151
|
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP. Neuroinflammation in Alzheimer's disease. Lancet Neurol 2015; 14:388-405. [PMID: 25792098 DOI: 10.1016/s1474-4422(15)70016-5] [Citation(s) in RCA: 3825] [Impact Index Per Article: 425.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity, are likely to interfere with immunological processes of the brain and further promote disease progression. Modulation of risk factors and targeting of these immune mechanisms could lead to future therapeutic or preventive strategies for Alzheimer's disease.
Collapse
Affiliation(s)
- Michael T Heneka
- Department of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Neurodegnerative Diseases (DZNE), Bonn, Germany.
| | - Monica J Carson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA
| | - Joseph El Khoury
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gary E Landreth
- Alzheimer Research Laboratory, Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | - Andreas H Jacobs
- Department of Geriatrics, Johanniter Hospital, Bonn, Germany; European Institute for Molecular Imaging (EIMI) at the Westfalian Wilhelms University (WWU), Münster, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Javier Vitorica
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, Sevilla, Spain
| | - Richard M Ransohoff
- Department of Neuroscience, Neuroinflammation Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Karl Herrup
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong
| | - Sally A Frautschy
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, the Geriatric, Research, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Bente Finsen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, Basque Foundation for Science (IKERBASQUE), Bilbao, Spain; Department of Neurosciences, University of the Basque Country UPV/EHU (Euskal Herriko Unibertsitatea/Universidad del País Vasco) and CIBERNED (Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas), Leioa, Spain
| | - Koji Yamanaka
- Research Institute of Environmental Medicine, Nagoya University/RIKEN Brain Science Institute, Wako-shi, Japan
| | - Jari Koistinaho
- Department of Neurobiology, AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eicke Latz
- German Center for Neurodegnerative Diseases (DZNE), Bonn, Germany; Institute of Innate Immunity, University of Bonn, Bonn, Germany; Department of InfectiousDiseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Annett Halle
- Max-Planck Research Group Neuroimmunology, Center of Advanced European Studies and Research (CAESAR), Bonn, Germany
| | - Gabor C Petzold
- Department of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Neurodegnerative Diseases (DZNE), Bonn, Germany
| | - Terrence Town
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Dave Morgan
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer's Institute, University of South Florida College of Medicine, Tampa, FL, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - V Hugh Perry
- School of Biological Sciences, Southampton General Hospital, Southampton, UK
| | - Clive Holmes
- Clinical and Experimental Science, University of Southampton, Southampton, UK; Memory Assessment and Research Centre, Moorgreen Hospital, Southern Health Foundation Trust, Southampton, UK
| | - Nicolas G Bazan
- Louisiana State University Neuroscience Center of Excellence, Louisiana State University Health Sciences Center School of Medicine in New Orleans, LA, USA
| | - David J Brooks
- Division of Experimental Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Stéphane Hunot
- Centre National de la Recherche Scientifique (CNRS), UMR 7225, Experimental Therapeutics of Neurodegeneration, Paris, France
| | - Bertrand Joseph
- Department of Oncology Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Nikolaus Deigendesch
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Olga Garaschuk
- Institute of Physiology II, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Erik Boddeke
- Department of Neuroscience, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | | | - John C Breitner
- Centre for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, and the McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Greg M Cole
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, the Geriatric, Research, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Douglas T Golenbock
- Department of InfectiousDiseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Markus P Kummer
- Department of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
152
|
Abstract
Depression is very common throughout the course of veterans' lives, and dementia is common in late life. Previous studies suggest an association between depression and dementia in military veterans. The most likely biologic mechanisms that may link depression and dementia among military veterans include vascular disease, changes in glucocorticoid steroids and hippocampal atrophy, deposition of β-amyloid plaques, inflammatory changes, and alterations of nerve growth factors. In addition, military veterans often have depression comorbid with posttraumatic stress disorder or traumatic brain injury. Therefore, in military veterans, these hypothesized biologic pathways going from depression to dementia are more than likely influenced by trauma-related processes. Treatment strategies for depression, posttraumatic stress disorder, or traumatic brain injury could alter these pathways and as a result decrease the risk for dementia. Given the projected increase of dementia, as well as the projected increase in the older segment of the veteran population, in the future, it is critically important that we understand whether treatment for depression alone or combined with other regimens improves cognition. In this review, we summarize the principal mechanisms of this relationship and discuss treatment implications in military veterans.
Collapse
|
153
|
Lyoo CH, Ikawa M, Liow JS, Zoghbi SS, Morse CL, Pike VW, Fujita M, Innis RB, Kreisl WC. Cerebellum Can Serve As a Pseudo-Reference Region in Alzheimer Disease to Detect Neuroinflammation Measured with PET Radioligand Binding to Translocator Protein. J Nucl Med 2015; 56:701-6. [PMID: 25766898 DOI: 10.2967/jnumed.114.146027] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/03/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Alzheimer disease (AD) is associated with an increase in the brain of the 18-kDa translocator protein (TSPO), which is overexpressed in activated microglia and reactive astrocytes. Measuring the density of TSPO with PET typically requires absolute quantitation with arterial blood sampling, because a reference region devoid of TSPO does not exist in the brain. We sought to determine whether a simple ratio method could substitute for absolute quantitation of binding with (11)C-PBR28, a second-generation radioligand for TSPO. METHODS (11)C-PBR28 PET imaging was performed in 21 healthy controls, 11 individuals with mild cognitive impairment, and 25 AD patients. Group differences in (11)C-PBR28 binding were compared using 2 methods. The first was the gold standard method of calculating total distribution volume (V(T)), using the 2-tissue-compartment model with the arterial input function, corrected for plasma-free fraction of radiotracer (f(P)). The second method used a ratio of brain uptake in target regions to that in cerebellum-that is, standardized uptake value ratio (SUVR). RESULTS Using absolute quantitation, we confirmed that TSPO binding (V(T)/f(P)) was greater in AD patients than in healthy controls in expected temporoparietal regions and was not significantly different among the 3 groups in the cerebellum. When the cerebellum was used as a pseudo-reference region, the SUVR method detected greater binding in AD patients than controls in the same regions as absolute quantification and in 1 additional region, suggesting SUVR may have greater sensitivity. Coefficients of variation of SUVR measurements were about two-thirds lower than those of absolute quantification, and the resulting statistical significance was much higher for SUVR when comparing AD and healthy controls (e.g., P < 0.0005 for SUVR vs. P = 0.023 for VT/fP in combined middle and inferior temporal cortex). CONCLUSION To measure TSPO density in AD patients and control subjects, a simple ratio method SUVR can substitute for, and may even be more sensitive than, absolute quantitation. The SUVR method is expected to improve subject tolerability by allowing shorter scanning time and not requiring arterial catheterization. In addition, this ratio method allows smaller sample sizes for comparable statistical significance because of the relatively low variability of the ratio values.
Collapse
Affiliation(s)
- Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Masamichi Ikawa
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - William Charles Kreisl
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York
| |
Collapse
|
154
|
Shah RC, Matthews DC, Andrews RD, Capuano AW, Fleischman DA, VanderLugt JT, Colca JR. An evaluation of MSDC-0160, a prototype mTOT modulating insulin sensitizer, in patients with mild Alzheimer's disease. Curr Alzheimer Res 2015; 11:564-73. [PMID: 24931567 PMCID: PMC4153084 DOI: 10.2174/1567205011666140616113406] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 12/02/2022]
Abstract
Alzheimer’s disease (AD) is associated with insulin resistance and specific regional declines in cerebral metabolism. The effects of a novel mTOT modulating insulin sensitizer (MSDC-0160) were explored in non-diabetic patients with mild AD to determine whether treatment would impact glucose metabolism measured by FDG-PET in regions that decline in AD. MSDC-0160 (150 mg once daily; N=16) compared to placebo (N=13) for 12 weeks did not result in a significant difference in glucose metabolism in pre-defined regions when referenced to the pons or whole brain. However, glucose metabolism referenced to cerebellum was maintained in MSDC-0160 treated participants while it significantly declined for placebo patients in anterior and posterior cingulate, and parietal, lateral temporal, medial temporal cortices. Voxel-based analyses showed additional differences in FDG-PET related to MSDC-0160 treatment. These exploratory results suggest central effects of MSDC-0160 and provide a basis for further investigation of mTOT modulating insulin sensitizers in AD patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jerry R Colca
- Metabolic Solutions Development Company, Kalamazoo, MI, USA.
| |
Collapse
|
155
|
Smailagic N, Vacante M, Hyde C, Martin S, Ukoumunne O, Sachpekidis C. ¹⁸F-FDG PET for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 2015; 1:CD010632. [PMID: 25629415 PMCID: PMC7081123 DOI: 10.1002/14651858.cd010632.pub2] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND ¹⁸F-FDFG uptake by brain tissue as measured by positron emission tomography (PET) is a well-established method for assessment of brain function in people with dementia. Certain findings on brain PET scans can potentially predict the decline of mild cognitive Impairment (MCI) to Alzheimer's disease dementia or other dementias. OBJECTIVES To determine the diagnostic accuracy of the ¹⁸F-FDG PET index test for detecting people with MCI at baseline who would clinically convert to Alzheimer's disease dementia or other forms of dementia at follow-up. SEARCH METHODS We searched the Cochrane Register of Diagnostic Test Accuracy Studies, MEDLINE, EMBASE, Science Citation Index, PsycINFO, BIOSIS previews, LILACS, MEDION, (Meta-analyses van Diagnostisch Onderzoek), DARE (Database of Abstracts of Reviews of Effects), HTA (Health Technology Assessment Database), ARIF (Aggressive Research Intelligence Facility) and C-EBLM (International Federation of Clinical Chemistry and Laboratory Medicine Committee for Evidence-based Laboratory Medicine) databases to January 2013. We checked the reference lists of any relevant studies and systematic reviews for additional studies. SELECTION CRITERIA We included studies that evaluated the diagnostic accuracy of ¹⁸F-FDG PET to determine the conversion from MCI to Alzheimer's disease dementia or to other forms of dementia, i.e. any or all of vascular dementia, dementia with Lewy bodies, and fronto-temporal dementia. These studies necessarily employ delayed verification of conversion to dementia and are sometimes labelled as 'delayed verification cross-sectional studies'. DATA COLLECTION AND ANALYSIS Two blinded review authors independently extracted data, resolving disagreement by discussion, with the option to involve a third review author as arbiter if necessary. We extracted and summarised graphically the data for two-by-two tables. We conducted exploratory analyses by plotting estimates of sensitivity and specificity from each study on forest plots and in receiver operating characteristic (ROC) space. When studies had mixed thresholds, we derived estimates of sensitivity and likelihood ratios at fixed values (lower quartile, median and upper quartile) of specificity from the hierarchical summary ROC (HSROC) models. MAIN RESULTS We included 14 studies (421 participants) in the analysis. The sensitivities for conversion from MCI to Alzheimer's disease dementia were between 25% and 100% while the specificities were between 15% and 100%. From the summary ROC curve we fitted we estimated that the sensitivity was 76% (95% confidence interval (CI): 53.8 to 89.7) at the included study median specificity of 82%. This equates to a positive likelihood ratio of 4.03 (95% CI: 2.97 to 5.47), and a negative likelihood ratio of 0.34 (95% CI: 0.15 to 0.75). Three studies recruited participants from the same Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort but only the largest ADNI study (Herholz 2011) is included in the meta-analysis. In order to demonstrate whether the choice of ADNI study or discriminating brain region (Chételat 2003) or reader assessment (Pardo 2010) make a difference to the pooled estimate, we performed five additional analyses. At the median specificity of 82%, the estimated sensitivity was between 74% and 76%. There was no impact on our findings. In addition to evaluating Alzheimer's disease dementia, five studies evaluated the accuracy of ¹⁸F-FDG PET for all types of dementia. The sensitivities were between 46% and 95% while the specificities were between 29% and 100%; however, we did not conduct a meta-analysis because of too few studies, and those studies which we had found recruited small numbers of participants. Our findings are based on studies with poor reporting, and the majority of included studies had an unclear risk of bias, mainly for the reference standard and participant selection domains. According to the assessment of Index test domain, more than 50% of studies were of poor methodological quality. AUTHORS' CONCLUSIONS It is difficult to determine to what extent the findings from the meta-analysis can be applied to clinical practice. Given the considerable variability of specificity values and lack of defined thresholds for determination of test positivity in the included studies, the current evidence does not support the routine use of ¹⁸F-FDG PET scans in clinical practice in people with MCI. The ¹⁸F-FDG PET scan is a high-cost investigation, and it is therefore important to clearly demonstrate its accuracy and to standardise the process of ¹⁸F-FDG PET diagnostic modality prior to its being widely used. Future studies with more uniform approaches to thresholds, analysis and study conduct may provide a more homogeneous estimate than the one available from the included studies we have identified.
Collapse
Affiliation(s)
- Nadja Smailagic
- University of CambridgeInstitute of Public HealthForvie SiteRobinson WayCambridgeUKCB2 0SR
| | - Marco Vacante
- University of Oxford, John Radcliffe HospitalNuffield Department of Medicine ‐ OPTIMAHeadly WayHeadingtonOxfordOxfordshireUKOX3 9DU
| | - Chris Hyde
- University of Exeter Medical School, University of ExeterInstitute of Health ResearchVeysey BuildingSalmon Pool LaneExeterUKEX2 4SG
| | - Steven Martin
- University of CambridgeInstitute of Public HealthForvie SiteRobinson WayCambridgeUKCB2 0SR
| | - Obioha Ukoumunne
- University of Exeter Medical School, University of ExeterNIHR CLAHRC South West Peninsula (PenCLAHRC)Veysey BuildingSalmon Pool LaneExeterDevonUKEX2 4SG
| | | | | |
Collapse
|
156
|
Brainin M, Tuomilehto J, Heiss WD, Bornstein NM, Bath PMW, Teuschl Y, Richard E, Guekht A, Quinn T. Post-stroke cognitive decline: an update and perspectives for clinical research. Eur J Neurol 2014; 22:229-38, e13-6. [PMID: 25492161 DOI: 10.1111/ene.12626] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 01/12/2023]
Abstract
The close relationship between stroke and dementia is an important health issue. Ischaemic stroke can facilitate the onset of vascular dementia as well as aggravate pre-existing cognitive decline. The onset of cognitive decline may become manifest immediately following the onset of ischaemic stroke, but often there is a delay in the development of cognitive decline after a stroke. This delay can be seen as a therapeutic time window allowing interventions to be applied to preserve cognition following stroke. Both neurodegenerative and vascular mechanisms are activated and probably result in overlapping processes within the neurovascular unit. This review focuses on the incidence and prevalence of cognitive decline following stroke, predisposing stroke aetiologies, pre-stroke decline, imaging factors and biomarkers. Outcomes are discussed in relation to timing of assessment and neuropsychological tests used for evaluation of cognitive decline in ischaemic stroke patients. Including such tests in routine evaluations of stroke patients after some weeks or months is recommended. Finally, an outlook on ongoing and planned intervention trials is added and some recommendations for future research are proposed.
Collapse
Affiliation(s)
- M Brainin
- Department for Clinical Neurosciences and Preventive Medicine, Danube University Krems, Krems, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Licastro F, Carbone I, Raschi E, Porcellini E. The 21st century epidemic: infections as inductors of neuro-degeneration associated with Alzheimer's Disease. Immun Ageing 2014; 11:22. [PMID: 25516763 PMCID: PMC4266955 DOI: 10.1186/s12979-014-0022-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/22/2014] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is a complex disease resulting in neurodegeneration and cognitive impairment. Investigations on environmental factors implicated in AD are scarce and the etiology of the disease remains up to now obscure. The disease's pathogenesis may be multi-factorial and different etiological factors may converge during aging and induce an activation of brain microglia and macrophages. This microglia priming will result in chronic neuro-inflammation under chronic antigen activation. Infective agents may prime and drive iper-activation of microglia and be partially responsible of the induction of brain inflammation and decline of cognitive performances. Age-associated immune dis-functions induced by chronic sub-clinical infections appear to substantially contribute to the appearance of neuro-inflammation in the elderly. Individual predisposition to less efficient immune responses is another relevant factor contributing to impaired regulation of inflammatory responses and accelerated cognitive decline. Life-long virus infection may play a pivotal role in activating peripheral and central inflammatory responses and in turn contributing to increased cognitive impairment in preclinical and clinical AD.
Collapse
Affiliation(s)
- Federico Licastro
- />Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Bologna, 40100 Italy
- />Laboratory of Immunopathology and Immunogenetics, Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Ilaria Carbone
- />Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Bologna, 40100 Italy
| | - Elena Raschi
- />Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Bologna, 40100 Italy
| | - Elisa Porcellini
- />Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Bologna, 40100 Italy
| |
Collapse
|
158
|
IKKβ deficiency in myeloid cells ameliorates Alzheimer's disease-related symptoms and pathology. J Neurosci 2014; 34:12982-99. [PMID: 25253847 DOI: 10.1523/jneurosci.1348-14.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by extracellular amyloid-β (Aβ) deposits and microglia-dominated inflammatory activation. Innate immune signaling controls microglial inflammatory activities and Aβ clearance. However, studies examining innate immunity in Aβ pathology and neuronal degeneration have produced conflicting results. In this study, we investigated the pathogenic role of innate immunity in AD by ablating a key signaling molecule, IKKβ, specifically in the myeloid cells of TgCRND8 APP-transgenic mice. Deficiency of IKKβ in myeloid cells, especially microglia, simultaneously reduced inflammatory activation and Aβ load in the brain and these effects were associated with reduction of cognitive deficits and preservation of synaptic structure proteins. IKKβ deficiency enhanced microglial recruitment to Aβ deposits and facilitated Aβ internalization, perhaps by inhibiting TGF-β-SMAD2/3 signaling, but did not affect Aβ production and efflux. Therefore, inhibition of IKKβ signaling in myeloid cells improves cognitive functions in AD mice by reducing inflammatory activation and enhancing Aβ clearance. These results contribute to a better understanding of AD pathogenesis and could offer a new therapeutic option for delaying AD progression.
Collapse
|
159
|
|
160
|
Imaging neuroinflammation in Alzheimer's disease and other dementias: Recent advances and future directions. Alzheimers Dement 2014; 11:1110-20. [DOI: 10.1016/j.jalz.2014.08.105] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 04/21/2014] [Accepted: 08/12/2014] [Indexed: 12/13/2022]
|
161
|
Chua SW, Kassiou M, Ittner LM. The translocator protein as a drug target in Alzheimer's disease. Expert Rev Neurother 2014; 14:439-48. [PMID: 24625007 DOI: 10.1586/14737175.2014.896201] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The translocator protein (TSPO) recently emerged as a potential drug target in Alzheimer's disease (AD). This has been fuelled mainly by positron emission topography studies that show the upregulation of TSPO in AD, especially in relation to microgliosis and astrogliosis in amyloid-β and tau pathology. Although data as to the exact role of TSPO in AD is still inconclusive, TSPO appears to be involved in neuroinflammatory processes and AD has been shown to involve substantial inflammation. Therefore, further development and investigation of the pharmacological effect of TSPO ligands in AD pathology are warranted.
Collapse
Affiliation(s)
- Sook W Chua
- Dementia Research Unit, School of Medical Sciences, Wallace Wurth Building, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
162
|
Agosta F, Dalla Libera D, Spinelli EG, Finardi A, Canu E, Bergami A, Bocchio Chiavetto L, Baronio M, Comi G, Martino G, Matteoli M, Magnani G, Verderio C, Furlan R. Myeloid microvesicles in cerebrospinal fluid are associated with myelin damage and neuronal loss in mild cognitive impairment and Alzheimer disease. Ann Neurol 2014; 76:813-25. [DOI: 10.1002/ana.24235] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Federica Agosta
- Division of Neuroscience, Institute of Experimental Neurology; Scientific Institute San Raffaele; Milan
| | - Dacia Dalla Libera
- Division of Neuroscience, Institute of Experimental Neurology; Scientific Institute San Raffaele; Milan
| | - Edoardo Gioele Spinelli
- Division of Neuroscience, Institute of Experimental Neurology; Scientific Institute San Raffaele; Milan
| | - Annamaria Finardi
- Division of Neuroscience, Institute of Experimental Neurology; Scientific Institute San Raffaele; Milan
| | - Elisa Canu
- Division of Neuroscience, Institute of Experimental Neurology; Scientific Institute San Raffaele; Milan
| | - Alessandra Bergami
- Division of Neuroscience, Institute of Experimental Neurology; Scientific Institute San Raffaele; Milan
| | | | | | - Giancarlo Comi
- Division of Neuroscience, Institute of Experimental Neurology; Scientific Institute San Raffaele; Milan
- Vita-Salute San Raffaele University; Milan
| | - Gianvito Martino
- Division of Neuroscience, Institute of Experimental Neurology; Scientific Institute San Raffaele; Milan
| | - Michela Matteoli
- CNR Institute of Neuroscience and Department of Medical Pharmacology; Milan
- Istituto Clinico Humanitas IRCCS; Milan Italy
| | - Giuseppe Magnani
- Division of Neuroscience, Institute of Experimental Neurology; Scientific Institute San Raffaele; Milan
| | - Claudia Verderio
- CNR Institute of Neuroscience and Department of Medical Pharmacology; Milan
- Istituto Clinico Humanitas IRCCS; Milan Italy
| | - Roberto Furlan
- Division of Neuroscience, Institute of Experimental Neurology; Scientific Institute San Raffaele; Milan
| |
Collapse
|
163
|
Femminella GD, Edison P. Evaluation of neuroprotective effect of glucagon-like peptide 1 analogs using neuroimaging. Alzheimers Dement 2014; 10:S55-61. [PMID: 24529526 DOI: 10.1016/j.jalz.2013.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 11/16/2022]
Abstract
There is increasing evidence to suggest that glucagon-like peptide 1 (GLP1) analogs are neuroprotective in animal models. In transgenic mice, both insulin and GLP1 analogs reduced inflammation, increased stem cell proliferation, reduced apoptosis, and increased dendritic growth. Furthermore, insulin desensitization was also observed in these animals, and reduced glucose uptake in the brain, as shown on FDG-PET imaging. In this review we discussed the role of PET and MRI in evaluating the effect of GLP1 analogs in disease progression in both Alzheimer's and Parkinson's disease. We have also discussed the potential novel PET markers that will allow us to understand the mechanism by which GLP1 exerts its effects.
Collapse
Affiliation(s)
- Grazia D Femminella
- Neurology Imaging Unit, Imperial College London, Hammersmith Campus, London, UK
| | - Paul Edison
- Neurology Imaging Unit, Imperial College London, Hammersmith Campus, London, UK.
| |
Collapse
|
164
|
Cortical hypermetabolism in MCI subjects: a compensatory mechanism? Eur J Nucl Med Mol Imaging 2014; 42:447-58. [DOI: 10.1007/s00259-014-2919-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 09/17/2014] [Indexed: 01/25/2023]
|
165
|
Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, Brooks DJ, Edison P. Influence of microglial activation on neuronal function in Alzheimer's and Parkinson's disease dementia. Alzheimers Dement 2014; 11:608-21.e7. [DOI: 10.1016/j.jalz.2014.06.016] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/18/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Fan
- Neurology Imaging Unit, Department of Medicine; Imperial College London, Hammersmith Hospital; London UK
| | - Yahyah Aman
- Neurology Imaging Unit, Department of Medicine; Imperial College London, Hammersmith Hospital; London UK
| | - Imtiaz Ahmed
- Neurology Imaging Unit, Department of Medicine; Imperial College London, Hammersmith Hospital; London UK
| | - Gaël Chetelat
- Inserm-EPHE-University of Caen/Basse-Normandie; Caen France
| | | | - K. Ray Chaudhuri
- Department of Neurology, National Parkinson Foundation Centre of Excellence; King's College Hospital, and King's Health Partners; London UK
| | - David J. Brooks
- Neurology Imaging Unit, Department of Medicine; Imperial College London, Hammersmith Hospital; London UK
| | - Paul Edison
- Neurology Imaging Unit, Department of Medicine; Imperial College London, Hammersmith Hospital; London UK
| |
Collapse
|
166
|
Ayala-Grosso CA, Pieruzzini R, Diaz-Solano D, Wittig O, Abrante L, Vargas L, Cardier J. Amyloid-aβ Peptide in olfactory mucosa and mesenchymal stromal cells of mild cognitive impairment and Alzheimer's disease patients. Brain Pathol 2014; 25:136-45. [PMID: 25040401 DOI: 10.1111/bpa.12169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022] Open
Abstract
Patients with mild cognitive impairment (MCI) or Alzheimer's disease (AD) might develop olfactory dysfunction that correlates with progression of disease. Alteration of olfactory neuroepithelium associated with MCI may be useful as predictor of cognitive decline. Biomarkers with higher sensitivity and specificity would allow to understand the biological progression of the pathology in association with the clinical course of the disease. In this study, magnetic resonance images, apolipoprotein E (ApoE) load, Olfactory Connecticut test and Montreal Cognitive Assessment (MoCA) indices were obtained from noncognitive impaired (NCI), MCI and AD patients. We established a culture of patient-derived olfactory stromal cells from biopsies of olfactory mucosa (OM) to test whether biological properties of mesenchymal stromal cells (MSC) are concurrent with MCI and AD psychophysical pathology. We determined the expression of amyloid Aβ peptides in the neuroepithelium of tissue sections from MCI and AD, as well as in cultured cells of OM. Reduced migration and proliferation of stromal (CD90(+) ) cells in MCI and AD with respect to NCI patients was determined. A higher proportion of anosmic MCI and AD cases were concurrent with the ApoE ε4 allele. In summary, dysmetabolism of amyloid was concurrent with migration and proliferation impairment of patient-derived stem cells.
Collapse
Affiliation(s)
- Carlos A Ayala-Grosso
- Unidad de Terapia Celular, Laboratorio de Patologia Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Cientificas (IVIC), Caracas, 1020-A, Venezuela
| | | | | | | | | | | | | |
Collapse
|
167
|
Santiago AR, Baptista FI, Santos PF, Cristóvão G, Ambrósio AF, Cunha RA, Gomes CA. Role of microglia adenosine A(2A) receptors in retinal and brain neurodegenerative diseases. Mediators Inflamm 2014; 2014:465694. [PMID: 25132733 PMCID: PMC4124703 DOI: 10.1155/2014/465694] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/20/2014] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation mediated by microglial cells in the brain has been commonly associated with neurodegenerative diseases. Whether this microglia-mediated neuroinflammation is cause or consequence of neurodegeneration is still a matter of controversy. However, it is unequivocal that chronic neuroinflammation plays a role in disease progression and halting that process represents a potential therapeutic strategy. The neuromodulator adenosine emerges as a promising targeting candidate based on its ability to regulate microglial proliferation, chemotaxis, and reactivity through the activation of its G protein coupled A2A receptor (A2AR). This is in striking agreement with the ability of A2AR blockade to control several brain diseases. Retinal degenerative diseases have been also associated with microglia-mediated neuroinflammation, but the role of A2AR has been scarcely explored. This review aims to compare inflammatory features of Parkinson's and Alzheimer's diseases with glaucoma and diabetic retinopathy, discussing the therapeutic potential of A2AR in these degenerative conditions.
Collapse
Affiliation(s)
- Ana R. Santiago
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- AIBILI, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Filipa I. Baptista
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo F. Santos
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
- Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Gonçalo Cristóvão
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| | - António F. Ambrósio
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- AIBILI, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Rodrigo A. Cunha
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Catarina A. Gomes
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| |
Collapse
|
168
|
Tracking neuroinflammation in Alzheimer's disease: the role of positron emission tomography imaging. J Neuroinflammation 2014; 11:120. [PMID: 25005532 PMCID: PMC4099095 DOI: 10.1186/1742-2094-11-120] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/20/2014] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) has been reconceptualized as a dynamic pathophysiological process, where the accumulation of amyloid-beta (Aβ) is thought to trigger a cascade of neurodegenerative events resulting in cognitive impairment and, eventually, dementia. In addition to Aβ pathology, various lines of research have implicated neuroinflammation as an important participant in AD pathophysiology. Currently, neuroinflammation can be measured in vivo using positron emission tomography (PET) with ligands targeting diverse biological processes such as microglial activation, reactive astrocytes and phospholipase A2 activity. In terms of therapeutic strategies, despite a strong rationale and epidemiological studies suggesting that the use of non-steroidal anti-inflammatory drugs (NSAIDs) may reduce the prevalence of AD, clinical trials conducted to date have proven inconclusive. In this respect, it has been hypothesized that NSAIDs may only prove protective if administered early on in the disease course, prior to the accumulation of significant AD pathology. In order to test various hypotheses pertaining to the exact role of neuroinflammation in AD, studies in asymptomatic carriers of mutations deterministic for early-onset familial AD may prove of use. In this respect, PET ligands for neuroinflammation may act as surrogate markers of disease progression, allowing for the development of more integrative models of AD, as well as for the measuring of target engagement in the context of clinical trials using NSAIDs. In this review, we address the biological basis of neuroinflammatory changes in AD, underscore therapeutic strategies using anti-inflammatory compounds, and shed light on the possibility of tracking neuroinflammation in vivo using PET imaging ligands.
Collapse
|
169
|
Guillot-Sestier MV, Town T. Innate immunity in Alzheimer's disease: a complex affair. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:593-607. [PMID: 23574177 DOI: 10.2174/1871527311312050008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by three major histopathological hallmarks: β-amyloid deposits, neurofibrillary tangles and gliosis. While neglected for decades, the neuroinflammatory processes coordinated by microglia are now accepted as etiologic events in AD evolution. Microglial cells are found in close vicinity to amyloid plaques and display various activation phenotypes determined by the expression of a wide range of cytokines, chemokines, and innate immune surface receptors. During the development of AD pathology, microglia fail to restrict amyloid plaques and may contribute to neurotoxicity and cognitive deficit. Nevertheless, under specific activation states, microglia can participate in cerebral amyloid clearance. This review focuses on the complex relationship between microglia and Aβ pathology, and highlights both deleterious and beneficial roles of microglial activation states in the context of AD. A deeper understanding of microglial biology will hopefully pave the way for next-generation AD therapeutic approaches aimed at harnessing these enigmatic innate immune cells of the central nervous system.
Collapse
Affiliation(s)
- Marie-Victoire Guillot-Sestier
- Regenerative Medicine Institute Neural Program, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Steven Spielberg Building Room 345, Los Angeles, CA 90048, USA
| | | |
Collapse
|
170
|
Karim S, Hopkins S, Purandare N, Crowther J, Morris J, Tyrrell P, Burns A. Peripheral inflammatory markers in amnestic mild cognitive impairment. Int J Geriatr Psychiatry 2014; 29:221-6. [PMID: 23857873 PMCID: PMC4238843 DOI: 10.1002/gps.3988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/02/2013] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To prospectively monitor plasma inflammatory marker concentrations in peripheral blood, over 12 months, in subjects with amnestic mild cognitive impairment (MCI), and to determine the relationship between peripheral inflammatory markers and cognitive decline. METHODS Seventy patients with amnestic MCI were recruited from two sites providing specialist memory assessment services in Manchester. The baseline assessment included physical examination, neuro-psychological testing and venous blood samples for C-reactive protein (CRP) and interleukin 6 (IL-6) concentrations. Sixty two participants were followed up after 12 months and the assessments were repeated. RESULTS Data analysis revealed a significant rise in CRP, but not IL-6 concentrations over 12 months, which was not confounded by demographic variables. The neuro-psychological test scores had no association with CRP or IL-6 concentrations at baseline or 12 months follow-up. CONCLUSION This study adopted the unique approach of prospectively investigating peripheral inflammatory markers in a cohort with amnestic MCI. A significant rise in CRP concentrations over 12 months, but lack of significant association with cognition, provide no evidence for a relationship between systemic inflammation and cognitive decline in amnestic MCI.
Collapse
Affiliation(s)
- Salman Karim
- Division of Psychiatry, University of ManchesterManchester, UK
| | - Steve Hopkins
- Brain Injury Research Group, Salford Royal Foundation TrustManchester, UK
| | | | - Jackie Crowther
- Institute of Psychology, Health and Society, University of LiverpoolLiverpool, UK
| | - Julie Morris
- Department of Medical Statistics, University Hospital of South ManchesterManchester, UK
| | - Pippa Tyrrell
- Stroke Medicine, University of ManchesterManchester, UK
| | - Alistair Burns
- Division of Psychiatry, University of ManchesterManchester, UK
| |
Collapse
|
171
|
Hardy J, Bogdanovic N, Winblad B, Portelius E, Andreasen N, Cedazo-Minguez A, Zetterberg H. Pathways to Alzheimer's disease. J Intern Med 2014; 275:296-303. [PMID: 24749173 DOI: 10.1111/joim.12192] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent trials of anti-amyloid agents have not produced convincing improvements in clinical outcome in Alzheimer's disease; however, the reason for these poor or inconclusive results remains unclear. Recent genetic data continue to support the amyloid hypothesis of Alzheimer's disease with protective variants being found in the amyloid gene and both common low-risk and rare high-risk variants for disease being discovered in genes that are part of the amyloid response pathways. These data support the view that genetic variability in how the brain responds to amyloid deposition is a potential therapeutic target for the disease, and are consistent with the notion that anti-amyloid therapies should be initiated early in the disease process.
Collapse
Affiliation(s)
- J. Hardy
- Department of Molecular Neuroscience; Reta Lila Weston Research Laboratories; UCL Institute of Neurology; London UK
| | - N. Bogdanovic
- Section of Clinical Geriatrics; Karolinska Institutet; Stockholm Sweden
| | - B. Winblad
- KI-Alzheimer Disease Research Center; Karolinska Institutet; NVS; Stockholm Sweden
| | - E. Portelius
- Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - N. Andreasen
- KI-Alzheimer Disease Research Center; Karolinska Institutet; NVS; Stockholm Sweden
| | - A. Cedazo-Minguez
- KI-Alzheimer Disease Research Center; Karolinska Institutet; NVS; Stockholm Sweden
| | - H. Zetterberg
- Department of Molecular Neuroscience; Reta Lila Weston Research Laboratories; UCL Institute of Neurology; London UK
- Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
172
|
Lyoo CH, Zanotti-Fregonara P, Zoghbi SS, Liow JS, Xu R, Pike VW, Zarate CA, Fujita M, Innis RB. Image-derived input function derived from a supervised clustering algorithm: methodology and validation in a clinical protocol using [11C](R)-rolipram. PLoS One 2014; 9:e89101. [PMID: 24586526 PMCID: PMC3930688 DOI: 10.1371/journal.pone.0089101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/14/2014] [Indexed: 11/18/2022] Open
Abstract
Image-derived input function (IDIF) obtained by manually drawing carotid arteries (manual-IDIF) can be reliably used in [11C](R)-rolipram positron emission tomography (PET) scans. However, manual-IDIF is time consuming and subject to inter- and intra-operator variability. To overcome this limitation, we developed a fully automated technique for deriving IDIF with a supervised clustering algorithm (SVCA). To validate this technique, 25 healthy controls and 26 patients with moderate to severe major depressive disorder (MDD) underwent T1-weighted brain magnetic resonance imaging (MRI) and a 90-minute [11C](R)-rolipram PET scan. For each subject, metabolite-corrected input function was measured from the radial artery. SVCA templates were obtained from 10 additional healthy subjects who underwent the same MRI and PET procedures. Cluster-IDIF was obtained as follows: 1) template mask images were created for carotid and surrounding tissue; 2) parametric image of weights for blood were created using SVCA; 3) mask images to the individual PET image were inversely normalized; 4) carotid and surrounding tissue time activity curves (TACs) were obtained from weighted and unweighted averages of each voxel activity in each mask, respectively; 5) partial volume effects and radiometabolites were corrected using individual arterial data at four points. Logan-distribution volume (VT/fP) values obtained by cluster-IDIF were similar to reference results obtained using arterial data, as well as those obtained using manual-IDIF; 39 of 51 subjects had a VT/fP error of <5%, and only one had error >10%. With automatic voxel selection, cluster-IDIF curves were less noisy than manual-IDIF and free of operator-related variability. Cluster-IDIF showed widespread decrease of about 20% [11C](R)-rolipram binding in the MDD group. Taken together, the results suggest that cluster-IDIF is a good alternative to full arterial input function for estimating Logan-VT/fP in [11C](R)-rolipram PET clinical scans. This technique enables fully automated extraction of IDIF and can be applied to other radiotracers with similar kinetics.
Collapse
Affiliation(s)
- Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
- University of Bordeaux, CNRS, INCIA, UMR 5287, Talence, France
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rong Xu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
173
|
Tsai Y, Lu B, Ljubimov AV, Girman S, Ross-Cisneros FN, Sadun AA, Svendsen CN, Cohen RM, Wang S. Ocular changes in TgF344-AD rat model of Alzheimer's disease. Invest Ophthalmol Vis Sci 2014; 55:523-34. [PMID: 24398104 DOI: 10.1167/iovs.13-12888] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by progressive decline in learning, memory, and executive functions. In addition to cognitive and behavioral deficits, vision disturbances have been reported in early stage of AD, well before the diagnosis is clearly established. To further investigate ocular abnormalities, a novel AD transgenic rat model was analyzed. METHODS Transgenic (Tg) rats (TgF344-AD) heterozygous for human mutant APPswe/PS1ΔE9 and age-matched wild type (WT) rats, as well as 20 human postmortem retinal samples from both AD and healthy donors were used. Visual function in the rodent was analyzed using the optokinetic response and luminance threshold recording from the superior colliculus. Immunohistochemistry on retinal and brain sections was used to detect various markers including amyloid-β (Aβ) plaques. RESULTS As expected, Aβ plaques were detected in the hippocampus, cortex, and retina of Tg rats. Plaque-like structures were also found in two AD human whole-mount retinas. The choroidal thickness was significantly reduced in both Tg rat and in AD human eyes when compared with age-matched controls. Tg rat eyes also showed hypertrophic retinal pigment epithelial cells, inflammatory cells, and upregulation of complement factor C3. Although visual acuity was lower in Tg than in WT rats, there was no significant difference in the retinal ganglion cell number and retinal vasculature. CONCLUSIONS In this study, we observed pathological changes in the choroid and in RPE cells in the TgF344-AD rat model; choroidal thinning was observed further in human AD retina. Along with Ab deposition, the inflammatory response was manifested by microglial recruitment and complement activation. Further studies are needed to elucidate the significance and mechanisms of these pathological changes [corrected].
Collapse
Affiliation(s)
- Yuchun Tsai
- Cedars-Sinai Regenerative Medicine Institute, Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88:640-51. [PMID: 24398425 DOI: 10.1016/j.bcp.2013.12.024] [Citation(s) in RCA: 766] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 12/20/2022]
Abstract
The global prevalence of dementia is as high as 24 million, and has been predicted to quadruple by the year 2050. In the US alone, Alzheimer disease (AD) - the most frequent cause of dementia characterized by a progressive decline in cognitive function in particular the memory domain - causes estimated health-care costs of $ 172 billion per year. Key neuropathological hallmarks of the AD brain are diffuse and neuritic extracellular amyloid plaques - often surrounded by dystrophic neurites - and intracellular neurofibrillary tangles. These pathological changes are frequently accompanied by reactive microgliosis and loss of neurons, white matter and synapses. The etiological mechanisms underlying these neuropathological changes remain unclear, but are probably caused by both environmental and genetic factors. In this review article, we provide an overview of the epidemiology of AD, review the biomarkers that may be used for risk assessment and in diagnosis, and give suggestions for future research.
Collapse
Affiliation(s)
- Christiane Reitz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, United States; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
175
|
McManus RM, Higgins SC, Mills KH, Lynch MA. Respiratory infection promotes T cell infiltration and amyloid-β deposition in APP/PS1 mice. Neurobiol Aging 2014; 35:109-21. [DOI: 10.1016/j.neurobiolaging.2013.07.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/12/2022]
|
176
|
Joshi P, Turola E, Ruiz A, Bergami A, Libera DD, Benussi L, Giussani P, Magnani G, Comi G, Legname G, Ghidoni R, Furlan R, Matteoli M, Verderio C. Microglia convert aggregated amyloid-β into neurotoxic forms through the shedding of microvesicles. Cell Death Differ 2013; 21:582-93. [PMID: 24336048 DOI: 10.1038/cdd.2013.180] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/15/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by extracellular amyloid-β (Aβ) deposition, which activates microglia, induces neuroinflammation and drives neurodegeneration. Recent evidence indicates that soluble pre-fibrillar Aβ species, rather than insoluble fibrils, are the most toxic forms of Aβ. Preventing soluble Aβ formation represents, therefore, a major goal in AD. We investigated whether microvesicles (MVs) released extracellularly by reactive microglia may contribute to AD degeneration. We found that production of myeloid MVs, likely of microglial origin, is strikingly high in AD patients and in subjects with mild cognitive impairment and that AD MVs are toxic for cultured neurons. The mechanism responsible for MV neurotoxicity was defined in vitro using MVs produced by primary microglia. We demonstrated that neurotoxicity of MVs results from (i) the capability of MV lipids to promote formation of soluble Aβ species from extracellular insoluble aggregates and (ii) from the presence of neurotoxic Aβ forms trafficked to MVs after Aβ internalization into microglia. MV neurotoxicity was neutralized by the Aβ-interacting protein PrP and anti-Aβ antibodies, which prevented binding to neurons of neurotoxic soluble Aβ species. This study identifies microglia-derived MVs as a novel mechanism by which microglia participate in AD degeneration, and suggest new therapeutic strategies for the treatment of the disease.
Collapse
Affiliation(s)
- P Joshi
- 1] Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Milano 20129, Italy [2] Department of Medicine, CNR Institute of Neuroscience, via Vanvitelli 32, Milano 20129, Italy
| | - E Turola
- 1] Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Milano 20129, Italy [2] Department of Medicine, CNR Institute of Neuroscience, via Vanvitelli 32, Milano 20129, Italy
| | - A Ruiz
- Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Milano 20129, Italy
| | - A Bergami
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - D D Libera
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - L Benussi
- Proteomics Unit, IRCCS Istituto centro San Giovanni di Dio Fatebenefratelli, via Pilastroni, Brescia 4 25125, Italy
| | - P Giussani
- Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Milano 20129, Italy
| | - G Magnani
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - G Comi
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - G Legname
- SISSA, Department of Neuroscience, Via Bonomea 265, Trieste I-34136, Italy
| | - R Ghidoni
- Proteomics Unit, IRCCS Istituto centro San Giovanni di Dio Fatebenefratelli, via Pilastroni, Brescia 4 25125, Italy
| | - R Furlan
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - M Matteoli
- 1] Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Milano 20129, Italy [2] IRCCS Humanitas,via Manzoni 56, Rozzano 20089, Italy
| | - C Verderio
- 1] Department of Medicine, CNR Institute of Neuroscience, via Vanvitelli 32, Milano 20129, Italy [2] IRCCS Humanitas,via Manzoni 56, Rozzano 20089, Italy
| |
Collapse
|
177
|
|
178
|
Immunity and Alzheimer's disease: immunological perspectives on the development of novel therapies. Drug Discov Today 2013; 18:1212-20. [DOI: 10.1016/j.drudis.2013.07.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 07/19/2013] [Accepted: 07/30/2013] [Indexed: 02/07/2023]
|
179
|
Jha MK, Kim JH, Suk K. Proteome of brain glia: the molecular basis of diverse glial phenotypes. Proteomics 2013; 14:378-98. [PMID: 24124134 DOI: 10.1002/pmic.201300236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/16/2013] [Accepted: 07/30/2013] [Indexed: 12/11/2022]
Abstract
Several different types of nonneuronal glial cells with diverse phenotypes are present in the CNS, and all have distinct indispensible functions. Although glial cells primarily provide neurons with metabolic and structural support in the healthy brain, they may switch phenotype from a "resting" to a "reactive" state in response to pathological insults. Furthermore, this reactive gliosis is an invariant feature of the pathogeneses of CNS maladies. The glial proteome serves as a signature of glial phenotype, and not only executes physiological functions, but also acts as a molecular mediator of the reactive glial phenotype. The glial proteome is also involved in intra- and intercellular communications as exemplified by glia-glia and neuron-glia interactions. The utilization of authoritative proteomic tools and the bioinformatic analyses have helped to profile the brain glial proteome and explore the molecular mechanisms of diverse glial phenotypes. Furthermore, technologic innovations have equipped the field of "glioproteomics" with refined tools for studies of the expression, interaction, and function of glial proteins in the healthy and in the diseased CNS. Glioproteomics is expected to contribute to the elucidation of the molecular mechanisms of CNS pathophysiology and to the discovery of biomarkers and theragnostic targets in CNS disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, South Korea
| | | | | |
Collapse
|
180
|
Rowley J, Fonov V, Wu O, Eskildsen SF, Schoemaker D, Wu L, Mohades S, Shin M, Sziklas V, Cheewakriengkrai L, Shmuel A, Dagher A, Gauthier S, Rosa-Neto P. White matter abnormalities and structural hippocampal disconnections in amnestic mild cognitive impairment and Alzheimer's disease. PLoS One 2013; 8:e74776. [PMID: 24086371 PMCID: PMC3785512 DOI: 10.1371/journal.pone.0074776] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 08/07/2013] [Indexed: 01/18/2023] Open
Abstract
The purpose of this project was to evaluate white matter degeneration and its impact on hippocampal structural connectivity in patients with amnestic mild cognitive impairment, non-amnestic mild cognitive impairment and Alzheimer’s disease. We estimated white matter fractional anisotropy, mean diffusivity and hippocampal structural connectivity in two independent cohorts. The ADNI cohort included 108 subjects [25 cognitively normal, 21 amnestic mild cognitive impairment, 47 non-amnestic mild cognitive impairment and 15 Alzheimer’s disease]. A second cohort included 34 subjects [15 cognitively normal and 19 amnestic mild cognitive impairment] recruited in Montreal. All subjects underwent clinical and neuropsychological assessment in addition to diffusion and T1 MRI. Individual fractional anisotropy and mean diffusivity maps were generated using FSL-DTIfit. In addition, hippocampal structural connectivity maps expressing the probability of connectivity between the hippocampus and cortex were generated using a pipeline based on FSL-probtrackX. Voxel-based group comparison statistics of fractional anisotropy, mean diffusivity and hippocampal structural connectivity were estimated using Tract-Based Spatial Statistics. The proportion of abnormal to total white matter volume was estimated using the total volume of the white matter skeleton. We found that in both cohorts, amnestic mild cognitive impairment patients had 27-29% white matter volume showing higher mean diffusivity but no significant fractional anisotropy abnormalities. No fractional anisotropy or mean diffusivity differences were observed between non-amnestic mild cognitive impairment patients and cognitively normal subjects. Alzheimer’s disease patients had 66.3% of normalized white matter volume with increased mean diffusivity and 54.3% of the white matter had reduced fractional anisotropy. Reduced structural connectivity was found in the hippocampal connections to temporal, inferior parietal, posterior cingulate and frontal regions only in the Alzheimer’s group. The severity of white matter degeneration appears to be higher in advanced clinical stages, supporting the construct that these abnormalities are part of the pathophysiological processes of Alzheimer’s disease.
Collapse
Affiliation(s)
- Jared Rowley
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging (MCSA), McGill University, Montreal, Quebec, Canada
| | - Vladimir Fonov
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States of America
| | | | - Dorothee Schoemaker
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging (MCSA), McGill University, Montreal, Quebec, Canada
| | - Liyong Wu
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging (MCSA), McGill University, Montreal, Quebec, Canada
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Sara Mohades
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging (MCSA), McGill University, Montreal, Quebec, Canada
| | - Monica Shin
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging (MCSA), McGill University, Montreal, Quebec, Canada
| | - Viviane Sziklas
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Laksanun Cheewakriengkrai
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging (MCSA), McGill University, Montreal, Quebec, Canada
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging (MCSA), McGill University, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging (MCSA), McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | | |
Collapse
|
181
|
Suridjan I, Rusjan PM, Voineskos AN, Selvanathan T, Setiawan E, Strafella AP, Wilson AA, Meyer JH, Houle S, Mizrahi R. Neuroinflammation in healthy aging: a PET study using a novel Translocator Protein 18kDa (TSPO) radioligand, [(18)F]-FEPPA. Neuroimage 2013; 84:868-75. [PMID: 24064066 DOI: 10.1016/j.neuroimage.2013.09.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/05/2013] [Accepted: 09/12/2013] [Indexed: 11/18/2022] Open
Abstract
One of the cellular markers of neuroinflammation is increased microglia activation, characterized by overexpression of mitochondrial 18kDa Translocator Protein (TSPO). TSPO expression can be quantified in-vivo using the positron emission tomography (PET) radioligand [(18)F]-FEPPA. This study examined microglial activation as measured with [(18)F]-FEPPA PET across the adult lifespan in a group of healthy volunteers. We performed genotyping for the rs6971 TS.PO gene polymorphism to control for the known variability in binding affinity. Thirty-three healthy volunteers (age range: 19-82years; 22 high affinity binders (HAB), 11 mixed affinity binders (MAB)) underwent [(18)F]-FEPPA PET scans, acquired on the High Resolution Research Tomograph (HRRT) and analyzed using a 2-tissue compartment model. Regression analyses were performed to examine the effect of age adjusting for genetic status on [(18)F]-FEPPA total distribution volumes (VT) in the hippocampus, temporal, and prefrontal cortex. We found no significant effect of age on [(18)F]-FEPPA VT (F (1,30)=0.918; p=0.346), and a significant effect of genetic polymorphism (F (1,30)=8.767; p=0.006). This is the first in-vivo study to evaluate age-related changes in TSPO binding, using the new generation TSPO radioligands. Increased neuroinflammation, as measured with [(18)F]-FEPPA PET was not associated with normal aging, suggesting that healthy elderly individuals may serve as useful benchmark against patients with neurodegenerative disorders where neuroinflammation may be present.
Collapse
Affiliation(s)
- I Suridjan
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Abstract
Neurodegenerative disorders leading to dementia are common diseases that affect many older and some young adults. Neuroimaging methods are important tools for assessing and monitoring pathological brain changes associated with progressive neurodegenerative conditions. In this review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer's disease (AD) and prodromal stages, familial and atypical AD syndromes, frontotemporal dementia, amyotrophic lateral sclerosis with and without dementia, Parkinson's disease with and without dementia, dementia with Lewy bodies, Huntington's disease, multiple sclerosis, HIV-associated neurocognitive disorder, and prion protein associated diseases (i.e., Creutzfeldt-Jakob disease). The authors focus on neuroimaging findings of in vivo pathology in these disorders, as well as the potential for neuroimaging to provide useful information for differential diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shannon L. Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, and Indiana Alzheimer Disease Center Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, and Indiana Alzheimer Disease Center Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
183
|
Wu C, Li F, Niu G, Chen X. PET imaging of inflammation biomarkers. Theranostics 2013; 3:448-66. [PMID: 23843893 PMCID: PMC3706689 DOI: 10.7150/thno.6592] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/24/2013] [Indexed: 01/04/2023] Open
Abstract
Inflammation plays a significant role in many disease processes. Development in molecular imaging in recent years provides new insight into the diagnosis and treatment evaluation of various inflammatory diseases and diseases involving inflammatory process. Positron emission tomography using (18)F-FDG has been successfully applied in clinical oncology and neurology and in the inflammation realm. In addition to glucose metabolism, a variety of targets for inflammation imaging are being discovered and utilized, some of which are considered superior to FDG for imaging inflammation. This review summarizes the potential inflammation imaging targets and corresponding PET tracers, and the applications of PET in major inflammatory diseases and tumor associated inflammation. Also, the current attempt in differentiating inflammation from tumor using PET is also discussed.
Collapse
|
184
|
Kreisl WC, Lyoo CH, McGwier M, Snow J, Jenko KJ, Kimura N, Corona W, Morse CL, Zoghbi SS, Pike VW, McMahon FJ, Turner RS, Innis RB. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer's disease. ACTA ACUST UNITED AC 2013; 136:2228-38. [PMID: 23775979 DOI: 10.1093/brain/awt145] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neuroinflammation is a pathological hallmark of Alzheimer's disease, but its role in cognitive impairment and its course of development during the disease are largely unknown. To address these unknowns, we used positron emission tomography with (11)C-PBR28 to measure translocator protein 18 kDa (TSPO), a putative biomarker for inflammation. Patients with Alzheimer's disease, patients with mild cognitive impairment and older control subjects were also scanned with (11)C-Pittsburgh Compound B to measure amyloid burden. Twenty-nine amyloid-positive patients (19 Alzheimer's, 10 mild cognitive impairment) and 13 amyloid-negative control subjects were studied. The primary goal of this study was to determine whether TSPO binding is elevated in patients with Alzheimer's disease, and the secondary goal was to determine whether TSPO binding correlates with neuropsychological measures, grey matter volume, (11)C-Pittsburgh Compound B binding, or age of onset. Patients with Alzheimer's disease, but not those with mild cognitive impairment, had greater (11)C-PBR28 binding in cortical brain regions than controls. The largest differences were seen in the parietal and temporal cortices, with no difference in subcortical regions or cerebellum. (11)C-PBR28 binding inversely correlated with performance on Folstein Mini-Mental State Examination, Clinical Dementia Rating Scale Sum of Boxes, Logical Memory Immediate (Wechsler Memory Scale Third Edition), Trail Making part B and Block Design (Wechsler Adult Intelligence Scale Third Edition) tasks, with the largest correlations observed in the inferior parietal lobule. (11)C-PBR28 binding also inversely correlated with grey matter volume. Early-onset (<65 years) patients had greater (11)C-PBR28 binding than late-onset patients, and in parietal cortex and striatum (11)C-PBR28 binding correlated with lower age of onset. Partial volume corrected and uncorrected results were generally in agreement; however, the correlation between (11)C-PBR28 and (11)C-Pittsburgh Compound B binding was seen only after partial volume correction. The results suggest that neuroinflammation, indicated by increased (11)C-PBR28 binding to TSPO, occurs after conversion of mild cognitive impairment to Alzheimer's disease and worsens with disease progression. Greater inflammation may contribute to the precipitous disease course typically seen in early-onset patients. (11)C-PBR28 may be useful in longitudinal studies to mark the conversion from mild cognitive impairment or to assess response to experimental treatments of Alzheimer's disease.
Collapse
Affiliation(s)
- William C Kreisl
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Alzheimer's disease (AD) is an urgent public health challenge that is rapidly approaching epidemic proportions. New therapies that defer or prevent the onset, delay the decline, or improve the symptoms are urgently needed. All phase 3 drug development programs for disease-modifying agents have failed thus far. New approaches to drug development are needed. Translational neuroscience focuses on the linkages between basic neuroscience and the development of new diagnostic and therapeutic products that will improve the lives of patients or prevent the occurrence of brain disorders. Translational neuroscience includes new preclinical models that may better predict human efficacy and safety, improved clinical trial designs and outcomes that will accelerate drug development, and the use of biomarkers to more rapidly provide information regarding the effects of drugs on the underlying disease biology. Early translational research is complemented by later stage translational approaches regarding how best to use evidence to impact clinical practice and to assess the influence of new treatments on the public health. Funding of translational research is evolving with an increased emphasis on academic and NIH involvement in drug development. Translational neuroscience provides a framework for advancing development of new therapies for AD patients.
Collapse
|
186
|
Miller JA, Woltjer RL, Goodenbour JM, Horvath S, Geschwind DH. Genes and pathways underlying regional and cell type changes in Alzheimer's disease. Genome Med 2013; 5:48. [PMID: 23705665 PMCID: PMC3706780 DOI: 10.1186/gm452] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/13/2013] [Accepted: 05/25/2013] [Indexed: 01/15/2023] Open
Abstract
Background Transcriptional studies suggest Alzheimer's disease (AD) involves dysfunction of many cellular pathways, including synaptic transmission, cytoskeletal dynamics, energetics, and apoptosis. Despite known progression of AD pathologies, it is unclear how such striking regional vulnerability occurs, or which genes play causative roles in disease progression. Methods To address these issues, we performed a large-scale transcriptional analysis in the CA1 and relatively less vulnerable CA3 brain regions of individuals with advanced AD and nondemented controls. In our study, we assessed differential gene expression across region and disease status, compared our results to previous studies of similar design, and performed an unbiased co-expression analysis using weighted gene co-expression network analysis (WGCNA). Several disease genes were identified and validated using qRT-PCR. Results We find disease signatures consistent with several previous microarray studies, then extend these results to show a relationship between disease status and brain region. Specifically, genes showing decreased expression with AD progression tend to show enrichment in CA3 (and vice versa), suggesting transcription levels may reflect a region's vulnerability to disease. Additionally, we find several candidate vulnerability (ABCA1, MT1H, PDK4, RHOBTB3) and protection (FAM13A1, LINGO2, UNC13C) genes based on expression patterns. Finally, we use a systems-biology approach based on WGCNA to uncover disease-relevant expression patterns for major cell types, including pathways consistent with a key role for early microglial activation in AD. Conclusions These results paint a picture of AD as a multifaceted disease involving slight transcriptional changes in many genes between regions, coupled with a systemic immune response, gliosis, and neurodegeneration. Despite this complexity, we find that a consistent picture of gene expression in AD is emerging.
Collapse
Affiliation(s)
- Jeremy A Miller
- Interdepartmental Program for Neuroscience and Human Genetics Department, UCLA, 2309 Gonda Bldg, 695 Charles E Young Dr. South, Los Angeles, CA 90095-1761, USA
| | - Randall L Woltjer
- Department of Pathology, Oregon Health & Science University, Department of Pathology L113, Portland, OR 97239, USA
| | - Jeff M Goodenbour
- Human Genetics Department, UCLA, 2309 Gonda Bldg, 695 Charles E Young Dr. South, Los Angeles, CA 90095-1761, USA
| | - Steve Horvath
- Human Genetics Department and Biostatistics Department, UCLA, 4357A Gonda Bldg, 695 Charles E Young Dr. South, Los Angeles, CA 90095-1761, USA
| | - Daniel H Geschwind
- Human Genetics Department and Neurology Department, UCLA, 2309 Gonda Bldg, 695 Charles E Young Dr. South, Los Angeles, CA 90095-1761, USA
| |
Collapse
|
187
|
Glutathione relates to neuropsychological functioning in mild cognitive impairment. Alzheimers Dement 2013; 10:67-75. [DOI: 10.1016/j.jalz.2013.01.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
188
|
Alzheimer's disease biomarkers: correspondence between human studies and animal models. Neurobiol Dis 2013; 56:116-30. [PMID: 23631871 DOI: 10.1016/j.nbd.2013.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) represents an escalating global threat as life expectancy and disease prevalence continue to increase. There is a considerable need for earlier diagnoses to improve clinical outcomes. Fluid biomarkers measured from cerebrospinal fluid (CSF) and blood, or imaging biomarkers have considerable potential to assist in the diagnosis and management of AD. An additional important utility of biomarkers is in novel therapeutic development and clinical trials to assess efficacy and side effects of therapeutic interventions. Because many biomarkers are initially examined in animal models, the extent to which markers translate from animals to humans is an important issue. The current review highlights many existing and pipeline biomarker approaches, focusing on the degree of correspondence between AD patients and animal models. The review also highlights the need for greater translational correspondence between human and animal biomarkers.
Collapse
|
189
|
Wright AL, Zinn R, Hohensinn B, Konen LM, Beynon SB, Tan RP, Clark IA, Abdipranoto A, Vissel B. Neuroinflammation and neuronal loss precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer's disease. PLoS One 2013; 8:e59586. [PMID: 23560052 PMCID: PMC3613362 DOI: 10.1371/journal.pone.0059586] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/15/2013] [Indexed: 12/20/2022] Open
Abstract
Recent human trials of treatments for Alzheimer's disease (AD) have been largely unsuccessful, raising the idea that treatment may need to be started earlier in the disease, well before cognitive symptoms appear. An early marker of AD pathology is therefore needed and it is debated as to whether amyloid-βAβ? plaque load may serve this purpose. We investigated this in the hAPP-J20 AD mouse model by studying disease pathology at 6, 12, 24 and 36 weeks. Using robust stereological methods, we found there is no neuron loss in the hippocampal CA3 region at any age. However loss of neurons from the hippocampal CA1 region begins as early as 12 weeks of age. The extent of neuron loss increases with age, correlating with the number of activated microglia. Gliosis was also present, but plateaued during aging. Increased hyperactivity and spatial memory deficits occurred at 16 and 24 weeks. Meanwhile, the appearance of plaques and oligomeric Aβ were essentially the last pathological changes, with significant changes only observed at 36 weeks of age. This is surprising given that the hAPP-J20 AD mouse model is engineered to over-expresses Aβ. Our data raises the possibility that plaque load may not be the best marker for early AD and suggests that activated microglia could be a valuable marker to track disease progression.
Collapse
MESH Headings
- Age Factors
- Alzheimer Disease/diagnosis
- Alzheimer Disease/genetics
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Amyloid beta-Protein Precursor/genetics
- Amyloid beta-Protein Precursor/metabolism
- Animals
- Biomarkers/metabolism
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/pathology
- CA3 Region, Hippocampal/cytology
- CA3 Region, Hippocampal/metabolism
- Cell Count
- Disease Models, Animal
- Early Diagnosis
- Gene Expression
- Gliosis/diagnosis
- Gliosis/genetics
- Gliosis/metabolism
- Gliosis/pathology
- Humans
- Inflammation
- Male
- Memory Disorders/diagnosis
- Memory Disorders/genetics
- Memory Disorders/metabolism
- Memory Disorders/pathology
- Mice
- Mice, Transgenic
- Microglia/metabolism
- Microglia/pathology
- Neurons/metabolism
- Neurons/pathology
- Plaque, Amyloid/diagnosis
- Plaque, Amyloid/genetics
- Plaque, Amyloid/metabolism
- Plaque, Amyloid/pathology
- Stereotaxic Techniques
Collapse
Affiliation(s)
- Amanda L. Wright
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Neuroscience Department, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Raphael Zinn
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Neuroscience Department, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Barbara Hohensinn
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Neuroscience Department, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Lyndsey M. Konen
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Neuroscience Department, Sydney, Australia
| | - Sarah B. Beynon
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Neuroscience Department, Sydney, Australia
| | - Richard P. Tan
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Neuroscience Department, Sydney, Australia
| | - Ian A. Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - Andrea Abdipranoto
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Neuroscience Department, Sydney, Australia
| | - Bryce Vissel
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Neuroscience Department, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
190
|
Bettcher BM, Kramer JH. Inflammation and clinical presentation in neurodegenerative disease: a volatile relationship. Neurocase 2013; 19:182-200. [PMID: 22515699 PMCID: PMC3733377 DOI: 10.1080/13554794.2011.654227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A proposed immune mechanism that potentially modifies or exacerbates neurodegenerative disease presentation in older adults has received considerable attention in the past decade, with recent studies demonstrating a strong link between pro-inflammatory markers and neurodegeneration. The overarching aim of the following review is to synthesize recent research that supports a possible relationship between inflammation and clinical features of neurodegenerative diseases, including risk of development, cognitive and clinical correlates, and progression of the specified diseases. Specific emphasis is placed on providing a temporal context for the association between inflammation and neurodegeneration.
Collapse
Affiliation(s)
- Brianne Magouirk Bettcher
- Neurology Department, Memory and Aging Center, University of California, San Francisco, CA 94143-1207, USA.
| | | |
Collapse
|
191
|
Cohen AD, Rabinovici GD, Mathis CA, Jagust WJ, Klunk WE, Ikonomovic MD. Using Pittsburgh Compound B for in vivo PET imaging of fibrillar amyloid-beta. ADVANCES IN PHARMACOLOGY 2013; 64:27-81. [PMID: 22840744 DOI: 10.1016/b978-0-12-394816-8.00002-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of Aβ-PET imaging agents has allowed for detection of fibrillar Aβ deposition in vivo and marks a major advancement in understanding the role of Aβ in Alzheimer's disease (AD). Imaging Aβ thus has many potential clinical benefits: early or perhaps preclinical detection of disease and accurately distinguishing AD from dementias of other non-Aβ causes in patients presenting with mild or atypical symptoms or confounding comorbidities (in which the distinction is difficult to make clinically). From a research perspective, imaging Aβ allows us to study relationships between amyloid pathology and changes in cognition, brain structure, and function across the continuum from normal aging to mild cognitive impairment (MCI) to AD; and to monitor the effectiveness of anti-Aβ drugs and relate them to neurodegeneration and clinical symptoms. Here, we will discuss the application of one of the most broadly studied and widely used Aβ imaging agents, Pittsburgh Compound-B (PiB).
Collapse
Affiliation(s)
- Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
192
|
Elevated osteopontin levels in mild cognitive impairment and Alzheimer's disease. Mediators Inflamm 2013; 2013:615745. [PMID: 23576854 PMCID: PMC3612435 DOI: 10.1155/2013/615745] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/30/2013] [Accepted: 02/14/2013] [Indexed: 01/01/2023] Open
Abstract
Inflammatory mediators are closely associated with the pathogenesis of neurodegenerative changes in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Osteopontin (OPN) is a proinflammatory cytokine that has been shown to play an important role in various neuroinflammatory diseases. However, the function of OPN in AD and MCI progression is not well defined. Cerebrospinal fluid (CSF) and plasma samples were obtained from 35 AD patients, 31 MCI patients, and 20 other noninflammatory neurologic diseases (OND). Concentrations of OPN in the CSF and plasma were determined by enzyme-linked immunosorbent assay. During a 3-year clinical followup, 13 MCI patients converted to AD (MCI converters), and 18 were clinically stable (MCI nonconverters). CSF OPN concentrations were significantly increased in AD and MCI converters compared to OND, and increased levels of OPN in AD were associated with MMSE score; OPN protein levels both in the CSF and plasma of newly diagnosed AD patients were higher than that of chronical patients. In MCI converters individuals tested longitudinally, both plasma and CSF OPN concentrations were significantly elevated when they received a diagnosis of AD during followup. Further wide-scale studies are necessary to confirm these results and to shed light on the etiopathogenic role of osteopontin in AD.
Collapse
|
193
|
Browne TC, McQuillan K, McManus RM, O’Reilly JA, Mills KHG, Lynch MA. IFN-γ Production by Amyloid β–Specific Th1 Cells Promotes Microglial Activation and Increases Plaque Burden in a Mouse Model of Alzheimer’s Disease. THE JOURNAL OF IMMUNOLOGY 2013; 190:2241-51. [DOI: 10.4049/jimmunol.1200947] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
194
|
Positron emission tomography imaging in neurological disorders. J Neurol 2013; 259:1769-80. [PMID: 22297461 DOI: 10.1007/s00415-012-6428-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 01/28/2023]
Abstract
Positron emission tomography (PET) is a powerful tool for in vivo imaging investigations of human brain function. It provides non-invasive quantification of brain metabolism, receptor binding of various neurotransmitter systems, and alterations in regional blood flow. The use of PET in a clinical setting is still limited due to the high costs of cyclotrons and radiochemical laboratories. However, once these limitations can be bypassed, PET could aid clinical practice by providing a useful imaging technique for the diagnosis, the planning of treatment, and the prediction outcome in various neurological diseases.This review aims to explain the PET imaging technique and its applications in neurological disorders such as Parkinson’s disease, Huntington’s disease, multiple sclerosis, and dementias.
Collapse
|
195
|
Holmes C. Review: Systemic inflammation and Alzheimer's disease. Neuropathol Appl Neurobiol 2013; 39:51-68. [DOI: 10.1111/j.1365-2990.2012.01307.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/01/2012] [Indexed: 11/29/2022]
Affiliation(s)
- C. Holmes
- University of Southampton; Division of Clinical and Experimental Science; Memory Assessment and Research Centre; Moorgreen Hospital; Southampton; UK
| |
Collapse
|
196
|
Weinstock M, Bejar C, Schorer-Apelbaum D, Panarsky R, Luques L, Shoham S. Dose-dependent effects of ladostigil on microglial activation and cognition in aged rats. J Neuroimmune Pharmacol 2013; 8:345-55. [PMID: 23325108 DOI: 10.1007/s11481-013-9433-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/08/2013] [Indexed: 11/25/2022]
Abstract
UNLABELLED The current study determined the effects of chronic treatment of aging rats with ladostigil, a cholinesterase (ChE) and monoamine oxidase (MAO) inhibitor, at doses of 1 and 8.5 mg/kg/day, on novel object recognition (NOR) and reference memory in the Morris water maze (MWM). A dose of (1 mg/kg/day) did not inhibit ChE or MAO but prevented the loss of NOR and reference memory in the MWM that occurs at 20.5 months of age. This anti-aging effect was associated with a reduction in the expression of CD11b, a marker of microglial activation, in the fornix and parietal cortex and restoration of microglial morphology to that in young adult rats. Ladostigil (8.5 mg/kg/day) inhibited brain ChE by ≈30 % and MAO A and B by 55-59 %, and had a similar, or greater effect than the low dose on microglia, but was less effective in preventing the decline in NOR. Ladostigil (8.5 mg/kg/day) may have caused too much cortical ChE inhibition and acetylcholine elevation at 16 months when NOR was intact. In support of this suggestion we showed that acute administration of ladostigil (8.5 mg/kg) worsened NOR at this age. However, at 20 months, when NOR was impaired and brain acetylcholine levels are 40 % below normal, ladostigil (8.5 mg/kg) reversed the memory deficit. CONCLUSION Ladostigil (1 mg/kg/day) prevents the development of age-related memory deficits by a combination of immunomodulatory and antioxidant effects. A dose causing 30 % ChE inhibition is necessary in order to reverse existing memory deficits at 20 months of age.
Collapse
Affiliation(s)
- Marta Weinstock
- Department of Pharmacology, Institute of Drug Research, Hebrew University Medical Center, Ein Kerem, Jerusalem 91120, Israel.
| | | | | | | | | | | |
Collapse
|
197
|
Risacher SL, Saykin AJ. Neuroimaging and other biomarkers for Alzheimer's disease: the changing landscape of early detection. Annu Rev Clin Psychol 2013; 9:621-48. [PMID: 23297785 DOI: 10.1146/annurev-clinpsy-050212-185535] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The goal of this review is to provide an overview of biomarkers for Alzheimer's disease (AD), with emphasis on neuroimaging and cerebrospinal fluid (CSF) biomarkers. We first review biomarker changes in patients with late-onset AD, including findings from studies using structural and functional magnetic resonance imaging (MRI), advanced MRI techniques (diffusion tensor imaging, magnetic resonance spectroscopy, perfusion), positron emission tomography with fluorodeoxyglucose, amyloid tracers, and other neurochemical tracers, and CSF protein levels. Next, we evaluate findings from these biomarkers in preclinical and prodromal stages of AD including mild cognitive impairment (MCI) and pre-MCI conditions conferring elevated risk. We then discuss related findings in patients with dominantly inherited AD. We conclude with a discussion of the current theoretical framework for the role of biomarkers in AD and emergent directions for AD biomarker research.
Collapse
Affiliation(s)
- Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | |
Collapse
|
198
|
Effects of minocycline on spatial learning, hippocampal neurogenesis and microglia in aged and adult mice. Behav Brain Res 2012; 242:17-24. [PMID: 23274840 DOI: 10.1016/j.bbr.2012.12.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 11/23/2022]
Abstract
Age-related priming of microglia and release of inflammatory cytokines, such as interleukin-1β (IL-1β) and interleuekin-6 (IL-6) have been associated with deficits in cognitive function. The present study assessed whether treatment with minocycline could improve spatial cognition in aged mice, and whether these improvements in behavior were associated with reduced microglia activation and an enhancement in hippocampal neurogenesis. Adult (3 months) and aged (22 months) male BALB/c mice received minocycline in their drinking water or control mice received distilled water for 20 days. Mice received BrdU to label dividing cells on days 8-17. Spatial learning was measured using the water maze. Immunohistochemistry was conducted to measure number of BrdU positive neurons and number and size of microglia by detection of Iba-1 in the dentate gyrus molecular layer. Further, hippocampal samples were collected to measure changes in IL-1β, IL-6, and CD74 expression. The data show that aged mice have increased hippocampal expression of IL-1β, IL-6, and CD74 relative to adults. Minocycline treatment significantly improved acquisition of the water maze in aged mice but not adults. Minocycline reduced the average size of Iba-1 positive cells and total Iba-1 counts, but did not affect hippocampal cytokine gene expression. Minocycline increased neurogenesis in adults but not aged mice. Collectively, the data indicate that treatment with minocycline may recover some aspects of cognitive decline associated with aging, but the effect appears to be unrelated to adult hippocampal neurogenesis.
Collapse
|
199
|
Edison P, Carter SF, Rinne JO, Gelosa G, Herholz K, Nordberg A, Brooks DJ, Hinz R. Comparison of MRI based and PET template based approaches in the quantitative analysis of amyloid imaging with PIB-PET. Neuroimage 2012; 70:423-33. [PMID: 23261639 DOI: 10.1016/j.neuroimage.2012.12.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/10/2012] [Accepted: 12/10/2012] [Indexed: 11/15/2022] Open
Abstract
RATIONALE [(11)C]Pittsburgh compound-B (PIB) has been the most widely used positron emission tomography (PET) imaging agent for brain amyloid. Several longitudinal studies evaluating the progression of Alzheimer's disease (AD), and numerous therapeutic intervention studies are underway using [(11)C]PIB PET as an AD biomarker. Quantitative analysis of [(11)C]PIB data requires the definition of regional volumes of interest. This investigation systematically compared two data analysis routes both using a probabilistic brain atlas with 11 bilateral regions. Route 1 used individually segmented structural magnetic resonance images (MRI) for each subject while Route 2 used a standardised [(11)C]PIB PET template. METHODS A total of 54 subjects, 20 with probable Alzheimer's disease (AD), 14 with amnestic Mild Cognitive Impairment (MCI) and 20 age-matched healthy controls, were scanned at two imaging centres either in London (UK) or in Turku (Finland). For all subjects structural volumetric MRI and [(11)C]PIB PET scans were acquired. Target-to-cerebellum ratios 40 min to 60 min post injection were used as outcome measures. Regional read outs for grey matter target regions were generated for both routes. Based on a composite neocortical, frontal, posterior cingulate, combined posterior cingulate and frontal cortical regions, scans were categorised into either 'PIB negative' (PIB-) or 'PIB positive' (PIB+) using previously reported cut-off target-to-cerebellar ratios of 1.41, 1.5 and 1.6, respectively. RESULTS Target-to-cerebellum ratios were greater when defined with a [(11)C]PIB PET template than with individual MRIs for all cortical regions regardless of diagnosis. This difference was highly significant for controls (p<0.001, paired samples t-test), less significant for MCIs and borderline for ADs. Assignment of subjects to raised or normal categories was the same with both routes with a 1.6 cut-off while with lower cut off using frontal cortex, and combined frontal cortex and posterior cingulate demonstrated similar results, while posterior cingulate alone demonstrated significantly higher proportion of controls as amyloid positive by Route 2. CONCLUSIONS Definition of cortical grey matter regions is more accurate when individually segmented MRIs (Route 1) were used rather than a population-based PET template (Route 2). The impact of this difference depends on the grey-to-white matter contrast in the PET images; specifically seen in healthy controls with high white matter and low grey matter uptake. When classifying AD, MCI and control subjects as normal or abnormal using large cortical regions; discordance was found between the MRI and template approach for those few subjects who presented with cortex-to-cerebellum ratios very close to the pre-assigned cut-off. However, posterior cingulate alone demonstrated significant discordance in healthy controls using template based approach. This study, therefore, demonstrates that the use of a [(11)C]PIB PET template (Route 2) is adequate for clinical diagnostic purposes, while MRI based analysis (Route 1) remains more appropriate for clinical research.
Collapse
Affiliation(s)
- P Edison
- Division of Neuroscience, Imperial College London, Hammersmith Campus, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Abstract
PURPOSE OF REVIEW In 2011, a new set of new guidelines for the research diagnosis of three stages of Alzheimer disease was promulgated by the US National Institute of Aging and the Alzheimer Association. For the first time, they include the diagnosis of presymptomatic Alzheimer disease, recognizing that the disease process begins years before cognitive impairment develops. Awareness of this fact has largely been driven by neuroimaging, and particularly by imaging amyloid β (abeta) deposition in the brain, a procedure approved by the US Food and Drug Administration for clinical use in April 2012. RECENT FINDINGS In Alzheimer disease, abeta deposition antecedes, probably by decades, the onset of cognitive impairment. In brain regions with greatest abeta deposition, synaptic dysfunction can be imaged beginning at preclinical stages. In regions that are not identical with the ones with greatest abeta deposition but heavily connected with them, regional atrophy and loss of white-matter anisotropy can be detected later in the course of the disease, near the time when mild cognitive impairment supervenes. Together with neuropsychological testing, imaging can improve the prediction of worsening to Alzheimer disease among patients with mild cognitive impairment. SUMMARY These findings have huge implications for research on therapeutic approaches to Alzheimer disease. For instance, while so far only patients with the clinical diagnosis have been treated with immunotherapy targeting abeta removal, a consensus is building that to be effective, this therapy should be given in the preclinical stages of the disease, which are assessed most advantageously by means of neuroimaging.
Collapse
|