151
|
Corsetti V, Borreca A, Latina V, Giacovazzo G, Pignataro A, Krashia P, Natale F, Cocco S, Rinaudo M, Malerba F, Florio R, Ciarapica R, Coccurello R, D’Amelio M, Ammassari-Teule M, Grassi C, Calissano P, Amadoro G. Passive immunotherapy for N-truncated tau ameliorates the cognitive deficits in two mouse Alzheimer's disease models. Brain Commun 2020; 2:fcaa039. [PMID: 32954296 PMCID: PMC7425324 DOI: 10.1093/braincomms/fcaa039] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical and neuropathological studies have shown that tau pathology better correlates with the severity of dementia than amyloid plaque burden, making tau an attractive target for the cure of Alzheimer's disease. We have explored whether passive immunization with the 12A12 monoclonal antibody (26-36aa of tau protein) could improve the Alzheimer's disease phenotype of two well-established mouse models, Tg2576 and 3xTg mice. 12A12 is a cleavage-specific monoclonal antibody which selectively binds the pathologically relevant neurotoxic NH226-230 fragment (i.e. NH2htau) of tau protein without cross-reacting with its full-length physiological form(s). We found out that intravenous administration of 12A12 monoclonal antibody into symptomatic (6 months old) animals: (i) reaches the hippocampus in its biologically active (antigen-binding competent) form and successfully neutralizes its target; (ii) reduces both pathological tau and amyloid precursor protein/amyloidβ metabolisms involved in early disease-associated synaptic deterioration; (iii) improves episodic-like type of learning/memory skills in hippocampal-based novel object recognition and object place recognition behavioural tasks; (iv) restores the specific up-regulation of the activity-regulated cytoskeleton-associated protein involved in consolidation of experience-dependent synaptic plasticity; (v) relieves the loss of dendritic spine connectivity in pyramidal hippocampal CA1 neurons; (vi) rescues the Alzheimer's disease-related electrophysiological deficits in hippocampal long-term potentiation at the CA3-CA1 synapses; and (vii) mitigates the neuroinflammatory response (reactive gliosis). These findings indicate that the 20-22 kDa NH2-terminal tau fragment is crucial target for Alzheimer's disease therapy and prospect immunotherapy with 12A12 monoclonal antibody as safe (normal tau-preserving), beneficial approach in contrasting the early Amyloidβ-dependent and independent neuropathological and cognitive alterations in affected subjects.
Collapse
Affiliation(s)
| | - Antonella Borreca
- Humanitas University Laboratory of Pharmacology and Brain Pathology, Neuro Center, 20089 Milan, Italy
- Institute of Neuroscience, 20129 Milan, Italy
| | | | | | | | - Paraskevi Krashia
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy
- Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128 Rome, Italy
| | - Francesca Natale
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Cocco
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Rinaudo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Rita Florio
- European Brain Research Institute (EBRI), 00161 Rome, Italy
| | | | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Institute for Complex Systems (ISC), CNR, 00185 Rome, Italy
| | - Marcello D’Amelio
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy
- Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128 Rome, Italy
| | | | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT)–National Research Council (CNR), 00133 Rome, Italy
| |
Collapse
|
152
|
Penke B, Szűcs M, Bogár F. Oligomerization and Conformational Change Turn Monomeric β-Amyloid and Tau Proteins Toxic: Their Role in Alzheimer's Pathogenesis. Molecules 2020; 25:molecules25071659. [PMID: 32260279 PMCID: PMC7180792 DOI: 10.3390/molecules25071659] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The structural polymorphism and the physiological and pathophysiological roles of two important proteins, β-amyloid (Aβ) and tau, that play a key role in Alzheimer's disease (AD) are reviewed. Recent results demonstrate that monomeric Aβ has important physiological functions. Toxic oligomeric Aβ assemblies (AβOs) may play a decisive role in AD pathogenesis. The polymorph fibrillar Aβ (fAβ) form has a very ordered cross-β structure and is assumed to be non-toxic. Tau monomers also have several important physiological actions; however, their oligomerization leads to toxic oligomers (TauOs). Further polymerization results in probably non-toxic fibrillar structures, among others neurofibrillary tangles (NFTs). Their structure was determined by cryo-electron microscopy at atomic level. Both AβOs and TauOs may initiate neurodegenerative processes, and their interactions and crosstalk determine the pathophysiological changes in AD. TauOs (perhaps also AβO) have prionoid character, and they may be responsible for cell-to-cell spreading of the disease. Both extra- and intracellular AβOs and TauOs (and not the previously hypothesized amyloid plaques and NFTs) may represent the novel targets of AD drug research.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
- Correspondence:
| | - Mária Szűcs
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
153
|
Lauretti E, Praticò D. Alzheimer's disease: phenotypic approaches using disease models and the targeting of tau protein. Expert Opin Ther Targets 2020; 24:319-330. [PMID: 32116063 PMCID: PMC7201870 DOI: 10.1080/14728222.2020.1737012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/27/2020] [Indexed: 01/08/2023]
Abstract
Introduction: Hyperphosphorylated and aggregated tau protein is the main hallmark of a class of neurodegenerative disorders known as tauopathies. Tau is a microtubule-binding protein which is important for microtubule assembly and stabilization, for proper axonal transport and overall neuronal integrity. However, in tauopathies, tau undergoes aberrant post-translational modifications that fundamentally affect its normal function. The etiology of these devastating diseases is unclear and there is no treatment for these disorders.Areas covered: This review examines the neurobiology of tau, tau post-translational modifications, and tau pathophysiology. Progress regarding the effort to identify and assess novel tau-targeted therapeutic strategies in preclinical studies is also discussed. We performed a search on PubMed of the relevant literature published between 1995 and 2020.Expert opinion: Tau diversity and the lack of clinically available test to diagnose and identify tauopathies are major obstacles; they represent a possible reason for the lack of success of clinical trials. However, given the encouraging advances in PET tau imaging and tau neurobiology, we believe that a more personalized approach could be on the horizon and that this will be key to addressing the heterogeneity of tau pathology.
Collapse
Affiliation(s)
- Elisabetta Lauretti
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Domenico Praticò
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
154
|
Albert M, Mairet-Coello G, Danis C, Lieger S, Caillierez R, Carrier S, Skrobala E, Landrieu I, Michel A, Schmitt M, Citron M, Downey P, Courade JP, Buée L, Colin M. Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody. Brain 2020; 142:1736-1750. [PMID: 31038156 PMCID: PMC6536853 DOI: 10.1093/brain/awz100] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/16/2018] [Accepted: 02/16/2019] [Indexed: 01/26/2023] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by the intraneuronal accumulation of aggregated tau. The staging of this neurodegenerative process is well established for Alzheimer’s disease as well as for other tauopathies. The stereotypical pattern of tau pathology in these diseases is consistent with the hypothesis that the tau protein can spread in a ‘prion-like’ manner. It proposes that extracellular pathological tau species can transmit pathology from cell to cell. Accordingly, by targeting these spreading species with therapeutic antibodies one should be able to slow or halt the progression of tau pathology. To be effective, antibodies should neutralize the pathological species present in Alzheimer’s disease brains and block their cell-to-cell spread. To evaluate both aspects, tau antibody D, which recognizes an epitope in the central region of tau, and was selected for its outstanding ability to block tau seeding in cell based assays, was used in this study. Here, we addressed two fundamental questions: (i) can this anti-tau antibody neutralize the pathological species present in Alzheimer’s disease brains; and (ii) can it block the cell-to-cell spread of tau seeds in vivo? First, antibody D effectively prevented the induction of tau pathology in the brains of transgenic mice that had been injected with human Alzheimer’s disease brain extracts, showing that it could effectively neutralize the pathological species present in these extracts. Second, by using K18 P301L tau fibrils to induce pathology, we further demonstrated that antibody D was also capable of blocking the progression of tau pathology to distal brain regions. In contrast, an amino-terminal tau antibody, which was less effective at blocking tau seeding in vitro showed less efficacy in reducing Alzheimer’s disease patient tau driven pathology in the transgenic mouse model. We did not address whether the same is true for a spectrum of other amino-terminal antibodies that were tested in vitro. These data highlight important differences between tau antibodies and, when taken together with other recently published data, suggest that epitope may be important for function.
Collapse
Affiliation(s)
- Marie Albert
- Inserm, UMR-S 1172, Alzheimer and Tauopathies, Place de Verdun, Lille, France.,Université de Lille, Lille Neuroscience and Cognition, Faculté de Médecine, Lille, France
| | | | - Clément Danis
- Inserm, UMR-S 1172, Alzheimer and Tauopathies, Place de Verdun, Lille, France.,Université de Lille, Lille Neuroscience and Cognition, Faculté de Médecine, Lille, France.,CNRS, UMR8576, Lille, France
| | - Sarah Lieger
- Inserm, UMR-S 1172, Alzheimer and Tauopathies, Place de Verdun, Lille, France.,Université de Lille, Lille Neuroscience and Cognition, Faculté de Médecine, Lille, France
| | - Raphaëlle Caillierez
- Inserm, UMR-S 1172, Alzheimer and Tauopathies, Place de Verdun, Lille, France.,Université de Lille, Lille Neuroscience and Cognition, Faculté de Médecine, Lille, France
| | - Sébastien Carrier
- Inserm, UMR-S 1172, Alzheimer and Tauopathies, Place de Verdun, Lille, France.,Université de Lille, Lille Neuroscience and Cognition, Faculté de Médecine, Lille, France
| | - Emilie Skrobala
- Université de Lille, Lille Neuroscience and Cognition, Faculté de Médecine, Lille, France.,CHU-Lille, CMRR, Lille, France.,CHU-Lille, EA2694, Department of biostatistics, Lille, France
| | - Isabelle Landrieu
- Université de Lille, Lille Neuroscience and Cognition, Faculté de Médecine, Lille, France.,CNRS, UMR8576, Lille, France
| | - Anne Michel
- UCB Biopharma, Chemin du Forest, Braine l'Alleud, Belgium
| | | | - Martin Citron
- UCB Biopharma, Chemin du Forest, Braine l'Alleud, Belgium
| | - Patrick Downey
- UCB Biopharma, Chemin du Forest, Braine l'Alleud, Belgium
| | | | - Luc Buée
- Inserm, UMR-S 1172, Alzheimer and Tauopathies, Place de Verdun, Lille, France.,Université de Lille, Lille Neuroscience and Cognition, Faculté de Médecine, Lille, France.,CHU-Lille, CMRR, Lille, France
| | - Morvane Colin
- Inserm, UMR-S 1172, Alzheimer and Tauopathies, Place de Verdun, Lille, France.,Université de Lille, Lille Neuroscience and Cognition, Faculté de Médecine, Lille, France.,CHU-Lille, CMRR, Lille, France
| |
Collapse
|
155
|
Kwan P, Konno H, Chan KY, Baum L. Rationale for the development of an Alzheimer's disease vaccine. Hum Vaccin Immunother 2020; 16:645-653. [PMID: 31526227 PMCID: PMC7227628 DOI: 10.1080/21645515.2019.1665453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/13/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023] Open
Abstract
Vaccination traditionally has targeted infectious agents and thus has not heretofore been used to prevent neurodegenerative illness. However, amyloid β (Aβ) or tau, which can act like infectious proteins, or prions, might induce Alzheimer's disease (AD). Furthermore, evidence suggests that traditional infectious agents, including certain viruses and bacteria, may trigger AD. It is therefore worth exploring whether removing such targets could prevent AD. Although failing to treat AD patients who already display cognitive impairment, Aβ monoclonal antibodies are being tested in pre-symptomatic, at-risk individuals to prevent dementia. These antibodies might become the first AD therapeutics. However, their high cost will keep them out of the arms of the vast majority of patients, who increasingly live in developing countries. Because vaccines produce antibodies internally at much lower cost, vaccination might be the most promising approach to reducing the global burden of dementia.
Collapse
Affiliation(s)
- Ping Kwan
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P.R. China
- Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Haruki Konno
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P.R. China
| | - Ka Yan Chan
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P.R. China
| | - Larry Baum
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P.R. China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, P.R. China
- Center for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, P.R. China
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, P.R. China
| |
Collapse
|
156
|
Xenobiotics, Trace Metals and Genetics in the Pathogenesis of Tauopathies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041269. [PMID: 32079163 PMCID: PMC7068520 DOI: 10.3390/ijerph17041269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/17/2022]
Abstract
Tauopathies are a disease group characterized by either pathological accumulation or release of fragments of hyperphosphorylated tau proteins originating from the central nervous system. The tau hypotheses of Parkinson’s and Alzheimer’s diseases contain a clinically diverse spectrum of tauopathies. Studies of case records of various tauopathies may reveal clinical phenotype characteristics of the disease. In addition, improved understanding of different tauopathies would disclose environmental factors, such as xenobiotics and trace metals, that can precipitate or modify the progression of the disorder. Important for diagnostics and monitoring of these disorders is a further development of adequate biomarkers, including refined neuroimaging, or proteomics. Our goal is to provide an in-depth review of the current literature regarding the pathophysiological roles of tau proteins and the pathogenic factors leading to various tauopathies, with the perspective of future advances in potential therapeutic strategies.
Collapse
|
157
|
Zhou Q, Mareljic N, Michaelsen M, Parhizkar S, Heindl S, Nuscher B, Farny D, Czuppa M, Schludi C, Graf A, Krebs S, Blum H, Feederle R, Roth S, Haass C, Arzberger T, Liesz A, Edbauer D. Active poly-GA vaccination prevents microglia activation and motor deficits in a C9orf72 mouse model. EMBO Mol Med 2020; 12:e10919. [PMID: 31858749 PMCID: PMC7005532 DOI: 10.15252/emmm.201910919] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
The C9orf72 repeat expansion is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD). Non-canonical translation of the expanded repeat results in abundant poly-GA inclusion pathology throughout the CNS. (GA)149 -CFP expression in mice triggers motor deficits and neuroinflammation. Since poly-GA is transmitted between cells, we investigated the therapeutic potential of anti-GA antibodies by vaccinating (GA)149 -CFP mice. To overcome poor immunogenicity, we compared the antibody response of multivalent ovalbumin-(GA)10 conjugates and pre-aggregated carrier-free (GA)15 . Only ovalbumin-(GA)10 immunization induced a strong anti-GA response. The resulting antisera detected poly-GA aggregates in cell culture and patient tissue. Ovalbumin-(GA)10 immunization largely rescued the motor function in (GA)149 -CFP transgenic mice and reduced poly-GA inclusions. Transcriptome analysis showed less neuroinflammation in ovalbumin-(GA)10 -immunized poly-GA mice, which was corroborated by semiquantitative and morphological analysis of microglia/macrophages. Moreover, cytoplasmic TDP-43 mislocalization and levels of the neurofilament light chain in the CSF were reduced, suggesting neuroaxonal damage is reduced. Our data suggest that immunotherapy may be a viable primary prevention strategy for ALS/FTD in C9orf72 mutation carriers.
Collapse
Affiliation(s)
- Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Nikola Mareljic
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Meike Michaelsen
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Samira Parhizkar
- Chair of Metabolic BiochemistryBiomedical Center (BMC)Faculty of MedicineLudwig‐Maximilians‐Universität MunichMunichGermany
| | - Steffanie Heindl
- Institute for Stroke and Dementia ResearchLudwig‐Maximilians‐University MunichMunichGermany
| | - Brigitte Nuscher
- Chair of Metabolic BiochemistryBiomedical Center (BMC)Faculty of MedicineLudwig‐Maximilians‐Universität MunichMunichGermany
| | - Daniel Farny
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Mareike Czuppa
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Carina Schludi
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Alexander Graf
- Laboratory for Functional Genome AnalysisGene CenterLudwig Maximilian University of MunichMunichGermany
| | - Stefan Krebs
- Laboratory for Functional Genome AnalysisGene CenterLudwig Maximilian University of MunichMunichGermany
| | - Helmut Blum
- Laboratory for Functional Genome AnalysisGene CenterLudwig Maximilian University of MunichMunichGermany
| | - Regina Feederle
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Monoclonal Antibody Core Facility and Research GroupInstitute for Diabetes and ObesityHelmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)MunichGermany
| | - Stefan Roth
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Institute for Stroke and Dementia ResearchLudwig‐Maximilians‐University MunichMunichGermany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Chair of Metabolic BiochemistryBiomedical Center (BMC)Faculty of MedicineLudwig‐Maximilians‐Universität MunichMunichGermany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Center for Neuropathology and Prion ResearchLudwig‐Maximilians‐University MunichMunichGermany
- Department of Psychiatry and PsychotherapyUniversity HospitalLudwig‐Maximilians‐University MunichMunichGermany
| | - Arthur Liesz
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Institute for Stroke and Dementia ResearchLudwig‐Maximilians‐University MunichMunichGermany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Ludwig‐Maximilians‐University MunichMunichGermany
| |
Collapse
|
158
|
Roberts M, Sevastou I, Imaizumi Y, Mistry K, Talma S, Dey M, Gartlon J, Ochiai H, Zhou Z, Akasofu S, Tokuhara N, Ogo M, Aoyama M, Aoyagi H, Strand K, Sajedi E, Agarwala KL, Spidel J, Albone E, Horie K, Staddon JM, de Silva R. Pre-clinical characterisation of E2814, a high-affinity antibody targeting the microtubule-binding repeat domain of tau for passive immunotherapy in Alzheimer's disease. Acta Neuropathol Commun 2020; 8:13. [PMID: 32019610 PMCID: PMC7001291 DOI: 10.1186/s40478-020-0884-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
Tau deposition in the brain is a pathological hallmark of many neurodegenerative disorders, including Alzheimer's disease (AD). During the course of these tauopathies, tau spreads throughout the brain via synaptically-connected pathways. Such propagation of pathology is thought to be mediated by tau species ("seeds") containing the microtubule binding region (MTBR) composed of either three repeat (3R) or four repeat (4R) isoforms. The tau MTBR also forms the core of the neuropathological filaments identified in AD brain and other tauopathies. Multiple approaches are being taken to limit tau pathology, including immunotherapy with anti-tau antibodies. Given its key structural role within fibrils, specifically targetting the MTBR with a therapeutic antibody to inhibit tau seeding and aggregation may be a promising strategy to provide disease-modifying treatment for AD and other tauopathies. Therefore, a monoclonal antibody generating campaign was initiated with focus on the MTBR. Herein we describe the pre-clinical generation and characterisation of E2814, a humanised, high affinity, IgG1 antibody recognising the tau MTBR. E2814 and its murine precursor, 7G6, as revealed by epitope mapping, are antibodies bi-epitopic for 4R and mono-epitopic for 3R tau isoforms because they bind to sequence motif HVPGG. Functionally, both antibodies inhibited tau aggregation in vitro. They also immunodepleted a variety of MTBR-containing tau protein species. In an in vivo model of tau seeding and transmission, attenuation of deposition of sarkosyl-insoluble tau in brain could also be observed in response to antibody treatment. In AD brain, E2814 bound different types of tau filaments as shown by immunogold labelling and recognised pathological tau structures by immunohistochemical staining. Tau fragments containing HVPGG epitopes were also found to be elevated in AD brain compared to PSP or control. Taken together, the data reported here have led to E2814 being proposed for clinical development.
Collapse
Affiliation(s)
- Malcolm Roberts
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK.
| | - Ioanna Sevastou
- Reta Lila Weston Institute & Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | | | - Kavita Mistry
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK
| | - Sonia Talma
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK
| | - Madhurima Dey
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK
| | - Jane Gartlon
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK
| | - Hiroshi Ochiai
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Zhi Zhou
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Shigeru Akasofu
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Naoki Tokuhara
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Makoto Ogo
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Muneo Aoyama
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Hirofumi Aoyagi
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Kate Strand
- Reta Lila Weston Institute & Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | - Ezat Sajedi
- Reta Lila Weston Institute & Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | | | | | | | - Kanta Horie
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | | | - Rohan de Silva
- Reta Lila Weston Institute & Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK.
| |
Collapse
|
159
|
Hernández F, Merchán-Rubira J, Vallés-Saiz L, Rodríguez-Matellán A, Avila J. Differences Between Human and Murine Tau at the N-terminal End. Front Aging Neurosci 2020; 12:11. [PMID: 32063841 PMCID: PMC6999090 DOI: 10.3389/fnagi.2020.00011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Human tauopathies, such as Alzheimer’s disease (AD), have been widely studied in transgenic mice overexpressing human tau in the brain. The longest brain isoforms of Tau in mice and humans show 89% amino acid identity; however, the expression of the isoforms of this protein in the adult brain of the two species differs. Tau 3R isoforms are not present in adult mice. In contrast, the adult human brain contains Tau 3R and also Tau 4R isoforms. In addition, the N-terminal sequence of Tau protein in mice and humans differs, a Tau peptide (residues 17–28) being present in the latter but absent in the former. Here we review the main published data on this N-terminal sequence that suggests that human and mouse Tau proteins interact with different endogenous proteins and also show distinct secretion patterns.
Collapse
Affiliation(s)
- Félix Hernández
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Jesús Merchán-Rubira
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Laura Vallés-Saiz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Alberto Rodríguez-Matellán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Jesús Avila
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autonoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
160
|
Xie J, Liang R, Wang Y, Huang J, Cao X, Niu B. Progress in Target Drug Molecules for Alzheimer's Disease. Curr Top Med Chem 2020; 20:4-36. [DOI: 10.2174/1568026619666191203113745] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/20/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that 4 widespread in the elderly.
The etiology of AD is complicated, and its pathogenesis is still unclear. Although there are many
researches on anti-AD drugs, they are limited to reverse relief symptoms and cannot treat diseases.
Therefore, the development of high-efficiency anti-AD drugs with no side effects has become an urgent
need. Based on the published literature, this paper summarizes the main targets of AD and their drugs,
and focuses on the research and development progress of these drugs in recent years.
Collapse
Affiliation(s)
- Jiayang Xie
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Ruirui Liang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yajiang Wang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Junyi Huang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Bing Niu
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
161
|
Fossel M. A unified model of dementias and age-related neurodegeneration. Alzheimers Dement 2020; 16:365-383. [PMID: 31943780 DOI: 10.1002/alz.12012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/09/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
162
|
Akbari V, Ghobadi S, Mohammadi S, Khodarahmi R. The antidepressant drug; trazodone inhibits Tau amyloidogenesis: Prospects for prophylaxis and treatment of AD. Arch Biochem Biophys 2020; 679:108218. [DOI: 10.1016/j.abb.2019.108218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022]
|
163
|
Davidowitz EJ, Krishnamurthy PK, Lopez P, Jimenez H, Adrien L, Davies P, Moe JG. In Vivo Validation of a Small Molecule Inhibitor of Tau Self-Association in htau Mice. J Alzheimers Dis 2020; 73:147-161. [PMID: 31771053 PMCID: PMC6957711 DOI: 10.3233/jad-190465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 01/27/2023]
Abstract
Tau oligomers have been shown to transmit tau pathology from diseased neurons to healthy neurons through seeding, tau misfolding, and aggregation that is thought to play an influential role in the progression of Alzheimer's disease (AD) and related tauopathies. To develop a small molecule therapeutic for AD and related tauopathies, we have developed in vitro and cellular assays to select molecules inhibiting the first step in tau aggregation, the self-association of tau into oligomers. In vivo validation studies of an optimized lead compound were independently performed in the htau mouse model of tauopathy that expresses the human isoforms of tau without inherited tauopathy mutations that are irrelevant to AD. Treated mice did not show any adverse events related to the compound. The lead compound significantly reduced the level of self-associated tau and total and phosphorylated insoluble tau aggregates. The dose response was linear with respect to levels of compound in the brain. A confirmatory study was performed with male htau mice that gave consistent results. The results validated our screening approach by showing that targeting tau self-association can inhibit the entire tau aggregation pathway by using the selected and optimized lead compound whose activity translated from in vitro and cellular assays to an in vivo model of tau aggregation.
Collapse
Affiliation(s)
| | | | | | - Heidy Jimenez
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Leslie Adrien
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Peter Davies
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | | |
Collapse
|
164
|
Ghosh S, Durgvanshi S, Agarwal S, Raghunath M, Sinha JK. Current Status of Drug Targets and Emerging Therapeutic Strategies in the Management of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:883-903. [PMID: 32348223 PMCID: PMC7569315 DOI: 10.2174/1570159x18666200429011823] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease affecting the elderly. AD is associated with a progressive decline in memory and cognitive abilities, drastic changes in behavioural patterns and other psychiatric manifestations. It leads to a significant decline in the quality of life at personal, household as well as national level. Although AD was described about hundred years back and multiple theories have been proposed, its exact pathophysiology is unknown. There is no cure for AD and the life expectancy of AD patients remains low at 3-9 years. An accurate understanding of the molecular mechanism(s) involved in the pathogenesis of AD is imperative to devise a successful treatment strategy. This review explains and summarises the current understanding of different therapeutic strategies based on various molecular pathways known to date. Different strategies based on anti-amyloid pathology, glutamatergic pathway, anti-tau, neuroprotection through neurotrophic factors and cholinergic neurotransmission have been discussed. Further, the use of anti-inflammatory drugs, nutraceuticals, and dietary interventions has also been explained in the management of AD. It further describes different pharmacological and dietary interventions being used in treating and/or managing AD. Additionally, this article provides a thorough review of the literature for improving the therapeutic paradigm of AD.
Collapse
Affiliation(s)
| | | | | | | | - Jitendra Kumar Sinha
- Address correspondence to this author at the Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University UP, Sector-125, Noida 201303, India; Tel: +91-120-4392971, +91-8919679822; Emails: ,
| |
Collapse
|
165
|
From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. Acta Neuropathol 2020; 139:3-25. [PMID: 31686182 PMCID: PMC6942016 DOI: 10.1007/s00401-019-02087-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/15/2022]
Abstract
The term “propagon” is used to define proteins that may transmit misfolding in vitro, in tissues or in organisms. Among propagons, misfolded tau is thought to be involved in the pathogenic mechanisms of various “tauopathies” that include Alzheimer's disease, progressive supranuclear palsy, and argyrophilic grain disease. Here, we review the available data in the literature and point out how the prion-like tau propagation has been extended from Alzheimer's disease to tauopathies. First, in Alzheimer’s disease, the progression of tau aggregation follows stereotypical anatomical stages which may be considered as spreading. The mechanisms of the propagation are now subject to intensive and controversial research. It has been shown that tau may be secreted in the interstitial fluid in an active manner as reflected by high and constant concentration of extracellular tau during Alzheimer’s pathology. Animal and cell models have been devised to mimic tau seeding and propagation, and despite their limitations, they have further supported to the prion-like propagation hypothesis. Finally, such new ways of thinking have led to different therapeutic strategies in anti-tau immunotherapy among tauopathies and have stimulated new clinical trials. However, it appears that the prion-like propagation hypothesis mainly relies on data obtained in Alzheimer’s disease. From this review, it appears that further studies are needed (1) to characterize extracellular tau species, (2) to find the right pathological tau species to target, (3) to follow in vivo tau pathology by brain imaging and biomarkers and (4) to interpret current clinical trial results aimed at reducing the progression of these pathologies. Such inputs will be essential to have a comprehensive view of these promising therapeutic strategies in tauopathies.
Collapse
|
166
|
Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol 2020; 140:99-119. [PMID: 32383020 PMCID: PMC7360645 DOI: 10.1007/s00401-020-02158-2] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/16/2020] [Accepted: 04/11/2020] [Indexed: 12/11/2022]
Abstract
Progressive supranuclear palsy (PSP) is a 4R-tauopathy predominated by subcortical pathology in neurons, astrocytes, and oligodendroglia associated with various clinical phenotypes. In the present international study, we addressed the question of whether or not sequential distribution patterns can be recognized for PSP pathology. We evaluated heat maps and distribution patterns of neuronal, astroglial, and oligodendroglial tau pathologies and their combinations in different clinical subtypes of PSP in postmortem brains. We used conditional probability and logistic regression to model the sequential distribution of tau pathologies across different brain regions. Tau pathology uniformly predominates in the neurons of the pallido-nigro-luysian axis in different clinical subtypes. However, clinical subtypes are distinguished not only by total tau load but rather cell-type (neuronal versus glial) specific vulnerability patterns of brain regions suggesting distinct dynamics or circuit-specific segregation of propagation of tau pathologies. For Richardson syndrome (n = 81) we recognize six sequential steps of involvement of brain regions by the combination of cellular tau pathologies. This is translated to six stages for the practical neuropathological diagnosis by the evaluation of the subthalamic nucleus, globus pallidus, striatum, cerebellum with dentate nucleus, and frontal and occipital cortices. This system can be applied to further clinical subtypes by emphasizing whether they show caudal (cerebellum/dentate nucleus) or rostral (cortical) predominant, or both types of pattern. Defining cell-specific stages of tau pathology helps to identify preclinical or early-stage cases for the better understanding of early pathogenic events, has implications for understanding the clinical subtype-specific dynamics of disease-propagation, and informs tau-neuroimaging on distribution patterns.
Collapse
|
167
|
Abstract
Frontotemporal degeneration (FTD) is a heterogeneous spectrum of neurodegenerative disorders characterized by diverse clinical presentations, neuropathological characteristics, and underlying genetic causes. In the last few years, several advances in the knowledge of clinical and biological aspects have been accomplished and three major scenarios have emerged that will represent the core issues in the FTD scene over the next few years. Foremost, the development of cerebrospinal fluid and blood biomarkers as well as neuroimaging techniques will aid the pursuit of new diagnostic and prognostic markers able to identify the ongoing proteinopathy and predict disease progression, which is key in identifying and stratifying patients for enrolment in clinical trials as well as evaluating response to treatment. On the other hand, current research has focused on the first attempts to slow down or revert disease progression, with the identification of disease modulators associated with disease onset and the ongoing development of the first pharmacological treatments for both sporadic and genetic FTD. Future research will certainly improve our knowledge of FTD and possibly open up a new era of disease-modifying therapies for this still-orphan disorder.
Collapse
Affiliation(s)
- Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25100, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25100, Italy
| |
Collapse
|
168
|
Bittar A, Bhatt N, Kayed R. Advances and considerations in AD tau-targeted immunotherapy. Neurobiol Dis 2019; 134:104707. [PMID: 31841678 PMCID: PMC6980703 DOI: 10.1016/j.nbd.2019.104707] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Abstract
The multifactorial and complex nature of Alzheimer’s disease (AD) has made it difficult to identify therapeutic targets that are causally involved in the disease process. However, accumulating evidence from experimental and clinical studies that investigate the early disease process point towards the required role of tau in AD etiology. Importantly, a large number of studies investigate and characterize the plethora of pathological forms of tau protein involved in disease onset and propagation. Immunotherapy is one of the most clinical approaches anticipated to make a difference in the field of AD therapeutics. Tau –targeted immunotherapy is the new direction after the failure of amyloid beta (Aß)-targeted immunotherapy and the growing number of studies that highlight the Aß-independent disease process. It is now well established that immunotherapy alone will most likely be insufficient as a monotherapy. Therefore, this review discusses updates on tau-targeted immunotherapy studies, AD-relevant tau species, updates on promising biomarkers and a prospect on combination therapies to surround the disease propagation in an efficient and timely manner.
Collapse
Affiliation(s)
- Alice Bittar
- Department of Neurology, The Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| | - Nemil Bhatt
- Department of Neuroscience, Cell Biology and Anatomy, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| | - Rakez Kayed
- Department of Neurology, The Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| |
Collapse
|
169
|
Wichur T, Więckowska A, Więckowski K, Godyń J, Jończyk J, Valdivieso ÁDR, Panek D, Pasieka A, Sabaté R, Knez D, Gobec S, Malawska B. 1-Benzylpyrrolidine-3-amine-based BuChE inhibitors with anti-aggregating, antioxidant and metal-chelating properties as multifunctional agents against Alzheimer's disease. Eur J Med Chem 2019; 187:111916. [PMID: 31812794 DOI: 10.1016/j.ejmech.2019.111916] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023]
Abstract
Complex pathomechanism of Alzheimer's disease (AD) prompts researchers to develop multifunctional molecules in order to find effective therapy against AD. We designed and synthesized novel multifunctional ligands for which we assessed their activities towards butyrylcholinesterase, beta secretase, amyloid beta (Aβ) and tau protein aggregation as well as antioxidant and metal-chelating properties. All compounds showed dual anti-aggregating properties towards Aβ and tau protein in the in cellulo assay in Escherichia coli. Of particular interest are compounds 24b and 25b, which efficiently inhibit aggregation of Aβ and tau protein at 10 μM (24b: 45% for Aβ, 53% for tau; 25b: 49% for Aβ, 54% for tau). They display free radical scavenging capacity and antioxidant activity in ABTS and FRAP assays, respectively, and selectively chelate copper ions. Compounds 24b and 25b are also the most potent inhibitors of BuChE with IC50 of 2.39 μM and 1.94 μM, respectively. Promising in vitro activities of the presented multifunctional ligands as well as their original scaffold are a very interesting starting point for further research towards effective anti-AD treatment.
Collapse
Affiliation(s)
- Tomasz Wichur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Krzysztof Więckowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Jakub Jończyk
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | | | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Anna Pasieka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av Joan XXIII, S/N, 08028, Barcelona, Spain
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
170
|
Kounnas MZ, Durakoglugil MS, Herz J, Comer WT. NGP 555, a γ-secretase modulator, shows a beneficial shift in the ratio of amyloid biomarkers in human cerebrospinal fluid at safe doses. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2019; 5:458-467. [PMID: 31921961 PMCID: PMC6944734 DOI: 10.1016/j.trci.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Currently, there is no cure for Alzheimer's disease (AD), and it is widely accepted that AD is a complex disease with multiple approaches necessary to prevent and treat the disease. METHODS Using amyloid biomarkers in human cerebrospinal fluid, pharmacokinetic, safety, and metabolism studies, we investigate the properties of NGP 555, γ-secretase modulator, for the first time in human clinical trials. RESULTS Our preclinical and clinical studies combined show beneficial effects with NGP 555 on synaptic response and amyloid cerebrospinal fluid biomarkers while avoiding negative side effects. Importantly, pharmacokinetic and pharmacodynamic parameters combined with safety outcomes indicate that NGP 555 penetrates the blood-brain barrier and increases the ratio of amyloid-β peptide Aβ37 and Aβ38 compared with that of Aβ42, establishing a proof of target engagement in humans in a 14 day, once-daily oral dosing trial. DISCUSSION In humans, NGP 555 has demonstrated a beneficial shift in the production of Aβ37 and Aβ38 versus Aβ42 biomarker levels in the cerebrospinal fluid while maintaining an adequate safety profile. The overall clinical goal is to achieve an optimal balance of efficacy for altering amyloid-β peptide (Aβ) biomarkers while maintaining a safe profile so that NGP 555 can be given early in AD to prevent production of Aβ42 and accumulation of amyloid plaques, in an effort to prevent aggregation of tau and destruction of neurons and synapses resulting in cognitive decline.
Collapse
Affiliation(s)
- Maria Z. Kounnas
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Murat S. Durakoglugil
- Department of Molecular Genetics, Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Joachim Herz
- Department of Molecular Genetics, Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
171
|
Saranza GM, Whitwell JL, Kovacs GG, Lang AE. Corticobasal degeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:87-136. [PMID: 31779825 DOI: 10.1016/bs.irn.2019.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Corticobasal degeneration (CBD) is a rare neurodegenerative disease characterized by the predominance of pathological 4 repeat tau deposition in various cell types and anatomical regions. Corticobasal syndrome (CBS) is one of the clinical phenotypes associated with CBD pathology, manifesting as a progressive asymmetric akinetic-rigid, poorly levodopa-responsive parkinsonism, with cerebral cortical dysfunction. CBD can manifest as several clinical phenotypes, and similarly, CBS can also have a pathologic diagnosis other than CBD. This chapter discusses the clinical manifestations of pathologically confirmed CBD cases, the current diagnostic criteria, as well as the pathologic and neuroimaging findings of CBD/CBS. At present, therapeutic options for CBD remain symptomatic. Further research is needed to improve the clinical diagnosis of CBD, as well as studies on disease-modifying therapies for this relentlessly progressive neurodegenerative disorder.
Collapse
Affiliation(s)
- Gerard M Saranza
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | | | - Gabor G Kovacs
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada; Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
172
|
Forrest SL, Kril JJ, Halliday GM. Cellular and regional vulnerability in frontotemporal tauopathies. Acta Neuropathol 2019; 138:705-727. [PMID: 31203391 DOI: 10.1007/s00401-019-02035-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
The frontotemporal tauopathies all deposit abnormal tau protein aggregates, but often of only certain isoforms and in distinguishing pathologies of five main types (neuronal Pick bodies, neurofibrillary tangles, astrocytic plaques, tufted astrocytes, globular glial inclusions and argyrophilic grains). In those with isoform specific tau aggregates glial pathologies are substantial, even though there is limited evidence that these cells normally produce tau protein. This review will assess the differentiating features and clinicopathological correlations of the frontotemporal tauopathies, the genetic predisposition for these different pathologies, their neuroanatomical selectivity, current observations on how they spread through the brain, and any potential contributing cellular and molecular changes. The findings show that diverse clinical phenotypes relate most to the brain region degenerating rather than the type of pathology involved, that different regions on the MAPT gene and novel risk genes are associated with specific tau pathologies, that the 4-repeat glial tauopathies do not follow individual patterns of spreading as identified for neuronal pathologies, and that genetic and pathological data indicate that neuroinflammatory mechanisms are involved. Each pathological frontotemporal tauopathy subtype with their distinct pathological features differ substantially in the cell type affected, morphology, biochemical and anatomical distribution of inclusions, a fundamental concept central to future success in understanding the disease mechanisms required for developing therapeutic interventions. Tau directed therapies targeting genetic mechanisms, tau aggregation and pathological spread are being trialled, although biomarkers that differentiate these diseases are required. Suggested areas of future research to address the regional and cellular vulnerabilities in frontotemporal tauopathies are discussed.
Collapse
|
173
|
Noble W, Jimenez-Sanchez M, Perez-Nievas BG, Hanger DP. Considerations for future tau-targeted therapeutics: can they deliver? Expert Opin Drug Discov 2019; 15:265-267. [PMID: 31661994 DOI: 10.1080/17460441.2020.1685977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Wendy Noble
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Maria Jimenez-Sanchez
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Diane P Hanger
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
174
|
Dupré E, Danis C, Arrial A, Hanoulle X, Homa M, Cantrelle FX, Merzougui H, Colin M, Rain JC, Buée L, Landrieu I. Single Domain Antibody Fragments as New Tools for the Detection of Neuronal Tau Protein in Cells and in Mice Studies. ACS Chem Neurosci 2019; 10:3997-4006. [PMID: 31380615 DOI: 10.1021/acschemneuro.9b00217] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tau is a neuronal protein linked to pathologies called tauopathies, including Alzheimer's disease. In Alzheimer's disease, tau aggregates into filaments, leading to the observation of intraneuronal fibrillary tangles. Molecular mechanisms resulting in tau aggregation and in tau pathology spreading through the brain regions are still not fully understood. New tools are thus needed to decipher tau pathways involved in the diseases. In this context, a family of novel single domain antibody fragments, or VHHs, directed against tau were generated and characterized. Among the selected VHHs obtained from screening of a synthetic library, a family of six VHHs shared the same CDR3 recognition loop and recognized the same epitope, located in the C-terminal domain of tau. Affinity parameters characterizing the tau/VHHs interaction were next evaluated using surface plasmon resonance spectroscopy. The equilibrium constants KD were in the micromolar range, but despite conservation of the CDR3 loop sequence, a range of affinities was observed for this VHH family. One of these VHHs, named F8-2, was additionally shown to bind tau upon expression in a neuronal cell line model. Optimization of VHH F8-2 by yeast two-hybrid allowed the generation of an optimized VHH family characterized by lower KD than that of the F8-2 wild-type counterpart, and recognizing the same epitope. The optimized VHHs can also be used as antibodies for detecting tau in transgenic mice brain tissues. These results validate the use of these VHHs for in vitro studies, but also their potential for in-cell expression and assays in mouse models, to explore the mechanisms underlying tau physiopathology.
Collapse
Affiliation(s)
- Elian Dupré
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Clément Danis
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | | | - Xavier Hanoulle
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Mégane Homa
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | - François-Xavier Cantrelle
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Hamida Merzougui
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Morvane Colin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | | | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | - Isabelle Landrieu
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
175
|
Kovacs GG. Molecular pathology of neurodegenerative diseases: principles and practice. J Clin Pathol 2019; 72:725-735. [PMID: 31395625 DOI: 10.1136/jclinpath-2019-205952] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterised by selective dysfunction and progressive loss of synapses and neurons associated with pathologically altered proteins that deposit primarily in the human brain and spinal cord. Recent discoveries have identified a spectrum of distinct immunohistochemically and biochemically detectable proteins, which serve as a basis for protein-based disease classification. Diagnostic criteria have been updated and disease staging procedures have been proposed. These are based on novel concepts which recognise that (1) most of these proteins follow a sequential distribution pattern in the brain suggesting a seeding mechanism and cell-to-cell propagation; (2) some of the neurodegeneration-associated proteins can be detected in peripheral organs; and (3) concomitant presence of neurodegeneration-associated proteins is more the rule than the exception. These concepts, together with the fact that the clinical symptoms do not unequivocally reflect the molecular pathological background, place the neuropathological examination at the centre of requirements for an accurate diagnosis. The need for quality control in biomarker development, clinical and neuroimaging studies, and evaluation of therapy trials, as well as an increasing demand for the general public to better understand human brain disorders, underlines the importance for a renaissance of postmortem neuropathological studies at this time. This review summarises recent advances in neuropathological diagnosis and reports novel aspects of relevance for general pathological practice.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
176
|
Barbier P, Zejneli O, Martinho M, Lasorsa A, Belle V, Smet-Nocca C, Tsvetkov PO, Devred F, Landrieu I. Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Front Aging Neurosci 2019; 11:204. [PMID: 31447664 PMCID: PMC6692637 DOI: 10.3389/fnagi.2019.00204] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022] Open
Abstract
Microtubules (MTs) play a fundamental role in many vital processes such as cell division and neuronal activity. They are key structural and functional elements in axons, supporting neurite differentiation and growth, as well as transporting motor proteins along the axons, which use MTs as support tracks. Tau is a stabilizing MT associated protein, whose functions are mainly regulated by phosphorylation. A disruption of the MT network, which might be caused by Tau loss of function, is observed in a group of related diseases called tauopathies, which includes Alzheimer’s disease (AD). Tau is found hyperphosphorylated in AD, which might account for its loss of MT stabilizing capacity. Since destabilization of MTs after dissociation of Tau could contribute to toxicity in neurodegenerative diseases, a molecular understanding of this interaction and its regulation is essential.
Collapse
Affiliation(s)
- Pascale Barbier
- Fac Pharm, Aix Marseille Univ., Centre National de la Recherche Scientifique (CNRS), Inst Neurophysiopathol (INP), Fac Pharm, Marseille, France
| | - Orgeta Zejneli
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Lille, France.,Univ. Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), CHU-Lille, UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT (JPArc), Lille, France
| | - Marlène Martinho
- Aix Marseille Univ., Centre National de la Recherche Scientifique (CNRS), UMR 7281, Bioénergétique et Ingénierie des Protéines (BIP), Marseille, France
| | - Alessia Lasorsa
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Lille, France
| | - Valérie Belle
- Aix Marseille Univ., Centre National de la Recherche Scientifique (CNRS), UMR 7281, Bioénergétique et Ingénierie des Protéines (BIP), Marseille, France
| | - Caroline Smet-Nocca
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Lille, France
| | - Philipp O Tsvetkov
- Fac Pharm, Aix Marseille Univ., Centre National de la Recherche Scientifique (CNRS), Inst Neurophysiopathol (INP), Fac Pharm, Marseille, France
| | - François Devred
- Fac Pharm, Aix Marseille Univ., Centre National de la Recherche Scientifique (CNRS), Inst Neurophysiopathol (INP), Fac Pharm, Marseille, France
| | - Isabelle Landrieu
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Lille, France
| |
Collapse
|
177
|
Weisová P, Cehlár O, Škrabana R, Žilková M, Filipčík P, Kováčech B, Prčina M, Wojčiaková Ľ, Fialová Ľ, Smolek T, Kontseková E, Žilka N, Novák M. Therapeutic antibody targeting microtubule-binding domain prevents neuronal internalization of extracellular tau via masking neuron surface proteoglycans. Acta Neuropathol Commun 2019; 7:129. [PMID: 31391090 PMCID: PMC6685285 DOI: 10.1186/s40478-019-0770-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 02/04/2023] Open
Abstract
Pathologically altered tau protein is a common denominator of neurodegenerative disorders including Alzheimer's disease (AD) and other tauopathies. Therefore, promising immunotherapeutic approaches target and eliminate extracellular pathogenic tau species, which are thought to be responsible for seeding and propagation of tau pathology. Tau isoforms in misfolded states can propagate disease pathology in a template-dependent manner, proposed to be mediated by the release and internalization of extracellular tau. Monoclonal antibody DC8E8, binding four highly homologous and independent epitopes in microtubule-binding domain (MTBD) of diseased tau, inhibits tau-tau interaction, discriminates between healthy and pathologically truncated tau and reduces tau pathology in animal model in vivo. Here, we show that DC8E8 antibody acts via extracellular mechanism and does not influence viability and physiological functions of neurons. Importantly, in vitro functional assays showed that DC8E8 recognises pathogenic tau proteins of different size and origin, and potently blocks their entry into neurons. Next, we examined the mechanisms by which mouse antibody DC8E8 and its humanized version AX004 effectively block the neuronal internalization of extracellular AD tau species. We determined a novel mode of action of a therapeutic candidate antibody, which potently inhibits neuronal internalization of AD tau species by masking of epitopes present in MTBD important for interaction with neuron surface Heparan Sulfate Proteoglycans (HSPGs). We show that interference of tau-heparane sulfate interaction with DC8E8 antibody via steric hindrance represents an efficient and important therapeutic approach halting tau propagation.
Collapse
Affiliation(s)
- Petronela Weisová
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic.
| | - Ondrej Cehlár
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Rostislav Škrabana
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Monika Žilková
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Peter Filipčík
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Branislav Kováčech
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Michal Prčina
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Ľubica Wojčiaková
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Ľubica Fialová
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Tomáš Smolek
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Eva Kontseková
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Norbert Žilka
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Michal Novák
- Axon Neuroscience SE, Arch. Makariou & Kalogreon 4, Larnaca, Cyprus
| |
Collapse
|
178
|
Moussa-Pacha NM, Abdin SM, Omar HA, Alniss H, Al-Tel TH. BACE1 inhibitors: Current status and future directions in treating Alzheimer's disease. Med Res Rev 2019; 40:339-384. [PMID: 31347728 DOI: 10.1002/med.21622] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder with no current cure. One of the important therapeutic approaches of AD is the inhibition of β-site APP cleaving enzyme-1 (BACE1), which is involved in the rate-limiting step of the cleavage process of the amyloid precursor protein (APP) leading to the generation of the neurotoxic amyloid β (Aβ) protein after the γ-secretase completes its function. The produced insoluble Aβ aggregates lead to plaques deposition and neurodegeneration. BACE1 is, therefore, one of the attractive targets for the treatment of AD. This approach led to the development of potent BACE1 inhibitors, many of which were advanced to late stages in clinical trials. Nonetheless, the high failure rate of lead drug candidates targeting BACE1 brought to the forefront the need for finding new targets to uncover the mystery behind AD. In this review, we aim to discuss the most promising classes of BACE1 inhibitors with a description and analysis of their pharmacodynamic and pharmacokinetic parameters, with more focus on the lead drug candidates that reached late stages of clinical trials, such as MK8931, AZD-3293, JNJ-54861911, E2609, and CNP520. In addition, the manuscript discusses the safety concerns and insignificant physiological effects, which were highlighted for the most successful BACE1 inhibitors. Furthermore, the review demonstrates with increasing evidence that despite tremendous efforts and promising results conceived with BACE1 inhibitors, the latest studies suggest that their clinical use for treating Alzheimer's disease should be reconsidered. Finally, the review sheds light on alternative therapeutic options for targeting AD.
Collapse
Affiliation(s)
- Nour M Moussa-Pacha
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Shifaa M Abdin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hasan Alniss
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
179
|
Vogels T, Murgoci AN, Hromádka T. Intersection of pathological tau and microglia at the synapse. Acta Neuropathol Commun 2019; 7:109. [PMID: 31277708 PMCID: PMC6612163 DOI: 10.1186/s40478-019-0754-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Tauopathies are a heterogenous class of diseases characterized by cellular accumulation of aggregated tau and include diseases such as Alzheimer’s disease (AD), progressive supranuclear palsy and chronic traumatic encephalopathy. Tau pathology is strongly linked to neurodegeneration and clinical symptoms in tauopathy patients. Furthermore, synapse loss is an early pathological event in tauopathies and is the strongest correlate of cognitive decline. Tau pathology is additionally associated with chronic neuroinflammatory processes, such as reactive microglia, astrocytes, and increased levels of pro-inflammatory molecules (e.g. complement proteins, cytokines). Recent studies show that as the principal immune cells of the brain, microglia play a particularly important role in the initiation and progression of tau pathology and associated neurodegeneration. Furthermore, AD risk genes such as Triggering receptor expressed on myeloid cells 2 (TREM2) and Apolipoprotein E (APOE) are enriched in the innate immune system and modulate the neuroinflammatory response of microglia to tau pathology. Microglia can play an active role in synaptic dysfunction by abnormally phagocytosing synaptic compartments of neurons with tau pathology. Furthermore, microglia are involved in synaptic spreading of tau – a process which is thought to underlie the progressive nature of tau pathology propagation through the brain. Spreading of pathological tau is also the predominant target for tau-based immunotherapy. Active tau vaccines, therapeutic tau antibodies and other approaches targeting the immune system are actively explored as treatment options for AD and other tauopathies. This review describes the role of microglia in the pathobiology of tauopathies and the mechanism of action of potential therapeutics targeting the immune system in tauopathies.
Collapse
|
180
|
Alzheimer's disease: Key developments support promising perspectives for therapy. Pharmacol Res 2019; 146:104316. [PMID: 31260730 DOI: 10.1016/j.phrs.2019.104316] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's is the neurodegenerative disease affecting the largest number of patients in the world. In spite of the intense research of the last decades, progress about its knowledge and therapy was limited. In particular, various cytotoxic processes remained debated, while the few drugs approved for therapy were of only marginal relevance. Recent studies have identified key aspects of the disease, such as the mechanisms governing the development of pathology. In order to operate the Aβ peptide, known as the key factor, requires a complex assembled by its high affinity binding to PrPc, a cell surface prion protein, and mGluR5, a metabotropic glutamate receptor. Aβ and its associates bind also phosphorylated tau transferred to the extracellular space, with final activation of intracellular cytotoxic signals. Pathology is further affected by factors (including genes, receptors and their agonists) and by glial cells governing (via vesicles, cytokines and enzymes) cell immunology, inflammation and oxidative stress. Concomitant to pathology studies, strong attempts have been made for the development of new, effective therapies. Critical for this are biomarkers, by which Alzheimer's patients are recognized even before appearance of their symptoms. The question was whether patients take advantage from drugs not yet approved. The latter, first identified in mice, were found effective also in men, however only before appearance or at early stage of the disease. In other words, the drugs not yet approved induce effective protection of patients still healthy or in a preliminary stage of the disease. In contrast, developed Alzheimer's disease is practically irreversible.
Collapse
|
181
|
González JF, Alcántara AR, Doadrio AL, Sánchez-Montero JM. Developments with multi-target drugs for Alzheimer's disease: an overview of the current discovery approaches. Expert Opin Drug Discov 2019; 14:879-891. [PMID: 31165654 DOI: 10.1080/17460441.2019.1623201] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Alzheimer's disease (AD), the most common type of dementia among older adults, is a chronic neurodegenerative pathology that causes a progressive loss of cognitive functioning with a decline of rational skills. It is well known that AD is multifactorial, so there are many different pharmacological targets that can be pursued. Areas covered: The authors highlight the strategic value of privileged scaffolds in a multi-target lead compound generation against AD, exploring the concept of multi-target design, with a special emphasis on hybrid compounds. Hence, the most promising building blocks for designing and synthesizing hybrid anti-AD drugs are shown, while also presenting the more advanced hybrid compounds. Expert opinion: The available therapeutic arsenal for AD, designed under the traditional paradigm of 'one-drug/one target/one-disease', is based on the inhibition of brain acetylcholinesterase (AChE) to increase acetylcholine (ACh) levels. However, this classical approach has not been sufficiently effective when used to treat any multifactor-depending pathology (cancer, diabetes or AD). The multi-target drug concept has been quickly adopted by medicinal chemists. The basic research developments reported in recent years are a solid foundation that will pave the way for the construction of future AD therapeutics.
Collapse
Affiliation(s)
- Juan F González
- a Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid , Madrid , Spain
| | - Andrés R Alcántara
- a Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid , Madrid , Spain
| | - Antonio L Doadrio
- a Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid , Madrid , Spain
| | - Jose María Sánchez-Montero
- a Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid , Madrid , Spain
| |
Collapse
|
182
|
|
183
|
An update on genetic frontotemporal dementia. J Neurol 2019; 266:2075-2086. [PMID: 31119452 PMCID: PMC6647117 DOI: 10.1007/s00415-019-09363-4] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a highly heritable group of neurodegenerative disorders, with around 30% of patients having a strong family history. The majority of that heritability is accounted for by autosomal dominant mutations in the chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN), and microtubule-associated protein tau (MAPT) genes, with mutations more rarely seen in a number of other genes. This review will discuss the recent updates in the field of genetic FTD. Age at symptom onset in genetic FTD is variable with recently identified genetic modifiers including TMEM106B (in GRN carriers particularly) and a polymorphism at a locus containing two overlapping genes LOC101929163 and C6orf10 (in C9orf72 carriers). Behavioural variant FTD (bvFTD) is the most common diagnosis in each of the genetic groups, although in C9orf72 carriers amyotrophic lateral sclerosis either alone, or with bvFTD, is also common. An atypical neuropsychiatric presentation is also seen in C9orf72 carriers and family members of carriers are at greater risk of psychiatric disorders including schizophrenia and autistic spectrum disorders. Large natural history studies of presymptomatic genetic FTD are now underway both in Europe/Canada (GENFI—the Genetic FTD Initiative) and in the US (ARTFL/LEFFTDS study), collaborating together under the banner of the FTD Prevention Initiative (FPI). These studies are taking forward the validation of cognitive, imaging and fluid biomarkers that aim to robustly measure disease onset, staging and progression in genetic FTD. Grey matter changes on MRI and hypometabolism on FDG-PET are seen at least 10 years before symptom onset with white matter abnormalities seen earlier, but the pattern and exact timing of changes differ between different genetic groups. In contrast, tau PET has yet to show promise in genetic FTD. Three key fluid biomarkers have been identified so far that are likely to be helpful in clinical trials—CSF or blood neurofilament light chain levels (in all groups), CSF or blood progranulin levels (in GRN carriers) and CSF poly(GP) dipeptide repeat protein levels (in C9orf72 carriers). Increased knowledge about genetic FTD has led to more clinical presymptomatic genetic testing but this has not yet been mirrored in the development of either an accepted FTD-specific testing protocol or provision of appropriate psychological support mechanisms for those living through the at-risk phase. This will become even more relevant as disease-modifying therapy trials start in each of the genetic groups over the next few years.
Collapse
|
184
|
Targeting Apolipoprotein E for Alzheimer's Disease: An Industry Perspective. Int J Mol Sci 2019; 20:ijms20092161. [PMID: 31052389 PMCID: PMC6539182 DOI: 10.3390/ijms20092161] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/27/2019] [Accepted: 04/28/2019] [Indexed: 02/08/2023] Open
Abstract
Apolipoprotein E (apoE), a key lipid transport protein in the brain, is predominantly produced by astrocytes. Astrocytes are the most numerous cell type in the brain and are the main support network for neurons. They play a critical role in the synthesis and delivery of cholesterol in the brain. Humans have three common apoE isoforms, apoE2, apoE3 and apoE4, that show a strong genotype effect on the risk and age of onset for sporadic and late onset forms of Alzheimer’s disease (AD). Carriers of an ε4 allele have an increased risk of developing AD, while those with an ε2 allele are protected. Investigations into the contribution of apoE to the development of AD has yielded conflicting results and there is still much speculation about the role of this protein in disease. Here, we review the opposing hypotheses currently described in the literature and the approaches that have been considered for targeting apoE as a novel therapeutic strategy for AD. Additionally, we provide our perspective on the rationale for targeting apoE and the challenges that arise with respect to “drug-ability” of this target.
Collapse
|
185
|
Melková K, Zapletal V, Narasimhan S, Jansen S, Hritz J, Škrabana R, Zweckstetter M, Ringkjøbing Jensen M, Blackledge M, Žídek L. Structure and Functions of Microtubule Associated Proteins Tau and MAP2c: Similarities and Differences. Biomolecules 2019; 9:biom9030105. [PMID: 30884818 PMCID: PMC6468450 DOI: 10.3390/biom9030105] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
The stability and dynamics of cytoskeleton in brain nerve cells are regulated by microtubule associated proteins (MAPs), tau and MAP2. Both proteins are intrinsically disordered and involved in multiple molecular interactions important for normal physiology and pathology of chronic neurodegenerative diseases. Nuclear magnetic resonance and cryo-electron microscopy recently revealed propensities of MAPs to form transient local structures and long-range contacts in the free state, and conformations adopted in complexes with microtubules and filamentous actin, as well as in pathological aggregates. In this paper, we compare the longest, 441-residue brain isoform of tau (tau40), and a 467-residue isoform of MAP2, known as MAP2c. For both molecules, we present transient structural motifs revealed by conformational analysis of experimental data obtained for free soluble forms of the proteins. We show that many of the short sequence motifs that exhibit transient structural features are linked to functional properties, manifested by specific interactions. The transient structural motifs can be therefore classified as molecular recognition elements of tau40 and MAP2c. Their interactions are further regulated by post-translational modifications, in particular phosphorylation. The structure-function analysis also explains differences between biological activities of tau40 and MAP2c.
Collapse
Affiliation(s)
- Kateřina Melková
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Vojtěch Zapletal
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Subhash Narasimhan
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Séverine Jansen
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Rostislav Škrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia.
- Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, 811 02 Bratislava, Slovakia.
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany.
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | | | | | - Lukáš Žídek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
186
|
Fichou Y, Al-Hilaly YK, Devred F, Smet-Nocca C, Tsvetkov PO, Verelst J, Winderickx J, Geukens N, Vanmechelen E, Perrotin A, Serpell L, Hanseeuw BJ, Medina M, Buée L, Landrieu I. The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention? Acta Neuropathol Commun 2019; 7:31. [PMID: 30823892 PMCID: PMC6397507 DOI: 10.1186/s40478-019-0682-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
Insights into tau molecular structures have advanced significantly in recent years. This field has been the subject of recent breakthroughs, including the first cryo-electron microscopy structures of tau filaments from Alzheimer’s and Pick’s disease inclusions, as well as the structure of the repeat regions of tau bound to microtubules. Tau structure covers various species as the tau protein itself takes many forms. We will here address a range of studies that help to define the many facets of tau protein structures and how they translate into pathogenic forms. New results shed light on previous data that need now to be revisited in order to up-date our knowledge of tau molecular structure. Finally, we explore how these data can contribute the important medical aspects of this research - diagnosis and therapeutics.
Collapse
|
187
|
Abstract
Alzheimer's disease (AD) dementia refers to a particular onset and course of cognitive and functional decline associated with age together with a particular neuropathology. It was first described by Alois Alzheimer in 1906 about a patient whom he first encountered in 1901. Modern clinical diagnostic criteria have been developed, and criteria have also been proposed to recognize preclinical (or presymptomatic) stages of the disease with the use of biomarkers. The primary neuropathology was described by Alzheimer, and in the mid-1980s subsequently evolved into a more specific neuropathologic definition that recognizes the comorbid neuropathologies that frequently contribute to clinical dementia. Alzheimer's disease is now the most common form of neurodegenerative dementia in the United States with a disproportionate disease burden in minority populations. Deficits in the ability to encode and store new memories characterizes the initial stages of the disease. Subsequent progressive changes in cognition and behavior accompany the later stages. Changes in amyloid precursor protein (APP) cleavage and production of the APP fragment beta-amyloid (Aβ) along with hyperphosphorylated tau protein aggregation coalesce to cause reduction in synaptic strength, synaptic loss, and neurodegeneration. Metabolic, vascular, and inflammatory changes, as well as comorbid pathologies are key components of the disease process. Symptomatic treatment offers a modest, clinically measurable effect in cognition, but disease-modifying therapies are desperately needed.
Collapse
Affiliation(s)
- Jose A Soria Lopez
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States; Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego, La Jolla, CA, United States
| | - Hector M González
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States; Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego, La Jolla, CA, United States
| | - Gabriel C Léger
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States; Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
188
|
Buee L. Dementia Therapy Targeting Tau. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:407-416. [PMID: 32096053 DOI: 10.1007/978-981-32-9358-8_30] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tau is a microtubule-associated tau proteins but it has also non-microtubular functions. It aggregates in Alzheimer's disease and many neurodegenerative disorders referred to as tauopathies. Such aggregation may result from mutations on the tau gene, MAPT, dysregulation in alternative splicing, post-translational modifications or truncation. This final chapter addresses some of the various researches on a therapeutic potential around the tau protein and its gene, MAPT. Many therapeutic strategies are ongoing but they are hampered by the lack of knowledge on tau physiological functions.
Collapse
Affiliation(s)
- Luc Buee
- University of Lille, INSERM, CHU-Lille, Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France.
| |
Collapse
|