151
|
Stanietsky N, Mandelboim O. Paired NK cell receptors controlling NK cytotoxicity. FEBS Lett 2010; 584:4895-900. [DOI: 10.1016/j.febslet.2010.08.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 08/31/2010] [Accepted: 08/31/2010] [Indexed: 11/25/2022]
|
152
|
Inhibition of Necl-5 (CD155/PVR) reduces glioblastoma dispersal and decreases MMP-2 expression and activity. J Neurooncol 2010; 102:225-35. [PMID: 20680398 DOI: 10.1007/s11060-010-0323-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 07/19/2010] [Indexed: 01/30/2023]
Abstract
Patients afflicted with glioblastoma (GBM) have poor survival due to dispersive invasion throughout the brain. Necl-5, a cell surface receptor for vitronectin, is expressed in GBM but not normal brain. In several GBM cell lines Necl-5 promotes migration and invasion but the mechanism is poorly understood. In this study, we show that knockdown of Necl-5 by RNAi results in markedly decreased invasion of A172 GBM cells in a 3-dimensional matrix. There is a concomitant decrease in the expression and activity of matrix metalloproteinase-2 (MMP-2), a known factor in GBM invasion and disease severity. Knockdown of Necl-5 diminishes basal activation of Akt, an established mediator of MMP-2 expression in gliomas. Knockdown of Necl-5 also limits the maximal Akt activation in response to vitronectin, which requires the activity of Integrin-linked kinase (ILK). During migration, Necl-5, Akt and ILK co-localize at focal contacts at the leading edge of the plasma membrane, suggesting that these molecules may act to integrate Akt signaling at the leading edge to induce MMP-2 expression. By virtue of its restricted expression in GBM and its role in invasion, Necl-5 may be an attractive target for limiting MMP-2 production in glioblastoma, and therefore limiting dispersal.
Collapse
|
153
|
Fournier G, Garrido-Urbani S, Reymond N, Lopez M. [Nectin and nectin-like molecules as markers, actors and targets in cancer]. Med Sci (Paris) 2010; 26:273-9. [PMID: 20346277 DOI: 10.1051/medsci/2010263273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nectin and nectin-like (necl) proteins form a family of 9 adhesion molecules that belong to the immunoglobulin superfamily. They play a key role in different biological processes such as cell polarity, proliferation, differentiation and migration in epithelial, endothelial, immune and nervous systems. Besides their role in physiology, they have been involved in different pathological processes in humans. They serve as virus receptors (poliovirus and herpes simplex virus), they are involved in orofacial malformation (CLPED1) and recently they have been described as markers, actors and potential therapeutics targets in cancer. Among them, necl-5, nectin-2 and nectin-4 are overexpressed in tumors, and are associated with a poor prognosis. On the opposite, necl-1, necl-2 and necl-4 act as tumor suppressors and are repressed in cancer. The involvement of nectins and necls molecules in cancer and their potential used in therapy is discussed in this review.
Collapse
|
154
|
Nakai R, Maniwa Y, Tanaka Y, Nishio W, Yoshimura M, Okita Y, Ohbayashi C, Satoh N, Ogita H, Takai Y, Hayashi Y. Overexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci 2010; 101:1326-30. [PMID: 20331633 PMCID: PMC11158505 DOI: 10.1111/j.1349-7006.2010.01530.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nectin-like molecule-5 (Necl-5) is an immunoglobulin (Ig)-like molecule that is up-regulated in many types of cancer cells. It was shown experimentally that Necl-5 enhances cell migration, proliferation, and metastasis, but its clinical significance has not been documented. The aim of this study was to observe the expression of Necl-5 in surgically resected primary lung adenocarcinomas and to investigate its clinical significance. A total of 63 surgically resected primary pulmonary adenocarcinoma tissues were investigated by immunohistochemistry for the expression of Necl-5. The relationship between expression of Necl-5 and clinicopathological features was analyzed, and the influence of Necl-5 expression on outcomes in these patients was assessed. A strong expression of Necl-5 by cancer cells was observed in 43 of the 63 tumors. The overexpression of Necl-5 by cancer cells was significantly associated with lymph node metastasis (P = 0.0398), TNM staging (P = 0.0367), and the bronchioloalveolar carcinoma ratio of tumors (P = 0.0423). Furthermore, the disease-free survival rate in patients with positive Necl-5 overexpression was significantly lower than that in patients with negative Necl-5 overexpression (P = 0.0004). Multivariate survival analysis revealed Necl-5 expression to be an independent risk factor for an unfavorable outcome (P = 0.0294). Additionally, an analysis including only the stage I cases revealed that the disease-free survival rate of the Necl-5-positive group was significantly lower than that of the Necl-5-negative group (P = 0.0192). These results indicate that Necl-5 plays a role in mediating tumor cell invasion and that the overexpression of Necl-5 in cancer cells has clinical significance for prognostic evaluation of patients with primary pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Reiko Nakai
- Division of Thoracic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Tenan M, Aurrand-Lions M, Widmer V, Alimenti A, Burkhardt K, Lazeyras F, Belkouch MC, Hammel P, Walker PR, Duchosal MA, Imhof BA, Dietrich PY. Cooperative expression of junctional adhesion molecule-C and -B supports growth and invasion of glioma. Glia 2010; 58:524-37. [PMID: 19795504 DOI: 10.1002/glia.20941] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Brain invasion is a biological hallmark of glioma that contributes to its aggressiveness and limits the potential of surgery and irradiation. Deregulated expression of adhesion molecules on glioma cells is thought to contribute to this process. Junctional adhesion molecules (JAMs) include several IgSF members involved in leukocyte trafficking, angiogenesis, and cell polarity. They are expressed mainly by endothelial cells, white blood cells, and platelets. Here, we report JAM-C expression by human gliomas, but not by their normal cellular counterpart. This expression correlates with the expression of genes involved in cytoskeleton remodeling and cell migration. These genes, identified by a transcriptomic approach, include poliovirus receptor and cystein-rich 61, both known to promote glioma invasion, as well as actin filament associated protein, a c-Src binding partner. Gliomas also aberrantly express JAM-B, a high affinity JAM-C ligand. Their interaction activates the c-Src proto-oncogene, a central upstream molecule in the pathways regulating cell migration and invasion. In the tumor microenvironment, this co-expression may thus promote glioma invasion through paracrine stimuli from both tumor cells and endothelial cells. Accordingly, JAM-C/B blocking antibodies impair in vivo glioma growth and invasion, highlighting the potential of JAM-C and JAM-B as new targets for the treatment of human gliomas.
Collapse
Affiliation(s)
- Mirna Tenan
- Service of Oncology, Laboratory of Tumor Immunology, Geneva University Hospitals and University of Geneva, 1211 Geneva 14, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Goetz C, Gromeier M. Preparing an oncolytic poliovirus recombinant for clinical application against glioblastoma multiforme. Cytokine Growth Factor Rev 2010; 21:197-203. [PMID: 20299272 DOI: 10.1016/j.cytogfr.2010.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PVS-RIPO is a genetically recombinant, non-pathogenic poliovirus chimera with a tumor-specific conditional replication phenotype. Consisting of the genome of the live attenuated poliovirus type 1 (Sabin) vaccine with its cognate IRES element replaced with that of human rhinovirus type 2, PVS-RIPO displays an inability to translate its genome in untransformed neuronal cells, but effectively does so in cells originating from primary tumors in the central nervous system or other cancers. Hence, PVS-RIPO unleashes potent cytotoxic effects on infected cancer cells and produces sustained anti-tumoral responses in animal tumor models. PVS-RIPO presents a novel approach to the treatment of patients with glioblastoma multiforme, based on conditions favoring an unconventional viral translation initiation mechanism in cancerous cells. In this review we summarize advances in the understanding of major molecular determinants of PVS-RIPO oncolytic efficacy and safety and discuss their implications for upcoming clinical investigations.
Collapse
Affiliation(s)
- Christian Goetz
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
157
|
Xu Z, Jin B. A novel interface consisting of homologous immunoglobulin superfamily members with multiple functions. Cell Mol Immunol 2010; 7:11-9. [PMID: 20081873 DOI: 10.1038/cmi.2009.108] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Immunoglobulin superfamily (IgSF) members account for a large proportion of cell adhesion molecules that perform important immunological functions, including recognizing a variety of counterpart molecules on the cell surface or extracellular matrix. The findings that CD155/poliovirus receptor (PVR) and CD112/nectin-2 are the ligands for CD226/platelet and T-cell activation antigen 1 (PTA1)/DNAX accessory molecular-1 (DNAM-1), CD96/tactile and Washington University cell adhesion molecule (WUCAM) and that CD226 is physically and functionally associated with lymphocyte function-associated antigen-1 (LFA-1) on natural killer (NK) and activated T cells have largely expanded our knowledge about the functions of CD226, CD96, WUCAM and LFA-1 and their respective ligands, CD155, CD112, intercellular adhesion molecule (ICAM)-1 and junctional adhesion molecule (JAM)-1. The interactions of these receptors and their ligands are involved in many key functions of immune cells including naive T cells, cytotoxic T cells, NK cells, NK T cells, monocytes, dendritic cells, mast cells and platelets/megakaryocytes.
Collapse
Affiliation(s)
- Zhuwei Xu
- Department of Immunology, the Fourth Military Medical University, Xi'an, China.
| | | |
Collapse
|
158
|
Teodorczyk M, Martin-Villalba A. Sensing invasion: cell surface receptors driving spreading of glioblastoma. J Cell Physiol 2009; 222:1-10. [PMID: 19688773 DOI: 10.1002/jcp.21901] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumour in adults. One main source of its high malignancy is the invasion of isolated tumour cells into the surrounding parenchyma, which makes surgical resection an insufficient therapy in nearly all cases. The invasion is triggered by several cell surface receptors including receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), TGF-beta receptor, integrins, immunoglobulins, tumour necrosis factor (TNF) family, cytokine receptors, and protein tyrosine phosphatase receptors. The cross-talk between cell-surface receptors and the redundancy of downstream effectors make analysis of invasive signals even more complex. Therapies involving inhibition of single receptors do not give promising outcomes and a thorough knowledge of invasive signals of common and exclusive signalling components is required for design of best combinatory treatment schemes to fight the disease.
Collapse
Affiliation(s)
- Marcin Teodorczyk
- Molecular Neurobiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
159
|
Rodrigues R, Cuddington B, Mossman K. Bovine herpesvirus type 1 as a novel oncolytic virus. Cancer Gene Ther 2009; 17:344-55. [PMID: 19893594 DOI: 10.1038/cgt.2009.77] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oncolytic virotherapy is a promising avenue of cancer gene therapy. Current vectors include human viruses that have been engineered to replicate in tumor cells or nonhuman viruses that are naturally oncotropic and preferentially replicate in tumor cells harboring defects in innate immune pathways such as the type 1 interferon (IFN) pathway. Bovine herpesvirus type 1 (BHV-1) is a species-specific herpesvirus closely related to the human herpes simplex virus type 1 (HSV-1). Although BHV-1 does not efficiently replicate in and affect cellular viability of normal human cells, it is capable of infecting and killing various immortalized and transformed human cell types. Surprisingly, BHV-1 infection of human cells fails to elicit IFN production at the mRNA or protein level and the ability of BHV-1 to kill immortalized and transformed human cells does not correlate with defects in IFN pathways. Furthermore, although some cross-reactivity between BHV-1 and HSV-1 exists, the majority of human antibody or serum samples tested failed to neutralize BHV-1 despite possessing HSV-1 neutralizing capacity. Thus, BHV-1 is a novel candidate oncolytic virus with a distinct mechanism of tumor targeting.
Collapse
Affiliation(s)
- R Rodrigues
- Department of Biochemistry and Biomedical Sciences, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
160
|
The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A 2009; 106:17858-63. [PMID: 19815499 DOI: 10.1073/pnas.0903474106] [Citation(s) in RCA: 651] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
NK cell cytotoxicity is controlled by numerous NK inhibitory and activating receptors. Most of the inhibitory receptors bind MHC class I proteins and are expressed in a variegated fashion. It was recently shown that TIGIT, a new protein expressed by T and NK cells binds to PVR and PVR-like receptors and inhibits T cell activity indirectly through the manipulation of DC activity. Here, we show that TIGIT is expressed by all human NK cells, that it binds PVR and PVRL2 but not PVRL3 and that it inhibits NK cytotoxicity directly through its ITIM. Finally, we show that TIGIT counter inhibits the NK-mediated killing of tumor cells and protects normal cells from NK-mediated cytotoxicity thus providing an "alternative self" mechanism for MHC class I inhibition.
Collapse
|
161
|
Draghetti C, Salvat C, Zanoguera F, Curchod ML, Vignaud C, Peixoto H, Di Cara A, Fischer D, Dhanabal M, Andreas G, Abderrahim H, Rommel C, Camps M. Functional whole-genome analysis identifies Polo-like kinase 2 and poliovirus receptor as essential for neuronal differentiation upstream of the negative regulator alphaB-crystallin. J Biol Chem 2009; 284:32053-65. [PMID: 19700763 DOI: 10.1074/jbc.m109.009324] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study aimed at identifying transcriptional changes associated to neuronal differentiation induced by six distinct stimuli using whole-genome microarray hybridization analysis. Bioinformatics analyses revealed the clustering of these six stimuli into two categories, suggesting separate gene/pathway dependence. Treatment with specific inhibitors demonstrated the requirement of both Janus kinase and microtubule-associated protein kinase activation to trigger differentiation with nerve growth factor (NGF) and dibutyryl cAMP. Conversely, activation of protein kinase A, phosphatidylinositol-3-kinase alpha, and mammalian target of rapamycin, although required for dibutyryl cAMP-induced differentiation, exerted a negative feedback on NGF-induced differentiation. We identified Polo-like kinase 2 (Plk2) and poliovirus receptor (PVR) as indispensable for NGF-driven neuronal differentiation and alphaB-crystallin (Cryab) as an inhibitor of this process. Silencing of Plk2 or PVR blocked NGF-triggered differentiation and Cryab down-regulation, while silencing of Cryab enhanced NGF-induced differentiation. Our results position both Plk2 and PVR upstream of the negative regulator Cryab in the pathway(s) leading to neuronal differentiation triggered by NGF.
Collapse
Affiliation(s)
- Cristina Draghetti
- Departments of Target Research, Merck Serono International S.A. 9, Chemin de Mines, 1202 Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
|
163
|
Kawano S, Ikeda W, Kishimoto M, Ogita H, Takai Y. Silencing of ErbB3/ErbB2 signaling by immunoglobulin-like Necl-2. J Biol Chem 2009; 284:23793-805. [PMID: 19561085 DOI: 10.1074/jbc.m109.025155] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ErbB2 and ErbB3, members of the EGF receptor/ErbB family, form a heterodimer upon binding of a ligand, inducing the activation of Rac small G protein and Akt protein kinase for cell movement and survival, respectively. The enhanced ErbB3/ErbB2 signaling causes tumorigenesis, invasion, and metastasis. We found here that the ErbB3/ErbB2 signaling is regulated by immunoglobulin-like Necl-2, which is down-regulated in various cancer cells and serves as a tumor suppressor. The extracellular region of ErbB3, but not ErbB2, interacted in cis with that of Necl-2. This interaction reduced the ligand-induced, ErbB2-catalyzed tyrosine phosphorylation of ErbB3 and inhibited the consequent ErbB3-mediated activation of Rac and Akt, resulting in the inhibition of cancer cell movement and survival. These inhibitory effects of Necl-2 were mediated by the protein-tyrosine phosphatase PTPN13 which interacted with the cytoplasmic tail of Necl-2. We describe here this novel mechanism for silencing of the ErbB3/ErbB2 signaling by Necl-2.
Collapse
Affiliation(s)
- Satoshi Kawano
- Division of Molecular and Cellular Biology, Department of Biochemistry, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo, Japan
| | | | | | | | | |
Collapse
|
164
|
Xu Z, Zhang T, Zhuang R, Zhang Y, Jia W, Song C, Yang K, Yang A, Jin B. Increased levels of soluble CD226 in sera accompanied by decreased membrane CD226 expression on peripheral blood mononuclear cells from cancer patients. BMC Immunol 2009; 10:34. [PMID: 19490613 PMCID: PMC2700819 DOI: 10.1186/1471-2172-10-34] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 06/02/2009] [Indexed: 11/26/2022] Open
Abstract
Background As a cellular membrane triggering receptor, CD226 is involved in the NK cell- or CTL-mediated lysis of tumor cells of different origin, including freshly isolated tumor cells and tumor cell lines. Here, we evaluated soluble CD226 (sCD226) levels in sera, and membrane CD226 (mCD226) expression on peripheral blood mononuclear cells (PBMC) from cancer patients as well as normal subjects, and demonstrated the possible function and origin of the altered sCD226, which may provide useful information for understanding the mechanisms of tumor escape and for immunodiagnosis and immunotherapy. Results Soluble CD226 levels in serum samples from cancer patients were significantly higher than those in healthy individuals (P < 0.001), while cancer patients exhibited lower PBMC mCD226 expression than healthy individuals (P < 0.001). CD226-Fc fusion protein could significantly inhibit the cytotoxicity of NK cells against K562 cells in a dose-dependent manner. Furthermore, three kinds of protease inhibitors could notably increase mCD226 expression on PMA-stimulated PBMCs and Jurkat cells with a decrease in the sCD226 level in the cell culture supernatant. Conclusion These findings suggest that sCD226 might be shed from cell membranes by certain proteases, and, further, sCD226 may be used as a predictor for monitoring cancer, and more important, a possible immunotherapy target, which may be useful in clinical application.
Collapse
Affiliation(s)
- Zhuwei Xu
- Department of Immunology, the Fourth Military Medical University, Xi'an, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Castriconi R, Daga A, Dondero A, Zona G, Poliani PL, Melotti A, Griffero F, Marubbi D, Spaziante R, Bellora F, Moretta L, Moretta A, Corte G, Bottino C. NK cells recognize and kill human glioblastoma cells with stem cell-like properties. THE JOURNAL OF IMMUNOLOGY 2009; 182:3530-9. [PMID: 19265131 DOI: 10.4049/jimmunol.0802845] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, cancer cells were isolated from tumor specimens of nine glioblastoma patients. Glioblastoma cells, cultured under suitable culture conditions, displayed markers typical of neural stem cells, were capable of partial multilineage differentiation in vitro, and gave origin to infiltrating tumors when orthotopically injected in NOD/SCID mice. These cells, although resistant to freshly isolated NK cells, were highly susceptible to lysis mediated by both allogeneic and autologous IL-2 (or IL-15)-activated NK cells. Indeed, all stem cell-cultured glioblastoma cells analyzed did not express protective amounts of HLA class I molecules, while expressing various ligands of activating NK receptors that triggered optimal NK cell cytotoxicity. Importantly, glioblastoma stem cells expressed high levels of PVR and Nectin-2, the ligands of DNAM-1-activating NK receptor.
Collapse
Affiliation(s)
- Roberta Castriconi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Boles KS, Vermi W, Facchetti F, Fuchs A, Wilson TJ, Diacovo TG, Cella M, Colonna M. A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur J Immunol 2009; 39:695-703. [PMID: 19197944 DOI: 10.1002/eji.200839116] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nectins and Nectin-like molecules (Necl) play a critical role in cell polarity within epithelia and in the nervous and reproductive systems. Recently, immune receptors specific for Nectins/Necl have been described. Since the expression and distribution of Nectins/Necl is often subverted during tumorigenesis, it has been suggested that the immune system may use these receptors to recognize and eliminate tumors. Here we describe a novel immunoreceptor, Washington University Cell Adhesion Molecule, which is expressed on human follicular B helper T cells (TFH) and binds a Nectin/Necl family member, the poliovirus receptor (PVR), under both static and flow conditions. Furthermore, we demonstrate that PVR is abundantly expressed by follicular DC (FDC) within the germinal center. These results reveal a novel molecular interaction that mediates adhesion of TFH to FDC and provide the first evidence that immune receptors for Nectins/Necl may be involved the generation of T cell-dependent antibody responses.
Collapse
Affiliation(s)
- Kent S Boles
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Ogita H, Ikeda W, Takai Y. Roles of cell adhesion molecules nectin and nectin-like molecule-5 in the regulation of cell movement and proliferation. J Microsc 2008; 231:455-65. [PMID: 18755001 DOI: 10.1111/j.1365-2818.2008.02058.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In response to chemoattractants, migrating cells form protrusions, such as lamellipodia and filopodia, and structures, such as ruffles over lamellipodia, focal complexes and focal adhesions at leading edges. The formation of these leading edge structures is essential for directional cell movement. Nectin-like molecule-5 (Necl-5) interacts in cis with PDGF receptor and integrin alpha(v)beta(3), and enhances the activation of signalling molecules associated with these transmembrane proteins, which results in the formation of leading edge structures and enhancement of directional cell movement. When migrating cells come into contact with each other, cell-cell adhesion is initiated, resulting in reduced cell velocity. Necl-5 first interacts in trans with nectin-3. This interaction is transient and induces down-regulation of Necl-5 expression at the cell surface, resulting in reduced cell movement. Cell proliferation is also suppressed by the down-regulation of Necl-5, because the inhibitory effect of Necl-5 on Sprouty2, a negative regulator of the Ras signalling, is diminished. PDGF receptor and integrin alpha(v)beta(3), which have interacted with Necl-5, then form a complex with nectin, which initiates cell-cell adhesion and recruits cadherin to the nectin-based cell-cell adhesion sites to form stable adherens junctions. The formation of adherens junctions stops cell movement, in part through inactivation of integrin alpha(v)beta(3) caused by the trans-interaction of nectin. Thus, nectin and Necl-5 play key roles in the regulation of cell movement and proliferation.
Collapse
Affiliation(s)
- H Ogita
- Department of Molecular Biology and Biochemistry, Faculty of MedicineOsaka, University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | |
Collapse
|
168
|
Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses. Proc Natl Acad Sci U S A 2008; 105:18284-9. [PMID: 19011098 DOI: 10.1073/pnas.0807848105] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When poliovirus (PV) recognizes its receptor, CD155, the virus changes from a 160S to a 135S particle before releasing its genome into the cytoplasm. CD155 is a transmembrane protein with 3 Ig-like extracellular domains, D1-D3, where D1 is recognized by the virus. The crystal structure of D1D2 has been determined to 3.5-A resolution and fitted into approximately 8.5-A resolution cryoelectron microscopy reconstructions of the virus-receptor complexes for the 3 PV serotypes. These structures show that, compared with human rhinoviruses, the virus-receptor interactions for PVs have a greater dependence on hydrophobic interactions, as might be required for a virus that can inhabit environments of different pH. The pocket factor was shown to remain in the virus during the first recognition stage. The present structures, when combined with earlier mutational investigations, show that in the subsequent entry stage the receptor moves further into the canyon when at a physiological temperature, thereby expelling the pocket factor and separating the viral subunits to form 135S particles. These results provide a detailed analysis of how a nonenveloped virus can enter its host cell.
Collapse
|
169
|
Ogita H, Takai Y. Cross-talk among integrin, cadherin, and growth factor receptor: roles of nectin and nectin-like molecule. ACTA ACUST UNITED AC 2008; 265:1-54. [PMID: 18275885 DOI: 10.1016/s0074-7696(07)65001-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Integrin, cadherin, and growth factor receptor are key molecules for fundamental cellular functions including cell movement, proliferation, differentiation, adhesion, and survival. These cell surface molecules cross-talk with each other in the regulation of such cellular functions. Nectin and nectin-like molecule (Necl) have been identified as cell adhesion molecules that belong to the immunoglobulin superfamily. Nectin and Necl play important roles in the integration of integrin, cadherin, and growth factor receptor at the cell-cell adhesion sites of contacting cells and at the leading edges of moving cells, and thus are also involved in the fundamental cellular functions together with integrin, cadherin, and growth factor receptor. This chapter describes how newly identified cell adhesion molecules, nectin and Necl, modulate the cross-talk among integrin, cadherin, and growth factor receptor and how these integrated molecules act in the regulation of fundamental cellular functions.
Collapse
Affiliation(s)
- Hisakazu Ogita
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
170
|
Kono T, Imai Y, Yasuda SI, Ohmori K, Fukui H, Ichikawa K, Tomita S, Imura J, Kuroda Y, Ueda Y, Fujimori T. The CD155/poliovirus receptor enhances the proliferation of ras-mutated cells. Int J Cancer 2008; 122:317-24. [PMID: 17893876 DOI: 10.1002/ijc.23080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stimulation of the CD155/poliovirus receptor, which localizes in the cell-matrix and at cell-cell junctions, inhibits cell adhesion and enhances cell migration. Necl-5, a mouse homolog of CD155, is implicated in the formation of adherence junctions. Recently, Necl-5 has also been found to enhance cell proliferation via the stimulation of serum and platelet-derived growth factor through the Ras-Raf-MEK-ERK signaling pathway. In our present study, we find that CD155 significantly enhances the serum-induced cell proliferation of NIH3T3 cells which have been transformed by an oncogenic Ras (V12Ras-NIH3T3), but not the parental cells. CD155 expression in V12Ras-NIH3T3 cells is also found to upregulate cyclin D2, downregulate p27(Kip1) and shorten the G0/G1 phase of the cell cycle. An inhibitor of focal adhesion kinase does not reduce this CD155-mediated enhancement of V12Ras-NIH3T3 cell proliferation. The expression of CD155DeltaCP, which lacks the cytoplasmic region including the immunoreceptor tyrosine-based inhibitory motif (ITIM), has a reduced ability to enhance the serum responsiveness of V12Ras-NIH3T3 cells, suggesting that the ITIM might be required for this effect of CD155. In addition, the overexpression of exogenous CD155 enhances the serum responsiveness of HT1080 cells, which harbor a mutant N-ras gene. On the other hand, siRNA-induced knockdown of endogenous CD155 and/or CD155DeltaCP expression significantly repress the serum responsiveness of DLD-1 cells, which express endogenous CD155 and harbor a mutant K-ras gene, suggesting that this mutant may function in a dominant negative manner. Taken together, our present data suggest that CD155, at least in part, enhances the proliferation of ras-mutated cells.
Collapse
Affiliation(s)
- Tokuyuki Kono
- Department of Surgical and Molecular Pathology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
|
172
|
Claes A, Idema AJ, Wesseling P. Diffuse glioma growth: a guerilla war. Acta Neuropathol 2007; 114:443-58. [PMID: 17805551 PMCID: PMC2039798 DOI: 10.1007/s00401-007-0293-7] [Citation(s) in RCA: 444] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 08/23/2007] [Accepted: 08/23/2007] [Indexed: 02/08/2023]
Abstract
In contrast to almost all other brain tumors, diffuse gliomas infiltrate extensively in the neuropil. This growth pattern is a major factor in therapeutic failure. Diffuse infiltrative glioma cells show some similarities with guerilla warriors. Histopathologically, the tumor cells tend to invade individually or in small groups in between the dense network of neuronal and glial cell processes. Meanwhile, in large areas of diffuse gliomas the tumor cells abuse pre-existent "supply lines" for oxygen and nutrients rather than constructing their own. Radiological visualization of the invasive front of diffuse gliomas is difficult. Although the knowledge about migration of (tumor)cells is rapidly increasing, the exact molecular mechanisms underlying infiltration of glioma cells in the neuropil have not yet been elucidated. As the efficacy of conventional methods to fight diffuse infiltrative glioma cells is limited, a more targeted ("search & destroy") tactic may be needed for these tumors. Hopefully, the study of original human glioma tissue and of genotypically and phenotypically relevant glioma models will soon provide information about the Achilles heel of diffuse infiltrative glioma cells that can be used for more effective therapeutic strategies.
Collapse
Affiliation(s)
- An Claes
- Department of Pathology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
173
|
Miyoshi J, Takai Y. Nectin and nectin-like molecules: biology and pathology. Am J Nephrol 2007; 27:590-604. [PMID: 17823505 DOI: 10.1159/000108103] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 07/17/2007] [Indexed: 12/13/2022]
Abstract
Nectins and nectin-like molecules (Necls) are structurally related transmembrane proteins primarily involved in cell adhesion. Nectins and afadin, the adaptor or anchoring protein, stabilize the epithelium and endothelium and establish apical-basal polarity of epithelial cells, independently or in cooperation with other cell adhesion molecules. Necls facilitate cell-cell communication implicated in cell movement and proliferation, immune responses, and cancer cell phenotypes. Necls interact with nectins and specific ligands at cell-cell contacts, whereas Necls associate with integrin alpha v beta 3 and growth factor receptors on the same cell surface. Besides their roles in cell adhesion, nectins regulate the activities of Rho family small G proteins which play critical roles in maintaining the apical junctions of epithelial cells through reorganization of the actin cytoskeleton. Since mice lacking the Rho GDP-dissociation inhibitor (GDI)alpha show massive proteinuria and degeneration of renal epithelial cells, nectins and other cell adhesion molecules may play roles in the structural and functional aspects of renal diseases. Here we summarize our knowledge of nectins and Necls and discuss cell adhesion biology in the kidney.
Collapse
Affiliation(s)
- Jun Miyoshi
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | | |
Collapse
|
174
|
Morimoto K, Satoh-Yamaguchi K, Hamaguchi A, Inoue Y, Takeuchi M, Okada M, Ikeda W, Takai Y, Imai T. Interaction of cancer cells with platelets mediated by Necl-5/poliovirus receptor enhances cancer cell metastasis to the lungs. Oncogene 2007; 27:264-73. [PMID: 17637752 DOI: 10.1038/sj.onc.1210645] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Necl-5 is an immunoglobulin (Ig)-like molecule that was originally identified as a poliovirus receptor and is often upregulated in cancer cells. We recently found that it colocalizes with integrin alpha(v)beta(3) at the leading edges of moving cells and enhances growth factor-induced cell movement and proliferation. Upon cell-cell contact, Necl-5 is removed from the cell surface by its trans-interaction with the cell adhesion molecule nectin-3, resulting in reduced cell movement and proliferation. Here, we investigated the role of Necl-5 in the interaction of cancer cells with platelets. Necl-5 was upregulated in CT26 cells, a colon adenocarcinoma cell line. When CT26 cells were injected into the tail vein of mice, they were arrested in the pulmonary vessels by adhering to platelets and subsequently metastasized to the lungs. Overexpression of Necl-5 in CT26 cells enhanced this metastasis, while inhibition of the trans-interaction of Necl-5 with CD226 by an anti-Necl-5 monoclonal antibody reduced the metastasis. Depletion of platelets by treatment with a rabbit anti-mouse platelet serum reduced the Necl-5-enhanced metastasis in mice. Thus, the trans-interaction of upregulated Necl-5 in cancer cells with its counter-receptor in platelets, probably CD226, is critical for efficient metastasis of cancer cells to the lungs.
Collapse
Affiliation(s)
- K Morimoto
- 1KAN Research Institute Inc., Kobe MI R&D Center, Kobe, Hyogo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Bai F, Guo X, Yang L, Wang J, Shi Y, Zhang F, Zhai H, Lu Y, Xie H, Wu K, Fan D. Establishment and characterization of a high metastatic potential in the peritoneum for human gastric cancer by orthotopic tumor cell implantation. Dig Dis Sci 2007; 52:1571-8. [PMID: 17404872 DOI: 10.1007/s10620-006-9570-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 08/11/2006] [Indexed: 12/09/2022]
Abstract
The aim of this study was to establish an orthotopic implantation model with high metastasis of gastric cancer to the peritoneum which is more faithful to clinical metastasis. A human gastric carcinoma cell line, GC9811, was injected as a single-cell suspension into the stomach of nude mice. The cells from some peritoneum metastatic foci were expanded in vitro and subsequently implanted to the stomach wall of nude mice. By repeating the in vivo stepwise selection method for four rounds and cloning culture, we obtained a cell line designated GC9811-P, which developed peritoneal metastasis in 13 of 13 (100%) of mice, compared with only 20% of those implanted with parental GC9811. The metastatic foci in the peritoneum showed essentially the same histological appearance as those induced by parental cells. Tumor cell growth of GC9811-P in vitro was faster than that of GC9811. Motility assays demonstrated higher motility of GC9811-P than of GC9811. The adhesive ability of GC9811-P cells to laminin was lower than that of GC9811 cells, whereas the ability of GC9811-P cells to adhere to fibronectin was significantly higher than that of parental cells. Differences between GC9811-P and their parental GC9811 cells were found in expression levels of various molecules by flow cytometric and western blot. The findings indicated that up-regulation in the expressions of CD155, VEGF, syndecan-1, and syndecan-2 or down-regulation in the expressions of IL-6 and E-cadherin play an important role in the peritoneal metastasis of human gastric carcinoma cells. The high-metastatic cell line appears to be useful for investigating the mechanisms of peritoneal metastasis and preventing peritoneal metastasis of human gastric cancer.
Collapse
Affiliation(s)
- Feihu Bai
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, XiJing Hospital, The Fourth Military Medical University, Xi'an, ShaanXi Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Kajita M, Ikeda W, Tamaru Y, Takai Y. Regulation of platelet-derived growth factor-induced Ras signaling by poliovirus receptor Necl-5 and negative growth regulator Sprouty2. Genes Cells 2007; 12:345-57. [PMID: 17352739 DOI: 10.1111/j.1365-2443.2007.01062.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Necl-5, known as a poliovirus receptor and up-regulated in many cancer cells, enhances platelet-derived growth factor (PDGF)-induced activation of Ras-Raf-MEK-ERK signaling, but not PDGF-induced tyrosine phosphorylation of PDGF receptor, resulting in facilitation of cell proliferation. Here, we showed that Necl-5 interacted with Sprouty2, known to be a negative regulator of growth factor-induced signaling, and reduced the inhibitory effect of Sprouty2 on PDGF-induced Ras signaling. Necl-5 was reported to be down-regulated by its trans-interaction with nectin-3 upon cell-cell contact, initiating cooperative cell-cell adhesion with cadherin. This down-regulation of Necl-5 caused tyrosine phosphorylation of Sprouty2 by c-Src, which was activated by PDGF receptor in response to PDGF, and inhibited PDGF-induced Ras signaling. Thus, Necl-5 and Sprouty2 cooperatively regulate PDGF-induced Ras signaling. The roles of Necl-5 and Sprouty2 in contact inhibition for cell proliferation are also discussed.
Collapse
Affiliation(s)
- Mihoko Kajita
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
177
|
Abstract
The major challenge of the post-genome world is ascribing in situ function to the myriad of proteins expressed in the proteome. This challenge is met by an arsenal of inactivation strategies that include RNAi and genetic knockout. These are powerful approaches but are indirect with respect to protein function and are subject to time delays before onset and possible genetic compensation. This chapter describes two protein-based inactivation approaches called chromophore-assisted laser inactivation (CALI) and fluorophore-assisted light inactivation (FALI). For CALI and FALI, light inactivation is targeted via photosensitizers that are localized to proteins of interest through antibody binding or expressed domains that are fluorescent or bind fluorescent probes. Inactivation occurs when and where the cells or tissues are irradiated and thus CALI and FALI provide an unprecedented level of spatial and temporal resolution of protein inactivation. Here we provide methods for the labeling of antibodies and setup of light sources and discuss controls, advantages of the technology, and potential pitfalls. We conclude with a discussion on a number of new technologies derived from CALI that combine molecular genetic approaches with light-induced inactivation that provide new tools to address in situ protein function.
Collapse
Affiliation(s)
- Diane Hoffman-Kim
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
178
|
Fuchs A, Colonna M. The role of NK cell recognition of nectin and nectin-like proteins in tumor immunosurveillance. Semin Cancer Biol 2006; 16:359-66. [PMID: 16904340 DOI: 10.1016/j.semcancer.2006.07.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Natural killer (NK) cells have important functions in the innate immunity to tumors. Recognition of tumor cells by NK cells is mediated by the interaction of activating and inhibitory NK cell receptors with ligands expressed on the tumor target. In addition, NK cell-target cell interactions require the engagement of adhesion molecules that stabilize the cell-cell conjugate. Recently, several novel NK cell receptors have been reported to regulate NK cell adhesion and activation through interaction with ligands of the nectin and nectin-like (Necl) family of adhesion molecules. We here review current knowledge on these receptors, CD226, CD96 and CRTAM, and their role in tumor immunosurveillance.
Collapse
Affiliation(s)
- Anja Fuchs
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| | | |
Collapse
|
179
|
Abstract
Cytotoxic lymphocytes, such as natural killer (NK) cells and CD8+ T cells, provide an essential defense against intracellular pathogens and tumors. During target cell recognition, these cells receive both activating and inhibitory signals. The cell must evaluate these opposing signals and determine the appropriate response: activation or inhibition. Classically, inhibitory signals are mediated by receptors that recognize MHC class I molecules (1). But recent studies, including one in this issue, suggest that MHC class I-independent inhibitory signals can also result in inhibition of cytotoxic cells.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, MO 63110, USA.
| |
Collapse
|
180
|
Erickson BM, Thompson NL, Hixson DC. Tightly regulated induction of the adhesion molecule necl-5/CD155 during rat liver regeneration and acute liver injury. Hepatology 2006; 43:325-34. [PMID: 16440345 DOI: 10.1002/hep.21021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
TuAg1/TagE4, the rat ortholog of the human poliovirus receptor CD155, is expressed on a high percentage of rat hepatocellular carcinomas. Recent studies have shown that TuAg1/TagE4/CD155 is a member of the nectin family of immunoglobulin (Ig)-like cell adhesion molecules, designated necl-5. Necl-5 is present at exceedingly low levels in adult epithelial tissues but is upregulated in primary cultures of rat hepatocytes, suggesting that disruption of liver architecture triggers its expression. To explore this possibility, we examined expression of necl-5 after two-thirds partial hepatectomy or carbon tetrachloride (CCl4)-induced acute injury. Using quantitative real-time polymerase chain reaction (QPCR), we found that necl-5 mRNA levels increased 15-fold by 9 hours, and decreased to 4-fold above baseline by 24 hours after partial hepatectomy. Necl-5 mRNA levels increased over 100-fold 6 hours after treatment with CCl4, reaching a peak of 140-fold above baseline by 10 hours, and thereafter rapidly declining. Necl-5 was localized at the membrane of midlobular and centrilobular hepatocytes 10 to 48 hours after CCl4 exposure. Northern blot analysis demonstrated a close correlation between the kinetics of necl-5 expression and the immediate-early response gene c-myc. Subconfluent cultures of the non-transformed liver epithelial cell line WB-F344 expressed high levels of necl-5, which was down-regulated as cells approached confluence. The transformed WB-F344 line GP7TB did not demonstrate density-dependent regulation of necl-5 expression. In conclusion, we report the in vivo induction of necl-5 in rat hepatocytes and provide evidence that both necl-5 mRNA and protein are tightly regulated in adult epithelial cells and tissue.
Collapse
Affiliation(s)
- Briana M Erickson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | | | | |
Collapse
|
181
|
Sloan KE, Stewart JK, Treloar AF, Matthews RT, Jay DG. CD155/PVR enhances glioma cell dispersal by regulating adhesion signaling and focal adhesion dynamics. Cancer Res 2006; 65:10930-7. [PMID: 16322240 DOI: 10.1158/0008-5472.can-05-1890] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We recently identified the immunoglobulin-CAM CD155/PVR (the poliovirus receptor) as a regulator of cancer invasiveness and glioma migration, but the mechanism through which CD155/PVR controls these processes is unknown. Here, we show that expression of CD155/PVR in rat glioma cells that normally lack this protein enhances their dispersal both in vitro and on primary brain tissue. CD155/PVR expression also reduced substrate adhesion, cell spreading, focal adhesion density, and the number of actin stress fibers in a substrate-dependent manner. Furthermore, we found that expression of CD155/PVR increased Src/focal adhesion kinase signaling in a substrate-dependent manner, enhancing the adhesion-induced activation of paxillin and p130Cas in cells adhering to vitronectin. Conversely, depletion of endogenous CD155/PVR from human glioma cells inhibited their migration, increased cell spreading, and down-regulated the same signaling pathway. These findings implicate CD155/PVR as a regulator of adhesion signaling and suggest a pathway through which glioma and other cancer cells may acquire a dispersive phenotype.
Collapse
Affiliation(s)
- Kevin E Sloan
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
182
|
Bulina ME, Chudakov DM, Britanova OV, Yanushevich YG, Staroverov DB, Chepurnykh TV, Merzlyak EM, Shkrob MA, Lukyanov S, Lukyanov KA. A genetically encoded photosensitizer. Nat Biotechnol 2005; 24:95-9. [PMID: 16369538 DOI: 10.1038/nbt1175] [Citation(s) in RCA: 446] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 11/08/2005] [Indexed: 12/24/2022]
Abstract
Photosensitizers are chromophores that generate reactive oxygen species (ROS) upon light irradiation. They are used for inactivation of specific proteins by chromophore-assisted light inactivation (CALI) and for light-induced cell killing in photodynamic therapy. Here we report a genetically encoded photosensitizer, which we call KillerRed, developed from the hydrozoan chromoprotein anm2CP, a homolog of green fluorescent protein (GFP). KillerRed generates ROS upon irradiation with green light. Whereas known photosensitizers must be added to living systems exogenously, KillerRed is fully genetically encoded. We demonstrate the utility of KillerRed for light-induced killing of Escherichia coli and eukaryotic cells and for inactivating fusions to beta-galactosidase and phospholipase Cdelta1 pleckstrin homology domain.
Collapse
Affiliation(s)
- Maria E Bulina
- Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Fujito T, Ikeda W, Kakunaga S, Minami Y, Kajita M, Sakamoto Y, Monden M, Takai Y. Inhibition of cell movement and proliferation by cell-cell contact-induced interaction of Necl-5 with nectin-3. ACTA ACUST UNITED AC 2005; 171:165-73. [PMID: 16216929 PMCID: PMC2171219 DOI: 10.1083/jcb.200501090] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Immunoglobulin-like Necl-5/Tage4/poliovirus receptor (PVR)/CD155, originally identified as the PVR, has been shown to be up-regulated in cancer cells and to enhance growth factor–induced cell movement and proliferation. In addition, Necl-5 heterophilically trans-interacts with nectin-3, a cell–cell adhesion molecule known to form adherens junctions in cooperation with cadherin. We show here that Necl-5 was down-regulated from cell surface upon cell–cell contacts in NIH3T3 cells. This down-regulation of Necl-5 was initiated by its interaction with nectin-3 and was mainly mediated by clathrin-dependent endocytosis. Then, the down-regulation of Necl-5 induced in this way reduced movement and proliferation of NIH3T3 cells. These results indicate that the down-regulation of Necl-5 induced by its interaction with nectin-3 upon cell–cell contacts may be at least one mechanism underlying contact inhibition of cell movement and proliferation.
Collapse
Affiliation(s)
- Tsutomu Fujito
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Sato T, Irie K, Okamoto R, Ooshio T, Fujita N, Takai Y. Common signaling pathway is used by the trans-interaction of Necl-5/Tage4/PVR/CD155 and nectin, and of nectin and nectin during the formation of cell-cell adhesion. Cancer Sci 2005; 96:578-89. [PMID: 16128743 PMCID: PMC11158298 DOI: 10.1111/j.1349-7006.2005.00087.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nectin is a Ca2+-independent Ig-like cell-cell adhesion molecule that forms homo- and hetero-trans-dimers (trans-interaction). Nectin first forms cell-cell adhesions and then recruits cadherin to the nectin-based cell-cell adhesion sites to form AJ cooperatively with cadherin. In addition, the trans-interaction of nectin and nectin induces the activation of Cdc42 and Rac small G proteins, which enhances the formation of AJ. The activation of Cdc42 and Rac by the trans-interaction of nectin and nectin is mediated by c-Src, another small G protein, Rap1, a Cdc42-GEF, FRG, and a Rac-GEF, Vav2. Necl-5/Tage4/PVR/CD155 is another Ca2+-independent Ig-like molecule, which does not homophilically trans-interact, but heterophilically trans-interacts with nectin-3, one member of the nectin family. We show here that the trans-interaction of Necl-5 and nectin-3 bidirectionally induces the activation of Cdc42 and Rac. Similarly to the activation of Cdc42 and Rac by the trans-interaction of nectin and nectin, the trans-interaction of Necl-5 and nectin-3 first recruits and activates c-Src at the Necl-5/nectin-3-based cell-cell contact sites. c-Src then phosphorylates FRG and Vav2, and the tyrosine-phosphorylated FRG and Vav2 are recruited to the Necl-5/nectin-3-based cell-cell contact sites. The trans-interaction of Necl-5 and nectin-3 also activates Rap1 through C3G, a Rap-GEF, and this activation of Rap1 is required for the activation of Cdc42 and Rac. These results indicate that the trans-interactions of Necl-5 and nectin-3 and of nectin and nectin induce the activation of Cdc42 and Rac through the common signaling molecules c-Src, Rap1, FRG, and Vav2.
Collapse
Affiliation(s)
- Tatsuhiro Sato
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
185
|
Mueller S, Wimmer E, Cello J. Poliovirus and poliomyelitis: a tale of guts, brains, and an accidental event. Virus Res 2005; 111:175-93. [PMID: 15885840 DOI: 10.1016/j.virusres.2005.04.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Nearly 100 years after its discovery poliovirus remains one of most thoroughly studied and best understood virus models for the molecular virologist. While poliovirus has been of vital importance for our insight into picornavirus biology at the cellular and biochemical level, it is ironic to note that, due to the early success in defeating poliomyelitis in the developed world through vaccination, many of the basic aspects of poliovirus pathogenesis remain poorly understood. This is chiefly due to the lack of an adequate and affordable animal model, save of old world monkeys. Fundamental questions, such as the identity of the target cells during the enteric phase of infection, or mechanisms of systemic spread are still unanswered. This review will attempt to summarize our current knowledge of the molecular biology of poliovirus, its pathogenesis, as well as recent advances in the areas of cell and tissue tropism and mechanisms of central nervous system invasion.
Collapse
Affiliation(s)
- Steffen Mueller
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
186
|
Hauptschein RS, Sloan KE, Torella C, Moezzifard R, Giel-Moloney M, Zehetmeier C, Unger C, Ilag LL, Jay DG. Functional proteomic screen identifies a modulating role for CD44 in death receptor-mediated apoptosis. Cancer Res 2005; 65:1887-96. [PMID: 15753387 DOI: 10.1158/0008-5472.can-04-3571] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apoptotic evasion is a hallmark of cancer and its resistance to chemotherapeutic drugs. Identification of cellular proteins that mediate apoptotic programs is a critical step toward the development of therapeutics aimed at overcoming apoptosis resistance. We developed an innovative high-throughput screen to identify proteins that modulate Fas ligand-mediated apoptosis using fluorophore-assisted light inactivation (HTS-FALIpop). The FALI protein knockdown strategy was coupled to a caspase activity assay with the ability to detect both proapoptotic and antiapoptotic surface molecules expressed by HT-1080 human fibrosarcoma cells. FALI of the Fas receptor (Fas/CD95) using a fluorescein-conjugated anti-Fas antibody abrogated Fas ligand-mediated caspase activation. Ninety-six single-chain variable fragment antibodies (scFv), selected for binding to the surface of HT-1080 cells, were screened by HTS-FALIpop. Three of the scFvs caused decreases in caspase induction after FALI of their protein targets. One of the targets of these positive scFvs was identified as CD44 and was validated by performing FALI using a CD44-specific monoclonal antibody, which resulted in similar protection from Fas apoptosis. CD44-targeted FALI was antiapoptotic in multiple human cancer cell lines, including both Fas signaling type I and II cells, and was also protective against other ligands of the tumor necrosis factor death receptor family. FALI of CD44 inhibited formation and activation of the death-inducing signaling complex, suggesting that CD44 regulates Fas at the cell surface. This mechanism of death receptor regulation represents a novel means of apoptosis modulation that could be exploited by pharmacologic agents.
Collapse
Affiliation(s)
- Robert S Hauptschein
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Boles KS, Barchet W, Diacovo T, Cella M, Colonna M. The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. Blood 2005; 106:779-86. [PMID: 15811952 DOI: 10.1182/blood-2005-02-0817] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressor in lung cancer-1 (TSLC1) gene is frequently silenced in human lung carcinomas, and its expression suppresses tumorigenesis in nude mice. TSLC1 encodes a cell-surface protein called Necl-2 that belongs to the Nectin and Nectin-like (Necl) family of molecules. Necl-2 mediates epithelial cell junctions by homotypic contacts and/or heterotypic interactions with other Nectins and Necls. Thus, it inhibits tumorigenesis by ensuring that epithelial cells grow in organized layers. Here, we demonstrate that natural killer (NK) cells and CD8+ T cells recognize Necl-2 through a receptor known as class I-restricted T-cell-associated molecule (CRTAM), which is expressed only on activated cells. CRTAM-Necl-2 interactions promote cytotoxicity of NK cells and interferon gamma (IFN-gamma) secretion of CD8+ T cells in vitro as well as NK cell-mediated rejection of tumors expressing Necl-2 in vivo. These results provide evidence for an additional mechanism of tumor suppression mediated by TSLC1 that involves cytotoxic lymphocytes. Furthermore, they reveal Necl-2 as one of the molecular targets that allows the immunosurveillance network to distinguish tumor cells from normal cells.
Collapse
Affiliation(s)
- Kent S Boles
- Washington University School of Medicine, 660 S. Euclid, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|