151
|
|
152
|
Buldakov M, Zavyalova M, Krakhmal N, Telegina N, Vtorushin S, Mitrofanova I, Riabov V, Yin S, Song B, Cherdyntseva N, Kzhyshkowska J. CD68+, but not stabilin-1+ tumor associated macrophages in gaps of ductal tumor structures negatively correlate with the lymphatic metastasis in human breast cancer. Immunobiology 2015; 222:31-38. [PMID: 26391151 DOI: 10.1016/j.imbio.2015.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 01/22/2023]
Abstract
Tumor associated macrophages (TAM) support tumor growth and metastasis in several animal models of breast cancer, and TAM amount is predictive for efficient tumor growth and metastatic spread via blood circulation. However, limited information is available about intratumoral TAM heterogeneity and functional role of TAM subpopulations in tumor progression. The aim of our study was to examine correlation of TAM presence in various morphological segments of human breast cancer with clinical parameters. Thirty six female patients with nonspecific invasive breast cancer T1-4N0-3M0 were included in the study. Morphological examination was performed using Carl Zeiss Axio Lab.A1 and MiraxMidiZeiss. Immunohistochemical and immunofluorescence/confocal microcopy analysis was used to detect CD68 and stabilin-1 in 5 different tumor segments: (1) areas with soft fibrous stroma; (2) areas with coarse fibrous stroma; (3) areas of maximum stromal-and-parenchymal relationship; (4) parenchymal elements; (5) gaps of ductal tumor structures. The highest expression of CD68 was in areas with soft fibrous stroma or areas of maximum stromal-and-parenchymal relationship (79%). The lowest expression of CD68 was in areas with coarse fiber stroma (23%). Inverse correlation of tumor size and expression of CD68 in gaps of tubular tumor structures was found (R=-0.67; p=0.02). In case of the lymph node metastases the average score of CD68 expression in ductal gaps tumor structures was lower (1.4±0.5) compared to negative lymph nodes case (3.1±1.0; F=10.9; p=0.007). Confocal microscopy identified 3 phenotypes of TAM: CD68+/stabilin-1-; CD68+/stabilin-1+ (over 50%); and CD68-/stabilin-1+. However, expression of stabilin-1 did not correlate with lymph node metastasis. We concluded, that increased amount of CD68+TAM in gaps of ductal tumor structures is protective against metastatic spread in regional lymph nodes.
Collapse
Affiliation(s)
- Mikhail Buldakov
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Pr. Lenina, 36, 634050 Tomsk, Russia; Tomsk Cancer Research Institute, Per. Kooperativny, 5, 634050 Tomsk, Russia
| | - Marina Zavyalova
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Pr. Lenina, 36, 634050 Tomsk, Russia; Tomsk Cancer Research Institute, Per. Kooperativny, 5, 634050 Tomsk, Russia; Siberian State Medical University, Moskovskiy Trakt, 2, 634050 Tomsk, Russia
| | - Nadezhda Krakhmal
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Pr. Lenina, 36, 634050 Tomsk, Russia; Siberian State Medical University, Moskovskiy Trakt, 2, 634050 Tomsk, Russia
| | - Nadezhda Telegina
- Siberian State Medical University, Moskovskiy Trakt, 2, 634050 Tomsk, Russia
| | - Sergei Vtorushin
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Pr. Lenina, 36, 634050 Tomsk, Russia; Siberian State Medical University, Moskovskiy Trakt, 2, 634050 Tomsk, Russia
| | - Irina Mitrofanova
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Pr. Lenina, 36, 634050 Tomsk, Russia
| | - Vladimir Riabov
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Pr. Lenina, 36, 634050 Tomsk, Russia; Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Shuiping Yin
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Bin Song
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Nadezhda Cherdyntseva
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Pr. Lenina, 36, 634050 Tomsk, Russia; Tomsk Cancer Research Institute, Per. Kooperativny, 5, 634050 Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Pr. Lenina, 36, 634050 Tomsk, Russia; Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; German Red Cross Blood Service Baden-Württemberg-Hessen, Friedrich-Ebert Strasse 107, 68167 Mannheim, Germany.
| |
Collapse
|
153
|
The mechanical microenvironment in cancer: How physics affects tumours. Semin Cancer Biol 2015; 35:62-70. [PMID: 26343578 DOI: 10.1016/j.semcancer.2015.09.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/30/2015] [Accepted: 09/02/2015] [Indexed: 12/16/2022]
Abstract
The tumour microenvironment contributes greatly to the response of tumour cells. It consists of chemical gradients, for example of oxygen and nutrients. However, a physical environment is also present. Apart from chemical input, cells also receive physical signals. Tumours display unique mechanical properties: they are a lot stiffer than normal tissue. This may be either a cause or a consequence of cancer, but literature suggests it has a major impact on tumour cells as will be described in this review. The mechanical microenvironment may cause malignant transformation, possibly through activation of oncogenic pathways and inhibition of tumour suppressor genes. In addition, the mechanical microenvironment may promote tumour progression by influencing processes such as epithelial-to-mesenchymal transition, enhancing cell survival through autophagy, but also affects sensitivity of tumour cells to therapeutics. Furthermore, multiple intracellular signalling pathways prove sensitive to the mechanical properties of the microenvironment. It appears the increased stiffness is unlikely to be caused by increased stiffness of the tumour cells themselves. However, there are indications that tumours display a higher cell density, making them more rigid. In addition, increased matrix deposition in the tumour, as well as increased interstitial fluid pressure may account for the increased stiffness of tumours. Overall, tumour mechanics are significantly different from normal tissue. Therefore, this feature should be further explored for use in cancer prevention, detection and treatment.
Collapse
|
154
|
|
155
|
Sousa S, Brion R, Lintunen M, Kronqvist P, Sandholm J, Mönkkönen J, Kellokumpu-Lehtinen PL, Lauttia S, Tynninen O, Joensuu H, Heymann D, Määttä JA. Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Res 2015; 17:101. [PMID: 26243145 PMCID: PMC4531540 DOI: 10.1186/s13058-015-0621-0] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/21/2015] [Indexed: 01/21/2023] Open
Abstract
Introduction The immune system plays a major role in cancer progression. In solid tumors, 5-40 % of the tumor mass consists of tumor-associated macrophages (TAMs) and there is usually a correlation between the number of TAMs and poor prognosis, depending on the tumor type. TAMs usually resemble M2 macrophages. Unlike M1-macrophages which have pro-inflammatory and anti-cancer functions, M2-macrophages are immunosuppressive, contribute to the matrix-remodeling, and hence favor tumor growth. The role of TAMs is not fully understood in breast cancer progression. Methods Macrophage infiltration (CD68) and activation status (HLA-DRIIα, CD163) were evaluated in a large cohort of human primary breast tumors (562 tissue microarray samples), by immunohistochemistry and scored by automated image analysis algorithms. Survival between groups was compared using the Kaplan-Meier life-table method and a Cox multivariate proportional hazards model. Macrophage education by breast cancer cells was assessed by ex vivo differentiation of peripheral blood mononuclear cells (PBMCs) in the presence or absence of breast cancer cell conditioned media (MDA-MB231, MCF-7 or T47D cell lines) and M1 or M2 inducing cytokines (respectively IFN-γ, IL-4 and IL-10). Obtained macrophages were analyzed by flow cytometry (CD14, CD16, CD64, CD86, CD200R and CD163), ELISA (IL-6, IL-8, IL-10, monocyte colony stimulating factor M-CSF) and zymography (matrix metalloproteinase 9, MMP-9). Results Clinically, we found that high numbers of CD163+ M2-macrophages were strongly associated with fast proliferation, poor differentiation, estrogen receptor negativity and histological ductal type (p<0.001) in the studied cohort of human primary breast tumors. We demonstrated ex vivo that breast cancer cell-secreted factors modulate macrophage differentiation toward the M2 phenotype. Furthermore, the more aggressive mesenchymal-like cell line MDA-MB231, which secretes high levels of M-CSF, skews macrophages toward the more immunosuppressive M2c subtype. Conclusions This study demonstrates that human breast cancer cells influence macrophage differentiation and that TAM differentiation status correlates with recurrence free survival, thus further emphasizing that TAMs can similarly affect therapy efficacy and patient outcome. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0621-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofia Sousa
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Régis Brion
- INSERM, UMR957, Equipe LIGUE 2012, Nantes, F-44035, France. .,Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, F-44035, France. .,CHU de Nantes, Nantes, F-44035, France.
| | - Minnamaija Lintunen
- Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Turku, Finland.
| | - Pauliina Kronqvist
- Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Turku, Finland.
| | - Jouko Sandholm
- Cell Imaging Core, Turku Centre for Biotechnology, University of Turku, and Åbo Akademi University, Turku, Finland.
| | - Jukka Mönkkönen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | | | - Susanna Lauttia
- Laboratory of Molecular Oncology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| | - Olli Tynninen
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki, Finland.
| | - Heikki Joensuu
- Laboratory of Molecular Oncology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland. .,Comprehensive Cancer Center, Helsinki University Hospital, and Department of Oncology, University of Helsinki, Helsinki, Finland.
| | - Dominique Heymann
- INSERM, UMR957, Equipe LIGUE 2012, Nantes, F-44035, France. .,Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, F-44035, France. .,CHU de Nantes, Nantes, F-44035, France.
| | - Jorma A Määttä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Turku, Finland.
| |
Collapse
|
156
|
P2Y2R activation by nucleotides released from the highly metastatic breast cancer cell MDA-MB-231 contributes to pre-metastatic niche formation by mediating lysyl oxidase secretion, collagen crosslinking, and monocyte recruitment. Oncotarget 2015; 5:9322-34. [PMID: 25238333 PMCID: PMC4253437 DOI: 10.18632/oncotarget.2427] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tumor microenvironmental hypoxia induces hypoxia inducible factor-1α (HIF-1α) overexpression, leading to the release of lysyl oxidase (LOX), which crosslinks collagen at distant sites to facilitate environmental changes that allow cancer cells to easily metastasize. Our previous study showed that activation of the P2Y2 receptor (P2Y2R) by ATP released from MDA-MB-231 cells increased MDA-MB-231 cell invasion through endothelial cells. Therefore, in this study, we investigated the role of P2Y2R in breast cancer cell metastasis to distant sites. ATP or UTP released from hypoxia-treated MDA-MB-231 cells induced HIF-1α expression and LOX secretion by the activation of P2Y2R, and this phenomenon was significantly reduced in P2Y2R-depleted MDA-MB-231 cells. Furthermore, P2Y2R-mediated LOX release induced collagen crosslinking in an in vitro model. Finally, nude mice injected with MDA-MB-231 cells showed high levels of LOX secretion, crosslinked collagen and CD11b+ BMDC recruitment in the lung; however, mice that were injected with P2Y2R-depleted MDA-MB-231 cells did not exhibit these changes. These results demonstrate that P2Y2R plays an important role in activation of the HIF-1α-LOX axis, the induction of collagen crosslinking and the recruitment of CD11b+ BMDCs. Furthermore, P2Y2R activation by nucleotides recruits THP-1 monocytes, resulting in primary tumor progression and pre-metastatic niche formation.
Collapse
|
157
|
Liu Y, O'Leary CE, Wang LCS, Bhatti TR, Dai N, Kapoor V, Liu P, Mei J, Guo L, Oliver PM, Albelda SM, Worthen GS. CD11b+Ly6G+ cells inhibit tumor growth by suppressing IL-17 production at early stages of tumorigenesis. Oncoimmunology 2015; 5:e1061175. [PMID: 26942073 PMCID: PMC4760327 DOI: 10.1080/2162402x.2015.1061175] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 01/16/2023] Open
Abstract
Neutrophils are important innate immune cells involved in microbial clearance at the sites of infection. However, their role in cancer development is unclear. We hypothesized that neutrophils mediate antitumor effects in early tumorigenesis. To test this, we first studied the cytotoxic effects of neutrophils in vitro. Neutrophils were cytotoxic against tumor cells, with neutrophils isolated from tumor-bearing mice trending to have increased cytotoxic activities. We then injected an ELR+ CXC chemokine-producing tumor cell line into C57BL/6 and Cxcr2−/− mice, the latter lacking the receptors for neutrophil chemokines. We observed increased tumor growth in Cxcr2−/− mice. As expected, tumors from Cxcr2−/− mice contained fewer neutrophils. Surprisingly, these tumors also contained fewer CD8+ T cells, but more IL-17-producing cells. Replenishment of functional neutrophils was correlated with decreased IL-17-producing cells, increased CD8+ T cells, and decreased tumor size in Cxcr2−/− mice, while depletion of neutrophils in C57BL/6 mice showed the opposite effects. Results from a non-ELR+ CXC chemokine producing tumor further supported that functional neutrophils indirectly mediate tumor control by suppressing IL-17A production. We further studied the correlation of IL-17A and CD8+ T cells in vitro. IL-17A suppressed proliferation and IFNγ production of CD8+ T cells, while CD11b+Ly6G+ neutrophils did not suppress CD8+ T cell function. Taken together, these data demonstrate that, while neutrophils could control tumor growth by direct cytotoxic effects, the primary mechanism by which neutrophils exert antitumor effects is to regulate IL-17 production, through which they indirectly promote CD8+ T cell responses.
Collapse
Affiliation(s)
- Yuhong Liu
- Division of Neonatology; Children's Hospital of Philadelphia ; Philadelphia, PA USA
| | - Claire E O'Leary
- Perelman School of Medicine; University of Pennsylvania ; Philadelphia, PA USA
| | - Liang-Chuan S Wang
- Division of Pulmonary; Allergy and Critical Care Medicine; Department of Medicine; Perelman School of Medicine at the University of Pennsylvania ; Philadelphia, PA USA
| | - Tricia R Bhatti
- Department of Pathology and Laboratory Medicine; Children's Hospital of Philadelphia ; Philadelphia, PA USA
| | - Ning Dai
- Division of Neonatology; Children's Hospital of Philadelphia ; Philadelphia, PA USA
| | - Veena Kapoor
- Division of Pulmonary; Allergy and Critical Care Medicine; Department of Medicine; Perelman School of Medicine at the University of Pennsylvania ; Philadelphia, PA USA
| | - Peihui Liu
- Department of Pediatrics; Affiliated Shenzhen Maternity & Healthcare Hospital of Southern Medical University ; Shenzhen, China
| | - Junjie Mei
- Division of Neonatology; Children's Hospital of Philadelphia; Philadelphia, PA USA; Institute of Medical Biology; Chinese Academy of Medical Sciences; Peking Union Medical College; Kunming, Yunnan Province, P. R. China
| | - Lei Guo
- Institute of Medical Biology; Chinese Academy of Medical Sciences; Peking Union Medical College ; Kunming, Yunnan Province, P. R. China
| | - Paula M Oliver
- Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA; Cell Pathology Division; Department of Pathology and Laboratory Medicine; Children's Hospital of Philadelphia; Philadelphia, PA USA
| | - Steven M Albelda
- Division of Pulmonary; Allergy and Critical Care Medicine; Department of Medicine; Perelman School of Medicine at the University of Pennsylvania ; Philadelphia, PA USA
| | - G Scott Worthen
- Division of Neonatology; Children's Hospital of Philadelphia; Philadelphia, PA USA; Department of Pediatrics; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
158
|
Khan MA, Assiri AM, Broering DC. Complement and macrophage crosstalk during process of angiogenesis in tumor progression. J Biomed Sci 2015. [PMID: 26198107 PMCID: PMC4511526 DOI: 10.1186/s12929-015-0151-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The complement system, which contains some of the most potent pro-inflammatory mediators in the tissue including the anaphylatoxins C3a and C5a are the vital parts of innate immunity. Complement activation seems to play a more critical role in tumor development, but little attention has been given to the angiogenic balance of the activated complement mediators and macrophage polarization during tumor progression. The tumor growth mainly supported by the infiltration of M2- tumor-associated macrophages, and high levels of C3a and C5a, whereas M1-macrophages contribute to immune-mediated tumor suppression. Macrophages express a cognate receptors for both C3a and C5a on their cell surface, and specific binding of C3a and C5a affects the functional modulation and angiogenic properties. Activation of complement mediators induce angiogenesis, favors an immunosuppressive microenvironment, and activate cancer-associated signaling pathways to assist chronic inflammation. In this review manuscript, we highlighted the specific roles of complement activation and macrophage polarization during uncontrolled angiogenesis in tumor progression, and therefore blocking of complement mediators would be an alternative therapeutic option for treating cancer.
Collapse
Affiliation(s)
- M Afzal Khan
- Department Comparative Medicine, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia.
| | - A M Assiri
- Department Comparative Medicine, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia
| | - D C Broering
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
159
|
Beirão BCB, Raposo T, Pang LY, Argyle DJ. Canine mammary cancer cells direct macrophages toward an intermediate activation state between M1/M2. BMC Vet Res 2015; 11:151. [PMID: 26174804 PMCID: PMC4502937 DOI: 10.1186/s12917-015-0473-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/08/2015] [Indexed: 01/03/2023] Open
Abstract
Background Canine mammary carcinoma is the most common cancer in female dogs and is often fatal due to the development of distance metastasis. The microenvironment of a tumour often contains abundant infiltrates of macrophages called tumour-associated macrophages (TAMs). TAMs express an activated phenotype, termed M2, which sustains proliferation of cancer cells, and has been correlated with poor clinical outcomes in human cancer patients. Cancer cells themselves have been implicated in stimulating the conversion of macrophages to a TAM with an M2 phenotype. This process has yet to be fully elucidated. Here we investigate the interplay between cancer cells and macrophages in the context of canine mammary carcinoma. Results We show that cancer cells inhibit lipopolysaccharide (LPS)-induced macrophage activation. Further, we show that macrophage associated proteins, colony-stimulating factor (CSF)-1 and C-C motif ligand (CCL)-2, stimulate macrophages and are responsible for the effects of cancer cells on macrophages. We suggest the existence of a feedback loop between macrophages and cancer cells; while cancer cells influence the phenotype of the TAMs through CSF-1 and CCL2, the macrophages induce canine mammary cancer cells to upregulate their own expression of the receptors for CSF-1 and CCL2 and increase the cancer cellular metabolic activity. However, these cytokines in isolation induce a phenotypic state in macrophages that is between M1 and M2 phenotypes. Conclusions Overall, our results demonstrate the extent to which canine mammary carcinoma cells influence the macrophage phenotype and the relevance of a feedback loop between these cells, involving CSF-1 and CCL2 as important mediators. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0473-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Breno C B Beirão
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| | - Teresa Raposo
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK. .,Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal.
| | - Lisa Y Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| | - David J Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| |
Collapse
|
160
|
Exposure of tumor-associated macrophages to apoptotic MCF-7 cells promotes breast cancer growth and metastasis. Int J Mol Sci 2015; 16:11966-82. [PMID: 26016502 PMCID: PMC4490423 DOI: 10.3390/ijms160611966] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/26/2022] Open
Abstract
Tumor-associated macrophages (TAMs) have been found to be associated with the progression and metastasis of breast cancer. To clarify the mechanisms underlying the crosstalk between TAMs and cancer stem cells (CSCs) in breast cancer recurrence and metastasis, we used a co-culture model of macrophages and apoptotic human breast cancer cell line MCF-7 cells to investigate the effects of TAMs on MCF-7 in vitro and in vivo. Macrophages co-cultured with apoptotic MCF-7 had increased tumor growth and metastatic ability in a nude mouse transplantation assay. The macrophages exposed to apoptotic cells also induce an increase in the proportion of CD44+/CD24− cancer stem-like cells, as well as their proliferative ability accompanied with an increase in mucin1 (MUC1) expression. During this process, macrophages secreted increased amounts of interleukin 6 (IL-6) leading to increased phosphorylation of signal transducers and activators of transcription 3 (STAT3), which likely explains the increased transcription of STAT3 target genes such as TGF-β1 and HIF-1α. Our results indicate that when cancer cells endure chemotherapy induced apoptosis, macrophages in their microenvironment can then activate cancer stem cells to promote cancer growth and metastasis by secreting IL-6, which activates STAT3 phosphorylation to regulate the transcription of its downstream target genes.
Collapse
|
161
|
Expression of folate receptors alpha and beta in normal and cancerous gynecologic tissues: correlation of expression of the beta isoform with macrophage markers. J Ovarian Res 2015; 8:29. [PMID: 25971554 PMCID: PMC4464638 DOI: 10.1186/s13048-015-0156-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/05/2015] [Indexed: 12/22/2022] Open
Abstract
Background Folate receptor alpha (FOLR1/FRA) is expressed in a number of epithelial cancers and in particular epithelial ovarian cancer (EOC), especially of the serous histotype. Recent studies have shown that EOC originates from the fallopian tube fimbriae rather than from epithelial cells lining the ovary. We have previously shown by immunohistochemistry a strong correlation between FRA expression in EOC and normal and fallopian adenocarcinoma. Folate receptor beta (FOLR2/FRB) has been described to be expressed by macrophages both in inflammatory disorders and certain epithelial cancers. Given the high sequence identity of these two folate receptor family members we sought to investigate the architectural and cell-specific expression of these two receptors in gynecologic tissues. Methods RNA scope, a novel chromogenic in situ hybridization assay tool, was used to examine expression of the alpha (FOLR1) and beta (FOLR2) isoforms of folate receptor relative to each other as well as to the macrophage markers CD11b and CD68, in samples of normal fallopian tube and fallopian adenocarcinoma as well as normal ovary and EOC. Results We demonstrated expression of both FOLR1 and FOLR2 in EOC, normal fallopian tube and fallopian adenocarcinoma tissue while very little expression of either marker was observed in normal ovary. Furthermore, FOLR2 was shown to be expressed almost exclusively in macrophages, of both the M1 and M2 lineages, as determined by co-expression of CD11b and/or CD68, with little or no expression in epithelial cells. Conclusions These findings further substantiate the hypothesis that the cell of origin of EOC is tubal epithelium and that the beta isoform of folate receptor is primarily restricted to macrophages. Further, macrophages expressing FOLR2 may represent tumor associated or infiltrating macrophages (TAMs) in epithelial cancers.
Collapse
|
162
|
Acerbi I, Cassereau L, Dean I, Shi Q, Au A, Park C, Chen YY, Liphardt J, Hwang ES, Weaver VM. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol (Camb) 2015; 7:1120-34. [PMID: 25959051 DOI: 10.1039/c5ib00040h] [Citation(s) in RCA: 691] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumors are stiff and data suggest that the extracellular matrix stiffening that correlates with experimental mammary malignancy drives tumor invasion and metastasis. Nevertheless, the relationship between tissue and extracellular matrix stiffness and human breast cancer progression and aggression remains unclear. We undertook a biophysical and biochemical assessment of stromal-epithelial interactions in noninvasive, invasive and normal adjacent human breast tissue and in breast cancers of increasingly aggressive subtype. Our analysis revealed that human breast cancer transformation is accompanied by an incremental increase in collagen deposition and a progressive linearization and thickening of interstitial collagen. The linearization of collagen was visualized as an overall increase in tissue birefringence and was most striking at the invasive front of the tumor where the stiffness of the stroma and cellular mechanosignaling were the highest. Amongst breast cancer subtypes we found that the stroma at the invasive region of the more aggressive Basal-like and Her2 tumor subtypes was the most heterogeneous and the stiffest when compared to the less aggressive luminal A and B subtypes. Intriguingly, we quantified the greatest number of infiltrating macrophages and the highest level of TGF beta signaling within the cells at the invasive front. We also established that stroma stiffness and the level of cellular TGF beta signaling positively correlated with each other and with the number of infiltrating tumor-activated macrophages, which was highest in the more aggressive tumor subtypes. These findings indicate that human breast cancer progression and aggression, collagen linearization and stromal stiffening are linked and implicate tissue inflammation and TGF beta.
Collapse
Affiliation(s)
- I Acerbi
- Center for Bioengineering, Tissue Regeneration, Department of Surgery, UCSF, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Abstract
Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case–control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship.
Collapse
|
164
|
Fabian CJ, Kimler BF, Hursting SD. Omega-3 fatty acids for breast cancer prevention and survivorship. Breast Cancer Res 2015. [PMID: 25936773 DOI: 10.1186/s13058-015-0571-6/tables/3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case-control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship.
Collapse
Affiliation(s)
- Carol J Fabian
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
165
|
Zaragozá R, García-Trevijano ER, Lluch A, Ribas G, Viña JR. Involvement of Different networks in mammary gland involution after the pregnancy/lactation cycle: Implications in breast cancer. IUBMB Life 2015; 67:227-38. [PMID: 25904072 DOI: 10.1002/iub.1365] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/03/2015] [Indexed: 11/06/2022]
Abstract
Early pregnancy is associated with a reduction in a woman's lifetime risk for breast cancer. However, different studies have demonstrated an increase in breast cancer risk in the years immediately following pregnancy. Early and long-term risk is even higher if the mother age is above 35 years at the time of first parity. The proinflammatory microenvironment within the mammary gland after pregnancy renders an "ideal niche" for oncogenic events. Signaling pathways involved in programmed cell death and tissue remodeling during involution are also activated in breast cancer. Herein, the major signaling pathways involved in mammary gland involution, signal transducer and activator of transcription (STAT3), nuclear factor-kappa B (NF-κB), transforming growth factor beta (TGFβ), and retinoid acid receptors (RARs)/retinoid X receptors (RXRs), are reviewed as part of the complex network of signaling pathways that crosstalk in a contextual-dependent manner. These factors, also involved in breast cancer development, are important regulatory nodes for signaling amplification after weaning. Indeed, during involution, p65/p300 target genes such as MMP9, Capn1, and Capn2 are upregulated. Elevated expression and activities of these proteases in breast cancer have been extensively documented. The role of these proteases during mammary gland involution is further discussed. MMPs, calpains, and cathepsins exert their effect by modification of the extracellular matrix and intracellular proteins. Calpains, activated in the mammary gland during involution, cleave several proteins located in cell membrane, lysosomes, mitochondria, and nuclei favoring cell death. Besides, during this period, Capn1 is most probably involved in the modulation of preadipocyte differentiation through chromatin remodeling. Calpains can be implicated in cell anchoring loss, providing a proper microenvironment for tumor growth. A better understanding of the role of any of these proteases in tumorigenesis may yield novel therapeutic targets or prognostic markers for breast cancer.
Collapse
Affiliation(s)
- Rosa Zaragozá
- Instituto INCLIVA, Facultad de Medicina/Hospital Clínico, Universidad de Valencia, Valencia, Spain
| | - Elena R García-Trevijano
- Instituto INCLIVA, Facultad de Medicina/Hospital Clínico, Universidad de Valencia, Valencia, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Ana Lluch
- Instituto INCLIVA, Facultad de Medicina/Hospital Clínico, Universidad de Valencia, Valencia, Spain.,Servicio Oncología Médica, Hospital Clínico Universitario Valencia, Valencia, Spain
| | - Gloria Ribas
- Instituto INCLIVA, Facultad de Medicina/Hospital Clínico, Universidad de Valencia, Valencia, Spain.,Servicio Oncología Médica, Hospital Clínico Universitario Valencia, Valencia, Spain
| | - Juan R Viña
- Instituto INCLIVA, Facultad de Medicina/Hospital Clínico, Universidad de Valencia, Valencia, Spain.,Servicio Oncología Médica, Hospital Clínico Universitario Valencia, Valencia, Spain
| |
Collapse
|
166
|
Bradford JW, Baldwin AS. IKK/nuclear factor-kappaB and oncogenesis: roles in tumor-initiating cells and in the tumor microenvironment. Adv Cancer Res 2015; 121:125-145. [PMID: 24889530 DOI: 10.1016/b978-0-12-800249-0.00003-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The IKK/nuclear factor-kappaB pathway (NF-κB) is critical in proper immune function, cell survival, apoptosis, cellular proliferation, synaptic plasticity, and even memory. While NF-κB is crucial for both innate and adaptive immunity, defective regulation of this master transcriptional regulator is seen in a variety of diseases including autoimmune disease, neurodegenerative disease, and, important to this review, cancer. While NF-κB functions in cancer to promote a number of critical oncogenic functions, here we discuss the importance of the NF-κB signaling pathway in contributing to cancer through promotion of the tumor microenvironment and through maintenance/expansion of tumor-initiating cells, processes that appear to be functionally interrelated.
Collapse
Affiliation(s)
- Jennifer W Bradford
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
167
|
Behmoaras J, Diaz AG, Venda L, Ko JH, Srivastava P, Montoya A, Faull P, Webster Z, Moyon B, Pusey CD, Abraham DJ, Petretto E, Cook TH, Aitman TJ. Macrophage epoxygenase determines a profibrotic transcriptome signature. THE JOURNAL OF IMMUNOLOGY 2015; 194:4705-4716. [PMID: 25840911 DOI: 10.4049/jimmunol.1402979] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/03/2015] [Indexed: 12/20/2022]
Abstract
Epoxygenases belong to the cytochrome P450 family. They generate epoxyeicosatrienoic acids, which are known to have anti-inflammatory effects, but little is known about their role in macrophage function. By high-throughput sequencing of RNA in primary macrophages derived from rodents and humans, we establish the relative expression of epoxygenases in these cells. Zinc-finger nuclease-mediated targeted gene deletion of the major rat macrophage epoxygenase Cyp2j4 (ortholog of human CYP2J2) resulted in reduced epoxyeicosatrienoic acid synthesis. Cyp2j4(-/-) macrophages have relatively increased peroxisome proliferator-activated receptor-γ levels and show a profibrotic transcriptome, displaying overexpression of a specific subset of genes (260 transcripts) primarily involved in extracellular matrix, with fibronectin being the most abundantly expressed transcript. Fibronectin expression is under the control of epoxygenase activity in human and rat primary macrophages. In keeping with the in vitro findings, Cyp2j4(-/-) rats show upregulation of type I collagen following unilateral ureter obstruction of the kidney, and quantitative proteomics analysis (liquid chromatography-tandem mass spectrometry) showed increased renal type I collagen and fibronectin protein abundance resulting from experimentally induced crescentic glomerulonephritis in these rats. Taken together, these results identify the rat epoxygenase Cyp2j4 as a determinant of a profibrotic macrophage transcriptome that could have implications in various inflammatory conditions, depending on macrophage function.
Collapse
Affiliation(s)
- Jacques Behmoaras
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, W12 0NN, London, UK
| | - Ana Garcia Diaz
- Physiological Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK
| | - Lara Venda
- Physiological Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK
| | - Jeong-Hun Ko
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, W12 0NN, London, UK
| | - Prashant Srivastava
- Integrative Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK and Duke-NUS Graduate Medical School Singapore. 8 College Road, 169857 Singapore, Republic of Singapore
| | - Alex Montoya
- Biological Mass Spectrometry and Proteomics Laboratory, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK
| | - Peter Faull
- Biological Mass Spectrometry and Proteomics Laboratory, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK
| | - Zoe Webster
- ES Cell and Transgenics Facility, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK
| | - Ben Moyon
- ES Cell and Transgenics Facility, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK
| | - Charles D Pusey
- Renal Section, Department of Medicine, Imperial College London, Hammersmith Campus, London, UK
| | - David J Abraham
- Centre for Rheumatology & Connective Tissue Diseases, University College London Medical School, London, UK
| | - Enrico Petretto
- Integrative Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK and Duke-NUS Graduate Medical School Singapore. 8 College Road, 169857 Singapore, Republic of Singapore
| | - Terence H Cook
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, W12 0NN, London, UK
| | - Timothy J Aitman
- Physiological Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK.,Institute of Genetics & Molecular Medicine, University of Edinburgh, EH4 2XU, UK
| |
Collapse
|
168
|
Nienhuis H, Gaykema S, Timmer-Bosscha H, Jalving M, Brouwers A, Lub-de Hooge M, van der Vegt B, Overmoyer B, de Vries E, Schröder C. Targeting breast cancer through its microenvironment: Current status of preclinical and clinical research in finding relevant targets. Pharmacol Ther 2015; 147:63-79. [DOI: 10.1016/j.pharmthera.2014.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 12/31/2022]
|
169
|
Sun X, Gao D, Gao L, Zhang C, Yu X, Jia B, Wang F, Liu Z. Molecular imaging of tumor-infiltrating macrophages in a preclinical mouse model of breast cancer. Theranostics 2015; 5:597-608. [PMID: 25825599 PMCID: PMC4377728 DOI: 10.7150/thno.11546] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/05/2015] [Indexed: 01/16/2023] Open
Abstract
Significant evidence has indicated that tumor-associated macrophages (TAMs) play a critical role in the proliferation, invasion, angiogenesis, and metastasis of a variety of human carcinomas. In this study, we investigated whether near-infrared fluorescence (NIRF) imaging using a macrophage mannose receptor (MMR; CD206)-targeting agent could be used to noninvasively visualize and quantify changes in TAMs in vivo. The CD206-targeting NIRF agent, Dye-anti-CD206, was prepared and characterized in vitro and in vivo. By using NIRF imaging, we were able to noninvasively image tumor-infiltrating macrophages in the 4T1 mouse breast cancer model. Importantly, longitudinal NIRF imaging revealed the depletion of macrophages in response to zoledronic acid (ZA) treatment. However, ZA alone did not lead to the inhibition of 4T1 tumor growth. We therefore combined anti-macrophage ZA therapy and tumor cytotoxic docetaxel (DTX) therapy in the mouse model. The results demonstrated that this combination strategy could significantly inhibit tumor growth as well as tumor metastasis to the lungs. Based on these findings, we concluded that CD206-targeted molecular imaging can sensitively detect the dynamic changes in tumor-infiltrating macrophages, and that the combination of macrophage depletion and cytotoxic therapy is a promising strategy for the effective treatment of solid tumors.
Collapse
|
170
|
Komohara Y, Niino D, Ohnishi K, Ohshima K, Takeya M. Role of tumor-associated macrophages in hematological malignancies. Pathol Int 2015; 65:170-6. [PMID: 25707506 DOI: 10.1111/pin.12259] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/03/2015] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment consists of many non-tumor cells such as leukocytes, endothelial cells, and fibroblasts, and phenotypic changes in a tumor microenvironment are believed to be involved in tumor progression and resistance to anticancer treatments. In hematological malignancies, tumor-associated macrophages (TAMs) that have infiltrated lymphoma or leukemia tissues may be involved in tumor progression, and many researchers have studied phenotypic changes in TAMs. This review article summarizes the publications related to TAMs in hematological malignancies, with an emphasis on CD163(+) protumoral TAMs, which seem to be associated with disease progression. Cell-cell interactions between protumoral TAMs and lymphoma or leukemia cells may play an important role in lymphoma or leukemia microenvironments. Although detailed molecular mechanisms of these cell-cell interactions have not yet been clarified, phenotypic characterization of TAMs is thought to be a useful approach for evaluating clinical prognosis. In addition, targeting TAMs may be a new strategy for treating malignant hematological diseases.
Collapse
Affiliation(s)
- Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | |
Collapse
|
171
|
Chen S, Zhang Q, Zeng L, Lian G, Li J, Qian C, Chen Y, Chen Y, Huang K. Distribution and clinical significance of tumour-associated macrophages in pancreatic ductal adenocarcinoma: a retrospective analysis in China. Curr Oncol 2015; 22:e11-9. [PMID: 25684992 PMCID: PMC4324348 DOI: 10.3747/co.22.2150] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND We aimed to characterize the localization and prognostic significance of tumour-associated macrophages (tams) in pancreatic ductal adenocarcinoma (pdac). METHODS Tumour specimens from 70 patients with pdac and inflammatory specimens from 13 patients with chronic pancreatitis were collected and analyzed for tam and M2 macrophage counts by immunohistochemistry. Correlations between tam distributions and clinicopathologic features were determined. RESULTS Immunohistochemical analysis showed that tam and M2 macrophage counts were higher in tissues from pdac than from chronic pancreatitis. The tams and M2 macrophages both infiltrated more into peritumour. Both macrophage types were positively associated with lymph node metastasis (p = 0.041 for tams in peritumour, p = 0.013 for M2 macrophages in introtumour, p = 0.006 for M2 macrophage in peritumour). In addition, abdominal pain was significantly more frequent in pdac patients with a greater tams count. The survival rate was much lower in patients having high infiltration by M2 macrophages than in those having low infiltration. CONCLUSIONS The tam count might be associated with neural invasion in pdac, and M2 macrophages might play an important role in lymph node metastasis. Higher counts of either macrophage type were associated with increased risk of lymph node metastasis, and the M2 macrophage count could potentially be a marker for evaluating prognosis.
Collapse
Affiliation(s)
- S.J. Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Q.B. Zhang
- Department of Gastroenterology, Lihuili Hospital of Ningbo Medical Center, Ningbo, PR China
| | - L.J. Zeng
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, PR China
| | - G.D. Lian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - J.J. Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - C.C. Qian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Y.Z. Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Y.T. Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - K.H. Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
172
|
Santander AM, Lopez-Ocejo O, Casas O, Agostini T, Sanchez L, Lamas-Basulto E, Carrio R, Cleary MP, Gonzalez-Perez RR, Torroella-Kouri M. Paracrine Interactions between Adipocytes and Tumor Cells Recruit and Modify Macrophages to the Mammary Tumor Microenvironment: The Role of Obesity and Inflammation in Breast Adipose Tissue. Cancers (Basel) 2015; 7:143-78. [PMID: 25599228 PMCID: PMC4381255 DOI: 10.3390/cancers7010143] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/05/2015] [Indexed: 01/11/2023] Open
Abstract
The relationship between obesity and breast cancer (BC) has focused on serum factors. However, the mammary gland contains adipose tissue (AT) which may enable the crosstalk between adipocytes and tumor cells contributing to tumor macrophage recruitment. We hypothesize that the breast AT (bAT) is inflamed in obese females and plays a major role in breast cancer development. The effects of this interplay on macrophage chemotaxis were examined in vitro, using co-cultures of mouse macrophages, mammary tumor cells and adipocytes. Macrophages were exposed to the adipocyte and tumor paracrine factors leptin, CCL2 and lauric acid (alone or in combinations). In cell supernatants Luminex identified additional molecules with chemotactic and other pro-tumor functions. Focus on the adipokine leptin, which has been shown to have a central role in breast cancer pathogenesis, indicated it modulates macrophage phenotypes and functions. In vivo experiments demonstrate that mammary tumors from obese mice are larger and that bAT from obese tumor-bearers contains higher numbers of macrophages/CLS and hypertrophic adipocytes than bAT from lean tumor-bearers, thus confirming it is more inflamed. Also, bAT distal from the tumor is more inflamed in obese than in lean mice. Our results reveal that bAT plays a role in breast cancer development in obesity.
Collapse
Affiliation(s)
- Ana M Santander
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA.
| | - Omar Lopez-Ocejo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA.
| | - Olivia Casas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA.
| | - Thais Agostini
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA.
| | - Lidia Sanchez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA.
| | - Eduardo Lamas-Basulto
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA.
| | - Roberto Carrio
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA.
| | - Margot P Cleary
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| | - Ruben R Gonzalez-Perez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30314, USA.
| | - Marta Torroella-Kouri
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA.
| |
Collapse
|
173
|
Burke K, Brown E. The Use of Second Harmonic Generation to Image the Extracellular Matrix During Tumor Progression. INTRAVITAL 2015; 3:e984509. [PMID: 28243512 DOI: 10.4161/21659087.2014.984509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 03/11/2014] [Indexed: 01/25/2023]
Abstract
Metastasis is the leading cause of cancer mortality, resulting from changes in the tumor microenvironment which increases tumor cell migration, dispersal to distant organs, and subsequent survival. This is accompanied by changes in tumor collagen which may allow cells to travel more efficiently away from a primary tumor and invade the surrounding tissue. Second Harmonic generation (SHG) is an intrinsic optical signal that has expanded our understanding of collagen evolution throughout tumor progression. This article addresses current research into tumor progression using SHG, as well as the future prospects of using SHG to advance our understanding of the tumor microenvironment.
Collapse
Affiliation(s)
- Kathleen Burke
- Department of Biomedical Engineering; University of Rochester ; Rochester, NY USA
| | - Edward Brown
- Department of Biomedical Engineering; University of Rochester ; Rochester, NY USA
| |
Collapse
|
174
|
Liu S, Jin K, Hui Y, Fu J, Jie C, Feng S, Reisman D, Wang Q, Fan D, Sukumar S, Chen H. HOXB7 promotes malignant progression by activating the TGFβ signaling pathway. Cancer Res 2014; 75:709-19. [PMID: 25542862 DOI: 10.1158/0008-5472.can-14-3100] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Overexpression of HOXB7 in breast cancer cells induces an epithelial-mesenchymal transition and promotes tumor progression and lung metastasis. However, the underlying mechanisms for HOXB7-induced aggressive phenotypes in breast cancer remain largely unknown. Here, we report that phosphorylation of SMAD3 was detected in a higher percentage in primary mammary tumor tissues from double-transgenic MMTV-Hoxb7/Her2 mice than tumors from single-transgenic Her2/neu mice, suggesting activation of TGFβ/SMAD3 signaling by HOXB7 in breast tumor tissues. As predicted, TGFβ2 was high in four MMTV-Hoxb7/Her2 transgenic mouse tumor cell lines and two breast cancer cell lines transfected with HOXB7, whereas TGFβ2 was low in HOXB7-depleted cells. HOXB7 directly bound to and activated the TGFβ2 promoter in luciferase and chromatin immunoprecipitation assays. Increased migration and invasion as a result of HOXB7 overexpression in breast cancer cells were reversed by knockdown of TGFβ2 or pharmacologic inhibition of TGFβ signaling. Furthermore, knockdown of TGFβ2 in HOXB7-overexpressing MDA-MB-231 breast cancer cells dramatically inhibited metastasis to the lung. Interestingly, HOXB7 overexpression also induced tumor-associated macrophage (TAM) recruitment and acquisition of an M2 tumor-promoting phenotype. TGFβ2 mediated HOXB7-induced activation of macrophages, suggesting that TAMs may contribute to HOXB7-promoted tumor metastasis. Providing clinical relevance to these findings, by real-time PCR analysis, there was a strong correlation between HOXB7 and TGFβ2 expression in primary breast carcinomas. Taken together, our results suggest that HOXB7 promotes tumor progression in a cell-autonomous and non-cell-autonomous manner through activation of the TGFβ signaling pathway.
Collapse
Affiliation(s)
- Shou Liu
- Department of Biological Science, University of South Carolina, Columbia, South Carolina. Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| | - Kideok Jin
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Yvonne Hui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Jie Fu
- Department of Biological Science, University of South Carolina, Columbia, South Carolina. Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| | - Chunfa Jie
- Department of Surgery, Transplant Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sheng Feng
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
| | - David Reisman
- Department of Biological Science, University of South Carolina, Columbia, South Carolina. Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland.
| | - Hexin Chen
- Department of Biological Science, University of South Carolina, Columbia, South Carolina. Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina.
| |
Collapse
|
175
|
Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol 2014; 25:198-213. [PMID: 25540894 DOI: 10.1016/j.tcb.2014.11.006] [Citation(s) in RCA: 522] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 02/08/2023]
Abstract
The tumor microenvironment (TME) not only plays a pivotal role during cancer progression and metastasis but also has profound effects on therapeutic efficacy. In the case of microenvironment-mediated resistance this can involve an intrinsic response, including the co-option of pre-existing structural elements and signaling networks, or an acquired response of the tumor stroma following the therapeutic insult. Alternatively, in other contexts, the TME has a multifaceted ability to enhance therapeutic efficacy. This review examines recent advances in our understanding of the contribution of the TME during cancer therapy and discusses key concepts that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Florian Klemm
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
176
|
Maltseva DV, Galatenko VV, Samatov TR, Zhikrivetskaya SO, Khaustova NA, Nechaev IN, Shkurnikov MU, Lebedev AE, Mityakina IA, Kaprin AD, Schumacher U, Tonevitsky AG. miRNome of inflammatory breast cancer. BMC Res Notes 2014; 7:871. [PMID: 25471792 PMCID: PMC4289319 DOI: 10.1186/1756-0500-7-871] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/28/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is an extremely malignant form of breast cancer which can be easily misdiagnosed. Conclusive prognostic IBC molecular biomarkers which are also providing the perspectives for targeted therapy are lacking so far. The aim of this study was to reveal the IBC-specific miRNA expression profile and to evaluate its association with clinicopathological parameters. METHODS miRNA expression profiles of 13 IBC and 17 non-IBC patients were characterized using comprehensive Affymetrix GeneChip miRNA 3.0 microarray platform. Bioinformatic analysis was used to reveal IBC-specific miRNAs, deregulated pathways and potential miRNA targets. RESULTS 31 differentially expressed miRNAs characterize IBC and mRNAs regulated by them and their associated pathways can functionally be attributed to IBC progression. In addition, a minimal predictive set of 4 miRNAs characteristic for the IBC phenotype and associated with the TP53 mutational status in breast cancer patients was identified. CONCLUSIONS We have characterized the complete miRNome of inflammatory breast cancer and found differentially expressed miRNAs which reliably classify the patients to IBC and non-IBC groups. We found that the mRNAs and pathways likely regulated by these miRNAs are highly relevant to cancer progression. Furthermore a minimal IBC-related predictive set of 4 miRNAs associated with the TP53 mutational status and survival for breast cancer patients was identified.
Collapse
Affiliation(s)
| | | | - Timur R Samatov
- SRC Bioclinicum, Ugreshskaya str 2/85, 115088 Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
El-Ghonaimy EA, El-Shinawi M, Ibrahim SA, El-Ghazaly H, Abd-El-Tawab R, Nouh MA, El-Mamlouk T, Mohamed MM. Positive lymph-node breast cancer patients - activation of NF-κB in tumor-associated leukocytes stimulates cytokine secretion that promotes metastasis via C-C chemokine receptor CCR7. FEBS J 2014; 282:271-82. [DOI: 10.1111/febs.13124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/23/2014] [Accepted: 10/17/2014] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | - Mohamed A. Nouh
- Department of Pathology; National Cancer institute; Cairo University; Giza Egypt
| | | | | |
Collapse
|
178
|
Ding X, Lucas T, Marcuzzi GP, Pfister H, Eming SA. Distinct Functions of Epidermal and Myeloid-Derived VEGF-A in Skin Tumorigenesis Mediated by HPV8. Cancer Res 2014; 75:330-43. [DOI: 10.1158/0008-5472.can-13-3007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
179
|
Gorczynski RM, Chen Z, Erin N, Khatri I, Podnos A. Comparison of immunity in mice cured of primary/metastatic growth of EMT6 or 4THM breast cancer by chemotherapy or immunotherapy. PLoS One 2014; 9:e113597. [PMID: 25409195 PMCID: PMC4237434 DOI: 10.1371/journal.pone.0113597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/29/2014] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We have compared cure from local/metastatic tumor growth in BALB/c mice receiving EMT6 or the poorly immunogenic, highly metastatic 4THM, breast cancer cells following manipulation of immunosuppressive CD200:CD200R interactions or conventional chemotherapy. METHODS We reported previously that EMT6 tumors are cured in CD200R1KO mice following surgical resection and immunization with irradiated EMT6 cells and CpG oligodeoxynucleotide (CpG), while wild-type (WT) animals developed pulmonary and liver metastases within 30 days of surgery. We report growth and metastasis of both EMT6 and a highly metastatic 4THM tumor in WT mice receiving iv infusions of Fab anti-CD200R1 along with CpG/tumor cell immunization. Metastasis was followed both macroscopically (lung/liver nodules) and microscopically by cloning tumor cells at limiting dilution in vitro from draining lymph nodes (DLN) harvested at surgery. We compared these results with local/metastatic tumor growth in mice receiving 4 courses of combination treatment with anti-VEGF and paclitaxel. RESULTS In WT mice receiving Fab anti-CD200R, no tumor cells are detectable following immunotherapy, and CD4+ cells produced increased TNFα/IL-2/IFNγ on stimulation with EMT6 in vitro. No long-term cure was seen following surgery/immunotherapy of 4THM, with both microscopic (tumors in DLN at limiting dilution) and macroscopic metastases present within 14 d of surgery. Chemotherapy attenuated growth/metastases in 4THM tumor-bearers and produced a decline in lung/liver metastases, with no detectable DLN metastases in EMT6 tumor-bearing mice-these latter mice nevertheless showed no significantly increased cytokine production after restimulation with EMT6 in vitro. EMT6 mice receiving immunotherapy were resistant to subsequent re-challenge with EMT6 tumor cells, but not those receiving curative chemotherapy. Anti-CD4 treatment caused tumor recurrence after immunotherapy, but produced no apparent effect in either EMT6 or 4THM tumor bearers after chemotherapy treatment. CONCLUSION Immunotherapy, but not chemotherapy, enhances CD4+ immunity and affords long-term control of breast cancer growth and resistance to new tumor foci.
Collapse
MESH Headings
- Animals
- Antibodies/therapeutic use
- Antigens, CD/immunology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Breast Neoplasms/therapy
- CD4 Antigens/immunology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- Cell Line, Tumor
- Female
- Humans
- Immunoglobulin Fab Fragments/therapeutic use
- Immunotherapy
- Interferon-gamma/metabolism
- Interleukin-2/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/prevention & control
- Liver Neoplasms/secondary
- Lung Neoplasms/pathology
- Lung Neoplasms/prevention & control
- Lung Neoplasms/secondary
- Lymph Nodes/pathology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/surgery
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Neoplasm Recurrence, Local/prevention & control
- Oligodeoxyribonucleotides/immunology
- Orexin Receptors/deficiency
- Orexin Receptors/genetics
- Orexin Receptors/metabolism
- Paclitaxel/therapeutic use
- Spleen/cytology
- Spleen/transplantation
- Transplantation, Homologous
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Reginald M. Gorczynski
- University Health Network, Toronto General Hospital, Toronto, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| | - Zhiqi Chen
- University Health Network, Toronto General Hospital, Toronto, Canada
| | - Nuray Erin
- Department of Medical Pharmacology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Ismat Khatri
- University Health Network, Toronto General Hospital, Toronto, Canada
| | - Anna Podnos
- University Health Network, Toronto General Hospital, Toronto, Canada
| |
Collapse
|
180
|
Balducci A, Wen Y, Zhang Y, Helfer BM, Hitchens TK, Meng WS, Wesa AK, Janjic JM. A novel probe for the non-invasive detection of tumor-associated inflammation. Oncoimmunology 2014; 2:e23034. [PMID: 23526711 PMCID: PMC3601170 DOI: 10.4161/onci.23034] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A novel dual-mode contrast agent was formulated through the addition of an optical near infrared (NIR) probe to a perfluorocarbon (PFC)-based 19F magnetic resonance imaging (MRI) agent, which labels inflammatory cells in situ. A single PFC-NIR imaging agent enables both a qualitative, rapid optical monitoring of an inflammatory state and a quantitative, detailed and tissue-depth independent magnetic resonance imaging (MRI). The feasibility of in vivo optical imaging of the inflammatory response was demonstrated in a subcutaneous murine breast carcinoma model. Ex vivo optical imaging was used to quantify the PFC-NIR signal in the tumor and organs, and results correlated well with quantitative 19F NMR analyses of intact tissues. 19F MRI was employed to construct a three-dimensional image of the cellular microenvironment at the tumor site. Flow cytometry of isolated tumor cells was used to identify the cellular localization of the PFC-NIR probe within the tumor microenvironment. Contrast is achieved through the labeling of host cells involved in the immune response, but not tumor cells. The major cellular reservoir of the imaging agent were tumor-infiltrating CD11b+ F4/80low Gr-1low cells, a cell subset sharing immunophenotypic features with myeloid-derived suppressor cells (MDSCs). These cells are recruited to sites of inflammation and are implicated in immune evasion and tumor progression. This PFC-NIR contrast agent coupled to non-invasive, quantitative imaging techniques could serve as a valuable tool for evaluating novel anticancer agents.
Collapse
Affiliation(s)
- Anthony Balducci
- Department of Research and Development; Celsense, Inc.; Pittsburgh, PA USA
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Tumor necrosis factor-alpha-converting enzyme activities and tumor-associated macrophages in breast cancer. Immunol Res 2014; 58:87-100. [PMID: 24072428 DOI: 10.1007/s12026-013-8434-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of the tumor microenvironment especially of tumor-associated macrophages (TAMs) in the progression and metastatic spread of breast cancer is well established. TAMs have primarily a M2 (wound-healing) phenotype with minimal cytotoxic activities. The mechanisms by which tumor cells influence TAMs to display a pro-tumor phenotype are still debated although the key roles of immunomodulatory cytokines released by tumor cells, including colony-stimulating factor 1, tumor necrosis factor (TNF) and soluble TNF receptors 1/2, soluble vascular cell adhesion molecule 1, soluble interleukin 6 receptor and amphiregulin, have been demonstrated. Importantly, these factors are released through ectodomain shedding by the activities of the tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17). The role of TACE activation leading to autocrine effects on tumor progression has been extensively studied. In contrast, limited information is available on the role of tumor cell TACE activities on TAMs in breast cancer. TACE inhibitors, currently in clinical trials, will certainly affect TAMs and subsequently treatment outcomes based on the substrates it releases. Furthermore, whether targeting a subset of the molecules shed by TACE, specifically those leading to TAMs with altered functions and phenotype, holds greater therapeutic promises than past clinical trials of TACE antagonists' remains to be determined. Here, the potential roles of TACE ectodomain shedding in the breast tumor microenvironment are reviewed with a focus on the release of tumor-derived immunomodulatory factors shed by TACE that directs TAM phenotypes and functions.
Collapse
|
182
|
Liverani C, Mercatali L, Spadazzi C, La Manna F, De Vita A, Riva N, Calpona S, Ricci M, Bongiovanni A, Gunelli E, Zanoni M, Fabbri F, Zoli W, Amadori D, Ibrahim T. CSF-1 blockade impairs breast cancer osteoclastogenic potential in co-culture systems. Bone 2014; 66:214-22. [PMID: 24956020 DOI: 10.1016/j.bone.2014.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 06/06/2014] [Accepted: 06/13/2014] [Indexed: 01/10/2023]
Abstract
Metastatic bone disease has a major impact on the morbidity and mortality of breast cancer patients, and studies on bone metastasis biology have led to the development of the most widely used drugs for bone metastases treatment: zoledronate (Zol) and denosumab (Den). The aim of the present study was to assess the effect of soluble mediators produced by breast cancer cells on human osteoclast maturation in a co-culture model. We also tested the ability of zoledronate, denosumab and 5H4, an antibody directed against CSF-1, to interfere with the osteoclastogenic potential of breast cancer. The study was performed on the triple negative cell line MDA-MB-231 and on human osteoclasts obtained from the differentiation of peripheral blood monocytes of a healthy volunteer. Osteoclastogenesis was evaluated by TRAP assay after 14days of differentiation with 10% MDA-MB-231-conditioned media or with CSF-1 and RANKL. Den, Zol and 5H4 were administered after 7days of differentiation. MDA-MB-231-conditioned media doubled the differentiation of monocytes into osteoclasts. MDA-MB-231 secreted CSF-1, especially when cells were cultured to confluence. Induced osteoclasts were sensitive to bone-targeted drugs: Den and 5H4 blocked osteoclast differentiation and survival, while Zol induced osteoclast apoptosis. Osteoclasts differentiated by breast cancer cells were less sensitive to Zol than those induced by differentiation factors, whereas sensitivity to Den was similar. Conversely, breast cancer-induced osteoclast activation resulted in a higher sensitivity to 5H4. A significant increase in CSF-1 secretion was observed in osteoclast precursors after treatment with the highest concentration of Den. Further research is ongoing to evaluate the efficacy of 5H4 combination with Den.
Collapse
Affiliation(s)
- Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014 Meldola, FC, Italy.
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014 Meldola, FC, Italy
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014 Meldola, FC, Italy
| | - Federico La Manna
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014 Meldola, FC, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014 Meldola, FC, Italy
| | - Nada Riva
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014 Meldola, FC, Italy
| | - Sebastiano Calpona
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014 Meldola, FC, Italy
| | - Marianna Ricci
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014 Meldola, FC, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014 Meldola, FC, Italy
| | - Erica Gunelli
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014 Meldola, FC, Italy
| | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014 Meldola, FC, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014 Meldola, FC, Italy
| | - Wainer Zoli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014 Meldola, FC, Italy
| | - Dino Amadori
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014 Meldola, FC, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014 Meldola, FC, Italy
| |
Collapse
|
183
|
Yuan ZY, Luo RZ, Peng RJ, Wang SS, Xue C. High infiltration of tumor-associated macrophages in triple-negative breast cancer is associated with a higher risk of distant metastasis. Onco Targets Ther 2014; 7:1475-80. [PMID: 25187727 PMCID: PMC4149399 DOI: 10.2147/ott.s61838] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is associated with poor prognosis and high probability of distant metastases. Tumor microenvironments play a pivotal role in tumor metastasis. Tumor-associated macrophages (TAMs) are one of the main cell components, and they are correlated with increasing metastatic risk. The aim of this study is to analyze the prognostic significance of the infiltration of TAMs in patients with TNBC. Materials and methods Immunohistochemical staining for cluster of differentiation (CD)68 (a marker for macrophages) was performed on tissue microarrays of operable breast cancer among 287 patients with TNBC, and the number of infiltrating TAMs was correlated with clinicopathological parameters. Results We found that TNBC with a large number of infiltrating TAMs had a significantly higher risk of distant metastasis, as well as lower rates of disease-free survival and overall survival than those with a smaller number of infiltrating TAMs. Multivariate analysis indicated that the number of infiltrating TAMs was a significant independent prognostic factor of disease-free survival (P=0.001) in all patients. Conclusion Our results suggested that high infiltrating TAMs are a significantly unfavorable prognostic factor for patients with TNBC, and they could become a potentially useful prognostic marker for TNBC.
Collapse
Affiliation(s)
- Zhong-Yu Yuan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China ; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China ; Departments of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Rong-Zhen Luo
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China ; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China ; Departments of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Rou-Jun Peng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China ; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China ; Departments of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Shu-Sen Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China ; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China ; Departments of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Cong Xue
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China ; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China ; Departments of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|
184
|
Fridman WH, Remark R, Goc J, Giraldo NA, Becht E, Hammond SA, Damotte D, Dieu-Nosjean MC, Sautès-Fridman C. The immune microenvironment: a major player in human cancers. Int Arch Allergy Immunol 2014; 164:13-26. [PMID: 24852691 DOI: 10.1159/000362332] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer is a major public health issue and figures among the leading causes of death in the world. Cancer development is a long process, involving the mutation, amplification or deletion of genes and chromosomal rearrangements. The transformed cells change morphologically, enlarge, become invasive and finally detach from the primary tumor to metastasize in other organs through the blood and/or lymph. During this process, the tumor cells interact with their microenvironment, which is complex and composed of stromal and immune cells that penetrate the tumor site via blood vessels and lymphoid capillaries. All subsets of immune cells can be found in tumors, but their respective density, functionality and organization vary from one type of tumor to another. Whereas inflammatory cells play a protumoral role, there is a large body of evidence of effector memory T cells controlling tumor invasion and metastasis. Thus, high densities of memory Th1/CD8 cytotoxic T cells in the primary tumors correlate with good prognosis in most tumor types. Tertiary lymphoid structures, which contain mature dendritic cells (DC) in a T cell zone, proliferating B cells and follicular DC, are found in the tumor stroma and they correlate with intratumoral Th1/CD8 T cell and B cell infiltration. Eventually, tumors undergo genetic and epigenetic modifications that allow them to escape being controlled by the immune system. This comprehensive review describes the immune contexture of human primary and metastatic tumors, how it impacts on patient outcomes and how it could be used as a predictive biomarker and guide immunotherapies.
Collapse
Affiliation(s)
- W H Fridman
- Cancer, Immune Control and Escape, UMRS1138, Cordeliers Research Center, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Autocrine CSF1R signaling mediates switching between invasion and proliferation downstream of TGFβ in claudin-low breast tumor cells. Oncogene 2014; 34:2721-31. [PMID: 25088194 PMCID: PMC4317382 DOI: 10.1038/onc.2014.226] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 12/17/2022]
Abstract
Patient data suggest that colony stimulating factor-1 (CSF1) and its receptor (CSF1R) play critical roles during breast cancer progression. We have previously shown that in human breast tumors expressing both CSF1 and CSF1R, invasion in vivo is dependent both on a paracrine interaction with tumor-associated macrophages and an autocrine regulation of CSF1R in the tumor cells themselves. Although the role of the paracrine interaction between tumor cells and macrophages has been extensively studied, very little is known about the mechanism by which the autocrine CSF1R signaling contributes to tumor progression. We show here that breast cancer patients of the claudin-low subtype have significantly increased expression of CSF1R. Using a panel of breast cancer cells lines, we confirm that CSF1R expression is elevated and regulated by TGFβ specifically in claudin-low cell lines. Abrogation of autocrine CSF1R signaling in MDA-MB-231 xenografts (a claudin-low cell line) leads to increased tumor size by enhanced proliferation, but significantly reduced invasion, dissemination and metastasis. Indeed, we show that proliferation and invasion are oppositely regulated by CSF1R downstream of TGFβ only in claudin-low cells lines. Intravital multiphoton imaging revealed that inhibition of CSF1R in the tumor cells leads to decreased in vivo motility and a more cohesive morphology. We show that, both in vitro and in vivo, CSF1R inhibition results in a reversal of claudin-low marker expression by significant upregulation of luminal keratins and tight junction proteins such as claudins. Finally, we show that artificial overexpression of claudins in MDA-MB-231 cells is sufficient to tip the cells from an invasive state to a proliferative state. Our results suggest that autocrine CSF1R signaling is essential in maintaining low claudin expression and that it mediates a switch between the proliferative and the invasive state in claudin-low tumor cells downstream of TGFβ.
Collapse
|
186
|
Chowdhury R, Ganeshan B, Irshad S, Lawler K, Eisenblätter M, Milewicz H, Rodriguez-Justo M, Miles K, Ellis P, Groves A, Punwani S, Ng T. The use of molecular imaging combined with genomic techniques to understand the heterogeneity in cancer metastasis. BJR Case Rep 2014. [DOI: 10.1259/bjrcr.20140065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
187
|
Panni RZ, Linehan DC, DeNardo DG. Targeting tumor-infiltrating macrophages to combat cancer. Immunotherapy 2014; 5:1075-87. [PMID: 24088077 DOI: 10.2217/imt.13.102] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages are one of the major constituents of tumor stroma in many solid tumors and there is compelling preclinical and clinical evidence that macrophages promote cancer initiation and malignant progression. Therefore, these cells represent potential targets for therapeutic benefit. In this review, we will summarize macrophage phenotypic heterogeneity, the current understanding of how tumors take advantage of macrophage plasticity to generate immunosuppression, and how manipulation of specific macrophage populations can be used for therapeutic purposes through translational approaches.
Collapse
Affiliation(s)
- Roheena Z Panni
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63132, USA
| | | | | |
Collapse
|
188
|
Chowdhury R, Ganeshan B, Irshad S, Lawler K, Eisenblätter M, Milewicz H, Rodriguez-Justo M, Miles K, Ellis P, Groves A, Punwani S, Ng T. The use of molecular imaging combined with genomic techniques to understand the heterogeneity in cancer metastasis. Br J Radiol 2014; 87:20140065. [PMID: 24597512 PMCID: PMC4075563 DOI: 10.1259/bjr.20140065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/03/2014] [Indexed: 01/10/2023] Open
Abstract
Tumour heterogeneity has, in recent times, come to play a vital role in how we understand and treat cancers; however, the clinical translation of this has lagged behind advances in research. Although significant advancements in oncological management have been made, personalized care remains an elusive goal. Inter- and intratumour heterogeneity, particularly in the clinical setting, has been difficult to quantify and therefore to treat. The histological quantification of heterogeneity of tumours can be a logistical and clinical challenge. The ability to examine not just the whole tumour but also all the molecular variations of metastatic disease in a patient is obviously difficult with current histological techniques. Advances in imaging techniques and novel applications, alongside our understanding of tumour heterogeneity, have opened up a plethora of non-invasive biomarker potential to examine tumours, their heterogeneity and the clinical translation. This review will focus on how various imaging methods that allow for quantification of metastatic tumour heterogeneity, along with the potential of developing imaging, integrated with other in vitro diagnostic approaches such as genomics and exosome analyses, have the potential role as a non-invasive biomarker for guiding the treatment algorithm.
Collapse
Affiliation(s)
- R Chowdhury
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Bruun J, Kolberg M, Nesland JM, Svindland A, Nesbakken A, Lothe RA. Prognostic Significance of β-Catenin, E-Cadherin, and SOX9 in Colorectal Cancer: Results from a Large Population-Representative Series. Front Oncol 2014; 222:1-15. [PMID: 24904831 DOI: 10.1002/path.2727] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Robust biomarkers that can precisely stratify patients according to treatment needs are in great demand. The literature is inconclusive for most reported prognostic markers for colorectal cancer (CRC). Hence, adequately reported studies in large representative series are necessary to determine their clinical potential. We investigated the prognostic value of three Wnt signaling-associated proteins, β-catenin, E-cadherin, and SOX9, in a population-representative single-hospital series of 1290 Norwegian CRC patients by performing immunohistochemical analyses of each marker using the tissue microarray technology. Loss of membranous or cytosolic β-catenin and loss of cytosolic E-cadherin protein expression were significantly associated with reduced 5-year survival in 903 patients who underwent major resection (722 evaluable tissue cores) independently of standard clinicopathological high-risk parameters. Pre-specified subgroup analyses demonstrated particular effect for stage IV patients for β-catenin membrane staining (P = 0.018; formal interaction test P = 0.025). Among those who underwent complete resection (714 patients, 568 evaluable), 5-year time-to-recurrence analyses were performed, and stage II patients with loss of cytosolic E-cadherin were identified as an independent high-risk subgroup (P = 0.020, formal interaction test was not significant). Nuclear β-catenin and SOX9 protein, regardless of intracellular location, were not associated with prognosis. In conclusion, the protein expression level of membranous or cytosolic β-catenin and E-cadherin predicts CRC patient subgroups with inferior prognosis.
Collapse
Affiliation(s)
- Jarle Bruun
- Department for Cancer Prevention, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital , Oslo , Norway ; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Matthias Kolberg
- Department for Cancer Prevention, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital , Oslo , Norway ; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Jahn M Nesland
- Department of Pathology, Oslo University Hospital , Oslo , Norway
| | - Aud Svindland
- Department of Pathology, Oslo University Hospital , Oslo , Norway ; Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Arild Nesbakken
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway ; Faculty of Medicine, University of Oslo , Oslo , Norway ; Department of Gastrointestinal Surgery, Aker Hospital, Oslo University Hospital , Oslo , Norway
| | - Ragnhild A Lothe
- Department for Cancer Prevention, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital , Oslo , Norway ; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway ; Department of Molecular Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo , Oslo , Norway
| |
Collapse
|
190
|
Stone SC, Rossetti RAM, Lima AM, Lepique AP. HPV associated tumor cells control tumor microenvironment and leukocytosis in experimental models. IMMUNITY INFLAMMATION AND DISEASE 2014; 2:63-75. [PMID: 25400927 PMCID: PMC4217549 DOI: 10.1002/iid3.21] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 01/09/2023]
Abstract
Human papillomavirus (HPV) is the main etiological factor for cervical cancer development. HPV is also associated with other anogenital and oropharyngeal tumors. HPV associated tumors are frequent and constitute a public health problem, mainly in developing countries. Therapy against such tumors is usually excisional, causing iatrogenic morbidity. Therefore, development of strategies for new therapies is desirable. The tumor microenvironment is essential for tumor growth, where inflammation is an important component, displaying a central role in tumor progression. Inflammation may be a causal agent, suppressor of anti-tumor T cell responses, or may have a role in angiogenesis, drug resistance, and metastasis. The aim of this work was to investigate the role of HPV transformed cells in the tumor microenvironment and tumor effects on myeloid populations in lymphoid organs in the host. We used experimental models, where we injected cervical cancer derived cell lines in immunodeficient mice, comparing HPV positive, SiHa, and HeLa cells (HPV 16 and HPV18, respectively), with HPV negative cell line, C33A. Our data shows that HPV positive cell lines were more efficient than the HPV negative cell line in leukocyte recruitment to the tumor microenvironment and increase in myeloid cell proliferation in the bone marrow and spleen. We also observed that HPV positive cells lines expressed significantly higher levels of IL-6 and IL-8, while C33A expressed significantly higher levels of IL-16 and IL-17. Finally, in spite of cytokine secretion by tumor cells, leukocytes infiltrating SiHa and HeLa tumors displayed almost negligible STAT3 and no NFκB phosphorylation. Only the inflammatory infiltrate of C33A tumors had NFκB and STAT3 activated isoforms. Our results indicate that, although from the same anatomical site, the uterine cervix, these cell lines display important differences regarding inflammation. These results are important for the design of immunotherapies against cervical cancer, and possibly against HPV associated tumors in other anatomical sites.
Collapse
Affiliation(s)
- Simone Cardozo Stone
- Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo Av. Prof. Lineu Prestes, 1730, Room 136, 05508-900, Sao Paulo, SP, Brazil
| | - Renata Ariza Marques Rossetti
- Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo Av. Prof. Lineu Prestes, 1730, Room 136, 05508-900, Sao Paulo, SP, Brazil
| | - Aleida Maria Lima
- Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo Av. Prof. Lineu Prestes, 1730, Room 136, 05508-900, Sao Paulo, SP, Brazil
| | - Ana Paula Lepique
- Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo Av. Prof. Lineu Prestes, 1730, Room 136, 05508-900, Sao Paulo, SP, Brazil
| |
Collapse
|
191
|
Li W, Holsinger RMD, Kruse CA, Flügel A, Graeber MB. The potential for genetically altered microglia to influence glioma treatment. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:750-62. [PMID: 24047526 DOI: 10.2174/18715273113126660171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/06/2012] [Accepted: 12/06/2012] [Indexed: 01/06/2023]
Abstract
Diffuse and unstoppable infiltration of brain and spinal cord tissue by neoplastic glial cells is the single most important therapeutic problem posed by the common glioma group of tumors: astrocytoma, oligoastrocytoma, oligodendroglioma, their malignant variants and glioblastoma. These neoplasms account for more than two thirds of all malignant central nervous system tumors. However, most glioma research focuses on an examination of the tumor cells rather than on host-specific, tumor micro-environmental cells and factors. This can explain why existing diffuse glioma therapies fail and why these tumors have remained incurable. Thus, there is a great need for innovation. We describe a novel strategy for the development of a more effective treatment of diffuse glioma. Our approach centers on gaining control over the behavior of the microglia, the defense cells of the CNS, which are manipulated by malignant glioma and support its growth. Armoring microglia against the influences from glioma is one of our research goals. We further discuss how microglia precursors may be genetically enhanced to track down infiltrating glioma cells.
Collapse
Affiliation(s)
- W Li
- Brain and Mind Research Institute, The University of Sydney, Camperdown, NSW, Australia.
| | | | | | | | | |
Collapse
|
192
|
Wu M, Du Y, Liu Y, He Y, Yang C, Wang W, Gao F. Low molecular weight hyaluronan induces lymphangiogenesis through LYVE-1-mediated signaling pathways. PLoS One 2014; 9:e92857. [PMID: 24667755 PMCID: PMC3965470 DOI: 10.1371/journal.pone.0092857] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/26/2014] [Indexed: 12/17/2022] Open
Abstract
Hyaluronan (HA), a large nonsulfated glycosaminogycan in the extracellular matrix, whose degraded fragments termed as low molecular weight hyaluronan (LMW-HA), has been reported as an important regulator of angiogenesis. However, little is known about the influence of LMW-HA on lymphangiogenesis. In this study, we try to explore the in vitro effects of LMW-HA on lymphangiogenesis and identify the underlying molecular mechanisms. Our results showed that LMW-HA stimulation significantly increased lymphatic endothelial cells (LECs) proliferation, migration and tube formation. Further experiments demonstrated that LMW-HA altered actin cytoskeleton rearrangement and increased the formation of intense stress fibers, lamellipodia and filopodia. Mechanistically, LMW-HA stimulation resulted in rapid tyrosine phosphorylation of protein kinase C α/βII (PKCα/βII) and extracellular-regulated kinase 1/2 (ERK1/2). Lymphalic vessel endotheilial hyaluronan receptor 1 (LYVE-1), a homologue of CD44, is the main cell surface receptor for HA in LECs. Blocking the binding interaction of LMW-HA with LYVE-1 using neutralizing anti-LYVE-1 antibodies significantly inhibited LECs proliferation, migration, tube formation and signal transduction induced by LMW-HA, suggesting that LMW-HA may play a critical role in the processes required for lymphangiogenesis through interactions with its receptor LYVE-1 and triggering intracellular signal cascades.
Collapse
Affiliation(s)
- Man Wu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - Yan Du
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - Wenjuan Wang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - Feng Gao
- Department of Molecular Biology and Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
- * E-mail:
| |
Collapse
|
193
|
Ali KS, Rees RC, Terrell-Nield C, Ali SA. Virulence loss and amastigote transformation failure determine host cell responses to Leishmania mexicana. Parasite Immunol 2014; 35:441-56. [PMID: 23869911 DOI: 10.1111/pim.12056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/15/2013] [Indexed: 12/26/2022]
Abstract
The effect of alterations in virulence and transformation by long-term in vitro culture of Leishmania mexicana promastigotes on infectivity and immune responses was investigated. Fresh parasite cultures harvested from Balb/c mice were passaged 20 times in vitro. Infectivity was decreased and was completely avirulent after 20 passages. The qPCR results showed a down-regulation of GP63, LPG2, CPC, CPB2, CPB2.8, CHT1, LACK and LDCEN3 genes after passage seven concomitant with a reduced and absence of infectivity by passages seven and 20, respectively. Parasites at passages one and 20 are referred to as virulent and avirulent, respectively. The growth of avirulent and virulent parasite was affected by conditioned media derived from macrophages or monocytes infected with parasites for 2 h. Giemsa staining showed the failure of avirulent but not virulent parasites to transform to the amastigote stage in infected host cells with both virulent and avirulent modulating the expression of CCL-22, Tgad51, Cox2, IL-1, IL-10, TGF-β, TNF-α, Rab7, Rab9 and A2 genes; virulent but not avirulent L. mexicana significantly up-regulated Th2-associated cytokines, but down-regulated Rab7 and Rab9 gene expression. In conclusion, a model for L. mexicana is reported, which is of potential value in studying host-parasite interaction.
Collapse
Affiliation(s)
- K S Ali
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | | | | |
Collapse
|
194
|
Galmarini CM, D'Incalci M, Allavena P. Trabectedin and plitidepsin: drugs from the sea that strike the tumor microenvironment. Mar Drugs 2014; 12:719-33. [PMID: 24473171 PMCID: PMC3944511 DOI: 10.3390/md12020719] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/25/2022] Open
Abstract
The prevailing paradigm states that cancer cells acquire multiple genetic mutations in oncogenes or tumor suppressor genes whose respective activation/up-regulation or loss of function serve to impart aberrant properties, such as hyperproliferation or inhibition of cell death. However, a tumor is now considered as an organ-like structure, a complex system composed of multiple cell types (e.g., tumor cells, inflammatory cells, endothelial cells, fibroblasts, etc.) all embedded in an inflammatory stroma. All these components influence each other in a complex and dynamic cross-talk, leading to tumor cell survival and progression. As the microenvironment has such a crucial role in tumor pathophysiology, it represents an attractive target for cancer therapy. In this review, we describe the mechanism of action of trabectedin and plitidepsin as an example of how these specific drugs of marine origin elicit their antitumor activity not only by targeting tumor cells but also the tumor microenvironment.
Collapse
Affiliation(s)
- Carlos M Galmarini
- Cell Biology and Pharmacogenomics Department, PharmaMar, Madrid 28770, Spain.
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan 20156, Italy.
| | - Paola Allavena
- Department Immunology and Inflammation, IRCCS Clinical and Research Institute Humanitas, Rozzano, Milan 20089, Italy.
| |
Collapse
|
195
|
Steiner JL, Davis JM, McClellan JL, Guglielmotti A, Murphy EA. Effects of the MCP-1 synthesis inhibitor bindarit on tumorigenesis and inflammatory markers in the C3(1)/SV40Tag mouse model of breast cancer. Cytokine 2014; 66:60-8. [PMID: 24548426 DOI: 10.1016/j.cyto.2013.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 11/14/2013] [Accepted: 12/09/2013] [Indexed: 12/11/2022]
Abstract
Breast cancer, the most deadly cancer in women, is characterized by elevated levels of inflammation within and surrounding the tumor, which can lead to accelerated growth, invasion and metastasis. Macrophages are central to the inflammatory milieu and are recruited to the tumor microenvironment by several factors including monocyte chemoattractant protein-1 (MCP-1). Using the anti-inflammatory molecule bindarit to target MCP-1, we investigated the role of this chemokine on macrophage related inflammation and mammary tumorigenesis in a transgenic mouse model of breast cancer. C3(1)/SV40Tag mice and wild type FVB/N were randomized to either control or 0.5% bindarit diet from 4 to 21weeks of age. Tumor number and volume were recorded over time and at sacrifice. Macrophage markers as well as inflammatory meditators were examined in the tumor tissue and mammary glands. Circulating MCP-1 and IL-6 were measured by ELISA. Bindarit treatment reduced tumor number (P<0.05), but did not affect tumor size, tumor weight or tumor latency in C3(1)/SV40Tag mice. Within the tumor, mRNA expression of bindarit's primary targets, MCP-1 and IL-12/p35, were significantly decreased by bindarit treatment (P<0.05), and this was consistent with trends for reduced expression of TNF-α, IL-6, F4/80, CD206, and IL-10. In mammary tissue, expression of MCP-1, TNF-α, IL-6, F4/80, IL-10 and IL-12/p35 was significantly elevated in C3(1)/SV40Tag mice compared to wild type FVB/N mice, but IL-6 was the only marker decreased by bindarit treatment (P<0.05). Plasma MCP-1 was highly correlated with tumor volume (P<0.05); however, it was not affected by bindarit at 21weeks of age. Similarly, circulating IL-6 was increased in C3(1)/SV40Tag mice but there was no effect of bindarit treatment. These results show that tumor multiplicity in the C3(1)/SV40Tag mouse model of breast cancer is reduced by bindarit, however these effects are independent of changes in plasma levels of MCP-1 and IL-6, but may be related to the attenuated expression of MCP-1 along with several inflammatory mediators and macrophage markers within the tumor.
Collapse
Affiliation(s)
- J L Steiner
- Department of Pathology Microbiology and Immunology, School of Medicine at South Carolina, Columbia, SC 29209, United States; Department of Exercise Science, University of South Carolina, Columbia, SC 29208, United States
| | - J M Davis
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, United States
| | - J L McClellan
- Department of Pathology Microbiology and Immunology, School of Medicine at South Carolina, Columbia, SC 29209, United States; Department of Exercise Science, University of South Carolina, Columbia, SC 29208, United States
| | | | - E A Murphy
- Department of Pathology Microbiology and Immunology, School of Medicine at South Carolina, Columbia, SC 29209, United States.
| |
Collapse
|
196
|
Xuan QJ, Wang JX, Nanding A, Wang ZP, Liu H, Lian X, Zhang QY. Tumor-associated macrophages are correlated with tamoxifen resistance in the postmenopausal breast cancer patients. Pathol Oncol Res 2014; 20:619-24. [PMID: 24414992 DOI: 10.1007/s12253-013-9740-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 12/12/2013] [Indexed: 02/06/2023]
Abstract
Tumor-associated macrophages (TAMs) have been correlated with increased angiogenesis and poor prognosis in breast cancer. However, the precise role of TAMs in tamoxifen resistance remains unclear. We used immunohistochemical method to examine the expression of epidermal growth factor receptor (EGFR) and CD163+ macrophages in 100 breast cancer tissues. The clinical and biological features of 100 patients were estrogen receptor (ER)-positive and human epidermal growth factor receptor 2(Her-2)-negative tumors. The tamoxifen resistant tissues (n = 48) were the surgical excision samples from patients who developed recurrence or metastasis at the time of adjuvant tamoxifen treatment. The tamoxifen resistant tissues were contrast to tamoxifen sensitive tissues (n = 52). Positive staining for EGFR and CD163+ macrophages were observed in 21 samples (43.8 %) and in 26 samples (54.2 %) respectively in tamoxifen resistance group, which were higher than that of tamoxifen sensitive group (P = 0.001 and P = 0.000279 respectively). Significant positive correlations were found between the expression of EGFR and CD163+ macrophages (r = 0.567, P < 0.01). CD163+ macrophages were positively correlated with tumor size, lymph node metastasis and obesity. Obesity was also related to tamoxifen resistance (P < 0.05). The patients with higher density of CD163+ macrophages infiltration suffered from shorter time to develop recurrence or metastasis (P < 0.05). TAMs may be associated with tamoxifen resistance. Further studies are needed to investigate the potential mechanism between TAMs and tamoxifen resistance.
Collapse
Affiliation(s)
- Qi-jia Xuan
- Department of Medical Oncology, Tumor Hospital of Harbin Medical University, Haping Road 150 of Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
197
|
Holliday C, Rummel S, Hooke JA, Shriver CD, Ellsworth DL, Ellsworth RE. Genomic instability in the breast microenvironment? A critical evaluation of the evidence. Expert Rev Mol Diagn 2014; 9:667-78. [DOI: 10.1586/erm.09.55] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
198
|
Ramanathan S, Jagannathan N. Tumor associated macrophage: a review on the phenotypes, traits and functions. IRANIAN JOURNAL OF CANCER PREVENTION 2014; 7:1-8. [PMID: 25250141 PMCID: PMC4142950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/05/2013] [Indexed: 11/18/2022]
Abstract
The macrophages role within the tumor microenvironment has amended by a variety of factors, thus serves a vital role in tissue morphogenesis. The role of macrophages in health and disease differs enormously as the macrophage has shown dual functions. Macrophage has a basic role in antigen presentation serving as the first line of defense in diseases. However the presence of cytokines and growth factors, both together have regulated the macrophage to become negative effectors promoting tumor activity. Hence macrophages are a double edged weapon, and any imbalance in the regulatory mechanisms caused a shift from tumoricidal to tumorigenic activities. TAMs would be the main reason of the invasion in tumor microenvironment enhancing as well as tumor invasion, angiogenesis and metastasis promoting tumor genesis. Macrophages are the multifunctional cells which have conducted by the tumor cells to produce tumor promoting factors that enable the stimulation of angiogenesis, and tumor cell invasion. This fact has resulted initiation or promotion of tumor genesis, where the tumor has progressed to an upper malignant stage. The present review has focused on the tumor associated macrophages and their roles in tumor genesis.
Collapse
Affiliation(s)
- Suhashini Ramanathan
- Dept. of Oral Pathology, Saveetha Dental College, Saveetha University, Chennai, India
| | - Nithya Jagannathan
- Dept. of Oral Pathology, Saveetha Dental College, Saveetha University, Chennai, India,Nithya Jagannathan, MDS; Senior Lecturer, Department of Oral Pathology
Tel: (+91) 9884754910
| |
Collapse
|
199
|
Mohamed MM, El-Ghonaimy EA, Nouh MA, Schneider RJ, Sloane BF, El-Shinawi M. Cytokines secreted by macrophages isolated from tumor microenvironment of inflammatory breast cancer patients possess chemotactic properties. Int J Biochem Cell Biol 2014. [DOI: 10.1016/j.biocel.2013.11.015 s1357-2725(13)00353-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2022]
|
200
|
Komohara Y, Jinushi M, Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci 2013; 105:1-8. [PMID: 24168081 PMCID: PMC4317877 DOI: 10.1111/cas.12314] [Citation(s) in RCA: 408] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/16/2013] [Accepted: 10/27/2013] [Indexed: 12/12/2022] Open
Abstract
The fact that various immune cells, including macrophages, can be found in tumor tissue has long been known. With the recent introduction of the novel concept of macrophage differentiation into a classically activated phenotype (M1) and an alternatively activated phenotype (M2), the role of tumor-associated macrophages (TAMs) is gradually beginning to be elucidated. Specifically, in human malignant tumors, TAMs that have differentiated into M2 macrophages act as “protumoral macrophages” and contribute to the progression of disease. Based on recent basic and preclinical research, TAMs that have differentiated into protumoral or M2 macrophages are believed to be intimately involved in the angiogenesis, immunosuppression, and activation of tumor cells. In this paper, we specifically discuss both the role of TAMs in human malignant tumors and the cell–cell interactions between TAMs and tumor cells.
Collapse
Affiliation(s)
- Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | |
Collapse
|