151
|
González Jiménez M, Babayan SA, Khazaeli P, Doyle M, Walton F, Reedy E, Glew T, Viana M, Ranford-Cartwright L, Niang A, Siria DJ, Okumu FO, Diabaté A, Ferguson HM, Baldini F, Wynne K. Prediction of mosquito species and population age structure using mid-infrared spectroscopy and supervised machine learning. Wellcome Open Res 2019; 4:76. [PMID: 31544155 PMCID: PMC6753605 DOI: 10.12688/wellcomeopenres.15201.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2019] [Indexed: 01/17/2023] Open
Abstract
Despite the global efforts made in the fight against malaria, the disease is resurging. One of the main causes is the resistance that Anopheles mosquitoes, vectors of the disease, have developed to insecticides. Anopheles must survive for at least 10 days to possibly transmit malaria. Therefore, to evaluate and improve malaria vector control interventions, it is imperative to monitor and accurately estimate the age distribution of mosquito populations as well as their population sizes. Here, we demonstrate a machine-learning based approach that uses mid-infrared spectra of mosquitoes to characterise simultaneously both age and species identity of females of the African malaria vector species Anopheles gambiae and An. arabiensis. mid-infrared spectroscopy-based prediction of mosquito age structures was statistically indistinguishable from true modelled distributions. The accuracy of classifying mosquitoes by species was 82.6%. The method has a negligible cost per mosquito, does not require highly trained personnel, is rapid, and so can be easily applied in both laboratory and field settings. Our results indicate this method is a promising alternative to current mosquito species and age-grading approaches, with further improvements to accuracy and expansion for use with other mosquito vectors possible through collection of larger mid-infrared spectroscopy data sets.
Collapse
Affiliation(s)
| | - Simon A. Babayan
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Pegah Khazaeli
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Margaret Doyle
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Finlay Walton
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Elliott Reedy
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thomas Glew
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mafalda Viana
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lisa Ranford-Cartwright
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Abdoulaye Niang
- Department of Medical Biology and Public Health, Institut de Recherche en Science de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Doreen J. Siria
- Environmental Health & Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, PO Box 53, Ifakara, Tanzania
| | - Fredros O. Okumu
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- Environmental Health & Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, PO Box 53, Ifakara, Tanzania
| | - Abdoulaye Diabaté
- Department of Medical Biology and Public Health, Institut de Recherche en Science de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Heather M. Ferguson
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Francesco Baldini
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Klaas Wynne
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
152
|
Chaumeau V, Kajeechiwa L, Fustec B, Landier J, Naw Nyo S, Nay Hsel S, Phatharakokordbun P, Kittiphanakun P, Nosten S, Thwin MM, Win Tun S, Wiladphaingern J, Cottrell G, Parker DM, Minh MC, Kwansomboon N, Metaane S, Montazeau C, Kunjanwong K, Sawasdichai S, Andolina C, Ling C, Haohankhunnatham W, Christiensen P, Wanyatip S, Konghahong K, Cerqueira D, Imwong M, Dondorp AM, Chareonviriyaphap T, White NJ, Nosten FH, Corbel V. Contribution of Asymptomatic Plasmodium Infections to the Transmission of Malaria in Kayin State, Myanmar. J Infect Dis 2019; 219:1499-1509. [PMID: 30500927 PMCID: PMC6467188 DOI: 10.1093/infdis/jiy686] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/27/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The objective of mass antimalarial drug administration (MDA) is to eliminate malaria rapidly by eliminating the asymptomatic malaria parasite reservoirs and interrupting transmission. In the Greater Mekong Subregion, where artemisinin-resistant Plasmodium falciparum is now widespread, MDA has been proposed as an elimination accelerator, but the contribution of asymptomatic infections to malaria transmission has been questioned. The impact of MDA on entomological indices has not been characterized previously. METHODS MDA was conducted in 4 villages in Kayin State (Myanmar). Malaria mosquito vectors were captured 3 months before, during, and 3 months after MDA, and their Plasmodium infections were detected by polymerase chain reaction (PCR) analysis. The relationship between the entomological inoculation rate, the malaria prevalence in humans determined by ultrasensitive PCR, and MDA was characterized by generalized estimating equation regression. RESULTS Asymptomatic P. falciparum and Plasmodium vivax infections were cleared by MDA. The P. vivax entomological inoculation rate was reduced by 12.5-fold (95% confidence interval [CI], 1.6-100-fold), but the reservoir of asymptomatic P. vivax infections was reconstituted within 3 months, presumably because of relapses. This was coincident with a 5.3-fold (95% CI, 4.8-6.0-fold) increase in the vector infection rate. CONCLUSION Asymptomatic infections are a major source of malaria transmission in Southeast Asia.
Collapse
Affiliation(s)
- Victor Chaumeau
- Centre hospitalier universitaire de Montpellier, Montpellier
- UMR 224 “Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle,” Institut de Recherche pour le Développement, Montpellier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Ladda Kajeechiwa
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Bénédicte Fustec
- UMR 224 “Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle,” Institut de Recherche pour le Développement, Montpellier
| | - Jordi Landier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
- Institut de Recherches pour le Développement, Aix Marseille Univ, INSERM, SESSTIM, Marseille
| | - Saw Naw Nyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Saw Nay Hsel
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Phabele Phatharakokordbun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Prapan Kittiphanakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Suphak Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - May Myo Thwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Saw Win Tun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Jacher Wiladphaingern
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Gilles Cottrell
- UMR 216 “Mère et enfant face aux infections tropicales,” Institut de Recherche pour le Développement, Université Paris Descartes, Paris, France
| | - Daniel M Parker
- Department of Population Health and Disease Prevention, University of California, Irvine
| | - Myo Chit Minh
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Nittpha Kwansomboon
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Selma Metaane
- UMR 224 “Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle,” Institut de Recherche pour le Développement, Montpellier
| | - Céline Montazeau
- UMR 224 “Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle,” Institut de Recherche pour le Développement, Montpellier
| | - Kitti Kunjanwong
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Clare Ling
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Warat Haohankhunnatham
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Peter Christiensen
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Sunaree Wanyatip
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Kamonchanok Konghahong
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Dominique Cerqueira
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University
| | - Arjen M Dondorp
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University
| | | | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Vincent Corbel
- UMR 224 “Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle,” Institut de Recherche pour le Développement, Montpellier
| |
Collapse
|
153
|
He Z, Zhang J, Shi Z, Liu J, Zhang J, Yan Z, Chen B. Modification of contact avoidance behaviour associated with pyrethroid resistance in Anopheles sinensis (Diptera: Culicidae). Malar J 2019; 18:131. [PMID: 30971253 PMCID: PMC6458626 DOI: 10.1186/s12936-019-2765-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Background Anopheles sinensis is the primary vector of vivax malaria in China and its control is under great threat as the development of insecticide resistance. In contrast to physiological resistance, there is no report of behavioural modifications of resistant An. sinensis after long-term insecticide use, despite their huge potential impact on malaria transmission. Methods Larvae or pupae of An. sinensis were collected from Yuanyang, Bishan, and Wuhe counties from southwestern to eastern China. Resistance to deltamethrin was assayed using the standard World Health Organization (WHO) susceptibility test. The frequency distribution of the kdr allele of the para-type sodium channel gene was determined by polymerase chain reaction (PCR) amplification and DNA sequencing. Contact repellency to deltamethrin-impregnated bed nets was evaluated using a modified WHO cone bioassay. Results All contemporary field populations for all three geographic locations were resistant to deltamethrin, with mortality ranging from 6.00 to 26.79%. Three kdr genotypes with either an L1014F or L1014C substitution with frequencies of 76.10–100% were identified in the Bishan and Wuhe populations, but no kdr mutations were detected in the Yuanyang samples despite high phenotypic resistance. The susceptible mosquitoes exhibited significantly longer flying time and more takeoffs on deltamethrin-treated bed nets (DTN) than on untreated bed nets (UTN), suggestive of robust avoidance behaviour. However, no significant increases in the frequency of takeoffs or flying time were observed in deltamethrin-resistant An. sinensis populations when exposed on DTNs, regardless of the presence of a kdr mutation. Moreover, the first takeoff from DTNs by resistant mosquitoes significantly lagged behind compared to susceptible mosquitoes. Conclusion The An. sinensis populations were highly resistant to deltamethrin and exhibited decreased avoidance behaviour. Behavioural modification significantly associated with deltamethrin resistance, but not directly related to the presence of kdr mutations, indicating that there are additional factors contributing to the changes.
Collapse
Affiliation(s)
- Zhengbo He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| | - Jing Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Zongpan Shi
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Jingang Liu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Jingjing Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Zhentian Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
154
|
Geometric morphometrics approach towards discrimination of three member species of Maculatus group in Thailand. Acta Trop 2019; 192:66-74. [PMID: 30710534 DOI: 10.1016/j.actatropica.2019.01.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 11/23/2022]
Abstract
Members of the Maculatus group are important malaria vectors in the border regions of Thailand. However, the role of each species in malaria transmission remains unclear because of their highly similar morphologies, making them difficult to be differentiated. Whereas An. pseudowillmori may be identified by the color pattern of some scales on abdomen and wings, the distinction between An. maculatus and An. sawadwongporni relies on the wings only. Scales are labile structures, as they may be accidentally removed during capture and transportation to the laboratory. To discriminate among the species of this group, we tested the suitability of geometric techniques. Shape variables were used as input for discriminant analyses and validated reclassification. Both landmark- and outline-based geometric techniques disclosed significant differences between the three species. For the delicate An. maculatus - An. sawadwongporni distinction, the outline-based approach appeared as the most promising, with validated reclassification scores reaching 93%, as compared to 77% obtained by landmark data. For An. pseudowillmori, reclassification scores were 100% and 94%, respectively. Geometric morphometrics may provide an alternative and useful complement for discriminating members of the Maculatus group.
Collapse
|
155
|
Keven JB, Katusele M, Vinit R, Koimbu G, Vincent N, Thomsen EK, Karl S, Reimer LJ, Walker ED. Species abundance, composition, and nocturnal activity of female Anopheles (Diptera: Culicidae) in malaria-endemic villages of Papua New Guinea: assessment with barrier screen sampling. Malar J 2019; 18:96. [PMID: 30909928 PMCID: PMC6434780 DOI: 10.1186/s12936-019-2742-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/21/2019] [Indexed: 11/18/2022] Open
Abstract
Background Community composition of Anopheles mosquitoes, and their host-seeking and peridomestic behaviour, are important factors affecting malaria transmission. In this study, barrier screen sampling was used to investigate species composition, abundance, and nocturnal activity of Anopheles populations in villages of Papua New Guinea. Methods Mosquitoes were sampled from 6 pm to 6 am in five villages from 2012 to 2016. The barrier screens were positioned between the village houses and the perimeter of villages where cultivated and wild vegetation (“the bush”) grew thickly. Female Anopheles that rested on either village or bush side of the barrier screens, as they commuted into and out of the villages, were captured. Similarity in species composition among villages was assessed. Mosquitoes captured on village and bush sides of the barrier screens were sorted by feeding status and by hour of collection, and their numbers were compared using negative binomial generalized linear models. Results Females of seven Anopheles species were present in the sample. Species richness ranged from four to six species per village, but relative abundance was highly uneven within and between villages, and community composition was similar for two pairs of villages and highly dissimilar in a fifth. For most Anopheles populations, more unfed than blood-fed mosquitoes were collected from the barrier screens. More blood-fed mosquitoes were found on the side of the barrier screens facing the village and relatively more unfed ones on the bush side, suggesting commuting behaviour of unfed host-seeking females into the villages from nearby bush and commuting of blood-fed females away from villages towards the bush. For most populations, the majority of host-seeking mosquitoes arrived in the village before midnight when people were active and unprotected from the mosquitoes by bed nets. Conclusion The uneven distribution of Anopheles species among villages, with each site dominated by different species, even among nearby villages, emphasizes the importance of vector heterogeneity in local malaria transmission and control. Yet, for most species, nocturnal activity patterns of village entry and host seeking predominantly occurred before midnight indicating common behaviours across species and populations relative to human risk of exposure to Anopheles bites. Electronic supplementary material The online version of this article (10.1186/s12936-019-2742-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John B Keven
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea. .,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| | - Michelle Katusele
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Rebecca Vinit
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Gussy Koimbu
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Naomi Vincent
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | | | - Stephan Karl
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.,Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, Melbourne University, Parkville, VIC, Australia
| | - Lisa J Reimer
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
156
|
Mosquito microevolution drives Plasmodium falciparum dynamics. Nat Microbiol 2019; 4:941-947. [PMID: 30911126 DOI: 10.1038/s41564-019-0414-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022]
Abstract
Malaria, a major cause of child mortality in Africa, is engendered by Plasmodium parasites that are transmitted by anopheline mosquitoes. Fitness of Plasmodium parasites is closely linked to the ecology and evolution of its anopheline vector. However, whether the genetic structure of vector populations impacts malaria transmission remains unknown. Here, we describe a partitioning of the African malaria vectors into generalists and specialists that evolve along ecological boundaries. We next identify the contribution of mosquito species to Plasmodium abundance using Granger causality tests for time-series data collected over two rainy seasons in Mali. We find that mosquito microevolution, defined by changes in the genetic structure of a population over short ecological timescales, drives Plasmodium dynamics in nature, whereas vector abundance, infection prevalence, temperature and rain have low predictive values. Our study demonstrates the power of time-series approaches in vector biology and highlights the importance of focusing local vector control strategies on mosquito species that drive malaria dynamics.
Collapse
|
157
|
Pasay CJ, Yakob L, Meredith HR, Stewart R, Mills PC, Dekkers MH, Ong O, Llewellyn S, Hugo RLE, McCarthy JS, Devine GJ. Treatment of pigs with endectocides as a complementary tool for combating malaria transmission by Anopheles farauti (s.s.) in Papua New Guinea. Parasit Vectors 2019; 12:124. [PMID: 30890165 PMCID: PMC6423892 DOI: 10.1186/s13071-019-3392-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/08/2019] [Indexed: 11/24/2022] Open
Abstract
Background Outdoor, early-biting, zoophagic behaviours by Anopheles farauti (s.s.) can compromise the effectiveness of bed nets for malaria control. In the Western Pacific region, pigs and dogs represent significant alternative blood sources for mosquitoes. Treating these animals with endectocides may impact mosquito survival and complement control measures. This hypothesis was explored using membrane feeding assays (MFAs), direct feeds on treated pigs, pharmacokinetic analyses and a transmission model. Results Ivermectin was 375-fold more mosquitocidal than moxidectin (24 h LC50 = 17.8 ng/ml vs 6.7 µg/ml) in MFAs, and reduced mosquito fecundity by > 50% at ≥ 5 ng/ml. Treatment of pigs with subcutaneous doses of 0.6 mg/kg ivermectin caused 100% mosquito mortality 8 days after administration. Lethal effects persisted for up to 15 days after administration (75% death within 10 days). Conclusion The application of these empirical data to a unique malaria transmission model that used a three-host system (humans, pigs and dogs) predicts that the application of ivermectin will cause a significant reduction in the entomological inoculation rate (EIR = 100 to 0.35). However, this is contingent on local malaria vectors sourcing a significant proportion of their blood meals from pigs. This provides significant insights on the benefits of deploying endectocides alongside long-lasting insecticide-treated nets (LLINs) to address residual malaria transmission. Electronic supplementary material The online version of this article (10.1186/s13071-019-3392-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cielo J Pasay
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| | - Laith Yakob
- Department of Disease Control, School of Hygiene and Tropical Medicine, London, London, UK
| | - Hannah R Meredith
- Department of Disease Control, School of Hygiene and Tropical Medicine, London, London, UK
| | - Romal Stewart
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Paul C Mills
- School of Veterinary Science, University of Queensland, Gatton, QLD, Australia
| | - Milou H Dekkers
- Queensland Animal Science Precinct, University of Queensland, Gatton, QLD, Australia
| | - Oselyne Ong
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Stacey Llewellyn
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - R Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - James S McCarthy
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| |
Collapse
|
158
|
Surendran SN, Sivabalakrishnan K, Sivasingham A, Jayadas TTP, Karvannan K, Santhirasegaram S, Gajapathy K, Senthilnanthanan M, Karunaratne SHPP, Ramasamy R. Anthropogenic Factors Driving Recent Range Expansion of the Malaria Vector Anopheles stephensi. Front Public Health 2019; 7:53. [PMID: 30923705 PMCID: PMC6426791 DOI: 10.3389/fpubh.2019.00053] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 02/21/2019] [Indexed: 01/24/2023] Open
Abstract
The malaria vector Anopheles stephensi is found in wide tracts of Asia and the Middle East. The discovery of its presence for the first time in the island of Sri Lanka in 2017, poses a threat of malaria resurgence in a country which had eliminated the disease in 2013. Morphological and genetic characterization showed that the efficient Indian urban vector form An. stephensi sensu stricto or type form, has recently expanded its range to Jaffna and Mannar in northern Sri Lanka that are in proximity to Tamil Nadu state in South India. Comparison of the DNA sequences of the cytochrome oxidase subunit 1 gene in An. stephensi in Jaffna and Mannar in Sri Lanka and Tamil Nadu and Puducherry states in South India showed that a haplotype that is due to a sequence change from valine to methionine in the cytochrome oxidase subunit 1 present in the Jaffna and Mannar populations has not been documented so far in Tamil Nadu/Puducherry populations. The Jaffna An. stephensi were closer to Tamil Nadu/Puducherry populations and differed significantly from the Mannar populations. The genetic findings cannot differentiate between separate arrivals of the Jaffna and Mannar An. stephensi from Tamil Nadu or a single arrival and dispersion to the two locations accompanied by micro-evolutionary changes. Anopheles stephensi was observed to undergo preimaginal development in fresh and brackish water domestic wells and over ground cement water storage tanks in the coastal urban environment of Jaffna and Mannar. Anopheles stephensi in Jaffna was resistant to the common insecticides deltamethrin, dichlorodiphenyltrichloroethane and Malathion. Its preimaginal development in wells and water tanks was susceptible to predation by the larvivorous guppy fish Poecilia reticulata. The arrival, establishment, and spread of An. stephensi in northern Sri Lanka are analyzed in relation to anthropogenic factors that favor its range expansion. The implications of the findings for global public health challenges posed by malaria and other mosquito-borne diseases are discussed.
Collapse
|
159
|
Ali RSM, Wahid I, Saeung A, Wannasan A, Harbach RE, Somboon P. Genetic and morphological evidence for a new species of the Maculatus Group of Anopheles subgenus Cellia (Diptera: Culicidae) in Java, Indonesia. Parasit Vectors 2019; 12:107. [PMID: 30871633 PMCID: PMC6419379 DOI: 10.1186/s13071-019-3358-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anopheles maculatus, a species of the Maculatus Group of subgenus Cellia (Diptera: Culicidae), is an important vector of human malarial protozoa in Java, Indonesia. However, the identity of this species in Indonesia has been questionable because published reports and records are based mainly on morphological identification, which is unreliable for distinguishing members of the Maculatus Group due to overlapping characters. METHODS We performed morphological assessments, metaphase karyotype preparations, phylogenetic analyses of ITS2 and cox2 sequence data and cross-mating experiments to determine whether the Javanese form and An. maculatus (s.s.) from Thailand were conspecific. RESULTS The adults of the Java strain are similar to those of An. maculatus (s.s.), but the larvae and pupae exhibit significant differences. The metaphase karyotype of Javanese specimens includes a long acrocentric X chromosome and a small telocentric Y chromosome, which are distinct from other members of the Maculatus Group. Cross-mating of the Java strain with An. maculatus (s.s.) revealed genetic incompatibility. Phylogenetic analysis of ITS2 and cox2 sequences revealed that the Java strain forms a single clade that is distinct from clades of other members of the group (Kimura 2-parameter, K2P, genetic distances 3.1-19.2% and 1.6-9.6%, respectively). CONCLUSIONS This study provides evidence that the Javanese form of An. maculatus is not conspecific with An. maculatus (s.s.) and constitutes a previously unrecognized species of the Maculatus Group.
Collapse
Affiliation(s)
- Rusdiyah Sudirman Made Ali
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.,Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Isra Wahid
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Atiporn Saeung
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anchalee Wannasan
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ralph E Harbach
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Pradya Somboon
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
160
|
Zhou Y, Fu WB, Si FL, Yan ZT, Zhang YJ, He QY, Chen B. UDP-glycosyltransferase genes and their association and mutations associated with pyrethroid resistance in Anopheles sinensis (Diptera: Culicidae). Malar J 2019; 18:62. [PMID: 30845961 PMCID: PMC6407175 DOI: 10.1186/s12936-019-2705-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/02/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND UDP-glycosyltransferase (UGT) is an important biotransformation superfamily of enzymes. They catalyze the transfer of glycosyl residues from activated nucleotide sugars to acceptor hydrophobic molecules, and function in several physiological processes, including detoxification, olfaction, cuticle formation, pigmentation. The diversity, classification, scaffold location, characteristics, phylogenetics, and evolution of the superfamily of genes at whole genome level, and their association and mutations associated with pyrethroid resistance are still little known. METHODS The present study identified UGT genes in Anopheles sinensis genome, classified UGT genes in An. sinensis, Anopheles gambiae, Aedes aegypti and Drosophila melanogaster genomes, and analysed the scaffold location, characteristics, phylogenetics, and evolution of An. sinensis UGT genes using bioinformatics methods. The present study also identified the UGTs associated with pyrethroid resistance using three field pyrethroid-resistant populations with RNA-seq and RT-qPCR, and the mutations associated with pyrethroid resistance with genome re-sequencing in An. sinensis. RESULTS There are 30 putative UGTs in An. sinensis genome, which are classified into 12 families (UGT301, UGT302, UGT306, UGT308, UGT309, UGT310, UGT313, UGT314, UGT315, UGT36, UGT49, UGT50) and further into 23 sub-families. The UGT308 is significantly expanded in gene number compared with other families. A total of 119 UGTs from An. sinensis, An. gambiae, Aedes aegypti and Drosophila melanogaster genomes are classified into 19 families, of which seven are specific for three mosquito species and seven are specific for Drosophila melanogaster. The UGT308 and UGT302 are proposed to main families involved in pyrethroid resistance. The AsUGT308D3 is proposed to be the essential UGT gene for the participation in biotransformation in pyrethroid detoxification process, which is possibly regulated by eight SNPs in its 3' flanking region. The UGT302A3 is also associated with pyrethroid resistance, and four amino acid mutations in its coding sequences might enhance its catalytic activity and further result in higher insecticide resistance. CONCLUSIONS This study provides the diversity, phylogenetics and evolution of UGT genes, and potential UGT members and mutations involved in pyrethroid resistance in An. sinensis, and lays an important basis for the better understanding and further research on UGT function in defense against insecticide stress.
Collapse
Affiliation(s)
- Yong Zhou
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.,Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Wen-Bo Fu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Yu-Juan Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Qi-Yi He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
161
|
Islam A, Emran TB, Yamamoto DS, Iyori M, Amelia F, Yusuf Y, Yamaguchi R, Alam MS, Silveira H, Yoshida S. Anopheline antiplatelet protein from mosquito saliva regulates blood feeding behavior. Sci Rep 2019; 9:3129. [PMID: 30816309 PMCID: PMC6395645 DOI: 10.1038/s41598-019-39960-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/01/2019] [Indexed: 01/23/2023] Open
Abstract
The saliva of hematophagous arthropods is enriched with a complex mixture of antihemostatic molecules, the biological functions of which are largely unknown. Anopheline antiplatelet protein (AAPP) from malaria vector mosquito exhibits strong antiplatelet activity when bound directly to host collagen by its C-terminus and through its N-terminus with Ca2+-binding activity. To investigate the biological functions of AAPP in blood feeding behavior and malaria transmission, we generated transgenic Anopheles stephensi mosquito lines expressing anti-AAPP antibody single-chain fragment (scFv) in their salivary glands. The AAPP-specific collagen-binding activity was completely abolished by AAPP-scFv complex formation in the saliva. Probing and prediuresis time, feeding success, blood meal size, and fecundity, which are all fitness characteristics, were significantly reduced in the transgenic mosquitoes. However, oocysts number in these mosquitoes were not significantly reduced following blood meal intake from Plasmodium berghei-infected mice. These results show that although AAPP plays an important role in mosquito blood feeding, its neutralizing activity did not affect sporogonic development in our laboratory model, but its high fitness cost would pose a survival risk for parasite-infected mosquitoes in nature.
Collapse
Affiliation(s)
- Ashekul Islam
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Talha Bin Emran
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, 329-0431, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Fitri Amelia
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yenni Yusuf
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Ririka Yamaguchi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Md Shah Alam
- Laboratory of Ecology, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Henrique Silveira
- Laboratory of Vector-borne diseases and Pathogens, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, 1099-085, Portugal
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
162
|
Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res 2019; 3:109. [DOI: 10.12688/wellcomeopenres.14761.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: Entomological investigations were conducted during 24 months in four villages located in Kayin state, on the Myanmar side of the Thailand-Myanmar border. Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors. Plasmodium infection rate was determined using quantitative real-time PCR. Results: The diversity of Anopheles mosquitoes was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.04 and 0.17 % for P. falciparum and P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for P. falciparum and P. vivax, respectively). Only 36% of the infected mosquitoes were collected indoors between 09:00 pm and 05:00 am, suggesting that mosquito bed-nets would fail to prevent most of the infective bites in the study area. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.
Collapse
|
163
|
Wang Z, Perumalsamy H, Wang X, Ahn YJ. Toxicity and possible mechanisms of action of honokiol from Magnolia denudata seeds against four mosquito species. Sci Rep 2019; 9:411. [PMID: 30674912 PMCID: PMC6344527 DOI: 10.1038/s41598-018-36558-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
This study was performed to determine the toxicity and possible mechanism of the larvicidal action of honokiol, extracted from Magnolia denudata seeds, and its 10 related compounds against third-instar larvae of insecticide-susceptible Culex pipiens pallens, Aedes aegypti, and Aedes albopictus and Anopheles sinensis resistant to deltamethrin and temephos. Honokiol (LC50, 6.13–7.37 mg/L) was highly effective against larvae of all of the four mosquito species, although the toxicity of the compound was lower than that of the synthetic larvicide temephos. Structure–activity relationship analyses indicated that electron donor and/or bulky groups at the ortho or para positions of the phenol were required for toxicity. Honokiol moderately inhibited acetylcholinesterase and caused a considerable increase in cyclic AMP levels, indicating that it might act on both acetylcholinesterase and octopaminergic receptors. Microscopy analysis clearly indicated that honokiol was mainly targeted to the midgut epithelium and anal gills, resulting in variably dramatic degenerative responses of the midgut through sequential epithelial disorganization. Honokiol did not affect the AeCS1 mRNA expression level in Ae. aegypti larvae, but did enhance expression of the genes encoding vacuolar-type H+-ATPase and aquaporin 4, indicating that it may disturb the Na+, Cl− and K+ co-transport systems. These results demonstrate that honokiol merits further study as a potential larvicide, with a specific target site, and as a lead molecule for the control of mosquito populations.
Collapse
Affiliation(s)
- Zhangqian Wang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, China
| | - Haribalan Perumalsamy
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xue Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Young-Joon Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
164
|
Duffield GE, Acri DJ, George GF, Sheppard AD, Beebe NW, Ritchie SA, Burkot TR. Diel flight activity of wild-caught Anopheles farauti (s.s.) and An. hinesorum malaria mosquitoes from northern Queensland, Australia. Parasit Vectors 2019; 12:48. [PMID: 30670073 PMCID: PMC6341630 DOI: 10.1186/s13071-018-3271-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/18/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Species in the Anopheles farauti complex are major malaria vectors in the Asia Pacific region. Anopheline mosquitoes exhibit circadian and diel rhythms in sugar- and blood-feeding (biting), flight activity, oviposition, and in some species, a short-lived dusk/early night associated swarming behaviour during which mating occurs. A behavioural study of wild-caught mosquitoes from Queensland, Australia was conducted to investigate the differences in diel rhythmic flight activity between two cryptic species in several reproductive states. RESULTS The 24-hour flight activity of individual adult female mosquitoes under light:dark cycle conditions were monitored with a minute-to-minute time resolution using an infrared beam break method. Mosquitoes were analyzed for reproductive state (insemination and parity) and identified to species [An. farauti (s.s.) Laveran and An. hinesorum Schmidt] by PCR analysis. We compared daily total flight activity, timing of activity onset, the peak in early nocturnal activity, and patterns of activity during the scotophase (night). Species-specific differences between An. farauti and An. hinesorum were observed. Compared to An. farauti, An. hinesorum had an earlier onset of dusk activity, an earlier peak in nocturnal activity, and a higher level of activity at the onset of darkness. Small differences between species were also observed in the pattern of the dusk/early-night bouts of activity. A second nocturnal peak in inseminated nulliparous An. hinesorum was also observed during the middle of the scotophase. CONCLUSIONS The behavioural differences between these two sympatric species of the An. farauti complex might contribute to subtle differences in habitat adaptation, the timing of host-seeking and/or sugar-feeding activity. This study provides baseline data for analysis of populations of mosquitoes from other geographical regions where these species are malaria vectors, such as in the Solomon Islands and Papua New Guinea. This is important as selective pressures due to long-term use of indoor residual spraying of insecticides and insecticide-treated bed nets are shifting the nocturnal profile of biting behaviour of these vectors to earlier in the night.
Collapse
Affiliation(s)
- Giles E Duffield
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Dominic J Acri
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gary F George
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Aaron D Sheppard
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nigel W Beebe
- University of Queensland, School of Biology, St Lucia, Queensland, Australia.,CSIRO, Dutton Park, Queensland, Australia
| | - Scott A Ritchie
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Thomas R Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
165
|
Sivabalakrishnan K, Weerarathne TC, Thileepan A, Parakrama Karunaratne SHP, Ramasamy R, Surendran SN. Susceptibility to common insecticides and detoxifying enzyme activities in Anopheles sundaicus (sensu lato) after cessation of indoor residual spraying of insecticides in the Jaffna Peninsula and its surroundings in northern Sri Lanka. Parasit Vectors 2019; 12:13. [PMID: 30616643 PMCID: PMC6323756 DOI: 10.1186/s13071-018-3254-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/04/2018] [Indexed: 11/30/2022] Open
Abstract
Background Sri Lanka has been malaria-free since 2013 but re-introduction of malaria transmission by infected overseas travelers is possible due to a prevalence of potent malaria vectors. Knowledge of the insecticide resistance status among Anopheles vectors is important if vector control has to be reintroduced in the island. The present study investigated the insecticide susceptibility levels and resistance mechanisms of Anopheles sundaicus (sensu lato) (previously classified as Anopheles subpictus species B) an important malaria vector in the Jaffna Peninsula and it surroundings in northern Sri Lanka after indoor residual spraying of insecticides was terminated in 2013. Results Species-specific PCR assays identified An. sundaicus (s.l.) in four locations in the Jaffna and adjacent Kilinochchi districts. Bioassays confirmed that An. sundaicus (s.l.) collected in Kilinochchi were completely susceptible to 0.05% deltamethrin and 5% malathion and resistant to 4% dichlorodiphenyltrichloroethane (DDT), whereas those from Jaffna were relatively susceptible to all three insecticides. Kilinochchi populations of An. sundaicus (s.l.) showed significantly higher glutathione S-transferase activity than population from Jaffna. However, Jaffna An. sundaicus (s.l.) had significantly higher Propoxur-resistant acetylcholinesterase activity. Activities of non-specific esterases and monooxygenases were not significantly elevated in An. sundaicus (s.l.) collected in both districts. Conclusions The susceptibility to malathion and deltamethrin in An. sundaicus (s.l.) suggests that they can be still used for controlling this potential malaria vector in the Jaffna Peninsula and adjacent areas. Continuing country-wide studies on other malaria vectors and their insecticide susceptibilities are important in this regard.
Collapse
Affiliation(s)
| | - Thilini C Weerarathne
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | | | | | | | |
Collapse
|
166
|
Yan ZT, Fu WB, Chen B. Complete mitochondrial genomes of Anopheles aconitus and Anopheles splendidus and phylogenetics analysis of known mtgenomes in the subgenus Cellia (Diptera: Culicidae: Anophelinae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1613185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| | - Wen-Bo Fu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| |
Collapse
|
167
|
Chaiphongpachara T, Yusuk P, Laojun S, Kunphichayadecha C. Environmental Factors Associated with Mosquito Vector Larvae in a Malaria-Endemic Area in Ratchaburi Province, Thailand. ScientificWorldJournal 2018; 2018:4519094. [PMID: 30662376 PMCID: PMC6312606 DOI: 10.1155/2018/4519094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/25/2018] [Indexed: 11/23/2022] Open
Abstract
Malaria is transmitted by female mosquitoes in the genus Anopheles and is a major public health issue. Different species of Anopheles mosquitoes have different epidemiological characteristics, behaviors, and ecological requirements, and so an understanding of their biology and ecology in a particular area is critical for successful disease control. The aim of this study was to determine which environmental factors are associated with Anopheles larvae in a malaria-endemic area in Ratchaburi Province, Thailand, which shares a border with Myanmar. In October 2016, we collected mosquito larvae and measured six environmental factors at 10 study sites located along Lam Pachi River, which flows through Huay Nam Nak village in Ratchaburi Province. We found two species of Anopheles larvae (An. subpictus sensu lato (s.l.) Grassi and An. barbirostris s.l. van der Wulp) at 7 of the 10 study sites, the numbers of which significantly differed between sites (p < 0.05). Pearson correlation analysis showed that the numbers of larvae of both species were significantly positively correlated with the dissolved oxygen level (p < 0.01) and significantly negatively correlated with the width of the river (p < 0.05) and pH (p < 0.01). By contrast, turbidity, water depth, and water temperature were not associated with larval abundance. Mosquito species which belong to genus Anopheles are considered to be of public health and medical importance. Therefore, Anopheles mosquito surveillance and control in the study sites are essential. This information will facilitate vector-borne disease control and improve our understanding of the biology of Anopheles vectors in rivers located along international borders, further reducing the number of patients in this malaria-endemic area.
Collapse
Affiliation(s)
| | - Prasit Yusuk
- Bachelor of Public Health, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Thailand
| | - Sedthapong Laojun
- Bachelor of Public Health, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Thailand
| | - Chaekki Kunphichayadecha
- Bachelor of Public Health, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Thailand
| |
Collapse
|
168
|
Jones RT, Tusting LS, Smith HMP, Segbaya S, Macdonald MB, Bangs MJ, Logan JG. The impact of industrial activities on vector-borne disease transmission. Acta Trop 2018; 188:142-151. [PMID: 30165072 DOI: 10.1016/j.actatropica.2018.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/25/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
Industrial activities have produced profound changes in the natural environment, including the mass removal of trees, fragmentation of habitats, and creation of larval mosquito breeding sites, that have allowed the vectors of disease pathogens to thrive. We conducted a review of the literature to assess the impact of industrial activities on vector-borne disease transmission. Our study shows that industrial activities may be coupled with significant changes to human demographics that can potentially increase contact between pathogens, vectors and hosts, and produce a shift of parasites and susceptible populations between low and high disease endemic areas. Indeed, where vector-borne diseases and industrial activities intersect, large numbers of potentially immunologically naïve people may be exposed to infection and lack the knowledge and means to protect themselves from infection. Such areas are typically associated with inadequate access to quality health care, thus allowing industrial development and production sites to become important foci of transmission. The altered local vector ecologies, and the changes in disease dynamics that changes affect, create challenges for under-resourced health care and vector-control systems.
Collapse
Affiliation(s)
- Robert T Jones
- ARCTEC, London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | - Lucy S Tusting
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Hugh M P Smith
- ARCTEC, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | - Michael J Bangs
- International SOS, Ltd., Papua Province, Indonesia; International SOS, Ltd., Lualaba Province, Democratic Republic of Congo
| | - James G Logan
- ARCTEC, London School of Hygiene & Tropical Medicine, London, United Kingdom; Department of Disease Control, London School of Hygiene & Tropical Medicine, United Kingdom
| |
Collapse
|
169
|
Pryce J, Choi L, Richardson M, Malone D, Cochrane Infectious Diseases Group. Insecticide space spraying for preventing malaria transmission. Cochrane Database Syst Rev 2018; 11:CD012689. [PMID: 30388303 PMCID: PMC6516806 DOI: 10.1002/14651858.cd012689.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Space spraying is the dispersal of a liquid fog of insecticide into an outdoor area to kill adult insects. It has been regularly used in public health and pest control programmes, including use as an emergency response to malaria epidemics. This Cochrane Review aims to assist the decision-making of malaria vector control programmes by summarizing the evidence of the impact of space spraying on malaria transmission. OBJECTIVES The review's primary objective was to evaluate the impact of space spraying on malaria transmission, or the incremental impact when applied in combination with other malaria control methods, in comparison to equivalent conditions with no space spraying intervention.To guide future evaluations of space spraying, a secondary objective was to identify and summarize the range of space spraying strategies that have been trialled, those which were promising and warrant further evaluation, and those which appear unlikely to warrant further evaluation (for example, if they were not feasible to implement, or were unacceptable to the population). SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; PubMed (MEDLINE); Embase (OVID), CAB Abstracts (Web of Science), LILACS (BIREME), the World Health Organization (WHO) International Clinical Trials Registry Platform, and ClinicalTrials.gov up to 18 April 2018. We contacted organizations for ongoing and unpublished trials, and checked the reference lists of all included studies for relevant studies. SELECTION CRITERIA We included cluster-randomized controlled trials, interrupted time series (ITS) studies, randomized cross-over studies, and controlled before-and-after (CBA) studies comparing space spraying with no space spraying that met the inclusion criteria for the review. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials for eligibility and risk of bias, and extracted the data. For ITS studies, we present findings graphically, and estimated the effect of space spraying on the step change and the slope change. We assessed the certainty of evidence using the GRADE approach. MAIN RESULTS Two ITS studies, conducted between 1972 and 1984, met our inclusion criteria for the primary objective, and one study contributed to the quantitative analysis. This study was conducted in India, reported the incidence of malaria in four separate sites, and covered a total population of 18,460 people. In the pooled analysis across sites, there was no step effect for the incidence of uncomplicated malaria (step rate ratio 1.00, 95% confidence interval (CI) 0.51 to 1.92). There was an effect on the slope: the number of cases was reduced by 15% per month (slope rate ratio 0.85, 95% CI 0.79 to 0.91). Using these ratios, we estimated the effect of 12 months of space spraying on malaria incidence to be a reduction from 6 cases to 1 case per month per 1000 population (95% CI 0 to 2 cases, very low-certainty evidence). The second study reported the impact of space spraying on malaria incidence and adult mosquito density in a population of 15,106 in Haiti, but it did not provide data from previous years. Thus, we could not estimate an effect of space spraying that was independent from temporal trends.For the review's secondary objective, we identified a further two studies in addition to the two ITS studies; both used a CBA design and were conducted between 1973 and 2000. The four studies used a range of delivery methods including handheld, vehicle-mounted, and aircraft-mounted spraying equipment. A variety of insecticides, doses, and spraying times were also used, with methods typically determined based on environmental factors and vector profiles. AUTHORS' CONCLUSIONS Evidence from one state in India conducted over 30 years ago suggests an effect of space spraying on the incidence of malaria, but the certainty of the evidence is very low. Reliable research in a variety of settings will help establish whether and when this intervention may be worthwhile.
Collapse
Affiliation(s)
- Joseph Pryce
- Liverpool School of Tropical MedicineDepartment of Clinical SciencesPembroke PlaceLiverpoolUKL3 5QA
| | - Leslie Choi
- Liverpool School of Tropical MedicineDepartment of Clinical SciencesPembroke PlaceLiverpoolUKL3 5QA
| | - Marty Richardson
- Liverpool School of Tropical MedicineCochrane Infectious Diseases GroupPembroke PlaceLiverpoolUKL3 5QA
| | - David Malone
- Liverpool School of Tropical MedicineIVCCPembroke PlaceLiverpoolUKL3 5QA
| | | |
Collapse
|
170
|
Liu BQ, Qiao L, He QY, Zhou Y, Ren S, Chen B. Genome-wide identification, characterization and evolution of cuticular protein genes in the malaria vector Anopheles sinensis (Diptera: Culicidae). INSECT SCIENCE 2018; 25:739-750. [PMID: 28544438 DOI: 10.1111/1744-7917.12483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/02/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Thirteen cuticular protein (CP) families have been recognized in arthropods. In this study, 250 Anopheles sinensis CP genes were identified and named based on genome and transcriptome sequences. They were classified into 10 families based on motifs and phylogenetic analyses. In 11 other insect species, nine had CP numbers > 150 while Apis mellifera and Tribolium castaneum had CP numbers less than 52. The CPs of eight species occupied > 1.4% of the total genomic gene number, whereas in three species the CPs occupied < 1%. The phylogenies for each CP family in An. sinensis were constructed and discussed. The 250 CPs each had 1-8 exons with 144 CPs (57.6%) having two exons. The intron length ranged from 66-3888 bp with 174 introns (54.0%) being 66-100 bp long. Except for two CPs on two contigs, 248 CPs were mapped onto 28 scaffolds with 136 genes (54.4%) restricted to five scaffolds. A total of 107 CPs were clustered and located at 27 loci. The CPR family had the conserved motif GSYSLVEPDGTVRTV. The RR-1 subfamily had an additional 21 amino acid (aa) motifs with the YVADENGF sequence that is common in insects. The RR-2 subfamily had an additional 50 aa motifs with two additional regions RDGDVVKG and G-x(3)-VV. A comparison with 115 orthologous counterparts of An. gambiae CPs suggested purifying selection for all of these genes. This study provides basic information useful for further studies on biological functions of An. sinensis CPs as well as for comparative genomics of insect CPs.
Collapse
Affiliation(s)
- Bai-Qi Liu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Qi-Yi He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Yong Zhou
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Shuang Ren
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
171
|
Wangdi K, Canavati SE, Ngo TD, Tran LK, Nguyen TM, Tran DT, Martin NJ, Clements ACA. Analysis of clinical malaria disease patterns and trends in Vietnam 2009-2015. Malar J 2018; 17:332. [PMID: 30223843 PMCID: PMC6142383 DOI: 10.1186/s12936-018-2478-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viet Nam has made tremendous progress towards reducing mortality and morbidity associated with malaria in recent years. Despite the success in malaria control, there has been a recent increase in cases in some provinces. In order to understand the changing malaria dynamics in Viet Nam and measure progress towards elimination, the aim of this study was to describe and quantify spatial and temporal trends of malaria by species at district level across the country. METHODS Malaria case reports at the Viet Nam National Institute of Malariology, Parasitology, and Entomology were reviewed for the period of January 2009 to December 2015. The population of each district was obtained from the Population and Housing Census-2009. A multivariate (insecticide-treated mosquito nets [ITN], indoor residual spraying [IRS], maximum temperature), zero-inflated, Poisson regression model was developed with spatial and spatiotemporal random effects modelled using a conditional autoregressive prior structure, and with posterior parameters estimated using Bayesian Markov chain Monte Carlo simulation with Gibbs sampling. Covariates included in the models were coverage of intervention (ITN and IRS) and maximum temperature. RESULTS There was a total of 57,713 Plasmodium falciparum and 32,386 Plasmodium vivax cases during the study period. The ratio of P. falciparum to P. vivax decreased from 4.3 (81.0% P. falciparum; 11,121 cases) in 2009 to 0.8 (45.0% P. falciparum; 3325 cases) in 2015. Coverage of ITN was associated with decreased P. falciparum incidence, with a 1.1% (95% credible interval [CrI] 0.009%, 1.2%) decrease in incidence for 1% increase in the ITN coverage, but this was not the case for P. vivax, nor was it the case for IRS coverage. Maximum temperature was associated with increased incidence of both species, with a 4% (95% CrI 3.5%, 4.3%) and 1.6% (95% CrI 0.9%, 2.0%) increase in P. falciparum and P. vivax incidence for a temperature increase of 1 °C, respectively. Temporal trends of P. falciparum and P. vivax incidence were significantly higher than the national average in Central and Central-Southern districts. CONCLUSION Interventions (ITN distribution) and environmental factors (increased temperature) were associated with incidence of P. falciparum and P. vivax during the study period. The factors reviewed were not exhaustive, however the data suggest distribution of resources can be targeted to areas and times of increased malaria transmission. Additionally, changing distribution of the two predominant malaria species in Viet Nam will require different programmatic approaches for control and elimination.
Collapse
Affiliation(s)
- Kinley Wangdi
- Department of Global Health, Research School of Population Health, Australian National University, Canberra, Australia.
| | | | | | | | | | - Duong Thanh Tran
- National Institute of Malariology, Parasitology, and Entomology, Hanoi, Viet Nam
| | - Nicholas J Martin
- U.S. Naval Medical Research Unit No. 2, PSA Sembawang Deptford Rd, Building 7-4, 759657, Singapore, Singapore
| | - Archie C A Clements
- Department of Global Health, Research School of Population Health, Australian National University, Canberra, Australia.,Faculty of Health Sciences, Curtin University, Bentley, Perth, Australia
| |
Collapse
|
172
|
Dorigatti I, Donnelly CA, Laydon DJ, Small R, Jackson N, Coudeville L, Ferguson NM. Refined efficacy estimates of the Sanofi Pasteur dengue vaccine CYD-TDV using machine learning. Nat Commun 2018; 9:3644. [PMID: 30194294 PMCID: PMC6128884 DOI: 10.1038/s41467-018-06006-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/03/2018] [Indexed: 01/08/2023] Open
Abstract
CYD-TDV is the first licensed dengue vaccine for individuals 9-45 (or 60) years of age. Using 12% of the subjects enroled in phase-2b and phase-3 trials for which baseline serostatus was measured, the vaccine-induced protection against virologically confirmed dengue during active surveillance (0-25 months) was found to vary with prior exposure to dengue. Because age and dengue exposure are highly correlated in endemic settings, refined insight into how efficacy varies by serostatus and age is essential to understand the increased risk of hospitalisation observed among vaccinated individuals during the long-term follow-up and to develop safe and effective vaccination strategies. Here we apply machine learning to impute the baseline serostatus for subjects with post-dose 3 titres but missing baseline serostatus. We find evidence for age dependence in efficacy independent of serostatus and estimate that among 9-16 year olds, CYD-TDV is protective against serotypes 1, 3 and 4 regardless of baseline serostatus.
Collapse
Affiliation(s)
- I Dorigatti
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London,, W2 1PG, UK.
| | - C A Donnelly
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London,, W2 1PG, UK
| | - D J Laydon
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London,, W2 1PG, UK
| | - R Small
- Sanofi Pasteur, 2501 Discovery Dr, Orlando, FL, 32826, USA
| | - N Jackson
- Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280, Marcy l'Étoile, France
| | - L Coudeville
- Sanofi Pasteur, 14, Espace Henry Vallee, 690077, Lyon, France
| | - N M Ferguson
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London,, W2 1PG, UK
| |
Collapse
|
173
|
Phoomkhong W, Bangs MJ, Chareonviriyaphap T. Discriminating lethal concentrations for pyrethroid compounds used in susceptibility monitoring of Anopheles epiroticus, a malaria vector in Thailand. Acta Trop 2018; 185:255-260. [PMID: 29856988 DOI: 10.1016/j.actatropica.2018.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/12/2018] [Accepted: 05/26/2018] [Indexed: 11/28/2022]
Abstract
Anopheles epiroticus is a malaria vector in Thailand found primarily along coastal areas with brackish water habitats. Insecticides, particularly pyrethroid class compounds, are commonly used to control malaria vectors in Thailand. The lack of specific discriminating lethal concentrations for An. epiroticus has possibly compromised a more accurate assessment of physiological susceptibility to various chemicals. The routine assessment of vector response to insecticides is a key program management component to prevent or mitigate the development of resistance. The purpose of this study was to determine the discriminating (diagnostic) lethal concentrations of five common synthetic pyrethroids (deltamethrin, permethrin, bifenthrin, lambda(λ)-cyhalothrin, and alpha(α)-cypermethrin) used in Thailand for malaria control, against a susceptible colonized population of An. epiroticus. Final discriminating concentrations were 0.006% deltamethrin, 0.349% permethrin, 0.033% bifenthrin, 0.012% λ-cyhalothrin, and 0.0009% α-cypermethrin. Using concentrations established for each chemical, a field population of An. epiroticus from southern Thailand was found completely susceptible to each concentration. Periodic monitoring of insecticide susceptibility of An. epiroticus and other malaria vector species is needed to assess the efficacy of chemicals and guide insecticide policy and control programs.
Collapse
Affiliation(s)
- Watcharin Phoomkhong
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
| | - Michael J Bangs
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand; Public Health & Malaria Control Department, International SOS, Kuala Papua, 99920, Indonesia.
| | | |
Collapse
|
174
|
Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res 2018; 3:109. [DOI: 10.12688/wellcomeopenres.14761.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2018] [Indexed: 11/20/2022] Open
Abstract
Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: As part of a pilot study on Targeted Malaria Elimination, entomological investigations were conducted during 24 months in four villages located in Kayin state, Myanmar. Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors. Plasmodium infection rate was determined using quantitative real-time PCR. Results: The biodiversity of Anopheles entomo-fauna was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.4 and 1.7 /1,000 mosquitoes for P. falciparum and P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for P. falciparum and P. vivax, respectively). We estimated that 65% of the potential infective bites are not prevented by mosquito bed nets because of outdoor and early biters. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.
Collapse
|
175
|
Nejati J, Saghafipour A, Vatandoost H, Moosa-Kazemi SH, Motevalli Haghi A, Sanei-Dehkordi A. Bionomics of Anopheles subpictus (Diptera: Culicidae) in a Malaria Endemic Area, Southeastern Iran. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1182-1187. [PMID: 29873778 DOI: 10.1093/jme/tjy079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 06/08/2023]
Abstract
Anopheles subpictus Grassi is considered a secondary malaria vector in parts of Asia. The current study determined some ecological and bionomical characteristics of this species in southeastern Iran. The temporal patterns of abundance, resting behavior, blood feeding activity, host selection, adult susceptibility to insecticides and larval habitats were investigated. Most adults were collected by pyrethrum space-spray collection, followed by pit shelters and outlet window traps, respectively. The abdominal condition index of gravid to blood fed females resting outdoors was more than one, thereby showing exophilic resting behavior. Only 25% of engorged females tested positive for human blood, even though most of the samples were collected from houses. The host seeking activity of An. subpictus was bimodal with peaks at 22-2300 h and 03-0400 h. Also, the relative abundance showed peaks in March and December. The results of susceptibility tests showed a resistance of field strains to DDT. Future studies are needed to investigate the possible role of this species in malaria transmission in southeastern Iran.
Collapse
Affiliation(s)
- Jalil Nejati
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abedin Saghafipour
- Department of Public Health, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Moosa-Kazemi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Motevalli Haghi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Sanei-Dehkordi
- Department of Medical Entomology and Vector Control, Faculty of Health & Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
176
|
Manin BO, Drakeley CJ, Chua TH. Mitochondrial variation in subpopulations of Anopheles balabacensis Baisas in Sabah, Malaysia (Diptera: Culicidae). PLoS One 2018; 13:e0202905. [PMID: 30138386 PMCID: PMC6107281 DOI: 10.1371/journal.pone.0202905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/10/2018] [Indexed: 11/19/2022] Open
Abstract
Anopheles balabacensis, the primary vector of Plasmodium knowlesi in Sabah, Malaysia, is both zoophilic and anthropophilic, feeding on macaques as well as humans. It is the dominant Anopheles species found in Kudat Division where it is responsible for all the cases of P. knowlesi. However there is a paucity of basic biological and ecological information on this vector. We investigated the genetic variation of this species using the sequences of cox1 (1,383 bp) and cox2 (685 bp) to gain an insight into the population genetics and inter-population gene flow in Sabah. A total of 71 An. balabacensis were collected from seven districts constituting 14 subpopulations. A total of 17, 10 and 25 haplotypes were detected in the subpopulations respectively using the cox1, cox2 and the combined sequence. Some of the haplotypes were common among the subpopulations due to gene flow occurring between them. AMOVA showed that the genetic variation was high within subpopulations as compared to between subpopulations. Mantel test results showed that the variation between subpopulations was not due to the geographical distance between them. Furthermore, Tajima's D and Fu's Fs tests showed that An. balabacensis in Sabah is experiencing population expansion and growth. High gene flow between the subpopulations was indicated by the low genetic distance and high gene diversity in the cox1, cox2 and the combined sequence. However the population at Lipasu Lama appeared to be isolated possibly due to its higher altitude at 873 m above sea level.
Collapse
Affiliation(s)
- Benny Obrain Manin
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Chris J. Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tock H. Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- * E-mail:
| |
Collapse
|
177
|
Roth A, Adapa SR, Zhang M, Liao X, Saxena V, Goffe R, Li S, Ubalee R, Saggu GS, Pala ZR, Garg S, Davidson S, Jiang RHY, Adams JH. Unraveling the Plasmodium vivax sporozoite transcriptional journey from mosquito vector to human host. Sci Rep 2018; 8:12183. [PMID: 30111801 PMCID: PMC6093925 DOI: 10.1038/s41598-018-30713-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Malaria parasites transmitted by mosquito bite are remarkably efficient in establishing human infections. The infection process requires roughly 30 minutes and is highly complex as quiescent sporozoites injected with mosquito saliva must be rapidly activated in the skin, migrate through the body, and infect the liver. This process is poorly understood for Plasmodium vivax due to low infectivity in the in vitro models. To study this skin-to-liver-stage of malaria, we used quantitative bioassays coupled with transcriptomics to evaluate parasite changes linked with mammalian microenvironmental factors. Our in vitro phenotyping and RNA-seq analyses revealed key microenvironmental relationships with distinct biological functions. Most notable, preservation of sporozoite quiescence by exposure to insect-like factors coupled with strategic activation limits untimely activation of invasion-associated genes to dramatically increase hepatocyte invasion rates. We also report the first transcriptomic analysis of the P. vivax sporozoite interaction in salivary glands identifying 118 infection-related differentially-regulated Anopheles dirus genes. These results provide important new insights in malaria parasite biology and identify priority targets for antimalarial therapeutic interventions to block P. vivax infection.
Collapse
Affiliation(s)
- Alison Roth
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Swamy R Adapa
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Xiangyun Liao
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Vishal Saxena
- Molecular Parasitology and System Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Raaven Goffe
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Suzanne Li
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Gagandeep S Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergic and Infectious Diseases, National Institute of Health, Rockville, Maryland, USA
| | - Zarna R Pala
- Molecular Parasitology and System Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Shilpi Garg
- Molecular Parasitology and System Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Silas Davidson
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA.
| |
Collapse
|
178
|
Davidson JR, Sukowati S, Shinta, Asih PBS, Syafruddin D, Baskin RN, St Laurent B, Hawley WA, Liu F, Burkot TR, Collins FH, Lobo NF. Using barrier screens to characterize mosquito composition, flight activity, and abdominal status in South Lampung, Indonesia. Parasit Vectors 2018; 11:440. [PMID: 30064507 PMCID: PMC6069869 DOI: 10.1186/s13071-018-3031-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/24/2018] [Indexed: 11/30/2022] Open
Abstract
Background Mosquito sampling methods target different aspects of mosquito behavior and are subject to trap and location specific biases. The barrier screen sampling method was developed and tested to sample free-flying, blood-fed, and host-seeking mosquitoes. During a pilot study, this method was useful in obtaining an unbiased sample of mosquitoes flying between outdoor larval habitats, and sites where blood meals were obtained. However, a relatively small number of blood-fed Anopheles mosquitoes were collected in Indonesia during the pilot study. The sampling method was extended in South Lampung, Indonesia, to enable the collection of blood-fed mosquitoes. This study aimed to intercept mosquitoes flying between human habitations and larval habitats with a barrier screen and to characterize mosquito composition, flight characteristics (direction, height and time), abdominal status, and parity. Results Barrier screens intercepted 15 different mosquito species in South Lampung: eight Anopheles spp. and seven Culex spp. Species compositions varied among the villages in South Lampung. About 15% of Anopheles spp. caught were blood-fed, of which 28.2% of those tested had fed on humans. This is the first time human blood-fed anophelines have been collected in Indonesia using barrier screens. Blood meals identified included cow, dog, goat, and human, as well as mixed blood meals. Activity of unfed An. subpictus, the primary vector collected, flying towards human habitations peaked between 20:00–12:00 h, with a slow decline in activity until 18:00 h. Unfed and fed An. sundaicus, had a different activity profile compared to An. subpictus. Other species demonstrated varied peak activity times, with earlier activity occurring as a general trend. For the Anopheles mosquitoes collected, 55.5% were collected below 0.5 m and 83.9% were captured resting < 1 m from the ground. Parity dissections enabled age structure by species, which revealed species-specific traits such as nulliparous An. subpictus being more active early in the night relative to An. sundaicus. Conclusions This study demonstrates that barrier screens are an effective mosquito sampling method that can be used to gain insights into local mosquito species composition, flight characteristics (direction, height and time), abdominal status, and parity.
Collapse
Affiliation(s)
- Jenna R Davidson
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Supratman Sukowati
- Pusat Teknologi Intervensi Kesehatan Masyarakat, Badan Litbangkes Kemenkes (Center for Public Health Intervention Technology, Ministry of Health), Jakarta, Indonesia
| | - Shinta
- Pusat Teknologi Intervensi Kesehatan Masyarakat, Badan Litbangkes Kemenkes (Center for Public Health Intervention Technology, Ministry of Health), Jakarta, Indonesia
| | | | - Din Syafruddin
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Robert N Baskin
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brandy St Laurent
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - William A Hawley
- Child Development and Survival Cluster, UNICEF, Jakarta, Indonesia
| | - Fang Liu
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Thomas R Burkot
- James Cook University, Queensland Tropical Health Alliance, QLD, Cairns, 4870, Australia
| | - Frank H Collins
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
179
|
Aguas R, Maude RJ, Gomes MGM, White LJ, White NJ, Dondorp AM. Infectivity of Chronic Malaria Infections and Its Consequences for Control and Elimination. Clin Infect Dis 2018; 67:295-302. [PMID: 29757358 PMCID: PMC6030896 DOI: 10.1093/cid/ciy055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/07/2018] [Indexed: 12/25/2022] Open
Abstract
Assessing the importance of targeting the chronic Plasmodium falciparum malaria reservoir is pivotal as the world moves toward malaria eradication. Through the lens of a mathematical model, we show how, for a given malaria prevalence, the relative infectivity of chronic individuals determines what intervention tools are predicted be the most effective. Crucially, in a large part of the parameter space where elimination is theoretically possible, it can be achieved solely through improved case management. However, there are a significant number of settings where malaria elimination requires not only good vector control but also a mass drug administration campaign. Quantifying the relative infectiousness of chronic malaria across a range of epidemiological settings would provide essential information for the design of effective malaria elimination strategies. Given the difficulties obtaining this information, we also provide a set of epidemiological metrics that can be used to guide policy in the absence of such data.
Collapse
Affiliation(s)
- Ricardo Aguas
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Richard J Maude
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - M Gabriela M Gomes
- Liverpool School of Tropical Medicine, United Kingdom
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Portugal
| | - Lisa J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M Dondorp
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
180
|
Salam N, Mustafa S, Hafiz A, Chaudhary AA, Deeba F, Parveen S. Global prevalence and distribution of coinfection of malaria, dengue and chikungunya: a systematic review. BMC Public Health 2018; 18:710. [PMID: 29879935 PMCID: PMC5992662 DOI: 10.1186/s12889-018-5626-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Malaria, Dengue and Chikungunya are vector borne diseases with shared endemic profiles and symptoms. Coinfections with any of these diseases could have fatal outcomes if left undiagnosed. Understanding the prevalence and distribution of coinfections is necessary to improve diagnosis and designing therapeutic interventions. METHODS We have carried out a systematic search of the published literature based on PRISMA guidelines to identify cases of Malaria, Dengue and Chikungunya coinfections. We systematically reviewed the literature to identify eligible studies and extracted data regarding cases of coinfection from cross sectional studies, case reports, retrospective studies, prospective observational studies and surveillance reports. RESULTS Care full screening resulted in 104 publications that met the eligibility criteria and reported Malaria/Dengue, Dengue/Chikungunya, Malaria/Chikungunya and Malaria/Dengue/Chikungunya coinfections. These coinfections were spread over six geographical locations and 42 different countries and are reported more frequently in the last 15 years possibly due to expanding epidemiology of Dengue and Chikungunya. Few of these reports have also analysed distinguishing features of coinfections. Malaria/Dengue coinfections were the most common coinfection followed by Dengue/Chikungunya, Malaria/Chikungunya and Malaria/Dengue/Chikungunya coinfections. P. falciparum and P. vivax were the commonest species found in cases of malaria coinfections and Dengue serotype-4 commonest serotype in cases of dengue coinfections. Most studies were reported from India. Nigeria and India were the only two countries from where all possible combinations of coinfections were reported. CONCLUSION We have comprehensively reviewed the literature associated with cases of coinfections of three important vector borne diseases to present a clear picture of their prevalence and distribution across the globe. The frequency of coinfections presented in the study suggests proper diagnosis, surveillance and management of cases of coinfection to avoid poor prognosis of the underlying etiology.
Collapse
Affiliation(s)
- Nasir Salam
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Shoeb Mustafa
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdul Hafiz
- Department of Parasitology, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Anis Ahmad Chaudhary
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Farah Deeba
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| |
Collapse
|
181
|
Fang YJ, Yan ZT, Chen B. Sialotranscriptome sequencing and analysis of Anopheles sinensis and comparison with Psorophora albipes sialotranscriptome (Diptera: Culicidae). INSECT SCIENCE 2018; 25:368-378. [PMID: 27996203 DOI: 10.1111/1744-7917.12431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/27/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Most of adult female mosquitoes secrete saliva to facilitate blood sucking, digestion and nutrition, and mosquito-borne disease prevention. The knowledge of classification and characteristics of sialotranscriptome genes are still quite limited. Anopheles sinensis is a major malaria vector in China and southeast Asian countries. In this study, the An. sinensis sialotranscriptome was sequenced using Illumina sequencing technique with a total of 10 907 unigenes to be obtained and annotated in biological functions and pathways, and 10 470 unigenes were mapped to An. sinensis reference genome with 70.46% of genes having 90%-100% genome mapping through bioinformatics analysis. These mapped genes were classified into four categories: housekeeping (6632 genes), secreted (1177), protein-coding genes with function-unknown (2646) and transposable element (15). The housekeeping genes were divided into 27 classes, and the secreted genes were divided into 11 classes and 96 families. The classification, characteristics and evolution of these classes/families of secreted genes are further described and discussed. The comparison of the 1177 secreted genes in An. sinensis in the Anophelinae subfamily with 811 in Psorophora albipes in the Culicinae subfamily show that six classes/subclasses have the gene number more than twice and two classes (uniquely found in anophelines, and Orphan proteins of unique standing) are unique in the former compared with the latter, whereas four classes/subclasses are much expanded and uniquely found in the Aedes class and is unique in the later. The An. sinensis sialotranscriptome sequence data is the most complete in mosquitoes to date, and the analyses provide a comprehensive information frame for further research of mosquito sialotranscriptome.
Collapse
Affiliation(s)
- Ya-Jie Fang
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
182
|
Cahyaningrum P, Sulistyawati S. Malaria Risk Factors in Kaligesing, Purworejo District, Central Java Province, Indonesia: A Case-control Study. J Prev Med Public Health 2018; 51:148-153. [PMID: 29886710 PMCID: PMC5996187 DOI: 10.3961/jpmph.18.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/16/2018] [Indexed: 11/16/2022] Open
Abstract
Objectives Malaria remains a public health concern worldwide, including Indonesia. Purworejo is a district in which endemic of malaria, they have re-setup to entering malaria elimination in 2021. Accordingly, actions must be taken to accelerate and guaranty that the goal will reach based on an understanding of the risk factors for malaria. Thus, we analysed malaria risk factors based on human and housing conditions in Kaligesing, Purworejo, Indonesia. Methods A case-control study was carried out in Kaligesing subdistrict, Purworejo, Indonesia in July to August 2017. A structured questionnaire and checklist were used to collect data from 96 participants, who consisted of 48 controls and 48 cases. Univariate, bivariate, and multivariate analyses were performed. Results Bivariate analysis found that education level, the presence of a cattle cage within 100 m of the house, not sleeping under a bednet the previous night, and not closing the doors and windows from 6 p.m. to 5 a.m. were significantly (p≤0.25) associated with malaria. Of these factors, only not sleeping under a bednet the previous night and not closing the doors and windows from 6 p.m. to 5 a.m. were significantly associated with malaria. Conclusions The findings of this study demonstrate that potential risk factor for Malaria should be paid of attention all the time, particularly for an area which is targeting Malaria elimination.
Collapse
|
183
|
Maia MF, Kliner M, Richardson M, Lengeler C, Moore SJ, Cochrane Infectious Diseases Group. Mosquito repellents for malaria prevention. Cochrane Database Syst Rev 2018; 2:CD011595. [PMID: 29405263 PMCID: PMC5815492 DOI: 10.1002/14651858.cd011595.pub2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Malaria is an important cause of illness and death across endemic regions. Considerable success against malaria has been achieved within the past decade mainly through long-lasting insecticide-treated nets (LLINs). However, elimination of the disease is proving difficult as current control methods do not protect against mosquitoes biting outdoors and when people are active. Repellents may provide a personal protection solution during these times. OBJECTIVES To assess the impact of topical repellents, insecticide-treated clothing, and spatial repellents on malaria transmission. SEARCH METHODS We searched the following databases up to 26 June 2017: the Cochrane Infectious Diseases Group Specialized Register; the Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE; Embase; US AFPMB; CAB Abstracts; and LILACS. We also searched trial registration platforms and conference proceedings; and contacted organizations and companies for ongoing and unpublished trials. SELECTION CRITERIA We included randomized controlled trials (RCTs) and cluster-randomized controlled trials of topical repellents proven to repel mosquitoes; permethrin-treated clothing; and spatial repellents such as mosquito coils. We included trials that investigated the use of repellents with or without LLINs, referred to as insecticide-treated nets. DATA COLLECTION AND ANALYSIS Two review authors independently reviewed trials for inclusion, extracted the data, and assessed the risk of bias. A third review author resolved any discrepancies. We analysed data by conducting meta-analysis and stratified by whether the trials had included LLINs. We combined results from cRCTs with individually RCTs by adjusting for clustering and presented results using forest plots. We used GRADE to assess the certainty of the evidence. MAIN RESULTS Eight cRCTs and two RCTs met the inclusion criteria. Six trials investigated topical repellents, two trials investigated insecticide-treated clothing, and two trials investigated spatial repellents.Topical repellentsSix RCTS, five of them cluster-randomized, investigated topical repellents involving residents of malaria-endemic regions. Four trials used topical repellents in combination with nets, but two trials undertaken in displaced populations used topical repellents alone. It is unclear if topical repellents can prevent clinical malaria (RR 0.65, 95% CI 0.4 to 1.07, very low certainty evidence) or malaria infection (RR 0.84, 95% CI 0.64 to 1.12, low-certainty evidence) caused by P. falciparum. It is also unclear if there is any protection against clinical cases of P. vivax (RR 1.32, 95% CI 0.99 to 1.76, low-certainty evidence) or incidence of infections (RR 1.07, 95% CI 0.80 to 1.41, low-certainty evidence). Subgroup analysis of trials including insecticide-treated nets did not show a protective effect of topical repellents against malaria. Only two studies did not include insecticide-treated nets, and they measured different outcomes; one reported a protective effect against clinical cases of P. falciparum (RR 0.40, 95% CI 0.23 to 0.71); but the other study measured no protective effect against malaria infection incidence caused by either P. falciparum or P. vivax.Insecticide-treated clothingInsecticide-treated clothing were investigated in trials conducted in refugee camps in Pakistan and amongst military based in the Colombian Amazon. Neither study provided participants with insecticide-treated nets. In the absence of nets, treated clothing may reduce the incidence of clinical malaria caused by P. falciparum by approximately 50% (RR 0.49, 95% CI 0.29 to 0.83, low-certainty evidence) and P. vivax (RR 0.64, 95% CI 0.40 to 1.01, low-certainty evidence).Spatial repellentsTwo cluster-randomized RCTs investigated mosquito coils for malaria prevention. We do not know the effect of spatial repellents on malaria prevention (RR 0.24, 95% CI 0.03 to 1.72, very low certainty evidence). There was large heterogeneity between studies and one study had high risk of bias. AUTHORS' CONCLUSIONS There is insufficient evidence to conclude topical or spatial repellents can prevent malaria. There is a need for better designed trials to generate higher certainty of evidence before well-informed recommendations can be made. Adherence to daily compliance remains a major limitation. Insecticide-treated clothing may reduce risk of malaria infection in the absence of insecticide-treated nets; further studies on insecticide-treated clothing in the general population should be done to broaden the applicability of the results.
Collapse
Affiliation(s)
- Marta F Maia
- Swiss Tropical and Public Health InstitutePublic Health and EpidemiologySocinstrasse 57BaselSwitzerlandCH‐4051
- Kenya Medical Research Institute ‐ Wellcome Trust ProgrammeDepartment of BiosciencesPO Box 230KilifiKilifiKenya80108
| | - Merav Kliner
- Public Health England North WestHealth Protection Team2nd Floor, 3 Piccadilly PlaceLondon Rd,ManchesterUKM1 3BN
| | - Marty Richardson
- Liverpool School of Tropical MedicineCochrane Infectious Diseases GroupPembroke PlaceLiverpoolUKL3 5QA
| | - Christian Lengeler
- Swiss Tropical and Public Health InstitutePublic Health and EpidemiologySocinstrasse 57BaselSwitzerlandCH‐4051
| | - Sarah J Moore
- Swiss Tropical and Public Health InstitutePublic Health and EpidemiologySocinstrasse 57BaselSwitzerlandCH‐4051
| | | |
Collapse
|
184
|
Stone CM, Witt AB, Walsh GC, Foster WA, Murphy ST. Would the control of invasive alien plants reduce malaria transmission? A review. Parasit Vectors 2018; 11:76. [PMID: 29391041 PMCID: PMC5793375 DOI: 10.1186/s13071-018-2644-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/12/2018] [Indexed: 12/31/2022] Open
Abstract
Vector control has been the most effective preventive measure against malaria and other vector-borne diseases. However, due to concerns such as insecticide resistance and budget shortfalls, an integrated control approach will be required to ensure sustainable, long-term effectiveness. An integrated management strategy should entail some aspects of environmental management, relying on coordination between various scientific disciplines. Here, we review one such environmental control tactic: invasive alien plant management. This covers salient plant-mosquito interactions for both terrestrial and aquatic invasive plants and how these affect a vector's ability to transmit malaria. Invasive plants tend to have longer flowering durations, more vigorous growth, and their spread can result in an increase in biomass, particularly in areas where previously little vegetation existed. Some invasive alien plants provide shelter or resting sites for adult mosquitoes and are also attractive nectar-producing hosts, enhancing their vectorial capacity. We conclude that these plants may increase malaria transmission rates in certain environments, though many questions still need to be answered, to determine how often this conclusion holds. However, in the case of aquatic invasive plants, available evidence suggests that the management of these plants would contribute to malaria control. We also examine and review the opportunities for large-scale invasive alien plant management, including options for biological control. Finally, we highlight the research priorities that must be addressed in order to ensure that integrated vector and invasive alien plant management operate in a synergistic fashion.
Collapse
Affiliation(s)
- Christopher M. Stone
- Illinois Natural History Survey, University of Illinois, Urbana, Champaign, IL 61820 USA
| | - Arne B.R. Witt
- CABI Africa, 673 Limuru Road, Muthaiga, PO Box 633-00621, Nairobi, Kenya
| | - Guillermo Cabrera Walsh
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Bolivar 1559, Hurlingham, Buenos Aires, Argentina
| | - Woodbridge A. Foster
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43210 USA
| | | |
Collapse
|
185
|
Jeffree SM, Ahmed K, Safian N, Hassan R, Mihat O, Lukman KA, Shamsudin SB, Kamaludin F. Falciparum Malaria Outbreak in Sabah Linked to an Immigrant Rubber Tapper. Am J Trop Med Hyg 2018; 98:45-50. [PMID: 29141714 PMCID: PMC5928689 DOI: 10.4269/ajtmh.17-0081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 09/23/2017] [Indexed: 11/07/2022] Open
Abstract
Sabah is a Malaysian state situated in the northern part of Borneo, and it is endemic for malaria. The incidence of malaria is the lowest (0.05/1,000 population) in Penampang districts of Sabah. In June 26, 2012, two Plasmodium falciparum malaria cases were notified to public health department from a village in Penampang. Immediate investigation was initiated to identify the risk factors and to institute control measures. We performed active case finding by asking household members of all houses in the village regarding malaria symptoms and by examining blood smears. Environmental investigation was performed by collecting samples to detect mosquito breeding sites and to identify malaria transmitting vector mosquitoes. A case-control study with a ratio of 1:4 (11 cases and 44 controls) was conducted using self-administered questionnaire. The microscopic examination of blood smear for malarial parasite and entomology sampling was carried out. The malarial attack rate was 2.3%, 6/11 smears have gametocyte, and the case fatality rate was 9.1%. One case was a migrant rubber tapper from Indonesia which happened to be the first case with gametocyte positive. Overall, the incidence of malaria was higher (6/11) among rubber tappers. The odds of cases for those living nearby stagnant water were 7.3 [95% confidence interval: 1.2-43.5] times higher. In conclusion, an outbreak of P. falciparum malaria was introduced into a malaria-free village by a migrant rubber tapper, by whom the imported parasite was introduced to the community via vector Anopheles balabacensis. Living near stagnant water bodies was the risk factor in this outbreak.
Collapse
Affiliation(s)
- Saffree Mohammad Jeffree
- Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Kamruddin Ahmed
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Nazarudin Safian
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Rohaizat Hassan
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Omar Mihat
- MESVIPP Sector, Disease Control Division, Ministry Of Health, Complex E, Federal Administration Complex, Putrajaya, Malaysia
| | - Khamisah Awang Lukman
- Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Shamsul Bahari Shamsudin
- Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Fadzilah Kamaludin
- Director of Institute of Medical Research and Epidemic Intelligent Program, Ministry Of Health Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
186
|
Parker DM, Landier J, Thu AM, Lwin KM, Delmas G, Nosten FH. Scale up of a Plasmodium falciparum elimination program and surveillance system in Kayin State, Myanmar. Wellcome Open Res 2017; 2:98. [PMID: 29384151 PMCID: PMC5701446 DOI: 10.12688/wellcomeopenres.12741.2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
Background: Myanmar has one of the largest malaria burdens in the Greater Mekong Subregion (GMS). Throughout the GMS,
Plasmodium falciparum parasites are increasingly resistant to artemisinin combination therapies. Given that there are no current alternative treatment therapies, one proposed solution to the threat of untreatable
P. falciparum malaria is to eliminate the parasite from the region. Several small-scale elimination projects have been piloted in the GMS, including along the Myanmar-Thailand border. Following the success of the pilot elimination project along the Myanmar-Thailand border, there was a scale up to a broad area of Eastern Kayin State, Myanmar. Here we describe the establishment of the scale up elimination project in Easter Kayin State. Methods: The scale up relied on geographic reconnaissance and a geographic information system, community engagement, generalized access to community-based early diagnosis and treatment, near real-time epidemiological surveillance, cross sectional malaria prevalence surveys and targeted mass drug administration in villages with high prevalence of
P. falciparum malaria. Molecular markers of drug resistance were also monitored in individuals with symptomatic and asymptomatic infections. Discussion: This protocol illustrates the establishment of an elimination project and operational research in a remote, rural area encompassing several armed groups, multiple political organizations and a near-absent health care infrastructure. The establishment of the project relied on a strong rapport with the target community, on-the-ground knowledge (through geographic surveys and community engagement), rapid decision making and an approach that was flexible enough to quickly adapt to a complex landscape. The elimination project is ongoing, now over three years in operation, and assessment of the impact of this operational research will follow. This project has relevance not only for other malaria elimination projects but also for operational research aimed at eliminating other diseases.
Collapse
Affiliation(s)
- Daniel M Parker
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Jordi Landier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aung Myint Thu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Khin Maung Lwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Gilles Delmas
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - François H Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | | |
Collapse
|
187
|
Parker DM, Landier J, Thu AM, Lwin KM, Delmas G, Nosten FH. Scale up of a Plasmodium falciparum elimination program and surveillance system in Kayin State, Myanmar. Wellcome Open Res 2017. [PMID: 29384151 DOI: 10.12688/wellcomeopenres.12741.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Myanmar has one of the largest malaria burdens in the Greater Mekong Subregion (GMS). Throughout the GMS, Plasmodium falciparum parasites are increasingly resistant to artemisinin combination therapies. Given that there are no current alternative treatment therapies, one proposed solution to the threat of untreatable P. falciparum malaria is to eliminate the parasite from the region. Several small-scale elimination projects have been piloted in the GMS, including along the Myanmar-Thailand border. Following the success of the pilot elimination project along the Myanmar-Thailand border, there was a scale up to a broad area of Eastern Kayin State, Myanmar. Here we describe the establishment of the scale up elimination project in Easter Kayin State. Methods: The scale up relied on geographic reconnaissance and a geographic information system, community engagement, generalized access to community-based early diagnosis and treatment, near real-time epidemiological surveillance, cross sectional malaria prevalence surveys and targeted mass drug administration in villages with high prevalence of P. falciparum malaria. Molecular markers of drug resistance were also monitored in individuals with symptomatic and asymptomatic infections. Discussion: This protocol illustrates the establishment of an elimination project and operational research in a remote, rural area encompassing several armed groups, multiple political organizations and a near-absent health care infrastructure. The establishment of the project relied on a strong rapport with the target community, on-the-ground knowledge (through geographic surveys and community engagement), rapid decision making and an approach that was flexible enough to quickly adapt to a complex landscape. The elimination project is ongoing, now over three years in operation, and assessment of the impact of this operational research will follow. This project has relevance not only for other malaria elimination projects but also for operational research aimed at eliminating other diseases.
Collapse
Affiliation(s)
- Daniel M Parker
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Jordi Landier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aung Myint Thu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Khin Maung Lwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Gilles Delmas
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - François H Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | | |
Collapse
|
188
|
Marasri N, Overgaard HJ, Sumarnrote A, Thanispong K, Corbel V, Chareonviriyaphap T. Abundance and distribution of Anopheles mosquitoes in a malaria endemic area along the Thai-Lao border. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2017; 42:325-334. [PMID: 29125244 DOI: 10.1111/jvec.12273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Malaria is an important public health problem in Thailand, especially along international borders. In this study, we conducted a longitudinal entomological survey in six villages and rubber plantation sites to address the spatio-temporal abundance and behavior of malaria vectors in Ubon Ratchathani Province along the Thailand-Laos border. Adult female mosquitoes were collected by human landing collections (indoor and outdoor) and by cattle bait collections twice per year, during rainy and dry seasons. Mosquitoes were morphologically identified and sibling species were determined by allele-specific PCR. Of the 10,024 Anopheles, 9,328 (93.1%) and 696 (6.9%) were collected during the rainy and dry seasons, respectively. A total of 9,769 (97.5%) and 255 (2.5%) was collected on cattle and human baits, respectively. Very few primary and secondary malaria vectors were collected, consisting of 12 specimens of An. dirus, eight An. minimus, and seven An. aconitus. Of the 152 specimens of the Maculatus Group, only three were identified to An sawadwongporni by molecular methods. The others were 112 An. rampae, a non-vector, that were not amplified or were misidentified as other non-vectors. The very low density of primary malaria vectors found in the study villages suggests that entomological risk and malaria transmission is higher in neighboring forest areas. Further studies on malaria vector distribution, as well as human behaviors, are needed to understand malaria transmission dynamics in the province and to develop suitable vector control methods.
Collapse
Affiliation(s)
- Nattapol Marasri
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Hans J Overgaard
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
- Institute de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (IRD 224-CNRS 5290 UM1-UM2), Montpellier Cedex 5, France
| | - Anchana Sumarnrote
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Kanutcharee Thanispong
- Bureau of Vector-borne Disease, Department of Disease control, Ministry of Public Health, Nonthaburi, Thailand
| | - Vincent Corbel
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
- Institute de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (IRD 224-CNRS 5290 UM1-UM2), Montpellier Cedex 5, France
| | | |
Collapse
|
189
|
Tangena JAA, Thammavong P, Malaithong N, Inthavong T, Ouanesamon P, Brey PT, Lindsay SW. Diversity of Mosquitoes (Diptera: Culicidae) Attracted to Human Subjects in Rubber Plantations, Secondary Forests, and Villages in Luang Prabang Province, Northern Lao PDR. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1589-1604. [PMID: 28505314 DOI: 10.1093/jme/tjx071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 06/07/2023]
Abstract
The impact of the rapid expansion of rubber plantations in South-East Asia on mosquito populations is uncertain. We compared the abundance and diversity of adult mosquitoes using human-baited traps in four typical rural habitats in northern Lao PDR: secondary forests, immature rubber plantations, mature rubber plantations, and villages. Generalized estimating equations were used to explore differences in mosquito abundance between habitats, and Simpson's diversity index was used to measure species diversity. Over nine months, 24,927 female mosquitoes were collected, including 51 species newly recorded in Lao PDR. A list of the 114 mosquito species identified is included. More mosquitoes, including vector species, were collected in the secondary forest than immature rubber plantations (rainy season, odds ratio [OR] 0.33, 95% confidence interval [CI] 0.31-0.36; dry season, 0.46, 95% CI 0.41-0.51), mature rubber plantations (rainy season, OR 0.25, 95% CI 0.23-0.27; dry season, OR 0.25, 95% CI 0.22-0.28), and villages (rainy season, OR 0.13, 95% CI 0.12-0.14; dry season, 0.20, 95% CI 0.18-0.23). All habitats showed high species diversity (Simpson's indexes between 0.82-0.86) with vectors of dengue, Japanese encephalitis (JE), lymphatic filariasis, and malaria. In the secondary forests and rubber plantations, Aedes albopictus (Skuse), a dengue vector, was the dominant mosquito species, while in the villages, Culex vishnui (Theobald), a JE vector, was most common. This study has increased the overall knowledge of mosquito fauna in Lao PDR. The high abundance of Ae. albopictus in natural and man-made forests warrants concern, with vector control measures currently only implemented in cities and villages.
Collapse
Affiliation(s)
- Julie-Anne A Tangena
- Department of Medical Entomology, Institut Pasteur du Laos, Samsenthai Rd, Ban Kao-gnot, PO Box 3560, Vientiane, Lao PDR
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Phoutmany Thammavong
- Department of Medical Entomology, Institut Pasteur du Laos, Samsenthai Rd, Ban Kao-gnot, PO Box 3560, Vientiane, Lao PDR
| | - Naritsara Malaithong
- Department of Entomology, Kasetsart University, 50 Ngam Wong Wan Rd., Ladyaow Chatuchak Bangkok 10900, Thailand
| | - Thavone Inthavong
- Agriculture and Forestry Policy Research Center, National Agriculture and Forestry Research Institute, Nongviengkham Village, Vientiane, P.O Box 7170, Lao PDR
| | - Phuthasone Ouanesamon
- Agriculture and Forestry Policy Research Center, National Agriculture and Forestry Research Institute, Nongviengkham Village, Vientiane, P.O Box 7170, Lao PDR
| | - Paul T Brey
- Department of Medical Entomology, Institut Pasteur du Laos, Samsenthai Rd, Ban Kao-gnot, PO Box 3560, Vientiane, Lao PDR
| | - Steve W Lindsay
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
190
|
Poolphol P, Harbach RE, Sriwichai P, Aupalee K, Sattabongkot J, Kumpitak C, Srisuka W, Taai K, Thongsahuan S, Phuackchantuck R, Saeung A, Chaithong U. Natural Plasmodium vivax infections in Anopheles mosquitoes in a malaria endemic area of northeastern Thailand. Parasitol Res 2017; 116:3349-3359. [PMID: 29082435 DOI: 10.1007/s00436-017-5653-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/12/2017] [Indexed: 11/26/2022]
Abstract
There was recently an outbreak of malaria in Ubon Ratchathani Province, northeastern Thailand. In the absence of information on malaria vector transmission dynamics, this study aimed to identify the anopheline vectors and their role in malaria transmission. Adult female Anopheles mosquitoes were collected monthly by human-landing catch in Na Chaluai District of Ubon Ratchathani Province during January 2014-December 2015. Field-captured mosquitoes were identified to species using morphology-based keys and molecular assays (allele-specific polymerase chain reaction, AS-PCR), and analysed for the presence of Plasmodium falciparum and Plasmodium vivax using an enzyme-linked immunosorbent assay (ELISA) for the detection of circumsporozoite proteins (CSP). A total of 1,229 Anopheles females belonging to 13 species were collected. Four anopheline taxa were most abundant: Members of the Anopheles barbirostris complex, comprising 38% of the specimens, species of the Anopheles hyrcanus group (18%), Anopheles nivipes (17%) and Anopheles philippinensis (12%). The other nine species comprised 15% of the collections. Plasmodium infections were detected in two of 668 pooled samples of heads/thoraces, Anopheles dirus (1/29) and An. philippinensis (1/97). The An. dirus pool had a mixed infection of P. vivax-210 and P. vivax-247, whereas the An. philippinensis pool was positive only for the latter protein variant. Both positive ELISA samples were confirmed by nested PCR. This study is the first to incriminate An. dirus and An. philippinensis as natural malaria vectors in the area where the outbreak occurred. This information can assist in designing and implementing a more effective malaria control programme in the province.
Collapse
Affiliation(s)
- Petchaboon Poolphol
- The Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Parasitology, Chiang Mai University, Chiang Mai, 50200, Thailand
- The Office of Disease Prevention and Control Region 10th, Ubon Ratchathani, 34000, Thailand
| | - Ralph E Harbach
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Patchara Sriwichai
- Department of Medical Entomology, Mahidol University, Bangkok, 10400, Thailand
| | - Kittipat Aupalee
- Department of Parasitology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | | | - Wichai Srisuka
- Entomology Section, Queen Sirikit Botanic Garden, P.O. Box 7, Chiang Mai, 50180, Thailand
| | - Kritsana Taai
- Faculty of Veterinary Medicine, Western University, Kanchanaburi, 71170, Thailand
| | - Sorawat Thongsahuan
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | | | - Atiporn Saeung
- Department of Parasitology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Udom Chaithong
- Department of Parasitology, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
191
|
Chen I, Thanh HNT, Lover A, Thao PT, Luu TV, Thang HN, Thang ND, Neukom J, Bennett A. Malaria risk factors and care-seeking behaviour within the private sector among high-risk populations in Vietnam: a qualitative study. Malar J 2017; 16:414. [PMID: 29037242 PMCID: PMC5644094 DOI: 10.1186/s12936-017-2060-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/09/2017] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Vietnam has successfully reduced malaria incidence by more than 90% over the past 10 years, and is now preparing for malaria elimination. However, the remaining malaria burden resides in individuals that are hardest to reach, in highly remote areas, where many malaria cases are treated through the informal private sector and are not reported to public health systems. This qualitative study aimed to contextualize and characterize the role of private providers, care-seeking behaviour of individuals at high risk of malaria, as well as risk factors that should be addressed through malaria elimination programmes in Vietnam. METHODS Semi-structured qualitative interviews were conducted with 11 key informants in Hanoi, 30 providers, 9 potential patients, and 11 individuals at risk of malaria in Binh Phuoc and Kon Tum provinces. Audio recorded interviews were transcribed and uploaded to Atlas TI™, themes were identified, from which programmatic implications and recommendations were synthesized. RESULTS Qualitative interviews revealed that efforts for malaria elimination in Vietnam should concentrate on reaching highest-risk populations in remote areas as well their care providers, in particular private pharmacies, private clinics, and grocery stores. Among these private providers, diagnosis is currently based on symptoms, leaving unconfirmed cases that are not reported to public health surveillance systems. Among at-risk individuals, knowledge of malaria was limited, and individuals reported not taking full courses of treatment, a practice that threatens selection for drug resistance. Access to insecticide-treated hammock nets, a potentially important preventive measure for settings with outdoor biting Anopheles vectors, was also limited. CONCLUSIONS Malaria elimination efforts in Vietnam can be accelerated by targeting improved treatment, diagnosis, and reporting practices to private pharmacies, private clinics, and grocery stores. Programmes should also seek to increase awareness and understanding of malaria among at-risk populations, in particular the importance of using preventive measures and adhering to complete courses of anti-malarial medicines.
Collapse
Affiliation(s)
- Ingrid Chen
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, 550 16th Street, 3rd Floor, San Francisco, CA 94158 USA
| | - Huong Ngo Thi Thanh
- Population Services International Vietnam, VinaFor Building, 127 Lò Đúc, Đồng Xuân, Hanoi, Vietnam
| | - Andrew Lover
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, 550 16th Street, 3rd Floor, San Francisco, CA 94158 USA
| | - Phung Thi Thao
- Population Services International Vietnam, VinaFor Building, 127 Lò Đúc, Đồng Xuân, Hanoi, Vietnam
| | - Tang Viet Luu
- Population Services International Vietnam, VinaFor Building, 127 Lò Đúc, Đồng Xuân, Hanoi, Vietnam
| | - Hoang Nghia Thang
- Population Services International Vietnam, VinaFor Building, 127 Lò Đúc, Đồng Xuân, Hanoi, Vietnam
| | - Ngo Duc Thang
- National Institute of Malaria, Parasitology, and Entomology (NIMPE), Vietnam, 35 Trung Van, Tu Liem, Hanoi, Vietnam
| | - Josselyn Neukom
- Population Services International Vietnam, VinaFor Building, 127 Lò Đúc, Đồng Xuân, Hanoi, Vietnam
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, 550 16th Street, 3rd Floor, San Francisco, CA 94158 USA
| |
Collapse
|
192
|
Modeling the environmental suitability of anthrax in Ghana and estimating populations at risk: Implications for vaccination and control. PLoS Negl Trop Dis 2017; 11:e0005885. [PMID: 29028799 PMCID: PMC5656412 DOI: 10.1371/journal.pntd.0005885] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/25/2017] [Accepted: 08/21/2017] [Indexed: 01/05/2023] Open
Abstract
Anthrax is hyper-endemic in West Africa. Despite the effectiveness of livestock vaccines in controlling anthrax, underreporting, logistics, and limited resources makes implementing vaccination campaigns difficult. To better understand the geographic limits of anthrax, elucidate environmental factors related to its occurrence, and identify human and livestock populations at risk, we developed predictive models of the environmental suitability of anthrax in Ghana. We obtained data on the location and date of livestock anthrax from veterinary and outbreak response records in Ghana during 2005–2016, as well as livestock vaccination registers and population estimates of characteristically high-risk groups. To predict the environmental suitability of anthrax, we used an ensemble of random forest (RF) models built using a combination of climatic and environmental factors. From 2005 through the first six months of 2016, there were 67 anthrax outbreaks (851 cases) in livestock; outbreaks showed a seasonal peak during February through April and primarily involved cattle. There was a median of 19,709 vaccine doses [range: 0–175 thousand] administered annually. Results from the RF model suggest a marked ecological divide separating the broad areas of environmental suitability in northern Ghana from the southern part of the country. Increasing alkaline soil pH was associated with a higher probability of anthrax occurrence. We estimated 2.2 (95% CI: 2.0, 2.5) million livestock and 805 (95% CI: 519, 890) thousand low income rural livestock keepers were located in anthrax risk areas. Based on our estimates, the current anthrax vaccination efforts in Ghana cover a fraction of the livestock potentially at risk, thus control efforts should be focused on improving vaccine coverage among high risk groups. Anthrax is a soil-borne zoonotic disease found worldwide. In the West African nation of Ghana, anthrax outbreaks occur annually with a high burden to livestock keepers and their animals. To control anthrax in both humans and animals, annual livestock vaccination is recommended in endemic regions. However, in resource poor areas distributing and administering vaccine is difficult, in part, due to underreporting, logistical issues, limited resources, and an under appreciation of the geographic extent of anthrax risk zones. Our objective was to model high spatial resolution anthrax outbreak data, collected in Ghana, using a machine learning algorithm (random forest). To achieve this, we used a combination of climatic and environmental characteristics to predict the potential environmental suitability of anthrax, map its distribution, and identify livestock and human populations at risk. Results indicate a marked ecological divide separating the broad areas of environmental suitability in northern Ghana from the southern part of the country, which closely mirrors the ecotone transitions from southern tropical and deciduous forests to the northern Sudanian and Guinea Savanna. Based on our model prediction, we estimated >3 million combined ruminant livestock and low income livestock keepers are situated in anthrax risk zones. These findings suggest a low level of annual livestock vaccination coverage among high risk groups. Thus, integrating control strategies from both the veterinary and human health sectors are needed to improve surveillance and increase vaccine dissemination and adoption by rural livestock keepers in Ghana and the surrounding region.
Collapse
|
193
|
Yeast-generated CO 2 : A convenient source of carbon dioxide for mosquito trapping using the BG-Sentinel ® traps. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
194
|
Phasomkusolsil S, Pantuwatana K, Tawong J, Khongtak W, Kertmanee Y, Monkanna N, Khaosanorh S, Wanja EW, Davidson SA. Sugar and Multivitamin Diet Effects on The Longevity and Mating Capacity of Laboratory-Reared Male Anopheline Mosquitoes. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2017; 33:175-183. [PMID: 28854115 DOI: 10.2987/17-6634r.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Successful mating by male mosquitoes is dependent on several factors, with sugar feeding being particularly important. The effect of ingested vitamins on adult male mosquitoes is poorly understood. This laboratory study used 3 anopheline species, Anopheles campestris, An. dirus, and An. sawadwongporni, to study the effect of sugar and vitamins on male longevity, copulation, and fecundity. Males were fed 1 of 5 diets containing different combinations of sugar and vitamins: 10% glucose, 10% sucrose, 10% multivitamin syrup, 10% multivitamin syrup + 10% glucose, and 10% multivitamin syrup + 10% sucrose. The longevity of males was measured for a period of 15 days. Forced mating was used to simulate copulation, and fecundity was measured by counting the number of eggs oviposited and the hatch rate of larvae. The longevity of An. campestris and An. dirus was greatest when fed a diet of 10% multivitamin syrup + 10% glucose, and the longevity of An. sawadwongporni was greatest when fed a diet of 10% multivitamin syrup + 10% sucrose. The 1st mating routinely produced the most viable eggs when males were mated with several females. The diet of 10% multivitamin syrup + 10% sucrose produced numerically greater egg production and larval emergence for all 3 species, although this was not always statistically significant due to variability and small sample size. These results indicate that the addition of multivitamin syrup to sucrose may produce healthier and more fit male anophelines. This has potential implications for increasing insectary operations and improving the fitness of laboratory-reared male mosquitoes that will be released for mosquito and disease-pathogen control studies.
Collapse
Affiliation(s)
- Siriporn Phasomkusolsil
- Department of Entomology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Kanchana Pantuwatana
- Department of Entomology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Jaruwan Tawong
- Department of Entomology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Weeraphan Khongtak
- Department of Entomology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Yossasin Kertmanee
- Department of Entomology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Nantaporn Monkanna
- Department of Entomology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Sakon Khaosanorh
- Department of Entomology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Elizabeth W Wanja
- Department of Entomology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Silas A Davidson
- Department of Entomology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| |
Collapse
|
195
|
Kumar R, Dash C, Rani K. Ecological covariates based predictive model of malaria risk in the state of Chhattisgarh, India. J Parasit Dis 2017; 41:761-767. [PMID: 28848275 DOI: 10.1007/s12639-017-0885-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/27/2017] [Indexed: 11/28/2022] Open
Abstract
Malaria being an endemic disease in the state of Chhattisgarh and ecologically dependent mosquito-borne disease, the study is intended to identify the ecological covariates of malaria risk in districts of the state and to build a suitable predictive model based on those predictors which could assist developing a weather based early warning system. This secondary data based analysis used one month lagged district level malaria positive cases as response variable and ecological covariates as independent variables which were tested with fixed effect panelled negative binomial regression models. Interactions among the covariates were explored using two way factorial interaction in the model. Although malaria risk in the state possesses perennial characteristics, higher parasitic incidence was observed during the rainy and winter seasons. The univariate analysis indicated that the malaria incidence risk was statistically significant associated with rainfall, maximum humidity, minimum temperature, wind speed, and forest cover (p < 0.05). The efficient predictive model include the forest cover [IRR-1.033 (1.024-1.042)], maximum humidity [IRR-1.016 (1.013-1.018)], and two-way factorial interactions between district specific averaged monthly minimum temperature and monthly minimum temperature, monthly minimum temperature was statistically significant [IRR-1.44 (1.231-1.695)] whereas the interaction term has a protective effect [IRR-0.982 (0.974-0.990)] against malaria infections. Forest cover, maximum humidity, minimum temperature and wind speed emerged as potential covariates to be used in predictive models for modelling the malaria risk in the state which could be efficiently used for early warning systems in the state.
Collapse
Affiliation(s)
- Rajesh Kumar
- Child Right and You (CRY), Sayad Ul Ajab, Westend Marg, New Delhi, 110030 India
| | | | - Khushbu Rani
- Women and Child Welfare Consultant, New Delhi, India
| |
Collapse
|
196
|
Local Diversity and Biting Pattern of Anopheles Species in Southern Minahasa. Interdiscip Perspect Infect Dis 2017; 2017:6313016. [PMID: 28845156 PMCID: PMC5563419 DOI: 10.1155/2017/6313016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/12/2017] [Accepted: 06/11/2017] [Indexed: 11/27/2022] Open
Abstract
Background To optimize the preventive measures of malaria, it is important to synchronize the efforts with the behavior of local Anopheles species. However, the data of Anopheles species and their behavior in Indonesia is still lacking. Method Explorative research was conducted from April to September 2016 in Southern Minahasa district. The Anopheles mosquito was baited by using animal and human (indoor or outdoor) from 18.00 to 06.00 hours. Then, the species were identified and Man Biting Rate (MBR) and Man/Animal Biting per Hour (MBPH) were calculated followed by statistical analysis by using SPSS 17. Result The data showed that the dominant species in Southern Minahasa were An. barbirostris, An. kochi, and An. vagus. An. vagus was found to be zoophilic and An. barbirostris was showing strict anthropophilic characteristics. Meanwhile, An. kochi feeds on both human and animal. The MBR of An. kochi was found to be the highest (P < 0.005), but its MBPH only significantly exceeded that of An. vagus. All species tend to be more active during the early evening. Conclusion An. barbirostris, An. kochi, and An. vagus were the dominant Anopheles species in Southern Minahasa. Further research is needed to determine the Plasmodium infestation rate of these species.
Collapse
|
197
|
Solute carriers affect Anopheles stephensi survival and Plasmodium berghei infection in the salivary glands. Sci Rep 2017; 7:6141. [PMID: 28733628 PMCID: PMC5522484 DOI: 10.1038/s41598-017-06317-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
Malaria is caused by mosquito-borne Plasmodium spp. parasites that must infect and survive within mosquito salivary glands (SGs) prior to host transmission. Recent advances in transcriptomics and the complete genome sequencing of mosquito vectors have increased our knowledge of the SG genes and proteins involved in pathogen infection and transmission. Membrane solute carriers are key proteins involved in drug transport and are useful in the development of new interventions for transmission blocking. Herein, we applied transcriptomics analysis to compare SGs mRNA levels in Anopheles stephensi fed on non-infected and P. berghei-infected mice. The A. stephensi solute carriers prestinA and NDAE1 were up-regulated in response to infection. These molecules are predicted to interact with each other, and are reportedly involved in the maintenance of cell homeostasis. To further evaluate their functions in mosquito survival and parasite infection, these genes were knocked down by RNA interference. Knockdown of prestinA and NDAE1 resulted in reduction of the number of sporozoites in mosquito SGs. Moreover, NDAE1 knockdown strongly impacted mosquito survival, resulting in the death of half of the treated mosquitoes. Overall, our findings indicate the importance of prestinA and NDAE1 in interactions between mosquito SGs and Plasmodium, and suggest the need for further research.
Collapse
|
198
|
Zhang S, Guo S, Feng X, Afelt A, Frutos R, Zhou S, Manguin S. Anopheles Vectors in Mainland China While Approaching Malaria Elimination. Trends Parasitol 2017; 33:889-900. [PMID: 28734898 DOI: 10.1016/j.pt.2017.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 01/27/2023]
Abstract
China is approaching malaria elimination; however, well-documented information on malaria vectors is still missing, which could hinder the development of appropriate surveillance strategies and WHO certification. This review summarizes the nationwide distribution of malaria vectors, their bionomic characteristics, control measures, and related studies. After several years of effort, the area of distribution of the principal malaria vectors was reduced, in particular for Anopheles lesteri (synonym: An. anthropophagus) and Anopheles dirus s.l., which nearly disappeared from their former endemic regions. Anopheles sinensis is becoming the predominant species in southwestern China. The bionomic characteristics of these species have changed, and resistance to insecticides was reported. There is a need to update surveillance tools and investigate the role of secondary vectors in malaria transmission.
Collapse
Affiliation(s)
- Shaosen Zhang
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH; WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Shanghai, China; Université de Montpellier, IES-Institut d'Electronique et des Systèmes, UMR5214, CNRS-UM, 860 rue de Saint-Priest, Bât 5, 34095 Montpellier, France; Cirad, UMR 17, Intertryp, Campus international de Baillarguet, 34398 Montpellier, Cedex 5, France; Institut de Recherche pour le Développement (IRD France), LIPMC, UMR-MD3, Faculté de Pharmacie, 34093 Montpellier, France
| | - Shaohua Guo
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH; WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Shanghai, China; Jiading District Center for Disease Control and Prevention, Shanghai, China
| | - Xinyu Feng
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH; WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Shanghai, China
| | - Aneta Afelt
- Interdisciplinary Center for Mathematical and Computational Modelling, University of Warsaw, Prosta 69, 00-838, Warsaw, Poland
| | - Roger Frutos
- Université de Montpellier, IES-Institut d'Electronique et des Systèmes, UMR5214, CNRS-UM, 860 rue de Saint-Priest, Bât 5, 34095 Montpellier, France; Cirad, UMR 17, Intertryp, Campus international de Baillarguet, 34398 Montpellier, Cedex 5, France
| | - Shuisen Zhou
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH; WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Shanghai, China.
| | - Sylvie Manguin
- Institut de Recherche pour le Développement (IRD France), LIPMC, UMR-MD3, Faculté de Pharmacie, 34093 Montpellier, France
| |
Collapse
|
199
|
Abstract
Malaria remains a serious clinical and public health problem, the object of an ongoing technological and humanitarian struggle to abate the very substantial harm done. The manner by which humanity approached malaria control changed abruptly and profoundly after 1945 with the advent of the insecticide DDT. Malariologists in the first half of the twentieth century conceived precise modifications to natural or man-made environments aimed at making those less hospitable to specific anopheline mosquito vector species. This practical malariology achieved very significant reductions in burdens of morbidity and mortality, but the revolutionary insecticide eliminated the need for its specialized knowledge and diverse practices. By 1970 mosquito resistance to DDT and perceived environmental concerns precipitated the collapse of what had been a vigorous global campaign to eradicate malaria. Humanity did not then revitalize practical malariology but turned to another commodity as the foundation of control strategy, the war-spurred suite of synthetic antimalarial drugs developed in the 1940s and 1950s. When those drugs became lost to parasite resistance in the latter twentieth century, malaria resurged globally. Since 2005, tens of billions of dollars mobilized new commodities to control malaria: point-of-care diagnostics, effective artemisinin-based treatments, and longer-lasting insecticide treated bed nets. The know-how of practical malariology is not part of that ongoing commodities-based strategy. This article examines contemporary malaria control in the broad strokes of a strategy mitigating the consequences of infection contrasted to that of the abandoned practical malariology strategy of prevention. The inherent risks and limitations of over-reliance upon commodities in striving to control malaria may prompt consideration of a strategic posture inclusive of the proven methods of practical malariology.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Jalan Diponegoro No.69, Jakarta, 10430, Indonesia. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
200
|
Lyimo IN, Kessy ST, Mbina KF, Daraja AA, Mnyone LL. Ivermectin-treated cattle reduces blood digestion, egg production and survival of a free-living population of Anopheles arabiensis under semi-field condition in south-eastern Tanzania. Malar J 2017; 16:239. [PMID: 28587669 PMCID: PMC5461717 DOI: 10.1186/s12936-017-1885-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/30/2017] [Indexed: 01/26/2023] Open
Abstract
Background Anopheles arabiensis feed on cattle and contributes to residual transmission of malaria in areas with high coverage of long-lasting insecticide-treated nets and indoor residual spraying in East Africa. This study aimed to evaluate the effects of ivermectin-treated cattle as a complementary vector control tool against population of An. arabiensis under the semi-field conditions in south-eastern Tanzania. Methods The free-living population of An. arabiensis was allowed to forage on untreated or ivermectin-treated cattle in alternating nights within the semi-field system in south-eastern Tanzania. Fresh blood fed mosquitoes were collected in the morning using mouth aspirators and assessed for their blood meal digestion, egg production, and survivorship. The residual activity of ivermectin-treated cattle was also determined by exposing mosquitoes to the same treatments after every 2 days until day 21 post-treatments. These experiments were replicated 3 times using different individual cattle. Results Overall, the ivermectin-treated cattle reduced blood meal digestion in the stomach of An. arabiensis, and their subsequent egg production and survival over time. The ivermectin-treated cattle halved blood meal digestion in mosquitoes, but reduced their egg production for up to 15 days. The ivermectin-treated cattle reduced the survival, and median survival times (1–3 days) of An. arabiensis than control cattle. The daily mortality rates of mosquitoes fed on ivermectin-treated cattle increased by five-fold relative to controls in the first week, and it gradually declined up to 21 days after treatment. Conclusion This study demonstrates that long-lasting effects of ivermectin-treated cattle on egg production and survival of An. arabiensis may sustainably suppress their vector density, and reduce residual transmission of malaria. This study suggests that ivermectin-treated non-lactating cattle (i.e. calves, heifers and bulls) could be suitable option for large-scale malaria vector control without limiting consumption of milk and meat by communities in rural settings. Furthermore, simulation models are underway to predict the impact of ivermectin-treated cattle alone, or in combination with LLIN/IRS, the frequency of treatment, and their coverage required to significantly suppress population of An. arabiensis and reduce residual transmission of malaria.
Collapse
Affiliation(s)
- Issa N Lyimo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, P.O.BOX 53, Ifakara, Morogoro, United Republic of Tanzania.
| | - Stella T Kessy
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, P.O.BOX 53, Ifakara, Morogoro, United Republic of Tanzania
| | - Kasian F Mbina
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, P.O.BOX 53, Ifakara, Morogoro, United Republic of Tanzania
| | - Ally A Daraja
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, P.O.BOX 53, Ifakara, Morogoro, United Republic of Tanzania
| | - Ladslaus L Mnyone
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, P.O.BOX 53, Ifakara, Morogoro, United Republic of Tanzania.,Pest Management Centre, Sokoine University of Agriculture, Morogoro, Tanzania.,School of Public Health, University of the Witwatersrand, Parktown, Republic of South Africa
| |
Collapse
|