151
|
Clark I, Atwood C, Bowen R, Paz-Filho G, Vissel B. Tumor necrosis factor-induced cerebral insulin resistance in Alzheimer's disease links numerous treatment rationales. Pharmacol Rev 2012; 64:1004-26. [PMID: 22966039 DOI: 10.1124/pr.112.005850] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The evident limitations of the amyloid theory of the pathogenesis of Alzheimer's disease are increasingly putting alternatives in the spotlight. We argue here that a number of independently developing approaches to therapy-including specific and nonspecific anti-tumor necrosis factor (TNF) agents, apolipoprotein E mimetics, leptin, intranasal insulin, the glucagon-like peptide-1 mimetics and glycogen synthase kinase-3 (GSK-3) antagonists-are all part of an interlocking chain of events. All these approaches inform us that inflammation and thence cerebral insulin resistance constitute the pathway on which to focus for a successful clinical outcome in treating this disease. The key link in this chain presently absent is a recognition by Alzheimer's research community of the long-neglected history of TNF induction of insulin resistance. When this is incorporated into the bigger picture, it becomes evident that the interventions we discuss are not competing alternatives but equally valid approaches to correcting different parts of the same pathway to Alzheimer's disease. These treatments can be expected to be at least additive, and conceivably synergistic, in effect. Thus the inflammation, insulin resistance, GSK-3, and mitochondrial dysfunction hypotheses are not opposing ideas but stages of the same fundamental, overarching, pathway of Alzheimer's disease pathogenesis. The insight this provides into progenitor cells, including those involved in adult neurogenesis, is a key part of this approach. This pathway also has therapeutic implications for other circumstances in which brain TNF is pathologically increased, such as stroke, traumatic brain injury, and the infectious disease encephalopathies.
Collapse
Affiliation(s)
- Ian Clark
- Division of Medical Science and Biochemistry, Research School of Biology, Australian National University, Canberra ACT, Australia.
| | | | | | | | | |
Collapse
|
152
|
Increased hypothalamic inflammation associated with the susceptibility to obesity in rats exposed to high-fat diet. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:847246. [PMID: 22844271 PMCID: PMC3401545 DOI: 10.1155/2012/847246] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/14/2012] [Indexed: 01/11/2023]
Abstract
Inflammation has been implicated in the hypothalamic leptin and insulin resistance resulting defective food intake during high fat diet period. To investigate hypothalamic inflammation in dietary induced obesity (DIO) and obesity resistant (DIO-R) rats, we established rat models of DIO and DIO-R by feeding high fat diet for 10 weeks. Then we switched half of DIO and DIO-R rats to chow food and the other half to high fat diet for the following 8 weeks to explore hypothalamic inflammation response to the low fat diet intervention. Body weight, caloric intake, HOMA-IR, as well as the mRNA expression of hypothalamic TLR4, NF-κB, TNF-α, IL-1β, and IL-6 in DIO/HF rats were significantly increased compared to DIO-R/HF and CF rats, whereas IL-10 mRNA expression was lower in both DIO/HF and DIO-R/HF rats compared with CF rats. Switching to chow food from high fat diet reduced the body weight and improved insulin sensitivity but not affecting the expressions of studied inflammatory genes in DIO rats. Take together, upregulated hypothalamic inflammation may contribute to the overeating and development of obesity susceptibility induced by high fat diet. Switching to chow food had limited role in correcting hypothalamic inflammation in DIO rats during the intervention period.
Collapse
|
153
|
Abstract
Metabolic syndrome, a network of medical disorders that greatly increase the risk for developing metabolic and cardiovascular diseases, has reached epidemic levels in many areas of today's world. Despite this alarming medicare situation, scientific understandings on the root mechanisms of metabolic syndrome are still limited, and such insufficient knowledge contributes to the relative lack of effective treatments or preventions for related diseases. Recent interdisciplinary studies from neuroendocrinology and neuroimmunology fields have revealed that overnutrition can trigger intracellular stresses to cause inflammatory changes mediated by molecules that control innate immunity. This type of nutrition-related molecular inflammation in the central nervous system, particularly in the hypothalamus, can form a common pathogenic basis for the induction of various metabolic syndrome components such as obesity, insulin resistance, and hypertension. Proinflammatory NF-κB pathway has been revealed as a key molecular system for pathologic induction of brain inflammation, which translates overnutrition and resulting intracellular stresses into central neuroendocrine and neural dysregulations of energy, glucose, and cardiovascular homeostasis, collectively leading to metabolic syndrome. This article reviews recent research advances in the neural mechanisms of metabolic syndrome and related diseases from the perspective of pathogenic induction by intracellular stresses and NF-κB pathway of the brain.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
154
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:233-47. [PMID: 22531108 DOI: 10.1097/med.0b013e3283542fb3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
155
|
Abstract
PURPOSE OF REVIEW The finding that brown adipose tissue (BAT) is present in adults brought BAT physiology into the focus of many researchers interested in energy metabolism. Here, we review recent insight into how BAT develops, functions and might help to treat metabolic disorders in humans. RECENT FINDINGS BAT is under control of the nervous system, and several pathways have been identified that allow direct manipulation of BAT biology. In addition, some brown adipocytes arise from a distinct subset of white adipocyte precursors and studies were performed that characterize the development of these 'brite' adipocytes. Importantly, progress has been made in understanding how BAT takes up and dissipates nutrients that in metabolic disorders are present in excess. Finally, as it seems that BAT activity declines with age and obesity, we review findings that might shed light on how humans could sustain or increase BAT activity, thus preventing or treating obesity, hyperlipidemia and type 2 diabetes. SUMMARY BAT is a powerful organ that controls the development of metabolic disease. These powers are boosted by mechanisms that turn white into brown fat and enhance lipid flux into BAT. However, in humans, it remains unclear what was the first: metabolic disease or decreased BAT activity.
Collapse
Affiliation(s)
- Alexander Bartelt
- Department of Biochemistry and Molecular Cell Biology Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
156
|
Abstract
The hypothalamus is one of the master regulators of various physiological processes, including energy balance and nutrient metabolism. These regulatory functions are mediated by discrete hypothalamic regions that integrate metabolic sensing with neuroendocrine and neural controls of systemic physiology. Neurons and nonneuronal cells in these hypothalamic regions act supportively to execute metabolic regulations. Under conditions of brain and hypothalamic inflammation, which may result from overnutrition-induced intracellular stresses or disease-associated systemic inflammatory factors, extracellular and intracellular environments of hypothalamic cells are disrupted, leading to central metabolic dysregulations and various diseases. Recent research has begun to elucidate the effects of hypothalamic inflammation in causing diverse components of metabolic syndrome leading to diabetes and cardiovascular disease. These new understandings have provocatively expanded previous knowledge on the cachectic roles of brain inflammatory response in diseases, such as infections and cancers. This review describes the molecular and cellular characteristics of hypothalamic inflammation in metabolic syndrome and related diseases as opposed to cachectic diseases, and also discusses concepts and potential applications of inhibiting central/hypothalamic inflammation to treat nutritional diseases.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
157
|
Burgos-Ramos E, González-Rodríguez A, Canelles S, Baquedano E, Frago LM, Revuelta-Cervantes J, Gómez-Ambrosi J, Frühbeck G, Chowen JA, Argente J, Valverde AM, Barrios V. Differential insulin receptor substrate-1 (IRS1)-related modulation of neuropeptide Y and proopiomelanocortin expression in nondiabetic and diabetic IRS2-/- mice. Endocrinology 2012; 153:1129-40. [PMID: 22210743 DOI: 10.1210/en.2011-1278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin resistance and type 2 diabetes correlate with impaired leptin and insulin signaling. Insulin receptor substrate-2 deficient (IRS2(-/-)) mice are an accepted model for the exploration of alterations in these signaling pathways and their relationship with diabetes; however, disturbances in hypothalamic signaling and the effect on neuropeptides controlling food intake remain unclear. Our aim was to analyze how leptin and insulin signaling may differentially affect the expression of hypothalamic neuropeptides regulating food intake and hypothalamic inflammation in diabetic (D) and nondiabetic (ND) IRS2(-/-) mice. We analyzed the activation of leptin and insulin targets by Western blotting and their association by immunoprecipitation, as well as the mRNA levels of neuropeptide Y (NPY), proopiomelanocortin, and inflammatory markers by real-time PCR and colocalization of forkhead box protein O1 (FOXO1) and NPY by double immunohistochemistry in the hypothalamus. Serum leptin and insulin levels and hypothalamic Janus kinase 2 and signal transducer and activator of transcription factor 3 activation were increased in ND IRS2(-/-) mice. IRS1 levels and its association with Janus kinase 2 and p85 and protein kinase B activation were increased in ND IRS2(-/-). Increased FOXO1 positively correlated with NPY mRNA levels in D IRS2(-/-) mice, with FOXO1 showing mainly nuclear localization in D IRS2(-/-) and cytoplasmic in ND IRS2(-/-) mice. D IRS2(-/-) mice exhibited higher hypothalamic inflammation markers than ND IRS2(-/-) mice. In conclusion, differential activation of these pathways and changes in the expression of NPY and inflammation may exert a protective effect against hypothalamic deregulation of appetite, suggesting that manipulation of these targets could be of interest in the treatment of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Emma Burgos-Ramos
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Avda. Menéndez Pelayo, 65; E-28009 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Ito Y, Banno R, Hagimoto S, Ozawa Y, Arima H, Oiso Y. TNFα increases hypothalamic PTP1B activity via the NFκB pathway in rat hypothalamic organotypic cultures. ACTA ACUST UNITED AC 2012; 174:58-64. [DOI: 10.1016/j.regpep.2011.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 11/03/2011] [Accepted: 11/29/2011] [Indexed: 01/03/2023]
|
159
|
Rother E, Kuschewski R, Alcazar MAA, Oberthuer A, Bae-Gartz I, Vohlen C, Roth B, Dötsch J. Hypothalamic JNK1 and IKKβ activation and impaired early postnatal glucose metabolism after maternal perinatal high-fat feeding. Endocrinology 2012; 153:770-81. [PMID: 22147015 DOI: 10.1210/en.2011-1589] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypothalamic inflammation has been demonstrated to be an important mechanism in the pathogenesis of obesity-induced type 2 diabetes mellitus. Feeding pregnant and lactating rodents a diet rich in saturated fatty acids has consistently been shown to predispose the offspring for the development of obesity and impaired glucose metabolism. However, hypothalamic inflammation in the offspring has not been addressed as a potential underlying mechanism. In this study, virgin female C57BL/6 mice received high-fat feeding starting at conception until weaning of the offspring at postnatal d 21. The offspring developed increased body weight, body fat content, and serum leptin concentrations during the nursing period. Analysis of hypothalamic tissue of the offspring at postnatal d 21 showed up-regulation of several members of the toll-like receptor 4 signaling cascade and subsequent activation of c-Jun N-terminal kinase 1 and IκB kinase-β inflammatory pathways. Interestingly, glucose tolerance testing in the offspring revealed signs of impaired glucose tolerance along with increased hepatic expression of the key gluconeogenic enzyme phosphoenolpyruvate carboxykinase. In addition, significantly increased hepatic and pancreatic PGC1α expression suggests a role for sympathetic innervation in mediating the effects of hypothalamic inflammation to the periphery. Taken together, our data indicate an important role for hypothalamic inflammation in the early pathogenesis of glucose intolerance after maternal perinatal high-fat feeding.
Collapse
Affiliation(s)
- Eva Rother
- Department of Pediatrics, University Hospital of Cologne, Kerpener Strasse 62, 50924 Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Sartorius T, Lutz SZ, Hoene M, Waak J, Peter A, Weigert C, Rammensee HG, Kahle PJ, Häring HU, Hennige AM. Toll-like receptors 2 and 4 impair insulin-mediated brain activity by interleukin-6 and osteopontin and alter sleep architecture. FASEB J 2012; 26:1799-809. [PMID: 22278939 DOI: 10.1096/fj.11-191023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Impaired insulin action in the brain represents an early step in the progression toward type 2 diabetes, and elevated levels of saturated free fatty acids are known to impair insulin action in prediabetic subjects. One potential mediator that links fatty acids to inflammation and insulin resistance is the Toll-like receptor (TLR) family. Therefore, C3H/HeJ/TLR2-KO (TLR2/4-deficient) mice were fed a high-fat diet (HFD), and insulin action in the brain as well as cortical and locomotor activity was analyzed by using telemetric implants. TLR2/4-deficient mice were protected from HFD-induced glucose intolerance and insulin resistance in the brain and displayed an improvement in cortical and locomotor activity that was not observed in C3H/HeJ mice. Sleep recordings revealed a 42% increase in rapid eye movement sleep in the deficient mice during daytime, and these mice spent 41% more time awake during the night period. Treatment of control mice with a neutralizing IL-6 antibody improved insulin action in the brain as well as cortical activity and diminished osteopontin protein to levels of the TLR2/4-deficient mice. Together, our data suggest that the lack of functional TLR2/4 protects mice from a fat-mediated impairment in insulin action, brain activity, locomotion, and sleep architecture by an IL-6/osteopontin-dependent mechanism.
Collapse
Affiliation(s)
- Tina Sartorius
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tuebingen, Otfried-Mueller-Straße 10, D-72076 Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Gotoh K, Inoue M, Masaki T, Chiba S, Shimasaki T, Ando H, Fujiwara K, Katsuragi I, Kakuma T, Seike M, Sakata T, Yoshimatsu H. A novel anti-inflammatory role for spleen-derived interleukin-10 in obesity-induced hypothalamic inflammation. J Neurochem 2012; 120:752-64. [PMID: 22146087 DOI: 10.1111/j.1471-4159.2011.07617.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Obesity can be associated with systemic low-grade inflammation that contributes to obesity-related metabolic disorders. Recent studies raise the possibility that hypothalamic inflammation contributes to the pathogenesis of diet-induced obesity (DIO), while another study reported that obesity decreases the expression of pro-inflammatory cytokines in spleen. The following study examines the hypothesis that obesity suppresses the splenic synthesis of the anti-inflammatory cytokine, interleukin (IL)-10, thereby resulting in chronic hypothalamic inflammation. The results showed that due to oxidative stress or apoptosis, the synthesis of splenic IL-10 was decreased in DIO when compared with non-obesity rats. Splenectomy (SPX) accelerated DIO-induced inflammatory responses in the hypothalamus. Interestingly, SPX suppressed the DIO-induced increases in food intake and body weight and led to a hypothalamic pro-inflammatory state that was similar to that produced by DIO, indicating that hypothalamic inflammation exerts a dual effect on energy metabolism. These SPX-induced changes were inhibited by the systemic administration of IL-10. Moreover, SPX had no effect on hypothalamic inflammatory responses in IL-10-deficient mice. These data suggest that spleen-derived IL-10 plays an important role in the prevention of hypothalamic inflammation and may be a therapeutic target for the treatment of obesity and hypothalamic inflammation.
Collapse
Affiliation(s)
- Koro Gotoh
- First Department of Internal Medicine, Faculty of Medicine, Oita University, Hasama, Yufu, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Arruda AP, Milanski M, Velloso LA. Hypothalamic inflammation and thermogenesis: the brown adipose tissue connection. J Bioenerg Biomembr 2011; 43:53-8. [DOI: 10.1007/s10863-011-9325-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|