151
|
Towers AJ, Tremblay MW, Chung L, Li XL, Bey AL, Zhang W, Cao X, Wang X, Wang P, Duffney LJ, Siecinski SK, Xu S, Kim Y, Kong X, Gregory S, Xie W, Jiang YH. Epigenetic dysregulation of Oxtr in Tet1-deficient mice has implications for neuropsychiatric disorders. JCI Insight 2018; 3:120592. [PMID: 30518695 DOI: 10.1172/jci.insight.120592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023] Open
Abstract
OXTR modulates a variety of behaviors in mammals, including social memory and recognition. Genetic and epigenetic dysregulation of OXTR has been suggested to be implicated in neuropsychiatric disorders, including autism spectrum disorder (ASD). While the involvement of DNA methylation is suggested, the mechanism underlying epigenetic regulation of OXTR is largely unknown. This has hampered the experimental design and interpretation of the results of epigenetic studies of OXTR in neuropsychiatric disorders. From the generation and characterization of a new line of Tet1 mutant mice - by deleting the largest coding exon 4 (Tet1Δe4) - we discovered for the first time to our knowledge that Oxtr has an array of mRNA isoforms and a complex transcriptional regulation. Select isoforms of Oxtr are significantly reduced in the brain of Tet1Δe4-/- mice. Accordingly, CpG islands of Oxtr are hypermethylated during early development and persist into adulthood. Consistent with the reduced express of OXTR, Tet1Δe4-/- mice display impaired maternal care, social behavior, and synaptic responses to oxytocin stimulation. Our findings elucidate a mechanism mediated by TET1 protein in regulating Oxtr expression by preventing DNA hypermethylation of Oxtr. The discovery of epigenetic dysregulation of Oxtr in TET1-deficient mouse brain supports the necessity of a reassessment of existing findings and a value of future studies of OXTR in neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Leeyup Chung
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Xin-Lei Li
- Department of Pediatrics, Duke University, Durham, North Carolina, USA.,Laboratory of Molecular Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alexandra L Bey
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | - Wenhao Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinyu Cao
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Xiaoming Wang
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Ping Wang
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Lara J Duffney
- Department of Pediatrics, Duke University, Durham, North Carolina, USA.,Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | | | - Sonia Xu
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Yuna Kim
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Xiangyin Kong
- Laboratory of Molecular Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simon Gregory
- University Program in Genetics and Genomics and.,Department of Neurology and Duke Molecular Physiology Institute
| | - Wei Xie
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yong-Hui Jiang
- University Program in Genetics and Genomics and.,Department of Pediatrics, Duke University, Durham, North Carolina, USA.,Department of Neurobiology, Duke University, Durham, North Carolina, USA.,Duke Institute for Brain Sciences, and.,Program in Cellular and Molecular Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
152
|
Freeman SM, Palumbo MC, Lawrence RH, Smith AL, Goodman MM, Bales KL. Effect of age and autism spectrum disorder on oxytocin receptor density in the human basal forebrain and midbrain. Transl Psychiatry 2018; 8:257. [PMID: 30514927 PMCID: PMC6279786 DOI: 10.1038/s41398-018-0315-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/18/2018] [Indexed: 12/17/2022] Open
Abstract
The prosocial hormone oxytocin (OXT) has become a new target for research on the etiology and treatment of autism spectrum disorder (ASD), a condition characterized by deficits in social function. However, it remains unknown whether there are alterations in OXT receptor (OXTR) levels in the ASD brain. This study quantified the density of OXTR and of the structurally related vasopressin 1a receptor (AVPR1a) in postmortem brain tissue from individuals with ASD and typically developing individuals. We analyzed two regions known to contain OXTR across all primates studied to date: the nucleus basalis of Meynert (NBM), which mediates visual attention, and the superior colliculus, which controls gaze direction. In the NBM specimens, we also analyzed the neighboring ventral pallidum (VP) and the external segment of the globus pallidus. In the superior colliculus specimens, we also analyzed the adjacent periaqueductal gray. We detected dense OXTR binding in the human NBM and VP and moderate to low OXTR binding in the human globus pallidus, superior colliculus, and periaqueductal gray. AVPR1a binding was negligible across all five regions in all specimens. Compared to controls, ASD specimens exhibited significantly higher OXTR binding in the NBM and significantly lower OXTR binding in the VP, an area in the mesolimbic reward pathway. There was no effect of ASD on OXTR binding in the globus pallidus, superior colliculus, or periaqueductal gray. We also found a significant negative correlation between age and OXTR binding in the VP across all specimens. Further analysis revealed a peak in OXTR binding in the VP in early childhood of typically developing individuals, which was absent in ASD. This pattern suggests a possible early life critical period, which is lacking in ASD, where this important reward area becomes maximally sensitive to OXT binding. These results provide unique neurobiological insight into human social development and the social symptoms of ASD.
Collapse
Affiliation(s)
- Sara M. Freeman
- 0000 0004 1936 9684grid.27860.3bDepartment of Psychology, California National Primate Research Center, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Michelle C. Palumbo
- 0000 0004 1936 9684grid.27860.3bDepartment of Psychology, California National Primate Research Center, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Rebecca H. Lawrence
- 0000 0004 1936 9684grid.27860.3bDepartment of Psychology, California National Primate Research Center, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Aaron L. Smith
- 0000 0001 0941 6502grid.189967.8Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329 USA
| | - Mark M. Goodman
- 0000 0001 0941 6502grid.189967.8Department of Radiology and Imaging Sciences, Emory University, 1841 Clifton Road, Atlanta, GA 30322 USA
| | - Karen L. Bales
- 0000 0004 1936 9684grid.27860.3bDepartment of Psychology, California National Primate Research Center, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
153
|
Smajlagić D, Kvarme Jacobsen K, Myrum C, Haavik J, Johansson S, Zayats T. Moderating effect of mode of delivery on the genetics of intelligence: Explorative genome-wide analyses in ALSPAC. Brain Behav 2018; 8:e01144. [PMID: 30378284 PMCID: PMC6305932 DOI: 10.1002/brb3.1144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/27/2018] [Accepted: 09/30/2018] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Intelligence is a core construct of individual differences in cognitive abilities and a strong predictor of important life outcomes. Within recent years, rates of cesarean section have substantially increased globally, though little is known about its effect on neurodevelopmental trajectories. Thus, we aimed to investigate the influence of delivery by cesarean section on the genetics of intelligence in children. METHODS Participants were recruited through the Avon Longitudinal Study of Parents and Children (ALSPAC). Intelligence was measured by the Wechsler Intelligence Scale for Children (WISC). Genotyping was performed using the Illumina Human Hap 550 quad genome-wide SNP genotyping platform and was followed by imputation using MACH software. Genome-wide interaction analyses were conducted using linear regression. RESULTS A total of 2,421 children and 2,141,747 SNPs were subjected to the genome-wide interaction analyses. No variant reached genome-wide significance. The strongest interaction was observed at rs17800861 in the GRIN2A gene (β = -3.43, 95% CI = -4.74 to -2.12, p = 2.98E-07). This variant is predicted to be located within active chromatin compartments in the hippocampus and may influence binding of the NF-kappaB transcription factor. CONCLUSIONS Our results may indicate that mode of delivery might have a moderating effect on genetic disposition of intelligence in children. Studies of considerable sizes (>10,000) are likely required to more robustly detect variants governing such interaction. In summary, the presented findings prompt the need for further studies aimed at increasing our understanding of effects various modes of delivery may have on health outcomes in children.
Collapse
Affiliation(s)
- Dinka Smajlagić
- Department of Clinical Science, KG Jebsen Center for Neuropsychiatric DisordersUniversity of BergenBergenNorway
- Center for Medical Genetics and Molecular MedicineHaukeland University HospitalBergenNorway
| | - Kaya Kvarme Jacobsen
- Department of Biomedicine, KG Jebsen Center for Neuropsychiatric DisordersUniversity of BergenBergenNorway
| | - Craig Myrum
- Department of Biomedicine, KG Jebsen Center for Neuropsychiatric DisordersUniversity of BergenBergenNorway
| | - Jan Haavik
- Department of Biomedicine, KG Jebsen Center for Neuropsychiatric DisordersUniversity of BergenBergenNorway
| | - Stefan Johansson
- Department of Clinical Science, KG Jebsen Center for Neuropsychiatric DisordersUniversity of BergenBergenNorway
- Center for Medical Genetics and Molecular MedicineHaukeland University HospitalBergenNorway
| | - Tetyana Zayats
- Department of Biomedicine, KG Jebsen Center for Neuropsychiatric DisordersUniversity of BergenBergenNorway
| |
Collapse
|
154
|
Kuo HY, Liu FC. Molecular Pathology and Pharmacological Treatment of Autism Spectrum Disorder-Like Phenotypes Using Rodent Models. Front Cell Neurosci 2018; 12:422. [PMID: 30524240 PMCID: PMC6262306 DOI: 10.3389/fncel.2018.00422] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a high prevalence rate. The core symptoms of ASD patients are impaired social communication and repetitive behavior. Genetic and environmental factors contribute to pathophysiology of ASD. Regarding environmental risk factors, it is known that valproic acid (VPA) exposure during pregnancy increases the chance of ASD among offspring. Over a decade of animal model studies have shown that maternal treatment with VPA in rodents recapitulates ASD-like pathophysiology at a molecular, cellular and behavioral level. Here, we review the prevailing theories of ASD pathogenesis, including excitatory/inhibitory imbalance, neurotransmitter dysfunction, dysfunction of mTOR and endocannabinoid signaling pathways, neuroinflammation and epigenetic alterations that have been associated with ASD. We also describe the evidence linking neuropathological changes to ASD-like behavioral abnormalities in maternal VPA-treated rodents. In addition to obtaining an understanding of the neuropathological mechanisms, the VPA-induced ASD-like animal models also serve as a good platform for testing pharmacological reagents that might be use treating ASD. We therefore have summarized the various pharmacological studies that have targeted the classical neurotransmitter systems, the endocannabinoids, the Wnt signal pathway and neuroinflammation. These approaches have been shown to often be able to ameliorate the ASD-like phenotypes induced by maternal VPA treatments.
Collapse
Affiliation(s)
- Hsiao-Ying Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
155
|
Althammer F, Jirikowski G, Grinevich V. The oxytocin system of mice and men-Similarities and discrepancies of oxytocinergic modulation in rodents and primates. Peptides 2018; 109:1-8. [PMID: 30261208 DOI: 10.1016/j.peptides.2018.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 01/21/2023]
Abstract
Nonapeptides and their respective receptors have been conserved throughout evolution and display astonishing similarities among the animal kingdom. They can be found in worms, birds, fish, amphibians, reptiles and mammals, including rodents, non-human primates and humans. In particular, the neuropeptide oxytocin (OT) has attracted the attention of scientists due to its profound effects on social behavior. However, although both the neuropeptide and its receptor are identical in rodents and primates, the effects of OT vary greatly in the two species. Here, we provide a brief overview about OT's role in the evolution of mammals and provide reasons for the manifold effects of OT within the brain with a particular focus on the discrepancy of OT's effects in rodents and primates. In addition, we suggest new approaches towards improvement of translatability of scientific studies and highlight the most recent advances in animal models for autism spectrum disorder, a disease, in which the normal function of the OT system seems to be impaired.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Schaller Research Group on Neuropeptides at German Cancer Research Center (DKFZ) and Cell Network Cluster of Excellence at the University of Heidelberg, Heidelberg, Germany.
| | | | - Valery Grinevich
- Schaller Research Group on Neuropeptides at German Cancer Research Center (DKFZ) and Cell Network Cluster of Excellence at the University of Heidelberg, Heidelberg, Germany; Central Institute of Mental Health (ZI), Mannheim, Germany
| |
Collapse
|
156
|
Cataldo I, Azhari A, Lepri B, Esposito G. Oxytocin receptors (OXTR) and early parental care: An interaction that modulates psychiatric disorders. RESEARCH IN DEVELOPMENTAL DISABILITIES 2018; 82:27-38. [PMID: 29033100 DOI: 10.1016/j.ridd.2017.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/21/2017] [Accepted: 10/05/2017] [Indexed: 05/12/2023]
Abstract
Oxytocin plays an important role in the modulation of social behavior in both typical and atypical contexts. Also, the quality of early parental care sets the foundation for long-term psychosocial development. Here, we review studies that investigated how oxytocin receptor (OXTR) interacts with early parental care experiences to influence the development of psychiatric disorders. Using Pubmed, Scopus and PsycInfo databases, we utilized the keyword "OXTR" before subsequently searching for specific OXTR single nucleotide polymorphisms (SNPs), generating a list of 598 studies in total. The papers were catalogued in a database and filtered for gene-environment interaction, psychiatric disorders and involvement of parental care. In particular, rs53576 and rs2254298 were found to be significantly involved in gene-environment interactions that modulated risk for psychopathology and the following psychiatric disorders: disruptive behavior, depression, anxiety, eating disorder and borderline personality disorder. These results illustrate the importance of OXTR in mediating the impact of parental care on the emergence of psychopathology.
Collapse
Affiliation(s)
- Ilaria Cataldo
- Department of Psychology and Cognitive Science, University of Trento, Italy; Mobile and Social Computing Lab, Fondazione Bruno Kessler, Trento, Italy
| | - Atiqah Azhari
- Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore
| | - Bruno Lepri
- Mobile and Social Computing Lab, Fondazione Bruno Kessler, Trento, Italy
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Italy; Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
157
|
Lintas C. Linking genetics to epigenetics: The role of folate and folate-related pathways in neurodevelopmental disorders. Clin Genet 2018; 95:241-252. [PMID: 30047142 DOI: 10.1111/cge.13421] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/09/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
There is growing evidence that epigenetic dysregulation plays a role in neurodevelopmental disorders. In humans, folate is one of the main donors of the methyl group required for the synthesis of S-adenosylmethionine, which in turn is needed for DNA and histone methylation as key neurodevelopment processes. Folate deficiency during pregnancy has been correlated with neural tube defects and with a higher incidence of neurocognitive and/or neurobehavioral deficits. A similar outcome may be exerted by gene polymorphisms in folate or folate-related pathways. This has been documented by numerous case/control association studies performed on neurodevelopmental disorders such as autism spectrum disorder and attention deficit hyperactivity disorder. In this regard, the folate cycle represents a "perfect model" of how genetics influences epigenetics. Gene variants in folate and folate-related pathways can be considered risk factors for neurodevelopmental disorders and should therefore be assessed by genetic testing in pregnant women. High-risk women should be considered for folate supplementation during pregnancy. Here, we review all published case/control association studies on gene polymorphisms in folate and folate-related pathways performed on neurodevelopmental disorders, provide an overview of neurodevelopment and DNA methylation changes occurring at this time, and describe the biological basis of neurodevelopmental disorders and recent evidence of their epigenetic dysregulation.
Collapse
Affiliation(s)
- C Lintas
- Service for Neurodevelopmental Disorders, Laboratory of Molecular Psychiatry and Neurogenetics, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
158
|
Nishitani S, Parets SE, Haas BW, Smith AK. DNA methylation analysis from saliva samples for epidemiological studies. Epigenetics 2018; 13:352-362. [PMID: 29912612 DOI: 10.1080/15592294.2018.1461295] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Saliva is a non-invasive, easily accessible tissue, which is regularly collected in large epidemiological studies to examine genetic questions. Recently, it is becoming more common to use saliva to assess DNA methylation. However, DNA extracted from saliva is a mixture of both bacterial and human DNA derived from epithelial and immune cells in the mouth. Thus, there are unique challenges to using salivary DNA in methylation studies that can influence data quality. This study assesses: (1) quantification of human DNA after extraction; (2) delineation of human and bacterial DNA; (3) bisulfite conversion (BSC); (4) quantification of BSC DNA; (5) PCR amplification of BSC DNA from saliva and; (6) quantitation of DNA methylation with a targeted assay. The framework proposed will allow saliva samples to be more widely used in targeted epigenetic studies.
Collapse
Affiliation(s)
- Shota Nishitani
- a Department of Gynecology and Obstetrics , Emory University School of Medicine , Atlanta , GA , USA.,b Department of Psychiatry and Behavioral Sciences , Emory University School of Medicine , Atlanta , GA , USA
| | - Sasha E Parets
- b Department of Psychiatry and Behavioral Sciences , Emory University School of Medicine , Atlanta , GA , USA
| | - Brian W Haas
- c Department of Psychology , University of Georgia , Athens , GA , USA
| | - Alicia K Smith
- a Department of Gynecology and Obstetrics , Emory University School of Medicine , Atlanta , GA , USA.,b Department of Psychiatry and Behavioral Sciences , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
159
|
Andrews SV, Sheppard B, Windham GC, Schieve LA, Schendel DE, Croen LA, Chopra P, Alisch RS, Newschaffer CJ, Warren ST, Feinberg AP, Fallin MD, Ladd-Acosta C. Case-control meta-analysis of blood DNA methylation and autism spectrum disorder. Mol Autism 2018; 9:40. [PMID: 29988321 PMCID: PMC6022498 DOI: 10.1186/s13229-018-0224-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/21/2018] [Indexed: 11/10/2022] Open
Abstract
Background Several reports have suggested a role for epigenetic mechanisms in ASD etiology. Epigenome-wide association studies (EWAS) in autism spectrum disorder (ASD) may shed light on particular biological mechanisms. However, studies of ASD cases versus controls have been limited by post-mortem timing and severely small sample sizes. Reports from in-life sampling of blood or saliva have also been very limited in sample size and/or genomic coverage. We present the largest case-control EWAS for ASD to date, combining data from population-based case-control and case-sibling pair studies. Methods DNA from 968 blood samples from children in the Study to Explore Early Development (SEED 1) was used to generate epigenome-wide array DNA methylation (DNAm) data at 485,512 CpG sites for 453 cases and 515 controls, using the Illumina 450K Beadchip. The Simons Simplex Collection (SSC) provided 450K array DNAm data on an additional 343 cases and their unaffected siblings. We performed EWAS meta-analysis across results from the two data sets, with adjustment for sex and surrogate variables that reflect major sources of biological variation and technical confounding such as cell type, batch, and ancestry. We compared top EWAS results to those from a previous brain-based analysis. We also tested for enrichment of ASD EWAS CpGs for being targets of meQTL associations using available SNP genotype data in the SEED sample. Findings In this meta-analysis of blood-based DNA from 796 cases and 858 controls, no single CpG met a Bonferroni discovery threshold of p < 1.12 × 10− 7. Seven CpGs showed differences at p < 1 × 10− 5 and 48 at 1 × 10− 4. Of the top 7, 5 showed brain-based ASD associations as well, often with larger effect sizes, and the top 48 overall showed modest concordance (r = 0.31) in direction of effect with cerebellum samples. Finally, we observed suggestive evidence for enrichment of CpG sites controlled by SNPs (meQTL targets) among the EWAS CpG hits, which was consistent across EWAS and meQTL discovery p value thresholds. Conclusions No single CpG site showed a large enough DNAm difference between cases and controls to achieve epigenome-wide significance in this sample size. However, our results suggest the potential to observe disease associations from blood-based samples. Among the seven sites achieving suggestive statistical significance, we observed consistent, and stronger, effects at the same sites among brain samples. Discovery-oriented EWAS for ASD using blood samples will likely need even larger samples and unified genetic data to further understand DNAm differences in ASD. Electronic supplementary material The online version of this article (10.1186/s13229-018-0224-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shan V Andrews
- 1Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 USA.,2Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, W6509, Baltimore, MD 21205 USA
| | - Brooke Sheppard
- 1Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 USA.,2Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, W6509, Baltimore, MD 21205 USA
| | - Gayle C Windham
- 3California Department of Public Health, Environmental Health Investigations Branch, 850 Marina Bay Parkway, Richmond, CA 94804 USA
| | - Laura A Schieve
- 4National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, MS E-86, 1600 Clifton Road, Atlanta, GA 30333 USA
| | - Diana E Schendel
- 5Deparment of Public Health, Section of Epidemiology, Aarhus University, Aarhus, Denmark.,6Department of Economics and Business, National Centre for Register-based Research, Aarhus University, Aarhus, Denmark.,7Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Lisa A Croen
- 8Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA 94612 USA
| | - Pankaj Chopra
- 9Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322 USA
| | - Reid S Alisch
- 10Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719 USA
| | - Craig J Newschaffer
- 11Department of Epidemiology and Biostatistics, Drexel University School of Public Health, 3215 Market Street, Philadelphia, PA 19104 USA.,A.J. Drexel Autism Institute, 3020 Market Street Suite 560, Philadelphia, PA 19104 USA
| | - Stephen T Warren
- 9Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322 USA.,13Department of Biochemistry, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322 USA.,14Department of Pediatrics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322 USA
| | - Andrew P Feinberg
- 15Center for Epigenetics, Johns Hopkins School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205 USA.,16Department of Medicine, Johns Hopkins School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205 USA
| | - M Daniele Fallin
- 2Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, W6509, Baltimore, MD 21205 USA.,15Center for Epigenetics, Johns Hopkins School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205 USA.,17Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, HH850, Baltimore, MD 21205 USA
| | - Christine Ladd-Acosta
- 1Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 USA.,2Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, W6509, Baltimore, MD 21205 USA
| |
Collapse
|
160
|
Gur TL, Palkar AV, Rajasekera T, Allen J, Niraula A, Godbout J, Bailey MT. Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. Behav Brain Res 2018; 359:886-894. [PMID: 29949734 DOI: 10.1016/j.bbr.2018.06.025] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/25/2018] [Accepted: 06/22/2018] [Indexed: 01/31/2023]
Abstract
In utero and early neonatal exposure to maternal stress is linked with psychiatric disorders, and the underlying mechanisms are currently being elucidated. We used a prenatal stressor in pregnant mice to examine novel relationships between prenatal stress exposure, changes in the gut microbiome, and social behavior. Here, we show that males exposed to prenatal stress had a significant reduction in social behavior in adulthood, with increased corticosterone release following social interaction. Male offspring exposed to prenatal stress also had neuroinflammation, decreased oxytocin receptor, and decreased serotonin metabolism in their cortex in adulthood, which are linked to decreased social behavior. Finally, we found a significant difference in commensal microbes, including decreases in Bacteroides and Parabacteroides, in adult male offspring exposed to prenatal stress when compared to non-stressed controls. Our findings indicate that gestation is a critical window where maternal stress contributes to the development of aberrant social behaviors and alterations in cortical neurobiology, and that prenatal stress is sufficient to disrupt the male gut-brain axis into adulthood.
Collapse
Affiliation(s)
- Tamar L Gur
- Department of Psychiatry & Behavioral Health, Wexner Medical Center at The Ohio State University, United States; Neuroscience, Wexner Medical Center at The Ohio State University, United States; Obstetrics & Gynecology, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States.
| | - Aditi Vadodkar Palkar
- Department of Psychiatry & Behavioral Health, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States
| | - Therese Rajasekera
- Department of Psychiatry & Behavioral Health, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States
| | - Jacob Allen
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, United States; Biosciences Division, College of Dentistry, The Ohio State University, United States
| | - Anzela Niraula
- Neuroscience, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States
| | - Jonathan Godbout
- Neuroscience, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States
| | - Michael T Bailey
- Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States; Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, United States; Biosciences Division, College of Dentistry, The Ohio State University, United States; Department of Pediatrics, Wexner Medical Center at The Ohio State University, United States
| |
Collapse
|
161
|
Epigenetic regulation of the oxytocin receptor is associated with neural response during selective social attention. Transl Psychiatry 2018; 8:116. [PMID: 29907738 PMCID: PMC6003910 DOI: 10.1038/s41398-018-0159-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/01/2018] [Accepted: 04/21/2018] [Indexed: 11/28/2022] Open
Abstract
Aberrant attentional biases to social stimuli have been implicated in a number of disorders including autism and social anxiety disorder. Oxytocin, a naturally-occurring mammalian hormone and neuromodulator involved in regulating social behavior, has been proposed to impact basic biological systems that facilitate the detection of and orientation to social information. Here, we investigate a role for naturally-occurring variability in the endogenous oxytocinergic system in regulating neural response during attention to social information. Participants performed a selective social attention task while undergoing fMRI, provided a blood sample for epigenetic analysis, and completed self-report measures of social functioning. We find that a functional epigenetic modification to the oxytocin receptor, OXTR methylation, is associated with increased neural response within and decreased functional coupling between regions of the salience and attentional control networks during selective social attention. We also show that subclinical variability in autistic and social anxiety traits moderates this epigenetic regulation of neural response. These data offer a mechanistic explanation to a growing literature associating social behavior and disorder with epigenetic modification to OXTR by suggesting that OXTR methylation reflects a decrease in the extent to which social information automatically captures attention. We highlight the importance that treatment efficacy be considered in relation to individual differences in molecular makeup, and that future studies aimed at uncovering biomarkers of disorder carefully consider measurement at both the biological and phenotypic level.
Collapse
|
162
|
Maud C, Ryan J, McIntosh JE, Olsson CA. The role of oxytocin receptor gene (OXTR) DNA methylation (DNAm) in human social and emotional functioning: a systematic narrative review. BMC Psychiatry 2018; 18:154. [PMID: 29843655 PMCID: PMC5975530 DOI: 10.1186/s12888-018-1740-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/11/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The neuropeptide Oxytocin (OXT) plays a central role in birthing, mother-infant bonding and a broad range of related social behaviours in mammals. More recently, interest has extended to epigenetic programming of genes involved in oxytocinergic neurotransmission. This review brings together early findings in a rapidly developing field of research, examining relationships between DNA methylation (DNAm) of the Oxytocin Receptor Gene (OXTR) and social and emotional behaviour in human populations. METHOD A systematic search across Web of Knowledge/Science, Scopus, Medline and EMBASE captured all published studies prior to June 2017 examining the association between OXTR DNAm and human social and emotional outcomes. Search terms included 'oxytocin gene' or 'oxytocin receptor gene' and 'epigenetics' or 'DNA methylation'. Any article with a focus on social and emotional functioning was then identified from this set by manual review. RESULTS Nineteen studies met eligibility criteria. There was considerable heterogeneity of study populations, tissue samples, instrumentation, measurement, and OXTR site foci. Only three studies examined functional consequences of OXTR DNAm on gene expression and protein synthesis. Increases in OXTR DNAm were associated with callous-unemotional traits in youth, social cognitive deficits in Autistic Spectrum Disorder (ASD), rigid thinking in anorexia nervosa, affect regulation problems, and problems with facial and emotional recognition. In contrast, reductions in DNAm were associated with perinatal stress, postnatal depression, social anxiety and autism in children. CONCLUSIONS Consistent with an emerging field of inquiry, there is not yet sufficient evidence to draw conclusions about the role of OXTR DNAm in human social and emotional behaviour. However, taken together, findings point to increased OXTR DNAm in general impairments in social, cognitive and emotional functioning, and decreased OXTR DNAm in specific patterns of impairment related to mood and anxiety disorders (but not in all). Future progress in this field would be enhanced by adequately powered designs, greater phenotypic precision, and methodological improvements including longitudinal studies with multiple time-points to facilitate causal inference.
Collapse
Affiliation(s)
- Catherine Maud
- Deakin University Geelong, Centre for Social and Early Emotional Development, Faculty of Health, School of Psychology, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| | - Joanne Ryan
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, 3052, Australia.,Department of Epidemiology and Preventative Medicine, School of Public Health and Preventative Medicine, Monash University, Prahran, VIC, 3004, Australia
| | - Jennifer E McIntosh
- Deakin University Geelong, Centre for Social and Early Emotional Development, Faculty of Health, School of Psychology, 221 Burwood Highway, Burwood, VIC, 3125, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia
| | - Craig A Olsson
- Deakin University Geelong, Centre for Social and Early Emotional Development, Faculty of Health, School of Psychology, 221 Burwood Highway, Burwood, VIC, 3125, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, 3052, Australia
| |
Collapse
|
163
|
Torres N, Martins D, Santos AJ, Prata D, Veríssimo M. How do hypothalamic nonapeptides shape youth's sociality? A systematic review on oxytocin, vasopressin and human socio-emotional development. Neurosci Biobehav Rev 2018; 90:309-331. [PMID: 29738796 DOI: 10.1016/j.neubiorev.2018.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022]
Abstract
The hypothalamic nonapeptides oxytocin and vasopressin are important modulators of socio-affective behaviours in a wide variety of animal species, including humans. Nevertheless, there is little research addressing their possible roles on socio-affective dimensions of human behaviour across development, during which considerable behavioural and physiological change occurs. Questions still remain about the extent to which findings from adults may directly apply to earlier phases of human development. In this article, we systematically summarize and discuss all existing studies investigating the developmental association of endogenous levels of hypothalamic neuropeptides oxytocin and vasopressin with human social behaviour or on its disruption in paediatric populations. Evidence is sparse insofar as there are still relatively few developmental studies and limited due to correlational research designs and unreliability of methods currently used for neuropeptide measurements in biological fluids. The findings to date generally converge with adult evidence, but also suggest that important differences between age stages may exist. Further studies focusing these differences may prove critical for informing drug development for socio-affective deficits in paediatric populations.
Collapse
Affiliation(s)
- Nuno Torres
- William James Center for Research, ISPA - Instituto Universitário, Lisboa, Portugal
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - António J Santos
- William James Center for Research, ISPA - Instituto Universitário, Lisboa, Portugal
| | - Diana Prata
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; ISCTE - Instituto Universitário de Lisboa, Portugal
| | - Manuela Veríssimo
- William James Center for Research, ISPA - Instituto Universitário, Lisboa, Portugal.
| |
Collapse
|
164
|
Mastinu A, Premoli M, Maccarinelli G, Grilli M, Memo M, Bonini SA. Melanocortin 4 receptor stimulation improves social deficits in mice through oxytocin pathway. Neuropharmacology 2018; 133:366-374. [DOI: 10.1016/j.neuropharm.2018.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/17/2022]
|
165
|
Galbally M, Ryan J, van IJzendoorn M, Watson SJ, Spigset O, Lappas M, Saffery R, de Kloet R, Lewis AJ. Maternal depression, antidepressant use and placental oxytocin receptor DNA methylation: Findings from the MPEWS study. Psychoneuroendocrinology 2018; 90:1-8. [PMID: 29407512 DOI: 10.1016/j.psyneuen.2018.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/24/2017] [Accepted: 01/03/2018] [Indexed: 01/28/2023]
Abstract
The aim of this study was to investigate placental DNA methylation of the oxytocin receptor gene (OXTR) in women with depression in pregnancy. We also explored the role of antidepressant medication in pregnancy on placental OXTR methylation. Data were obtained from 239 women in the Mercy Pregnancy and Emotional Wellbeing Study (MPEWS), a selected pregnancy cohort. Current depressive disorders were diagnosed using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders (SCID-IV). Depressive symptoms were measured during the third trimester in pregnancy using the Edinburgh Postnatal Depression Scale (EPDS). Plasma levels of antidepressant drugs were measured in maternal and cord blood obtained at delivery. OXTR DNA methylation was measured in placenta samples. Depressive symptoms in pregnancy were not associated with significant changes in DNA methylation of OXTR in the placenta. Cord plasma antidepressant levels were more strongly associated than maternal antidepressant dose or circulating blood antidepressant levels with increased DNA methylation of a specific unit within the promotor region of OXTR. This study provides preliminary data to suggest that antidepressant use during pregnancy can alter OXTR methylation in placental tissue. Our findings also indicate that the way exposures are measured in pregnancy can influence the direction and strength of findings. Future studies should investigate whether altered OXTR methylation might mediate the impacts of maternal antidepressant treatment on pregnancy and offspring outcomes.
Collapse
Affiliation(s)
- Megan Galbally
- School of Psychology and Exercise Science, Murdoch University, Australia; School of Medicine, University of Notre Dame, Australia; King Edward Memorial Hospital, Australia.
| | - Joanne Ryan
- Murdoch Children's Research Institute, Royal Children's Hospital, and Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Marinus van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, The Netherlands
| | - Stuart J Watson
- School of Psychology and Exercise Science, Murdoch University, Australia; School of Medicine, University of Notre Dame, Australia
| | - Olav Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway; Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, and Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Ron de Kloet
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew James Lewis
- School of Psychology and Exercise Science, Murdoch University, Australia
| |
Collapse
|
166
|
Oztan O, Jackson LP, Libove RA, Sumiyoshi RD, Phillips JM, Garner JP, Hardan AY, Parker KJ. Biomarker discovery for disease status and symptom severity in children with autism. Psychoneuroendocrinology 2018; 89:39-45. [PMID: 29309996 PMCID: PMC5878709 DOI: 10.1016/j.psyneuen.2017.12.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by social impairments and repetitive behaviors, and affects 1 in 68 US children. Despite ASD's societal impact, its disease mechanisms remain poorly understood. Recent preclinical ASD biomarker discovery research has implicated the neuropeptides oxytocin (OXT) and arginine vasopressin (AVP), and their receptors, OXTR and AVPR1A, in animal models. Efforts to translate these findings to individuals with ASD have typically involved evaluating single neuropeptide measures as biomarkers of ASD and/or behavioral functioning. Given that ASD is a heterogeneous disorder, and unidimensional ASD biomarker studies have been challenging to reproduce, here we employed a multidimensional neuropeptide biomarker analysis to more powerfully interrogate disease status and symptom severity in a well characterized child cohort comprised of ASD patients and neurotypical controls. These blood-based neuropeptide measures, considered as a whole, correctly predicted disease status for 57 out of 68 (i.e., 84%) participants. Further analysis revealed that a composite measure of OXTR and AVPR1A gene expression was the key driver of group classification, and that children with ASD had lower neuropeptide receptor mRNA levels compared to controls. Lower neuropeptide receptor mRNA levels also predicted greater symptom severity for core ASD features (i.e., social impairments and stereotyped behaviors), but were unrelated to intellectual impairment, an associated feature of ASD. Findings from this research highlight the value of assessing multiple related biological measures, and their relative contributions, in the same study, and suggest that low blood neuropeptide receptor availability may be a promising biomarker of disease presence and symptom severity in ASD.
Collapse
Affiliation(s)
- Ozge Oztan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, United States.
| | - Lisa P. Jackson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Robin A. Libove
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Raena D. Sumiyoshi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Jennifer M. Phillips
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Joseph P. Garner
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305,Department of Comparative Medicine, Stanford University, Stanford, CA 94305
| | - Antonio Y. Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Karen J. Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| |
Collapse
|
167
|
Cataldo I, Azhari A, Esposito G. A Review of Oxytocin and Arginine-Vasopressin Receptors and Their Modulation of Autism Spectrum Disorder. Front Mol Neurosci 2018; 11:27. [PMID: 29487501 PMCID: PMC5816822 DOI: 10.3389/fnmol.2018.00027] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/18/2018] [Indexed: 12/24/2022] Open
Abstract
Oxytocin (OXT) and arginine-vasopressin (AVP) play a key regulatory part in social and affiliative behaviors; two aspects highly compromised in Autism Spectrum Disorder (ASD). Furthermore, variants in the adjacent oxytocin-vasopressin gene regions have been found to be associated with ASD diagnosis and endophenotypes. This review focuses mainly on common OXTr single nucleotide polymorphisms (SNPs), AVPR1a microsatellites and AVPR1b polymorphisms in relation to the development of autism. Although these genes did not surface in genome-wide association studies, evidence supports the hypothesis that these receptors and their polymorphisms are widely involved in the regulation of social behavior, and in modulating neural and physiological pathways contributing to the etiology of ASD. With a specific focus on variants considered to be among the most prevalent in the development of ASD, these issues will be discussed in-depth and suggestions to approach inconsistencies in the present literature will be provided. Translational implications and future directions are deliberated from a short-term and a forward-looking perspective. While the scientific community has made significant progress in enhancing our understanding of ASD, more research is required for the ontology of this disorder to be fully elucidated. By supplementing information related to genetics, highlighting the differences across male and female sexes, this review provides a wider view of the current state of knowledge of OXTr and AVPr mechanisms of functioning, eventually addressing future research in the identification of further risk factors, to build new strategies for early interventions.
Collapse
Affiliation(s)
- Ilaria Cataldo
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.,Mobile and Social Computing Lab, Fondazione Bruno Kessler, Trento, Italy
| | - Atiqah Azhari
- Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.,Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
168
|
Ebner NC, Lin T, Muradoglu M, Weir DH, Plasencia GM, Lillard TS, Pournajafi-Nazarloo H, Cohen RA, Sue Carter C, Connelly JJ. Associations between oxytocin receptor gene (OXTR) methylation, plasma oxytocin, and attachment across adulthood. Int J Psychophysiol 2018; 136:22-32. [PMID: 29410310 DOI: 10.1016/j.ijpsycho.2018.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/23/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Abstract
The neuropeptide oxytocin (OT) has been implicated in a wide range of affiliative processes. OT exerts its functions via OT receptors, which are encoded by the oxytocin receptor gene (OXTR). Epigenetic modification of OXTR through the process of DNA methylation has been associated with individual differences in behavioral phenotypes. Specifically, lower levels of OXTR methylation have been linked to better social and affective functioning. However, research on epigenetic mechanisms of OXTR is scarce in non-clinical populations, and even less is known about epigenetic variability across adulthood. The present study assessed methylation levels at OXTR CpG site -934 and plasma OT levels in 22 young (20-31 years, M = 23.6) and 34 older (63-80 years, M = 71.4) participants. Lower levels of OXTR methylation and higher plasma OT levels were associated with less self-reported attachment anxiety in young but not older participants, with largely independent contributions of OXTR methylation and plasma OT levels. In contrast, in the overall sample, lower levels of OXTR methylation were associated with higher self-reported attachment avoidance. Age analysis suggested that these results were largely driven by young adults. Plasma OT levels were unrelated to attachment avoidance. Taken together, these findings support the emerging notion in the literature that epigenetic properties of OXTR, in addition to endogenous OT levels, are related to adult attachment. Further, the age effects observed in the associations between OXTR methylation, plasma OT, and adult attachment emphasize the importance of adopting a developmental perspective when studying properties of the OT system and their relation to affiliative processes. Findings contribute to growing evidence suggesting that epigenetic modification of genes regulating OT pathways and endogenous OT levels are associated with the way people form and maintain intimate social relationships.
Collapse
Affiliation(s)
- Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA; Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.
| | - Tian Lin
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Melis Muradoglu
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Devon H Weir
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Gabriela M Plasencia
- Stritch School of Medicine, Loyola University of Chicago, 2160 S 1st Ave, Maywood, IL 60153, USA
| | - Travis S Lillard
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | | | - Ronald A Cohen
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - C Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Jessica J Connelly
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
169
|
Forsberg SL, Ilieva M, Maria Michel T. Epigenetics and cerebral organoids: promising directions in autism spectrum disorders. Transl Psychiatry 2018; 8:14. [PMID: 29317608 PMCID: PMC5802583 DOI: 10.1038/s41398-017-0062-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/26/2017] [Indexed: 01/04/2023] Open
Abstract
Autism spectrum disorders (ASD) affect 1 in 68 children in the US according to the Centers for Disease Control and Prevention (CDC). It is characterized by impairments in social interactions and communication, restrictive and repetitive patterns of behaviors, and interests. Owing to disease complexity, only a limited number of treatment options are available mainly for children that alleviate but do not cure the debilitating symptoms. Studies confirm a genetic link, but environmental factors, such as medications, toxins, and maternal infection during pregnancy, as well as birth complications also play a role. Some studies indicate a set of candidate genes with different DNA methylation profiles in ASD compared to healthy individuals. Thus epigenetic alterations could help bridging the gene-environment gap in deciphering the underlying neurobiology of autism. However, epigenome-wide association studies (EWAS) have mainly included a very limited number of postmortem brain samples. Hence, cellular models mimicking brain development in vitro will be of great importance to study the critical epigenetic alterations and when they might happen. This review will give an overview of the state of the art concerning knowledge on epigenetic changes in autism and how new, cutting edge expertise based on three-dimensional (3D) stem cell technology models (brain organoids) can contribute in elucidating the multiple aspects of disease mechanisms.
Collapse
Affiliation(s)
- Sheena Louise Forsberg
- Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mirolyuba Ilieva
- Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Tanja Maria Michel
- Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Psychiatry, Psychiatry in the region of Southern Denmark, Odense, Denmark
- Odense Center for Applied Neuroscience BRIDGE, University of Southern Denmark, Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark
| |
Collapse
|
170
|
Aghajani M, Klapwijk ET, Colins OF, Ziegler C, Domschke K, Vermeiren RRJM, van der Wee NJA. Interactions Between Oxytocin Receptor Gene Methylation and Callous-Unemotional Traits Impact Socioaffective Brain Systems in Conduct-Disordered Offenders. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:379-391. [PMID: 29628070 DOI: 10.1016/j.bpsc.2017.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND The developmental trajectory of psychopathy seemingly begins early in life and includes the presence of callous-unemotional (CU) traits (e.g., perturbed socioaffective reactivity and empathy, callousness) in youths with conduct disorder (CD). Whereas oxytocin receptor gene methylation (OXTRMeth) and its downstream neuromodulatory effects are deemed relevant to CU traits, nothing is known of how OXTRMeth interacts with CU traits to impact socioaffective brain systems in youngsters with CD. METHODS Hence, we uniquely probed OXTRMeth × CU trait interactions on corticolimbic activity and amygdala subregional connections during recognition and resonance of distressing socioaffective stimuli (angry and fearful faces), in juvenile offenders with CD (n = 39) versus matched healthy control youths (n = 27). RESULTS Relative to healthy control youths, elevated OXTRMeth and CU levels in youths with CD essentially interacted to predict frontoparietal hyperactivity and amygdalo-frontoparietal disconnection during task performance. Specifically, increasing OXTRMeth and CU levels in youths with CD interactively predicted midcingulate hyperactivity during both emotion conditions, with insular, temporoparietal, and precuneal hyperactivity additionally emerging during emotion recognition. Interactions between high OXTRMeth and CU levels in youths with CD additionally predicted centromedial amygdala decoupling from ventromedial/orbitofrontal regions during emotion recognition, along with basolateral amygdala decoupling from precuneal and temporoparietal cortices during emotion resonance. CONCLUSIONS These results uniquely suggest that interactions between OXTRMeth and CU traits in youths with CD may affect brain systems critical to decoding and integrating socioaffective information. Developmental models of CU traits and psychopathy could thus possibly advance by further examining OXTR epigenetic effects, which may hold promise for indicated prevention and personalized treatment by targeting oxytocinergic function.
Collapse
Affiliation(s)
- Moji Aghajani
- Department of Child and Adolescent Psychiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands.
| | - Eduard T Klapwijk
- Department of Child and Adolescent Psychiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Brain and Development Research Center, Institute of Psychology, Leiden University, Leiden, the Netherlands
| | - Olivier F Colins
- Department of Child and Adolescent Psychiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Christiane Ziegler
- Department of Psychiatry and Psychotherapy, University Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Psychiatry, University of Würzburg, Würzburg, Germany
| | | | - Robert R J M Vermeiren
- Department of Child and Adolescent Psychiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Nic J A van der Wee
- Department of Pschiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
171
|
Abstract
Importance of the neuroendocrine brain for health and happiness has become clear since the 1960s. Foundations laid 100 years ago culminated in Geoffrey W Harris's model of control by the brain of secretion of anterior and posterior pituitary gland hormones through, respectively, releasing factors secreted into the hypothalamic-hypophysial portal system, and directly from axon terminals into the systemic circulation. Confirmation, expansion and deepening of knowledge and understanding have followed increasingly sophisticated technology. This allowed chemical characterisation of the posterior pituitary hormones, oxytocin and vasopressin, the releasing factors, their receptors and genes, location of the neurosecretory neurons in the hypothalamus, and how their activity is controlled, including by neural and hormonal feedback, and how hormone rhythms are generated. Wider roles of these neurons and their peptides in the brain are now recognised: in reproductive and social behaviours, emotions and appetite. Plasticity and epigenetic programming of neuroendocrine systems have emerged as important features.
Collapse
Affiliation(s)
- John A. Russell
- Professor Emeritus, Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, UK
| |
Collapse
|
172
|
Thye MD, Bednarz HM, Herringshaw AJ, Sartin EB, Kana RK. The impact of atypical sensory processing on social impairments in autism spectrum disorder. Dev Cogn Neurosci 2018; 29:151-167. [PMID: 28545994 PMCID: PMC6987885 DOI: 10.1016/j.dcn.2017.04.010] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/25/2017] [Accepted: 04/18/2017] [Indexed: 02/03/2023] Open
Abstract
Altered sensory processing has been an important feature of the clinical descriptions of autism spectrum disorder (ASD). There is evidence that sensory dysregulation arises early in the progression of ASD and impacts social functioning. This paper reviews behavioral and neurobiological evidence that describes how sensory deficits across multiple modalities (vision, hearing, touch, olfaction, gustation, and multisensory integration) could impact social functions in ASD. Theoretical models of ASD and their implications for the relationship between sensory and social functioning are discussed. Furthermore, neural differences in anatomy, function, and connectivity of different regions underlying sensory and social processing are also discussed. We conclude that there are multiple mechanisms through which early sensory dysregulation in ASD could cascade into social deficits across development. Future research is needed to clarify these mechanisms, and specific focus should be given to distinguish between deficits in primary sensory processing and altered top-down attentional and cognitive processes.
Collapse
Affiliation(s)
- Melissa D Thye
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Haley M Bednarz
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Abbey J Herringshaw
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Emma B Sartin
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Rajesh K Kana
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States.
| |
Collapse
|
173
|
Kader F, Ghai M, Maharaj L. The effects of DNA methylation on human psychology. Behav Brain Res 2017; 346:47-65. [PMID: 29237550 DOI: 10.1016/j.bbr.2017.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/01/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023]
Abstract
DNA methylation is a fundamental epigenetic modification in the human genome; pivotal in development, genomic imprinting, X inactivation, chromosome stability, gene expression and methylation aberrations are involved in an array of human diseases. Methylation at promoters is associated with transcriptional repression, whereas gene body methylation is generally associated with gene expression. Extrinsic factors such as age, diets and lifestyle affect DNA methylation which consequently alters gene expression. Stress, anxiety, depression, life satisfaction, emotion among numerous other psychological factors also modify DNA methylation patterns. This correlation is frequently investigated in four candidate genes; NR3C1, SLC6A4, BDNF and OXTR, since regulation of these genes directly impact responses to social situations, stress, threats, behaviour and neural functions. Such studies underpin the hypothesis that DNA methylation is involved in deviant human behaviour, psychological and psychiatric conditions. These candidate genes may be targeted in future to assess the correlation between methylation, social experiences and long-term behavioural phenotypes in humans; and may potentially serve as biomarkers for therapeutic intervention.
Collapse
Affiliation(s)
- Farzeen Kader
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| | - Meenu Ghai
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| | - Leah Maharaj
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| |
Collapse
|
174
|
Milaniak I, Cecil CAM, Barker ED, Relton CL, Gaunt TR, McArdle W, Jaffee SR. Variation in DNA methylation of the oxytocin receptor gene predicts children's resilience to prenatal stress. Dev Psychopathol 2017; 29:1663-1674. [PMID: 29162179 DOI: 10.1017/s0954579417001316] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Emerging research in epigenetics has shown that there is variability in how environmental exposures "get under the skin" through mechanisms like DNA methylation to influence gene expression that may lead to differential adaptations to stress. This is the first study to examine prospectively the relationship between DNA methylation at birth and resilience to prenatal environmental stressors in several domains (conduct, hyperactivity, emotional problems, and global symptomatology) in middle childhood. We focused on DNA methylation in the vicinity of the oxytocin receptor (OXTR) gene as it has been previously associated with impairments in social-cognitive processes that may underlie a wide range of childhood psychopathology. Participants were 91 youth exposed to pre- and postnatal adversity with established conduct problem trajectories drawn from the Avon Longitudinal Study of Parents and Children. Consistent with our hypothesis, OXTR DNA methylation was predictive of resilience in the conduct problems domain in middle childhood. DNA methylation profiles did not predict resilience in domains of emotional, hyperactivity, and global symptomatology, suggesting a potential role for OXTR in the development of conduct problems in particular. However, individuals who were resilient to conduct problems were also broadly resilient across multiple domains. Therefore, future research should elucidate the biological pathways between OXTR DNA methylation and gene expression and its relation to impairments in social behavior.
Collapse
|
175
|
Chronic Intranasal Oxytocin has Dose-dependent Effects on Central Oxytocin and Vasopressin Systems in Prairie Voles (Microtus ochrogaster). Neuroscience 2017; 369:292-302. [PMID: 29183825 DOI: 10.1016/j.neuroscience.2017.11.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 01/12/2023]
Abstract
Oxytocin (Oxt) is a neuropeptide with many functions, including modulation of social behavior(s) and anxiety. Due to its notable pro-social effects, it has been proposed as a treatment in the management of neuropsychiatric disorders, such as autism spectrum disorder (ASD), schizophrenia, and social anxiety; however, effects of long-term daily treatment are still being explored. Previously, we have shown that in male prairie voles (Microtus ochrogaster) exposure to Oxt during the peri-adolescent period impaired adult pair bonding in a dose-dependent fashion. In females, the medium dose used (0.8 IU/kg) appeared to facilitate pair bonding, and the low and medium doses were associated with fewer lines crossed in the open field. In this study, we examined central receptor binding and immunoreactive (IR) protein for Oxt and vasopressin (Avp), a closely related peptide. Voles were treated with saline vehicle, or one of three doses of Oxt (0.08, 0.8, 8.0 IU/kg) for three weeks from postnatal days 21 to 42, and euthanized as adults. We used autoradiography to examine Oxt and Avp receptor binding and immunohistochemistry to examine Oxt and Avp - IR cells in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Females that received the medium dose of Oxt had higher Oxt receptor binding in the nucleus accumbens shell (NAS), while males that received the medium dose had lower Avp-IR cells in the PVN. In summary, we found sex-specific effects of long-term exposure to intranasal Oxt on the Oxt and Avp systems at the weight-adjusted dose currently being used in clinical trials in humans.
Collapse
|
176
|
King L, Robins S, Chen G, Yerko V, Zhou Y, Nagy C, Feeley N, Gold I, Hayton B, Turecki G, Zelkowitz P. Perinatal depression and DNA methylation of oxytocin-related genes: a study of mothers and their children. Horm Behav 2017; 96:84-94. [PMID: 28918249 DOI: 10.1016/j.yhbeh.2017.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/08/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022]
Abstract
The present study investigated the association of perinatal depression (PD) with differential methylation of 3 genomic regions among mother and child dyads: exon 3 within the oxytocin receptor (OXTR) gene and 2 intergenic regions (IGR) between the oxytocin (OXT) and vasopressin (AVP) genes. Maternal PD was assessed at 5 time-points during pregnancy and postpartum. Four groups were established based on Edinburgh Postnatal Depression Scale (EPDS) cut-off scores: no PD, prenatal or postpartum depressive symptoms only and persistent PD (depressive symptoms both prenatally and postpartum). Salivary DNA was collected from mothers and children at the final time-point, 2.9years postpartum. Mothers with persistent PD had significantly higher overall OXTR methylation than the other groups and this pattern extended to 16/22 individual CpG sites. For the IGR, only the region closer to the AVP gene (AVP IGR) showed significant differential methylation, with the persistent PD group displaying the lowest levels of methylation overall, but not for individual CpG sites. These results suggest that transient episodes of depression may not be associated with OXTR hypermethylation. Validation studies need to confirm the downstream biological effects of AVP IGR hypomethylation as it relates to persistent PD. Differential methylation of the OXTR and IGR regions was not observed among children exposed to maternal PD. The consequences of OXTR hypermethylation and AVP IGR hypomethylation found in mothers with persistent PDS may not only impact the OXT system, but may also compromise maternal behavior, potentially resulting in negative outcomes for the developing child.
Collapse
Affiliation(s)
- Leonora King
- Jewish General Hospital, Lady Davis Institute for Medical Research & McGill University, Department of Psychiatry, Montreal, Quebec, Canada
| | - Stephanie Robins
- Jewish General Hospital & Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Gang Chen
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Volodymyr Yerko
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Yi Zhou
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Nancy Feeley
- Centre for Nursing Research, Jewish General Hospital & McGill University, Montreal, Quebec, Canada
| | - Ian Gold
- Department of Philosophy & Division of Social and Transcultural Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Barbara Hayton
- Jewish General Hospital & McGill University, Department of Psychiatry & Family Medicine, Montreal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute & McGill University, Department of Psychiatry, Montreal, Quebec, Canada.
| | - Phyllis Zelkowitz
- Jewish General Hospital, Lady Davis Institute for Medical Research & McGill University, Department of Psychiatry, Montreal, Quebec, Canada.
| |
Collapse
|
177
|
Zhubi A, Chen Y, Guidotti A, Grayson DR. Epigenetic regulation of RELN and GAD1 in the frontal cortex (FC) of autism spectrum disorder (ASD) subjects. Int J Dev Neurosci 2017; 62:63-72. [PMID: 28229923 PMCID: PMC5575980 DOI: 10.1016/j.ijdevneu.2017.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 01/01/2023] Open
Abstract
Both Reelin (RELN) and glutamate decarboxylase 67 (GAD1) have been implicated in the pathophysiology of Autism Spectrum Disorders (ASD). We have previously shown that both mRNAs are reduced in the cerebella (CB) of ASD subjects through a mechanism that involves increases in the amounts of MECP2 binding to the corresponding promoters. In the current study, we examined the expression of RELN, GAD1, GAD2, and several other mRNAs implicated in this disorder in the frontal cortices (FC) of ASD and CON subjects. We also focused on the role that epigenetic processes play in the regulation of these genes in ASD brain. Our goal is to better understand the molecular basis for the down-regulation of genes expressed in GABAergic neurons in ASD brains. We measured mRNA levels corresponding to selected GABAergic genes using qRT-PCR in RNA isolated from both ASD and CON groups. We determined the extent of binding of MECP2 and DNMT1 repressor proteins by chromatin immunoprecipitation (ChIP) assays. The amount of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) present in the promoters of the target genes was quantified by methyl DNA immunoprecipitation (MeDIP) and hydroxyl MeDIP (hMeDIP). We detected significant reductions in the mRNAs associated with RELN and GAD1 and significant increases in mRNAs encoding the Ten-eleven Translocation (TET) enzymes 1, 2, and 3. We also detected increased MECP2 and DNMT1 binding to the corresponding promoter regions of GAD1, RELN, and GAD2. Interestingly, there were decreased amounts of 5mC at both promoters and little change in 5hmC content in these same DNA fragments. Our data demonstrate that RELN, GAD1, and several other genes selectively expressed in GABAergic neurons, are down-regulated in post-mortem ASD FC. In addition, we observed increased DNMT1 and MECP2 binding at the corresponding promoters of these genes. The finding of increased MECP2 binding to the RELN, GAD1 and GAD2 promoters, with reduced amounts of 5mC and unchanged amounts of 5hmC present in these regions, suggests the possibility that DNMT1 interacts with and alters MECP2 binding properties to selected promoters. Comparisons between data obtained from the FC with CB studies showed some common themes between brain regions which are discussed.
Collapse
Affiliation(s)
- Adrian Zhubi
- The Psychiatric Institute, Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, United States.
| | - Ying Chen
- The Psychiatric Institute, Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, United States.
| | - Alessandro Guidotti
- The Psychiatric Institute, Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, United States.
| | - Dennis R Grayson
- The Psychiatric Institute, Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, United States.
| |
Collapse
|
178
|
Siu MT, Weksberg R. Epigenetics of Autism Spectrum Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:63-90. [PMID: 28523541 DOI: 10.1007/978-3-319-53889-1_4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD), one of the most common childhood neurodevelopmental disorders (NDDs), is diagnosed in 1 of every 68 children. ASD is incredibly heterogeneous both clinically and aetiologically. The etiopathogenesis of ASD is known to be complex, including genetic, environmental and epigenetic factors. Normal epigenetic marks modifiable by both genetics and environmental exposures can result in epigenetic alterations that disrupt the regulation of gene expression, negatively impacting biological pathways important for brain development. In this chapter we aim to summarize some of the important literature that supports a role for epigenetics in the underlying molecular mechanism of ASD. We provide evidence from work in genetics, from environmental exposures and finally from more recent studies aimed at directly determining ASD-specific epigenetic patterns, focusing mainly on DNA methylation (DNAm). Finally, we briefly discuss some of the implications of current research on potential epigenetic targets for therapeutics and novel avenues for future work.
Collapse
Affiliation(s)
- Michelle T Siu
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada. .,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada. .,Department of Paediatrics, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
179
|
Baribeau DA, Dupuis A, Paton TA, Scherer SW, Schachar RJ, Arnold PD, Szatmari P, Nicolson R, Georgiades S, Crosbie J, Brian J, Iaboni A, Lerch J, Anagnostou E. Oxytocin Receptor Polymorphisms are Differentially Associated with Social Abilities across Neurodevelopmental Disorders. Sci Rep 2017; 7:11618. [PMID: 28912494 PMCID: PMC5599599 DOI: 10.1038/s41598-017-10821-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/15/2017] [Indexed: 12/17/2022] Open
Abstract
Oxytocin is a pituitary neuropeptide that affects social behaviour. Single nucleotide polymorphisms (SNPs) in the oxytocin receptor gene (OXTR) have been shown to explain some variability in social abilities in control populations. Whether these variants similarly contribute to the severity of social deficits experienced by children with neurodevelopmental disorders is unclear. Social abilities were assessed in a group of children with autism spectrum disorder (ASD, n = 341) or attention deficit hyperactivity disorder (ADHD, n = 276) using two established social measures. Scores were compared by OXTR genotype (rs53576, rs237887, rs13316193, rs2254298). Unexpectedly, the two most frequently studied OXTR SNPs in the general population (rs53576 and rs2254298) were associated with an increased severity of social deficits in ASD (p < 0.0001 and p = 0.0005), yet fewer social deficits in ADHD (p = 0.007 and p < 0.0001). We conclude that these genetic modifier alleles are not inherently risk-conferring with respect to their impact on social abilities; molecular investigations are greatly needed.
Collapse
Affiliation(s)
| | - Annie Dupuis
- Department of Biostatistics Design and Analysis, The Hospital for Sick Children, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Tara A Paton
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.,The McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
| | - Russell J Schachar
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paul D Arnold
- Hotchkiss Brain Institute, Departments of Psychiatry & Medical Genetics, University of Calgary, Calgary, Alberta, Canada
| | - Peter Szatmari
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Rob Nicolson
- The Children's Health Research Institute and Western University, London, Ontario, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Chedoke Hospital, Hamilton, Ontario, Canada
| | - Jennifer Crosbie
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jessica Brian
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Alana Iaboni
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Jason Lerch
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Evdokia Anagnostou
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada. .,Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
180
|
Lancaster K, Morris JP, Connelly JJ. Neuroimaging Epigenetics: Challenges and Recommendations for Best Practices. Neuroscience 2017; 370:88-100. [PMID: 28801185 DOI: 10.1016/j.neuroscience.2017.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
Abstract
Neuroimaging epigenetics is an interdisciplinary application of epigenetics to cognitive neuroscience that seeks to identify molecular and neural predictors of human behavior. This approach can be sensitive to the dynamic interaction between biological predisposition and environmental influences, and is potentially more informative than an approach using static genetic code. Recent work in this field has generated considerable enthusiasm, yet caution is warranted since any novel cross-disciplinary approach lacks a set of established conventions or standards. In this paper we review existing research in the field of imaging epigenetics, outline important caveats and considerations, and suggest a set of guidelines for researchers conducting this work.
Collapse
|
181
|
Gouin JP, Zhou QQ, Booij L, Boivin M, Côté SM, Hébert M, Ouellet-Morin I, Szyf M, Tremblay RE, Turecki G, Vitaro F. Associations among oxytocin receptor gene (OXTR) DNA methylation in adulthood, exposure to early life adversity, and childhood trajectories of anxiousness. Sci Rep 2017; 7:7446. [PMID: 28785027 PMCID: PMC5547144 DOI: 10.1038/s41598-017-07950-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 07/06/2017] [Indexed: 12/17/2022] Open
Abstract
Recent models propose deoxyribonucleic acid methylation of key neuro-regulatory genes as a molecular mechanism underlying the increased risk of mental disorder associated with early life adversity (ELA). The goal of this study was to examine the association of ELA with oxytocin receptor gene (OXTR) methylation among young adults. Drawing from a 21-year longitudinal cohort, we compared adulthood OXTR methylation frequency of 46 adults (23 males and 23 females) selected for high or low ELA exposure based on childhood socioeconomic status and exposure to physical and sexual abuse during childhood and adolescence. Associations between OXTR methylation and teacher-rated childhood trajectories of anxiousness were also assessed. ELA exposure was associated with one significant CpG site in the first intron among females, but not among males. Similarly, childhood trajectories of anxiousness were related to one significant CpG site within the promoter region among females, but not among males. This study suggests that females might be more sensitive to the impact of ELA on OXTR methylation than males.
Collapse
Affiliation(s)
- J P Gouin
- Department of Psychology, Concordia University, Montreal, Canada.
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada.
| | - Q Q Zhou
- Department of Psychology, Concordia University, Montreal, Canada
| | - L Booij
- Department of Psychology, Concordia University, Montreal, Canada
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Canada
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
| | - M Boivin
- Research Unit on Children's Psychosocial Maladjustment (GRIP), Laval University, Québec, Canada
- Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Russian Federation
- School of Psychology, Laval University, Québec, Canada
| | - S M Côté
- Department of Social and Preventive Medicine, University of Montreal, Montreal, Canada
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
- Bordeaux Population Health Research Center, INSERM and Bordeaux University, Bordeaux, France
| | - M Hébert
- Department of Sexology, Université du Québec à Montréal, Montreal, Canada
| | - I Ouellet-Morin
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
- Department of Criminology, University of Montreal, Montreal, Canada
| | - M Szyf
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - R E Tremblay
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
- Departments of Pediatrics and Psychology, University of Montreal, Montreal, Canada
- School of Public Health, University College Dublin, Dublin, Ireland
| | - G Turecki
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - F Vitaro
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
- School of Psychoeducation, University of Montreal, Montreal, Canada
| |
Collapse
|
182
|
Wang X, Liang S, Sun Y, Li H, Endo F, Nakao M, Saitoh N, Wu L. Analysis of estrogen receptor β gene methylation in autistic males in a Chinese Han population. Metab Brain Dis 2017; 32:1033-1042. [PMID: 28299627 DOI: 10.1007/s11011-017-9990-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 03/08/2017] [Indexed: 12/21/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopment disorder with abnormalities of social interaction, communication and repetitive behaviors. The higher prevalence of ASD in men implies a potential relationship between sex hormones and ASD etiology. The ESR2 gene encodes estrogen receptor beta (ESR2) and plays an important role during brain development. A relationship between ESR2 and ASD has been suggested by studies on single nucleotide polymorphisms and mRNA and protein expression levels in ASD patients. Here, we explored the possible epigenetic regulation of the ESR2 gene in autism. We collected genomic DNA from the peripheral blood of Chinese Han males with autism and age-matched normal males and measured DNA methylation of CpG islands in the ESR2 gene, which consisted of 41 CpG sites among the proximal promoter region and an untranslated exon, by bisulfite sequencing. We also investigated a relationship between DNA methylation and phenotypic features of autism, as assessed by the Children Autism Rating Scale. We found little overall difference in the DNA methylation of the ESR2 5'-flanking region in individuals with autism compared with normal individuals. However, detailed analyses revealed that eight specific CpG sites were hypermethylated in autistic individuals and that four specific CpG sites were positively associated with the severity of autistic symptoms. Our study indicates that the epigenetic dysregulation of ESR2 may govern the development of autism.
Collapse
Affiliation(s)
- Xuelai Wang
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, No.157 Baojian Road, Harbin, 150081, China
- Department of Pediatrics, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shuang Liang
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, No.157 Baojian Road, Harbin, 150081, China
| | - Yi Sun
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, No.157 Baojian Road, Harbin, 150081, China
| | - Haixin Li
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, No.157 Baojian Road, Harbin, 150081, China
| | - Fumio Endo
- Department of Pediatrics, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Noriko Saitoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
- Department of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Lijie Wu
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, No.157 Baojian Road, Harbin, 150081, China.
| |
Collapse
|
183
|
Hamza M, Halayem S, Mrad R, Bourgou S, Charfi F, Belhadj A. Implication de l’épigénétique dans les troubles du spectre autistique : revue de la littérature. Encephale 2017; 43:374-381. [DOI: 10.1016/j.encep.2016.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 01/24/2023]
|
184
|
Reilly J, Gallagher L, Chen JL, Leader G, Shen S. Bio-collections in autism research. Mol Autism 2017; 8:34. [PMID: 28702161 PMCID: PMC5504648 DOI: 10.1186/s13229-017-0154-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental disorders with diverse clinical manifestations and symptoms. In the last 10 years, there have been significant advances in understanding the genetic basis for ASD, critically supported through the establishment of ASD bio-collections and application in research. Here, we summarise a selection of major ASD bio-collections and their associated findings. Collectively, these include mapping ASD candidate genes, assessing the nature and frequency of gene mutations and their association with ASD clinical subgroups, insights into related molecular pathways such as the synapses, chromatin remodelling, transcription and ASD-related brain regions. We also briefly review emerging studies on the use of induced pluripotent stem cells (iPSCs) to potentially model ASD in culture. These provide deeper insight into ASD progression during development and could generate human cell models for drug screening. Finally, we provide perspectives concerning the utilities of ASD bio-collections and limitations, and highlight considerations in setting up a new bio-collection for ASD research.
Collapse
Affiliation(s)
- Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| | - Louise Gallagher
- Trinity Translational Medicine Institute and Department of Psychiatry, Trinity Centre for Health Sciences, St. James Hospital Street, Dublin 8, Ireland
| | - June L. Chen
- Department of Special Education, Faculty of Education, East China Normal University, Shanghai, 200062 China
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research (ICAN), Department of Psychology, National University of Ireland Galway, University Road, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| |
Collapse
|
185
|
Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proc Natl Acad Sci U S A 2017; 114:8119-8124. [PMID: 28696286 DOI: 10.1073/pnas.1705521114] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by core social deficits. Prognosis is poor, in part, because existing medications target only associated ASD features. Emerging evidence suggests that the neuropeptide oxytocin (OXT) may be a blood-based biomarker of social functioning and a possible treatment for ASD. However, prior OXT treatment trials have produced equivocal results, perhaps because of variability in patients' underlying neuropeptide biology, but this hypothesis has not been tested. Using a double-blind, randomized, placebo-controlled, parallel design, we tested the efficacy and tolerability of 4-wk intranasal OXT treatment (24 International Units, twice daily) in 32 children with ASD, aged 6-12 y. When pretreatment neuropeptide measures were included in the statistical model, OXT compared with placebo treatment significantly enhanced social abilities in children with ASD [as measured by the trial's primary outcome measure, the Social Responsiveness Scale (SRS)]. Importantly, pretreatment blood OXT concentrations also predicted treatment response, such that individuals with the lowest pretreatment OXT concentrations showed the greatest social improvement. OXT was well tolerated, and its effects were specific to social functioning, with no observed decrease in repetitive behaviors or anxiety. Finally, as with many trials, some placebo-treated participants showed improvement on the SRS. This enhanced social functioning was mirrored by a posttreatment increase in their blood OXT concentrations, suggesting that increased endogenous OXT secretion may underlie this improvement. These findings indicate that OXT treatment enhances social abilities in children with ASD and that individuals with pretreatment OXT signaling deficits may stand to benefit the most from OXT treatment.
Collapse
|
186
|
Grosek M, Lučovnik M. Oxytocin for labour induction or augmentation as a risk factor for autism: systematic literature review. OBZORNIK ZDRAVSTVENE NEGE 2017. [DOI: 10.14528/snr.2017.51.2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction: Some studies have shown a potential association between oxytocin use during labour and autism spectrum disorder in children (ASD). We performed a systematic review of recent studies examining this association. Methods: Boolean operators (AND/OR) were used to search MEDLINE using the following search criteria: Autistic Disorder or Autism Spectrum Disorder or Autism and Labour Induction or Labour Augmentation. Articles published in English in 2013 or later were considered. Additional studies were identified by reviewing citations. Only studies conducted on people were included. Studies not accounting for potential confounding factors were excluded. Results: Four retrospective cohort studies met the inclusion criteria. One showed an association between labour induction and augmentation and ASD, one showed a weak association between labour augmentation in boys and ASD, and one showed no association between labour induction or augmentation and ASD. The largest study showed a weak association between labour induction and ASD, which was not significant when siblings were analyzed separately. Discussion and conclusions: Recently published studies do not support the hypothesis of a causal relationship between oxytocin use during labour and ASD. Benefits of medically indicated induction or augmentation of labour outweigh the theoretical risk of ASD.
Collapse
|
187
|
Kraaijenvanger EJ, Hofman D, Bos PA. A neuroendocrine account of facial mimicry and its dynamic modulation. Neurosci Biobehav Rev 2017; 77:98-106. [DOI: 10.1016/j.neubiorev.2017.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/15/2017] [Accepted: 03/12/2017] [Indexed: 02/03/2023]
|
188
|
Miller CWT. Epigenetic and Neural Circuitry Landscape of Psychotherapeutic Interventions. PSYCHIATRY JOURNAL 2017; 2017:5491812. [PMID: 29226124 PMCID: PMC5684598 DOI: 10.1155/2017/5491812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/11/2017] [Indexed: 11/21/2022]
Abstract
The science behind psychotherapy has garnered considerable interest, as objective measures are being developed to map the patient's subjective change over the course of treatment. Prenatal and early life influences have a lasting impact on how genes are expressed and the manner in which neural circuits are consolidated. Transgenerationally transmitted epigenetic markers as well as templates of enhanced thought flexibility versus evasion can be passed down from parent to child. This influences gene expression/repression (impacting neuroplasticity) and kindling of neurocircuitry which can perpetuate maladaptive cognitive processing seen in a number of psychiatric conditions. Importantly, genetic factors and the compounding effects of early life adversity do not inexorably lead to certain fated outcomes. The concepts of vulnerability and resilience are becoming more integrated into the framework of "differential susceptibility," speaking to how corrective environmental factors may promote epigenetic change and reconfigure neural templates, allowing for symptomatic improvement. Psychotherapy is one such factor, and this review will focus on our current knowledge of its epigenetic and neurocircuitry impact.
Collapse
Affiliation(s)
- Christopher W. T. Miller
- University of Maryland School of Medicine, 701 W. Pratt St., 4th Floor, Baltimore, MD 21201, USA
| |
Collapse
|
189
|
Shamsi MB, Firoz AS, Imam SN, Alzaman N, Samman MA. Epigenetics of human diseases and scope in future therapeutics. J Taibah Univ Med Sci 2017; 12:205-211. [PMID: 31435241 PMCID: PMC6695077 DOI: 10.1016/j.jtumed.2017.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
Epigenetics is the study of nucleotide modifications that are heritable and act as regulatory mechanisms without changing the nucleotide sequence of the genome. Exogenous cues such as environment, lifestyle, nutrition, stress, and psychological factors affect epigenetic mechanisms. This mechanism is in concordance with the genetic information that plays an important role during prenatal and postnatal life of an individual. Recent epigenetic studies have revealed the potential of epigenetics in elucidating the mechanisms of different diseases. In this review, we discuss basic epigenetic mechanisms and their roles in health and disease. In addition, reported aberrations in epigenetic regulation for some common human diseases are described. Finally, we address some epigenetic approaches that have shown potential for targeted treatment of diseases.
Collapse
Affiliation(s)
- Monis B Shamsi
- Center for Genetics & Inherited Diseases, Taibah University, Almadinah Almunawwarah, KSA
| | - Abdul S Firoz
- Center for Genetics & Inherited Diseases, Taibah University, Almadinah Almunawwarah, KSA
| | - Syed N Imam
- Department of Anatomy, College of Medicine, Taibah University, Almadinah Almunawwarah, KSA
| | - Naweed Alzaman
- Department of Internal Medicine, College of Medicine, Taibah University, Almadinah Almunawwarah, KSA
| | - Muhammad A Samman
- Center for Genetics & Inherited Diseases, Taibah University, Almadinah Almunawwarah, KSA
| |
Collapse
|
190
|
Duchemin A, Seelke AMH, Simmons TC, Freeman SM, Bales KL. Localization of oxytocin receptors in the prairie vole (Microtus ochrogaster) neocortex. Neuroscience 2017; 348:201-211. [PMID: 28214580 PMCID: PMC5368034 DOI: 10.1016/j.neuroscience.2017.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/18/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022]
Abstract
Early experience and social context interact to alter the phenotype of complex social behaviors. These early experiences can also result in alterations to cortical organization and connections. Given the ability of the neuropeptide oxytocin (OT) to modulate social and reproductive behavior, OT is likely involved in these cortical processes. However, little is known about the distribution of OT and OT receptors (OTR) within the neocortex. Using autoradiographic and neuroanatomical techniques, we characterized the cortical distribution of OT receptors (OTR) in prairie voles, a socially monogamous rodent species. We found that OTR density was low in the primary sensory areas (including primary somatosensory and auditory regions) but was quite high in association regions (including temporal and parietal association areas, and prelimbic regions). In the primary motor area as well as the temporal and parietal association areas, we observed differences in OTR density across cortical layers. Specifically, cortical layers 2/3 and 5 exhibited greater OTR density than layer 4. Our results point to a role for OT in integrating sensory and motor in the prairie vole brain, providing a complementary mechanism for the modulation of social interactions. Given the ability of early social experience and developmental manipulations of OT to affect the brain and behavior, these results suggest a novel mechanism for how OT may influence cortical organization.
Collapse
Affiliation(s)
- Auriane Duchemin
- Psychology Department, University of California - Davis, Davis, CA, USA
| | - Adele M H Seelke
- Psychology Department, University of California - Davis, Davis, CA, USA
| | - Trenton C Simmons
- Psychology Department, University of California - Davis, Davis, CA, USA
| | - Sara M Freeman
- Psychology Department, University of California - Davis, Davis, CA, USA; California National Primate Research Center, University of California - Davis, Davis, CA, USA
| | - Karen L Bales
- Psychology Department, University of California - Davis, Davis, CA, USA; California National Primate Research Center, University of California - Davis, Davis, CA, USA.
| |
Collapse
|
191
|
Cimarelli G, Virányi Z, Turcsán B, Rónai Z, Sasvári-Székely M, Bánlaki Z. Social Behavior of Pet Dogs Is Associated with Peripheral OXTR Methylation. Front Psychol 2017; 8:549. [PMID: 28443051 PMCID: PMC5385375 DOI: 10.3389/fpsyg.2017.00549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/24/2017] [Indexed: 01/12/2023] Open
Abstract
Oxytocin is a key modulator of emotional processing and social cognitive function. In line with this, polymorphisms of genes involved in oxytocin signaling, like the oxytocin receptor (OXTR) gene, are known to influence social behavior in various species. However, to date, no study has investigated environmental factors possibly influencing the epigenetic variation of the OXTR gene and its behavioral effects in dogs. Pet dogs form individualized and strong relationships with their owners who are central figures in the social environment of their dogs and therefore might influence the methylation levels of their OXTR gene. Here we set out to investigate whether DNA methylation within the OXTR promoter region of pet dogs is linked to their owner's interaction style and to the social behavior of the dogs. To be able to do so, we collected buccal epithelial cells and, in Study 1, we used pyrosequencing techniques to look for differentially methylated CpG sites in the canine OXTR promoter region on a heterogeneous sample of dogs and wolves of different ages and keeping conditions. Four identified sites (at positions -727, -751, -1371, and -1383 from transcription start site) showing more than 10% methylation variation were then, in Study 2, measured in triplicate in 217 pet Border Collies previously tested for reactions to an adverse social situation (i.e., approach by a threatening human) and with available data on their owners' interaction styles. We found that CpG methylation was significantly associated with the behavior of the dogs, in particular with the likelihood that dogs would hide behind their owner or remain passive when approached by a threatening human. On the other hand, CpG methylation was not related to the owners' behavior but to dog sex (at position -1371). Our findings underpin the complex relationship between epigenetics and behavior and highlight the importance of including epigenetic methods in the analysis of dog behavioral development. Further research is needed to investigate which environmental factors influence the epigenetic variation of the OXTR gene.
Collapse
Affiliation(s)
- Giulia Cimarelli
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of ViennaVienna, Austria
- Wolf Science CenterErnstbrunn, Austria
- Department of Cognitive Biology, University of ViennaVienna, Austria
| | - Zsófia Virányi
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of ViennaVienna, Austria
- Wolf Science CenterErnstbrunn, Austria
| | - Borbála Turcsán
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of ViennaVienna, Austria
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of SciencesBudapest, Hungary
| | - Zsolt Rónai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis UniversityBudapest, Hungary
| | - Mária Sasvári-Székely
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis UniversityBudapest, Hungary
| | - Zsófia Bánlaki
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis UniversityBudapest, Hungary
| |
Collapse
|
192
|
Banlaki Z, Cimarelli G, Viranyi Z, Kubinyi E, Sasvari-Szekely M, Ronai Z. DNA methylation patterns of behavior-related gene promoter regions dissect the gray wolf from domestic dog breeds. Mol Genet Genomics 2017; 292:685-697. [DOI: 10.1007/s00438-017-1305-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 03/02/2017] [Indexed: 12/26/2022]
|
193
|
Genes Related to Oxytocin and Arginine-Vasopressin Pathways: Associations with Autism Spectrum Disorders. Neurosci Bull 2017; 33:238-246. [PMID: 28283809 PMCID: PMC5360847 DOI: 10.1007/s12264-017-0120-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/17/2017] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorders characterized by impaired social interactions, communication deficits, and repetitive behavior. Although the mechanisms underlying its etiology and manifestations are poorly understood, several lines of evidence from rodent and human studies suggest involvement of the evolutionarily highly-conserved oxytocin (OXT) and arginine-vasopressin (AVP), as these neuropeptides modulate various aspects of mammalian social behavior. As far as we know, there is no comprehensive review of the roles of the OXT and AVP systems in the development of ASD from the genetic aspect. In this review, we summarize the current knowledge regarding associations between ASD and single-nucleotide variants of the human OXT-AVP pathway genes OXT, AVP, AVP receptor 1a (AVPR1a), OXT receptor (OXTR), the oxytocinase/vasopressinase (LNPEP), and ADP-ribosyl cyclase (CD38).
Collapse
|
194
|
A part of patients with autism spectrum disorder has haploidy of HPC-1/syntaxin1A gene that possibly causes behavioral disturbance as in experimentally gene ablated mice. Neurosci Lett 2017; 644:5-9. [DOI: 10.1016/j.neulet.2017.02.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/25/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
|
195
|
Skryabin NA, Vasilyev SA, Lebedev IN. Epigenetic silencing of genomic structural variations. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417100106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
196
|
Ellis SE, Gupta S, Moes A, West AB, Arking DE. Exaggerated CpH methylation in the autism-affected brain. Mol Autism 2017; 8:6. [PMID: 28316770 PMCID: PMC5351204 DOI: 10.1186/s13229-017-0119-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/09/2017] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The etiology of autism, a complex, heritable, neurodevelopmental disorder, remains largely unexplained. Given the unexplained risk and recent evidence supporting a role for epigenetic mechanisms in the development of autism, we explored the role of CpG and CpH (H = A, C, or T) methylation within the autism-affected cortical brain tissue. METHODS Reduced representation bisulfite sequencing (RRBS) was completed, and analysis was carried out in 63 post-mortem cortical brain samples (Brodmann area 19) from 29 autism-affected and 34 control individuals. Analyses to identify single sites that were differentially methylated and to identify any global methylation alterations at either CpG or CpH sites throughout the genome were carried out. RESULTS We report that while no individual site or region of methylation was significantly associated with autism after multi-test correction, methylated CpH dinucleotides were markedly enriched in autism-affected brains (~2-fold enrichment at p < 0.05 cutoff, p = 0.002). CONCLUSIONS These results further implicate epigenetic alterations in pathobiological mechanisms that underlie autism.
Collapse
Affiliation(s)
- Shannon E. Ellis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Simone Gupta
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Anna Moes
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Andrew B. West
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Dan E. Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
197
|
Sivanesan S, Tan A, Jeyaraj R, Lam J, Gole M, Hardan A, Ashkan K, Rajadas J. Pharmaceuticals and Stem Cells in Autism Spectrum Disorders: Wishful Thinking? World Neurosurg 2017; 98:659-672. [DOI: 10.1016/j.wneu.2016.09.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022]
|
198
|
Carter CS. The Oxytocin-Vasopressin Pathway in the Context of Love and Fear. Front Endocrinol (Lausanne) 2017; 8:356. [PMID: 29312146 PMCID: PMC5743651 DOI: 10.3389/fendo.2017.00356] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/07/2017] [Indexed: 12/22/2022] Open
Abstract
Vasopressin (VP) and oxytocin (OT) are distinct molecules; these peptides and their receptors [OT receptor (OTR) and V1a receptor (V1aR)] also are evolved components of an integrated and adaptive system, here described as the OT-VP pathway. The more ancient peptide, VP, and the V1aRs support individual survival and play a role in defensive behaviors, including mobilization and aggression. OT and OTRs have been associated with positive social behaviors and may function as a biological metaphor for social attachment or "love." However, complex behavioral functions, including selective sexual behaviors, social bonds, and parenting require combined activities of OT and VP. The behavioral effects of OT and VP vary depending on perceived emotional context and the history of the individual. Paradoxical or contextual actions of OT also may reflect differential interactions with the OTR and V1aR. Adding to the complexity of this pathway is the fact that OT and VP receptors are variable, across species, individuals, and brain region, and these receptors are capable of being epigenetically tuned. This variation may help to explain experience-related individual and sex differences in behaviors that are regulated by these peptides, including the capacity to form social attachments and the emotional consequences of these attachments.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute and Department of Biology, Indiana University, Bloomington, IN, United States
- *Correspondence: C. Sue Carter,
| |
Collapse
|
199
|
Vanya M, Szucs S, Vetro A, Bartfai G. The potential role of oxytocin and perinatal factors in the pathogenesis of autism spectrum disorders - review of the literature. Psychiatry Res 2017; 247:288-290. [PMID: 27974283 DOI: 10.1016/j.psychres.2016.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 10/25/2016] [Accepted: 12/05/2016] [Indexed: 12/29/2022]
Abstract
Autism Spectrum Disorders (ASD) are characterized by: social and communication impairments, and by restricted repetitive behaviors. The aim of the present paper is to review abnormalities of oxytocin (OXT) and related congenital malformations in ASD. A literature search was conducted in the PubMed database up to 2016 for articles related to the pathomechanism of ASD, abnormalities of OXT and the OXT polymorphism in ASD. The pathomechanism of ASD has yet to be. The development of ASD is suggested to be related to abnormalities of the oxytocin-arginin-vasopressin system. Previous results suggest that OXT and arginine vasopressin (AVP) may play a role in the etiopathogenesis of ASD.
Collapse
Affiliation(s)
- Melinda Vanya
- Department of Obstetrics and Gynaecology, Albert Szent-Gyorgyi Clinical Centre, University of Szeged, Szeged, Hungary; KF TFK Health Research and Health Promotion Research Group, Kecskemet, Hungary.
| | - Szabina Szucs
- Division of Adolescent Psychiatry, Department of Paediatrics, Albert Szent-Gyorgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Agnes Vetro
- Division of Adolescent Psychiatry, Department of Paediatrics, Albert Szent-Gyorgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Gyorgy Bartfai
- Department of Obstetrics and Gynaecology, Albert Szent-Gyorgyi Clinical Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
200
|
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental conditions characterized by deficits in social communication and by repetitive and stereotypic patterns of behaviors, with no pharmacological treatments available to treat these core symptoms. Oxytocin is a neuropeptide that powerfully regulates mammalian social behavior and has been shown to exert pro-social effects when administered intranasally to healthy human subjects. In the last decade, there has been a significant interest in using oxytocin to treat social behavior deficits in ASD. However, little attention has been paid to whether the oxytocin system is perturbed in subgroups of individuals with ASD and whether these individuals are likely to benefit more from an oxytocin treatment. This oversight may in part be due to the enormous heterogeneity of ASD and the lack of methods to carefully probe the OXT system in human subjects. Animal models for ASD are valuable tools to clarify the implication of the oxytocin system in ASD and can help determine whether perturbation in this system should be considered in future clinical studies as stratifying biomarkers to inform targeted treatments in subgroups of individuals with ASD. In this chapter, we review the literature on genetic- and environmental-based animal models for ASD, in which perturbations in the oxytocin system and/or the effect of oxytocin administration on the ASD-associated phenotype have been investigated.
Collapse
|