid copepods, such as Calanus finmarchicus, are a key component of marine food webs. C. finmarchicus undergo a facultative diapause during juvenile development, which profoundly affects their seasonal distribution and availability to their predators. The current ignorance of how copepod diapause is regulated limits understanding of copepod population dynamics, distribution, and ecosystem interactions. Heat shock proteins (Hsps) are a superfamily of molecular chaperones characteristically upregulated in response to stress conditions and frequently associated with diapause in other taxa. In this study, 8 heat shock proteins were identified in C. finmarchicus C5 copepodids (Hsp21, Hsp22, p26, Hsp90, and 4 forms of Hsp70), and expression of these transcripts was characterized in response to handling stress and in association with diapause. Hsp21, Hsp22, and Hsp70A (cytosolic subfamily) were induced by handling stress. Expression of Hsp70A was also elevated in shallow active copepodids relative to deep diapausing copepodids, which may reflect induction of this gene by varied stressors in active animals. In contrast, expression of Hsp22 was elevated in deep diapausing animals; Hsp22 may play a role both in short-term stress responses and in protecting proteins from degradation during diapause. Expression of most of the Hsps examined did not vary in response to diapause, perhaps because the diapause of C. finmarchicus is not associated with the extreme environmental conditions (e.g., freezing and desiccation) experienced by many other taxa, such as overwintering insects or Artemia cysts.
Collapse
Affiliation(s)
- Amalia M Aruda
- Biology Department, Woods Hole Oceanographic Institution, 45 Water Street, Mailstop 33, Woods Hole, MA 02543, USA.
| | | | | | | |
Collapse
|
195
|
García-Descalzo L, Alcazar A, Baquero F, Cid C. Identification of in vivo HSP90-interacting proteins reveals modularity of HSP90 complexes is dependent on the environment in psychrophilic bacteria. Cell Stress Chaperones 2011; 16:203-18. [PMID: 20890740 PMCID: PMC3059794 DOI: 10.1007/s12192-010-0233-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein 90 (HSP90) is a conserved molecular chaperone that functions as part of complexes in which different client proteins target it to diverse sets of substrates. In this paper, HSP90 complexes were investigated in γ-proteobacteria from mild (Shewanella oneidensis) and cold environments (Shewanella frigidimarina and Psychrobacter frigidicola), to determine changes in HSP90 interactions with client proteins in response to the adaptation to cold environments. HSP90 participation in cold adaptation was determined using the specific inhibitor 17-allylamino-geldanamycin. Then, HSP90 was immunoprecipitated from bacterial cultures, and the proteins in HSP90 complexes were analyzed by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. According to HSP90-associated protein analysis, only 15 common proteins were found in both species from the same genus, S. oneidensis and S. frigidimarina, whereas a significant higher number of common proteins were found in both psychrophilic species S. frigidimarina and P. frigidicola 21 (p < 0.001). Only two HSP90-interacting proteins, the chaperone proteins DnaK and GroEL, were common to the three species. Interestingly, some proteins related to energy metabolism (isocitrate lyase, succinyl-CoA synthetase, alcohol dehydrogenase, NAD(+) synthase, and malate dehydrogenase) and some translation factors only interacted with HSP90 in psychrophilic bacteria. We can conclude that HSP90 and HSP90-associated proteins might take part in the mechanism of adaptation to cold environments, and interestingly, organisms living in similar environments conserve similar potential HSP90 interactors in opposition to phylogenetically closely related organisms of the same genus but from different environments.
Collapse
Affiliation(s)
- Laura García-Descalzo
- Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Alberto Alcazar
- Department of Investigation, Hospital Ramon y Cajal, 28034 Madrid, Spain
| | - Fernando Baquero
- Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain
- Department of Microbiology, Hospital Ramon y Cajal, 28034 Madrid, Spain
| | - Cristina Cid
- Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| |
Collapse
|
196
|
Tomaselli S, Meli M, Plescia J, Zetta L, Altieri DC, Colombo G, Ragona L. Combined in silico and experimental approach for drug design: the binding mode of peptidic and non-peptidic inhibitors to hsp90 N-terminal domain. Chem Biol Drug Des 2011; 76:382-91. [PMID: 20925690 DOI: 10.1111/j.1747-0285.2010.01015.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heat shock protein 90 (Hsp90) is a prime target for antitumor therapies. The information obtained by molecular dynamics (MD) simulations is combined with NMR data to provide a cross-validated atomic resolution model of the complementary interactions of heat shock protein 90 with a peptidic (shepherdin) and a non-peptidic (5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside, AICAR) inhibitor, showing antiproliferative and proapoptotic activity in multiple tumor cell lines. This approach highlights the relevant role of imidazolic moiety in the interaction of both antagonist molecules. In 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside bound state, one conformation of those present in solution is selected, where imidazolic, H4 and H5 protons have a key role in defining a non-polar region contacting heat shock protein 90 surface. The dynamic equilibrium between N-type and S-type puckered forms of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside moiety is shown to be functional to inhibitor binding. The first experimental structural data on these inhibitors are presented and discussed as hints for future design of improved molecules.
Collapse
Affiliation(s)
- Simona Tomaselli
- Istituto per lo Studio Delle Macromolecole, Consiglio Nazionale delle Ricerche, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
197
|
Jarosz DF, Taipale M, Lindquist S. Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms. Annu Rev Genet 2011; 44:189-216. [PMID: 21047258 DOI: 10.1146/annurev.genet.40.110405.090412] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Changing a single nucleotide in a genome can have profound consequences under some conditions, but the same change can have no consequences under others. Indeed, organisms can be surprisingly robust to environmental and genetic perturbations. Yet, the mechanisms underlying such robustness are controversial. Moreover, how they might affect evolutionary change remains enigmatic. Here, we review the recently appreciated central role of protein homeostasis in buffering and potentiating genetic variation and discuss how these processes mediate the critical influence of the environment on the relationship between genotype and phenotype. Deciphering how robustness emerges from biological organization and the mechanisms by which it is overcome in changing environments will lead to a more complete understanding of both fundamental evolutionary processes and diverse human diseases.
Collapse
Affiliation(s)
- Daniel F Jarosz
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA.
| | | | | |
Collapse
|
198
|
Rosic NN, Pernice M, Dove S, Dunn S, Hoegh-Guldberg O. Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching. Cell Stress Chaperones 2011; 16:69-80. [PMID: 20821176 PMCID: PMC3024090 DOI: 10.1007/s12192-010-0222-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 02/07/2023] Open
Abstract
Unicellular photosynthetic dinoflagellates of the genus Symbiodinium are the most common endosymbionts of reef-building scleractinian corals, living in a symbiotic partnership known to be highly susceptible to environmental changes such as hyperthermic stress. In this study, we identified members of two major heat shock proteins (HSPs) families, Hsp70 and Hsp90, in Symbiodinium sp. (clade C) with full-length sequences that showed the highest similarity and evolutionary relationship with other known HSPs from dinoflagellate protists. Regulation of HSPs gene expression was examined in samples of the scleractinian coral Acropora millepora subjected to elevated temperatures progressively over 18 h (fast) and 120 h (gradual thermal stress). Moderate to severe heat stress at 26°C and 29°C (+3°C and +6°C above average sea temperature) resulted in an increase in algal Hsp70 gene expression from 39% to 57%, while extreme heat stress (+9°C) reduced Hsp70 transcript abundance by 60% (after 18 h) and 70% (after 120 h). Elevated temperatures decreased an Hsp90 expression under both rapid and gradual heat stress scenarios. Comparable Hsp70 and Hsp90 gene expression patterns were observed in Symbiodinium cultures and in hospite, indicating their independent regulation from the host. Differential gene expression profiles observed for Hsp70 and Hsp90 suggests diverse roles of these molecular chaperones during heat stress response. Reduced expression of the Hsp90 gene under heat stress can indicate a reduced role in inhibiting the heat shock transcription factor which may lead to activation of heat-inducible genes and heat acclimation.
Collapse
Affiliation(s)
- Nedeljka N Rosic
- Global Change Institute, The University of Queensland, St. Lucia, 4072, Queensland, Australia.
| | | | | | | | | |
Collapse
|
199
|
In Vitro Activity of Geldanamycin Derivatives against Schistosoma japonicum and Brugia malayi. J Parasitol Res 2010; 2010:716498. [PMID: 21253549 PMCID: PMC3021863 DOI: 10.1155/2010/716498] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/22/2010] [Accepted: 11/23/2010] [Indexed: 12/24/2022] Open
Abstract
Geldanamycin (GA) is a benzoquinone-containing ansamycin that inhibits heat shock protein 90. GA derivatives are being evaluated as anti-neoplastic agents, but their utility against parasites whose heat shock proteins (Hsps) have homology with human Hsp90 is unknown. The activities of four synthetic GA derivatives were tested in vitro using adult Brugia malayi and Schistosoma japonicum. Two of the derivatives, 17-N-allyl-17-demethoxygeldanamycin (17-AAG) and 17-N-(2-dimethylaminoethylamino)-17-demethoxygeldanamycin (DMAG), are currently in human clinical trials as anticancer drugs. Using concentrations considered safe peak plasma concentrations for these two derivatives, all four derivatives were active against both parasites. The less toxic derivative 17-AAG was as effective as GA in killing S. japonicum, and both DMAG and 5′-bromogeldanoxazinone were more active than 17-AAG against B. malayi. This work supports continued evaluation of ansamycin derivatives as broad spectrum antiparasitic agents.
Collapse
|
200
|
Reddy PS, Thirulogachandar V, Vaishnavi CS, Aakrati A, Sopory SK, Reddy MK. Molecular characterization and expression of a gene encoding cytosolic Hsp90 from Pennisetum glaucum and its role in abiotic stress adaptation. Gene 2010; 474:29-38. [PMID: 21185362 DOI: 10.1016/j.gene.2010.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 01/16/2023]
Abstract
Heat shock protein 90 (Hsp90) is an abundant and highly conserved molecular chaperone that is essential for viability in eukaryotes. They have a crucial role in the folding of a set of proteins involved in the regulation of many essential cellular pathways and also re-folding of stress-denatured polypeptides. However, their exact function is still not clearly elucidated. In this study the full-length cDNA encoding for Hsp90 polypeptide and its corresponding gene was isolated from Pennisetum glaucum (designated PgHsp90). PgHsp90 cDNA encoded for a polypeptide of 698 amino acids with a predicted molecular mass of 80.3kDa and shared a high sequence homology (97-81%) to other plant cytosolic Hsp90s and shared less sequence homology (40-45%) to organelle and endoplasmic reticulum specific Hsp90 isoforms. A deduced amino acid sequence possessed three structural domains: N-terminus (1-211) ATP binding domain, middle (281-540) client protein interacting domain and C-terminus (541-698) dimerization domain; the N-terminus and middle domain is linked by a charged linker domain (212-280). It possesses the five-conserved amino acid signature sequence motifs characteristic of the Hsp90 family and a C-terminus MEEVD penta-peptide characteristic of the cytosolic Hsp90 isoform. The predicted quaternary architecture generated for PgHsp90 through molecular modeling was globally akin to that of yeast Hsp90. The PgHsp90 gene consists of 3 exons and 2 introns. The position and phasing of these introns were conserved in other plant cytosolic Hsp90 genes. Recombinant PgHsp90 protein was expressed in E. coli and purified to homogeneity, which possessed in vitro chaperone activity. E. coli expressing PgHsp90 protein showed enhanced tolerance to heat, salt and dehydration stresses. The quantitative up-regulation of PgHsp90 gene expression positively correlates in response to different stresses to meet the additional demand for protein folding support. Cumulatively, the in vivo and in vitro experiments indicated that PgHsp90 plays an adaptive or protective role to counter the stress induced protein damage.
Collapse
Affiliation(s)
- Palakolanu Sudhakar Reddy
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | | | | | |
Collapse
|