151
|
Gao L, Macara IG. Isoforms of the polarity protein par6 have distinct functions. J Biol Chem 2004; 279:41557-62. [PMID: 15292221 DOI: 10.1074/jbc.m403723200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PAR-6 is essential for asymmetric division of the Caenorhabditis elegans zygote. It is also critical for cell polarization in many other contexts throughout the Metazoa. The Par6 protein contains a PDZ domain and a partial CRIB (Cdc42/Rac interactive binding) domain, which mediate interactions with other polarity proteins such as Par3, Cdc42, Pals1, and Lgl. A family of mammalian Par6 isoforms (Par6A-D) has been described, but the significance of this diversification has been unclear. Here we demonstrate that Par6 family members localize differently when expressed in Madin-Darby canine kidney epithelial cells and have distinct effects on tight junction (TJ) assembly. Par6B localizes to the cytosol and inhibits TJ formation, but Par6A co-localizes predominantly with the TJ marker ZO-1 at cell-cell contacts and does not affect junctions. These functional differences correlate with differences in Pals1 binding; Par6B interacts strongly with Pals1, whereas Par6A binds weakly to Pals1 even in the presence of active Cdc42. Pals1 has a low affinity for the isolated CRIB-PDZ domain of Par6A, but analysis of chimeras showed that in addition Pals1 binding is blocked by an inhibitory property of the N terminus of Par6A. Unexpectedly, the localization of Par6A to cell-cell contacts is Cdc42-independent.
Collapse
Affiliation(s)
- Lin Gao
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia 22908-0577, USA
| | | |
Collapse
|
152
|
Hirano Y, Yoshinaga S, Ogura K, Yokochi M, Noda Y, Sumimoto H, Inagaki F. Solution Structure of Atypical Protein Kinase C PB1 Domain and Its Mode of Interaction with ZIP/p62 and MEK5. J Biol Chem 2004; 279:31883-90. [PMID: 15143057 DOI: 10.1074/jbc.m403092200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Atypical protein kinase C (aPKC) has been implicated in several signaling pathways such as cell polarity, cell survival, and cell differentiation. In contrast to other PKCs, aPKC is unique in having the PB1 (Phox and Bem 1) domain in the N terminus. The aPKC PB1 domain binds with ZIP/p62, Par6, or MEK5 through a PB1-PB1 domain interaction that controls the localization of aPKC. Here, we determined the three-dimensional structure of the PB1 domain of PKCiota by NMR and found that the PB1 domain adopts a ubiquitin fold. The OPCA (OPR, PC, and AID) motif inserted into the ubiquitin fold was presented as a betabetaalpha fold in which the side chains of conserved Asp residues were oriented to the same direction to form an acidic surface. This structural feature suggested that the acidic surface of the PKCiota PB1 domain interacted with the basic surface of the target PB1 domains, and this was confirmed in the case of the PKCiota-ZIP/p62 complex by mutational analysis. Interestingly, in the PKCiota PB1 domain a conserved lysine residue was located on the side opposite to the OPCA motif-presenting surface, suggesting dual roles for the PKCiota PB1 domain in that it could interact with either the conserved lysine residue or the acidic residues on the OPCA motif of the target PB1 domains.
Collapse
Affiliation(s)
- Yoshinori Hirano
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12 W-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | | | |
Collapse
|
153
|
Hurov JB, Watkins JL, Piwnica-Worms H. Atypical PKC Phosphorylates PAR-1 Kinases to Regulate Localization and Activity. Curr Biol 2004; 14:736-41. [PMID: 15084291 DOI: 10.1016/j.cub.2004.04.007] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 03/04/2004] [Accepted: 03/04/2004] [Indexed: 11/29/2022]
Abstract
The establishment and maintenance of cellular polarity are essential biological processes that must be maintained throughout the lifetime of eukaryotic organisms. The Par-1 protein kinases are key polarity determinants that have been conserved throughout evolution. Par-1 directs anterior-posterior asymmetry in the one-cell C. elegans embryo and the Drosophila oocyte. In mammalian cells, Par-1 may regulate epithelial cell polarity. Relevant substrates of Par-1 in these pathways are just being identified, but it is not yet known how Par-1 itself is regulated. Here, we demonstrate that human Par-1b (hPar-1b) interacts with and is negatively regulated by atypical PKC. hPar-1b is phosphorylated by aPKC on threonine 595, a residue conserved in Par-1 orthologs in mammals, worms, and flies. The equivalent site in hPar-1a, T564, is phosphorylated in vivo and by aPKC in vitro. Importantly, phosphorylation of hPar-1b on T595 negatively regulates the kinase activity and plasma membrane localization of hPar-1b in vivo. This study establishes a novel functional link between two central determinants of cellular polarity, aPKC and Par-1, and suggests a model by which aPKC may regulate Par-1 in polarized cells.
Collapse
Affiliation(s)
- Jonathan B Hurov
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
154
|
Peterson FC, Penkert RR, Volkman BF, Prehoda KE. Cdc42 Regulates the Par-6 PDZ Domain through an Allosteric CRIB-PDZ Transition. Mol Cell 2004; 13:665-76. [PMID: 15023337 DOI: 10.1016/s1097-2765(04)00086-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 12/23/2003] [Accepted: 12/29/2003] [Indexed: 01/18/2023]
Abstract
Regulation of protein interaction domains is required for cellular signaling dynamics. Here, we show that the PDZ protein interaction domain from the cell polarity protein Par-6 is regulated by the Rho GTPase Cdc42. Cdc42 binds to a CRIB domain adjacent to the PDZ domain, increasing the affinity of the Par-6 PDZ for its carboxy-terminal ligand by approximately 13-fold. Par-6 PDZ regulation is required for function as mutational disruption of Cdc42-Par-6 PDZ coupling leads to inactivation of Par-6 in polarized MDCK epithelial cells. Structural analysis reveals that the free PDZ domain has several deviations from the canonical PDZ conformation that account for its low ligand affinity. Regulation results from a Cdc42-induced conformational transition in the CRIB-PDZ module that causes the PDZ to assume a canonical, high-affinity PDZ conformation. The coupled CRIB and PDZ architecture of Par-6 reveals how simple binding domains can be combined to yield complex regulation.
Collapse
Affiliation(s)
- Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | | | | | | |
Collapse
|
155
|
Gray D, Plusa B, Piotrowska K, Na J, Tom B, Glover DM, Zernicka-Goetz M. First Cleavage of the Mouse Embryo Responds to Change in Egg Shape at Fertilization. Curr Biol 2004; 14:397-405. [PMID: 15028215 DOI: 10.1016/j.cub.2004.02.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 12/18/2003] [Accepted: 01/20/2004] [Indexed: 11/18/2022]
Abstract
Although mouse development is regulative, the cleavage pattern of the embryo is not random. The first cleavage tends to relate to the site of the previous meiosis. Sperm entry might provide a second cue, but evidence for and against this is indirect and has been debated. To resolve whether sperm entry position relates to the first cleavage, we have followed development from fertilization by time-lapse imaging. This directly showed cytokinesis passes close to the site of the previous meiosis and to both the sperm entry site and trajectory of the male pronucleus in a significant majority of eggs. We detected asymmetric distribution of Par6 protein in relation to the site of meiosis, but not sperm entry. Unexpectedly, we found the egg becomes flattened upon fertilization in an actin-mediated process. The sperm entry position tends to lie at one end of the short axis along which cleavage will pass. When we manipulated eggs to change their shape, this repositioned the cleavage plane such that eggs divided along their experimentally imposed short axis. Such manipulated eggs were able to develop to term, emphasizing the regulative nature of their development.
Collapse
Affiliation(s)
- Dionne Gray
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
156
|
Platzer U, Meinzer HP. Genetic Networks in the Early Development of Caenorhabditis elegans. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 234:47-100. [PMID: 15066373 DOI: 10.1016/s0074-7696(04)34002-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the best-studied model organisms in biology is Caenorhabditis elegans. Because of its simple architecture and other biological advantages, considerable data have been collected about the regulation of its development. In this review, currently available data concerning the early phase of embryonic development are presented in the form of genetic networks. We performed computer simulations of regulatory mechanisms in embryonic development, and the results are described and compared with experimental observations.
Collapse
Affiliation(s)
- Ute Platzer
- Division Medical and Biological Informatics, Deutsches Krebsforschungszentrum D-69120 Heidelberg, Germany
| | | |
Collapse
|
157
|
Brajenovic M, Joberty G, Küster B, Bouwmeester T, Drewes G. Comprehensive proteomic analysis of human Par protein complexes reveals an interconnected protein network. J Biol Chem 2003; 279:12804-11. [PMID: 14676191 DOI: 10.1074/jbc.m312171200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The polarization of eukaryotic cells is controlled by the concerted activities of asymmetrically localized proteins. The PAR proteins, first identified in Caenorhabditis elegans, are common regulators of cell polarity conserved from nematode and flies to man. However, little is known about the molecular mechanisms by which these proteins and protein complexes establish cell polarity in mammals. We have mapped multiprotein complexes formed around the putative human Par orthologs MARK4 (microtubule-associated protein/microtubule affinity-regulating kinase 4) (Par-1), Par-3, LKB1 (Par-4), 14-3-3zeta and eta (Par-5), Par-6a, -b, -c, and PKClambda (PKC3). We employed a proteomic approach comprising tandem affinity purification (TAP) of protein complexes from cultured cells and protein sequencing by tandem mass spectrometry. From these data we constructed a highly interconnected protein network consisting of three core complex "modules" formed around MARK4 (Par-1), Par-3.Par-6, and LKB1 (Par-4). The network confirms most previously reported interactions. In addition we identified more than 50 novel interactors, some of which, like the 14-3-3 phospho-protein scaffolds, occur in more than one distinct complex. We demonstrate that the complex formation between LKB1.Par-4, PAPK, and Mo25 results in the translocation of LKB1 from the nucleus to the cytoplasm and to tight junctions and show that the LKB1 complex may activate MARKs, which are known to introduce 14-3-3 binding sites into several substrates. Our findings suggest co-regulation and/or signaling events between the distinct Par complexes and provide a basis for further elucidation of the molecular mechanisms that govern cell polarity.
Collapse
|
158
|
Abstract
The anterior-posterior axis of the Caenorhabditis elegans zygote forms shortly after fertilization when the sperm pronucleus and its associated centrosomal asters provide a cue that establishes the anterior-posterior (AP) body axis. In response to this cue, the microfilament cytoskeleton polarizes the distribution of a group of widely conserved, cortically localized regulators called the PAR proteins, which are required for the first mitotic division to be asymmetric. These asymmetries include a posterior displacement of the first mitotic spindle and the differential segregation of cell-fate determinants to the anterior and posterior daughters produced by the first cleavage of the zygote. Here we review recent advances in our understanding of the mechanisms that polarize the one-cell zygote to generate an AP axis of asymmetry.
Collapse
Affiliation(s)
- Stephan Q Schneider
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| | | |
Collapse
|
159
|
Abstract
Among the most morphologically complex cells, neurons are masters of membrane specialization. Nowhere is this more striking than in the division of cellular labor between the axon and the dendrites. In morphology, signaling properties, cytoskeletal organization, and physiological function, axons and dendrites (or more properly, the somatodendritic compartment) are radically different. Such polarization of neurons into domains specialized for either receiving (dendrites) or transmitting (axons) cellular signals provides the underpinning for all neural circuitry. The initial specification of axonal and dendritic identity occurs early in neuronal life, persists for decades, and is manifested by the presence of very different sets of cell surface proteins. Yet, how neuronal polarity is established, how distinct axonal and somatodendritic domains are maintained, and how integral membrane proteins are directed to dendrites or accumulate in axons remain enduring and formidable questions in neuronal cell biology.
Collapse
Affiliation(s)
- April C Horton
- Department of Neurobiology, Duke University Medical Center, Box 3209, Durham, NC 27710, USA
| | | |
Collapse
|
160
|
Labbé JC, Maddox PS, Salmon ED, Goldstein B. PAR proteins regulate microtubule dynamics at the cell cortex in C. elegans. Curr Biol 2003; 13:707-14. [PMID: 12725727 DOI: 10.1016/s0960-9822(03)00251-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The PAR proteins are known to be localized asymmetrically in polarized C. elegans, Drosophila, and human cells and to participate in several cellular processes, including asymmetric cell division and spindle orientation. Although astral microtubules are known to play roles in these processes, their behavior during these events remains poorly understood. RESULTS We have developed a method that makes it possible to examine the residence time of individual astral microtubules at the cell cortex of developing embryos. Using this method, we found that microtubules are more dynamic at the posterior cortex of the C. elegans embryo compared to the anterior cortex during spindle displacement. We further observed that this asymmetry depends on the PAR-3 protein and heterotrimeric G protein signaling, and that the PAR-2 protein affects microtubule dynamics by restricting PAR-3 activity to the anterior of the embryo. CONCLUSIONS These results indicate that PAR proteins function to regulate microtubule dynamics at the cortex during microtubule-dependent cellular processes.
Collapse
Affiliation(s)
- Jean Claude Labbé
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.
| | | | | | | |
Collapse
|
161
|
Abstract
Cell polarity is an essential feature of many animal cells. It is critical for epithelial formation and function, for correct partitioning of fate-determining molecules, and for individual cells to chemotax or grow in a defined direction. For some of these processes, the position and orientation of the mitotic spindle must be coupled to cell polarity for correct positioning of daughter cells and inheritance of localised molecules. Recent work in several different systems has led to the realisation that similar mechanisms dictate the establishment of polarity and subsequent spindle positioning in many animal cells. Microtubules and conserved PAR proteins are essential mediators of cell polarity, and mitotic spindle positioning depends on heterotrimeric G protein signalling and the microtubule motor protein dynein.
Collapse
Affiliation(s)
- Julie Ahringer
- Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
162
|
Abstract
Par6 and atypical protein kinase C are key players in the establishment of cell polarity. First discovered in Caenorhabditis elegans, the function of this protein complex is conserved in all multicellular organisms. Recent work is beginning to throw light on how it converts information generated by extracellular cues into intracellular asymmetry.
Collapse
|
163
|
Benton R, Palacios IM, St Johnston D. Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation. Dev Cell 2002; 3:659-71. [PMID: 12431373 DOI: 10.1016/s1534-5807(02)00320-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PAR-1 kinases are required to determine the anterior-posterior (A-P) axis in C. elegans and Drosophila, but little is known about their molecular function. We identified 14-3-3 proteins as Drosophila PAR-1 interactors and show that PAR-1 binds a domain of 14-3-3 distinct from the phosphoserine binding pocket. PAR-1 kinases phosphorylate proteins to generate 14-3-3 binding sites and may therefore directly deliver 14-3-3 to these targets. 14-3-3 mutants display identical phenotypes to par-1 mutants in oocyte determination and the polarization of the A-P axis. Together, these results indicate that PAR-1's function is mediated by the binding of 14-3-3 to its substrates. The C. elegans 14-3-3 protein, PAR-5, is also required for A-P polarization, suggesting that this is a conserved mechanism by which PAR-1 establishes cellular asymmetries.
Collapse
Affiliation(s)
- Richard Benton
- The Wellcome Trust/Cancer Research UK Institute and Department of Genetics, University of Cambridge, CB2 1QR, Cambridge, United Kingdom
| | | | | |
Collapse
|
164
|
Abstract
The dynamic nature of microtubules allows them to search the three-dimensional space of the cell. But what are they looking for? During cellular morphogenesis, microtubules are captured at sites just under the plasma membrane, and this polarizes the microtubule array and associated organelles. Recent data indicate that the signalling pathways that are involved in regulating the different microtubule cortical interactions are not only conserved between species, but also that they function in diverse processes.
Collapse
Affiliation(s)
- Gregg G Gundersen
- Department of Anatomy and Cell Biology, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
165
|
Morton DG, Shakes DC, Nugent S, Dichoso D, Wang W, Golden A, Kemphues KJ. The Caenorhabditis elegans par-5 gene encodes a 14-3-3 protein required for cellular asymmetry in the early embryo. Dev Biol 2002; 241:47-58. [PMID: 11784094 DOI: 10.1006/dbio.2001.0489] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The establishment of anterior-posterior polarity in the Caenorhabditis elegans embryo requires the activity of the maternally expressed par genes. We report the identification and analysis of a new par gene, par-5. We show that par-5 is required for asynchrony and asymmetry in the first embryonic cell divisions, normal pseudocleavage, normal cleavage spindle orientation at the two-cell stage, and localization of P granules and MEX-5 during the first and subsequent cell cycles. Furthermore, par-5 activity is required in the first cell cycle for the asymmetric cortical localization of PAR-1 and PAR-2 to the posterior, and PAR-3, PAR-6, and PKC-3 to the anterior. When PAR-5 is reduced by mutation or by RNA interference, these proteins spread around the cortex of the one-cell embryo and partially overlap. We have shown by sequence analysis of par-5 mutants and by RNA interference that the par-5 gene is the same as the ftt-1 gene, and encodes a 14-3-3 protein. The PAR-5 14-3-3 protein is present in gonads, oocytes, and early embryos, but is not asymmetrically distributed. Our analysis indicates that the par-5 14-3-3 gene plays a crucial role in the early events leading to polarization of the C. elegans zygote.
Collapse
Affiliation(s)
- Diane G Morton
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Cox DN, Seyfried SA, Jan LY, Jan YN. Bazooka and atypical protein kinase C are required to regulate oocyte differentiation in the Drosophila ovary. Proc Natl Acad Sci U S A 2001; 98:14475-80. [PMID: 11734648 PMCID: PMC64706 DOI: 10.1073/pnas.261565198] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The par genes, identified by their role in the establishment of anterior-posterior polarity in the Caenorhabditis elegans zygote, subsequently have been shown to regulate cellular polarity in diverse cell types by means of an evolutionarily conserved protein complex including PAR-3, PAR-6, and atypical protein kinase C (aPKC). The Drosophila homologs of par-1, par-3 (bazooka, baz), par-6 (DmPar-6), and pkc-3 (Drosophila aPKC, DaPKC) each are known to play conserved roles in the generation of cell polarity in the germ line as well as in epithelial and neural precursor cells within the embryo. In light of this functional conservation, we examined the potential role of baz and DaPKC in the regulation of oocyte polarity. Our analyses reveal germ-line autonomous roles for baz and DaPKC in the establishment of initial anterior-posterior polarity within germ-line cysts and maintenance of oocyte cell fate. Germ-line clonal analyses indicate both proteins are essential for two key aspects of oocyte determination: the posterior translocation of oocyte specification factors and the posterior establishment of the microtubule organizing center within the presumptive oocyte. We demonstrate BAZ and DaPKC colocalize to belt-like structures between germarial cyst cells. However, in contrast to their regulatory relationship in the Drosophila and C. elegans embryos, these proteins are not mutually dependent for their germ-line localization, nor is either protein specifically required for PAR-1 localization to the fusome. Therefore, whereas BAZ, DaPKC, and PAR-1 are functionally conserved in establishing oocyte polarity, the regulatory relationships among these genes are not well conserved, indicating these molecules function differently in different cellular contexts.
Collapse
Affiliation(s)
- D N Cox
- Howard Hughes Medical Institute, Department of Physiology, University of California, 533 Parnassus Avenue, Room U426, Box 0725, San Francisco, CA 94143-0725, USA
| | | | | | | |
Collapse
|
167
|
Affiliation(s)
- M Schaefer
- Research Institute of Molecular Pathology (I.M.P.), Dr. Bohr Gasse 7, Vienna, 1030, Austria
| | | |
Collapse
|
168
|
Bellaïche Y, Radovic A, Woods DF, Hough CD, Parmentier ML, O'Kane CJ, Bryant PJ, Schweisguth F. The Partner of Inscuteable/Discs-large complex is required to establish planar polarity during asymmetric cell division in Drosophila. Cell 2001; 106:355-66. [PMID: 11509184 DOI: 10.1016/s0092-8674(01)00444-5] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Frizzled (Fz) signaling regulates cell polarity in both vertebrates and invertebrates. In Drosophila, Fz orients the asymmetric division of the sensory organ precursor cell (pI) along the antero-posterior axis of the notum. Planar polarization involves a remodeling of the apical-basal polarity of the pI cell. The Discs-large (Dlg) and Partner of Inscuteable (Pins) proteins accumulate at the anterior cortex, while Bazooka (Baz) relocalizes to the posterior cortex. Dlg interacts directly with Pins and regulates the localization of Pins and Baz. Pins acts with Fz to localize Baz posteriorly, but Baz is not required to localize Pins anteriorly. Finally, Baz and the Dlg/Pins complex are required for the asymmetric localization of Numb. Thus, the Dlg/Pins complex responds to Fz signaling to establish planar asymmetry in the pI cell.
Collapse
Affiliation(s)
- Y Bellaïche
- Ecole Normale Supérieure, UMR 8544, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Abstract
The anterior-posterior axis in Caenorhabditis elegans is determined by the sperm and leads to the asymmetric localisation of PAR (partitioning-defective) proteins, which are critical for polarity. New findings demonstrate that sperm asters play a critical role and suggest models for how PAR asymmetry is established. In addition, studies of blastomere fate determination and heterotrimeric G proteins have started to uncover how initial polarity may be translated into the asymmetric distribution of maternal proteins and the control of spindle position.
Collapse
Affiliation(s)
- M Gotta
- Wellcome/CRC Institute, Tennis Court Road, CB2 1QR, Cambridge, UK
| | | |
Collapse
|
170
|
Yamanaka T, Horikoshi Y, Suzuki A, Sugiyama Y, Kitamura K, Maniwa R, Nagai Y, Yamashita A, Hirose T, Ishikawa H, Ohno S. PAR-6 regulates aPKC activity in a novel way and mediates cell-cell contact-induced formation of the epithelial junctional complex. Genes Cells 2001; 6:721-31. [PMID: 11532031 DOI: 10.1046/j.1365-2443.2001.00453.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND PAR-6, aPKC and PAR-3 are polarity proteins that co-operate in the establishment of cell polarity in Caenorhabditis elegans and Drosophila embryos. We have recently shown that mammalian aPKC is required for the formation of the epithelia-specific cell-cell junctional structure. We have also revealed that a mammalian PAR-6 forms a ternary complex with aPKC and ASIP/PAR-3, and localizes at the most apical end of the junctional complex in epithelial cells. RESULTS The ternary complex formation and junctional co-localization of PAR-6 with aPKC and ASIP/PAR-3 are observed during the early stage of epithelial cell polarization. In addition, over-expression of the PAR-6 mutant with CRIB/PDZ domain in MDCK cells disturbs the cell-cell contact-induced junctional localization of tight junction proteins, as well as inhibiting TER development. Furthermore, the binding of Cdc42:GTP to the CRIB/PDZ domain of PAR-6 enhances the kinase activity of PAR-6-bound aPKC. Detailed analyses suggest that the binding of PAR-6 to aPKC has the intrinsic potential to activate aPKC, which is only released when Cdc42:GTP binds to the CRIB/PDZ domain. CONCLUSION The results indicate the involvement of PAR-6 in the aPKC function which is required for the cell-cell adhesion-induced formation of epithelial junctional structures, possibly through the cooperative regulation of aPKC activity with Cdc42.
Collapse
Affiliation(s)
- T Yamanaka
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Huynh JR, Petronczki M, Knoblich JA, St Johnston D. Bazooka and PAR-6 are required with PAR-1 for the maintenance of oocyte fate in Drosophila. Curr Biol 2001; 11:901-6. [PMID: 11516655 DOI: 10.1016/s0960-9822(01)00244-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The anterior-posterior axis of C. elegans is defined by the asymmetric division of the one-cell zygote, and this is controlled by the PAR proteins, including PAR-3 and PAR-6, which form a complex at the anterior of the cell, and PAR-1, which localizes at the posterior [1-4]. PAR-1 plays a similar role in axis formation in Drosophila: the protein localizes to the posterior of the oocyte and is necessary for the localization of the posterior and germline determinants [5, 6]. PAR-1 has recently been shown to have an earlier function in oogenesis, where it is required for the maintenance of oocyte fate and the posterior localization of oocyte-specific markers [7, 8]. Here, we show that the homologs of PAR-3 (Bazooka) and PAR-6 are also required to maintain oocyte fate. Germline clones of mutants in either gene give rise to egg chambers that develop 16 nurse cells and no oocyte. Furthermore, oocyte-specific factors, such as Orb protein and the centrosomes, still localize to one cell but fail to move from the anterior to the posterior cortex. Thus, PAR-1, Bazooka, and PAR-6 are required for the earliest polarity in the oocyte, providing the first example in Drosophila where the three homologs function in the same process. Although these PAR proteins therefore seem to play a conserved role in early anterior-posterior polarity in C. elegans and Drosophila, the relationships between them are different, as the localization of PAR-1 does not require Bazooka or PAR-6 in Drosophila, as it does in the worm.
Collapse
Affiliation(s)
- J R Huynh
- Wellcome/CRC Institute and Department of Genetics, University of Cambridge, Tennis Court Road, CB21QR, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
172
|
Tagawa A, Rappleye CA, Aroian RV. Pod-2, along with pod-1, defines a new class of genes required for polarity in the early Caenorhabditis elegans embryo. Dev Biol 2001; 233:412-24. [PMID: 11336504 DOI: 10.1006/dbio.2001.0234] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The asymmetric division of the one-cell Caenorhabditis elegans zygote gives rise to two cells of different size and fate, thereby establishing the animal's anterior--posterior (a-p) axis. Through genetics, a number of genes required for this polarity have been characterized, but many components remain unidentified. Recently, our laboratory discovered a mutation in the pod-1 gene (for polarity and osmotic defective) that uniquely perturbed polarity and osmotic protection. Here, we describe a new C. elegans polarity gene identified during screens for conditional embryonic lethals. Embryos in which this gene has been mutated show a loss of physical and developmental asymmetries in the one-cell embryo, including the mislocalization of PAR and POD-1 proteins required for early polarity. Furthermore, mutant embryos are osmotically sensitive, allowing us to designate this gene pod-2. Thus, pod-2, along with pod-1, defines a new class of C. elegans polarity genes. Genetic analyses indicate that pod-2 functions in the same pathway as pod-1. Temperature-shift studies indicate that pod-2 is required during oogenesis, indicating that aspects of embryonic polarization may precede fertilization. pod-2 mutant embryos also exhibit a unique germline inheritance defect in which germline identity localizes to the wrong spot in the one-cell embryo and is therefore inherited by the wrong cell at the four-cell stage. Our data suggest that pod-2 may be required to properly position an a-p polarity cue.
Collapse
Affiliation(s)
- A Tagawa
- Division of Biology, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
173
|
Kay AJ, Hunter CP. CDC-42 regulates PAR protein localization and function to control cellular and embryonic polarity in C. elegans. Curr Biol 2001; 11:474-81. [PMID: 11412996 DOI: 10.1016/s0960-9822(01)00141-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The polarization of the anterior-posterior axis (A-P) of the Caenorhabditis elegans zygote depends on the activity of the par genes and the presence of intact microfilaments. Functional links between the PAR proteins and the cytoskeleton, however, have not been fully explored. It has recently been shown that in mammalian cells, some PAR homologs form a complex with activated Cdc42, a Rho GTPase that is implicated in the control of actin organization and cellular polarity. A role for Cdc42 in the establishment of embryonic polarity in C. elegans has not been described. RESULTS To investigate the function of Cdc42 in the control of cellular and embryonic polarity in C. elegans, we used RNA-mediated interference (RNAi) to inhibit cdc-42 activity in the early embryo. Here, we demonstrate that RNAi of cdc-42 disrupts manifestations of polarity in the early embryo, that these phenotypes depend on par-2 and par-3 gene function, and that cdc-42 is required for the localization of the PAR proteins. CONCLUSIONS Our genetic analysis of the regulatory relationships between cdc-42 and the par genes demonstrates that Cdc42 organizes embryonic polarity by controlling the localization and activity of the PAR proteins. Combined with the recent biochemical analysis of their mammalian homologs, these results simultaneously identify both a regulator of the PAR proteins, activated Cdc42, and effectors for Cdc42, the PAR complex.
Collapse
Affiliation(s)
- A J Kay
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
174
|
Abstract
BACKGROUND Generation of asymmetry in the one-cell embryo of C. elegans establishes the anterior--posterior axis (A-P), and is necessary for the proper identity of early blastomeres. Conserved PAR proteins are asymmetrically distributed and are required for the generation of this early asymmetry. The small G protein Cdc42 is a key regulator of polarity in other systems, and recently it has been shown to interact with the mammalian homolog of PAR-6. The function of Cdc42 in C. elegans had not yet been investigated, however. RESULTS Here, we show that C. elegans cdc-42 plays an essential role in the polarity of the one-cell embryo and the proper localization of PAR proteins. Inhibition of cdc-42 using RNA interference results in embryos with a phenotype that is nearly identical to par-3, par-6, and pkc-3 mutants, and asymmetric localization of these and other PAR proteins is lost. We further show that C. elegans CDC-42 physically interacts with PAR-6 in a yeast two-hybrid system, consistent with data on the interaction of human homologs. CONCLUSIONS Our results show that CDC-42 acts in concert with the PAR proteins to control the polarity of the C. elegans embryo, and provide evidence that the interaction of CDC-42 and the PAR-3/PAR-6/PKC-3 complex has been evolutionarily conserved as a functional unit.
Collapse
Affiliation(s)
- M Gotta
- Wellcome/CRC Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | |
Collapse
|
175
|
Abstract
The Rho family member Cdc42 can signal through a number of cellular pathways fundamental to growth, differentiation and apoptosis. Recently, information has come at an impressive pace, both with regard to previously identified targets for Cdc42 that regulate the actin cytoskeleton (e.g. WASP) and cellular stress pathways (e.g. PAK) and with regard to newly identified targets such as the coatomer protein complex and PAR6. Recent results hint at a previously unappreciated link between these various cellular processes.
Collapse
Affiliation(s)
- J W Erickson
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
176
|
Suzuki A, Yamanaka T, Hirose T, Manabe N, Mizuno K, Shimizu M, Akimoto K, Izumi Y, Ohnishi T, Ohno S. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J Cell Biol 2001; 152:1183-96. [PMID: 11257119 PMCID: PMC2199212 DOI: 10.1083/jcb.152.6.1183] [Citation(s) in RCA: 357] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have previously shown that during early Caenorhabditis elegans embryogenesis PKC-3, a C. elegans atypical PKC (aPKC), plays critical roles in the establishment of cell polarity required for subsequent asymmetric cleavage by interacting with PAR-3 [Tabuse, Y., Y. Izumi, F. Piano, K.J. Kemphues, J. Miwa, and S. Ohno. 1998. Development (Camb.). 125:3607--3614]. Together with the fact that aPKC and a mammalian PAR-3 homologue, aPKC-specific interacting protein (ASIP), colocalize at the tight junctions of polarized epithelial cells (Izumi, Y., H. Hirose, Y. Tamai, S.-I. Hirai, Y. Nagashima, T. Fujimoto, Y. Tabuse, K.J. Kemphues, and S. Ohno. 1998. J. Cell Biol. 143:95--106), this suggests a ubiquitous role for aPKC in establishing cell polarity in multicellular organisms. Here, we show that the overexpression of a dominant-negative mutant of aPKC (aPKCkn) in MDCK II cells causes mislocalization of ASIP/PAR-3. Immunocytochemical analyses, as well as measurements of paracellular diffusion of ions or nonionic solutes, demonstrate that the biogenesis of the tight junction structure itself is severely affected in aPKCkn-expressing cells. Furthermore, these cells show increased interdomain diffusion of fluorescent lipid and disruption of the polarized distribution of Na(+),K(+)-ATPase, suggesting that epithelial cell surface polarity is severely impaired in these cells. On the other hand, we also found that aPKC associates not only with ASIP/PAR-3, but also with a mammalian homologue of C. elegans PAR-6 (mPAR-6), and thereby mediates the formation of an aPKC-ASIP/PAR-3-PAR-6 ternary complex that localizes to the apical junctional region of MDCK cells. These results indicate that aPKC is involved in the evolutionarily conserved PAR protein complex, and plays critical roles in the development of the junctional structures and apico-basal polarization of mammalian epithelial cells.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Tomoyuki Yamanaka
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Naoyuki Manabe
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Keiko Mizuno
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Miki Shimizu
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kazunori Akimoto
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Yasushi Izumi
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Tetsuo Ohnishi
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
177
|
Noda Y, Takeya R, Ohno S, Naito S, Ito T, Sumimoto H. Human homologues of the Caenorhabditis elegans cell polarity protein PAR6 as an adaptor that links the small GTPases Rac and Cdc42 to atypical protein kinase C. Genes Cells 2001; 6:107-19. [PMID: 11260256 DOI: 10.1046/j.1365-2443.2001.00404.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Asymmetric cell division in the Caenorhabditis elegans embryos requires products of par (partitioning defective) genes 1-6 and atypical protein kinase C (aPKC), whereas Cdc42 and Rac, members of the Rho family GTPases, play an essential role in cell polarity establishment in yeast and mammalian cells. However, little is known about a link between PAR proteins and the GTPases in cell polarization. RESULTS Here we have cloned cDNAs for three human homologues of PAR6, designated PAR6alpha, beta and gamma, comprising 345, 372 and 376 amino acids, respectively. The PAR6 proteins harbour a PDZ domain and a CRIB-like motif, and directly interact with GTP-bound Rac and Cdc42 via this motif and with the aPKC isoforms PKCiota/lambda and PKCzeta via the N-terminal head-to-head association. These interactions are not mutually exclusive, thereby allowing the PAR6 proteins to form a ternary complex with the GTPases and aPKC, both in vitro and in vivo. When PAR6 and aPKC are expressed with a constitutively active form of Rac in HeLa or COS-7 cells, these proteins co-localize to membrane ruffles, which are known to occur at the leading edge of polarized cells during cell movement. CONCLUSION Human PAR6 homologues most likely play an important role in the cell polarization of mammalian cells, by functioning as an adaptor protein that links activated Rac and Cdc42 to aPKC signalling.
Collapse
Affiliation(s)
- Y Noda
- Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
178
|
Petronczki M, Knoblich JA. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nat Cell Biol 2001; 3:43-9. [PMID: 11146625 DOI: 10.1038/35050550] [Citation(s) in RCA: 326] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Drosophila protein Bazooka is required for both apical-basal polarity in epithelial cells and directing asymmetric cell division in neuroblasts. Here we show that the PDZ-domain protein DmPAR-6 cooperates with Bazooka for both of these functions. DmPAR-6 colocalizes with Bazooka at the apical cell cortex of epithelial cells and neuroblasts, and binds to Bazooka in vitro. DmPAR-6 localization requires Bazooka, and mislocalization of Bazooka through overexpression redirects DmPAR-6 to ectopic sites of the cell cortex. In the absence of DmPAR-6, Bazooka fails to localize apically in neuroblasts and epithelial cells, and is distributed in the cytoplasm instead. Epithelial cells lose their apical-basal polarity in DmPAR-6 mutants, asymmetric cell divisions in neuroblasts are misorientated, and the proteins Numb and Miranda do not segregate correctly into the basal daughter cell. Bazooka and DmPAR-6 are Drosophila homologues of proteins that direct asymmetric cell division in early Caenorhabditis elegans embryos, and our results indicate that homologous protein machineries may direct this process in worms and flies.
Collapse
Affiliation(s)
- M Petronczki
- Research Institute of Molecular Pathology, Dr Bohr Gasse 7, A-1030 Vienna, Austria
| | | |
Collapse
|
179
|
Abstract
Although most cells produce two equal daughters during mitosis, some can divide asymmetrically by segregating protein determinants into one of their two daughter cells. Interesting parallels exist between such asymmetric divisions and the polarity established in epithelial cells, and heterotrimeric G proteins might connect these aspects of cell polarity. The discovery of asymmetrically segregating proteins in vertebrates indicates that the results obtained in invertebrate model organisms might also apply to mammalian stem cells.
Collapse
Affiliation(s)
- J A Knoblich
- Research Institute of Molecular Pathology (IMP), Dr Bohr Gasse 7, A-1030 Vienna, Austria.
| |
Collapse
|
180
|
Nakaya M, Fukui A, Izumi Y, Akimoto K, Asashima M, Ohno S. Meiotic maturation induces animal-vegetal asymmetric distribution of aPKC and ASIP/PAR-3 in Xenopus oocytes. Development 2000; 127:5021-31. [PMID: 11060229 DOI: 10.1242/dev.127.23.5021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The asymmetric distribution of cellular components is an important clue for understanding cell fate decision during embryonic patterning and cell functioning after differentiation. In C. elegans embryos, PAR-3 and aPKC form a complex that colocalizes to the anterior periphery of the one-cell embryo, and are indispensable for anterior-posterior polarity that is formed prior to asymmetric cell division. In mammals, ASIP (PAR-3 homologue) and aPKCgamma form a complex and colocalize to the epithelial tight junctions, which play critical roles in epithelial cell polarity. Although the mechanism by which PAR-3/ASIP and aPKC regulate cell polarization remains to be clarified, evolutionary conservation of the PAR-3/ASIP-aPKC complex suggests their general role in cell polarity organization. Here, we show the presence of the protein complex in Xenopus laevis. In epithelial cells, XASIP and XaPKC colocalize to the cell-cell contact region. To our surprise, they also colocalize to the animal hemisphere of mature oocytes, whereas they localize uniformly in immature oocytes. Moreover, hormonal stimulation of immature oocytes results in a change in the distribution of XaPKC 2–3 hours after the completion of germinal vesicle breakdown, which requires the kinase activity of aPKC. These results suggest that meiotic maturation induces the animal-vegetal asymmetry of aPKC.
Collapse
Affiliation(s)
- M Nakaya
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | |
Collapse
|
181
|
Moscat J, Diaz-Meco MT. The atypical protein kinase Cs. Functional specificity mediated by specific protein adapters. EMBO Rep 2000; 1:399-403. [PMID: 11258478 PMCID: PMC1083770 DOI: 10.1093/embo-reports/kvd098] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Since its discovery more than 10 years ago, the atypical PKC (aPKC) subfamily has attracted great interest. A number of reports have shown that the kinases of this subfamily play critical roles in signaling pathways that control cell growth, differentiation and survival. Recently, several investigators have identified a number of aPKC-interacting proteins whose characterization is helping to unravel the mechanisms of action and functions of these kinases. These interactors include p62, Par-6, MEK5 and Par-4. The details of how these adapters serve to link the aPKCs to different receptor signaling pathways and substrates in response to specific stimuli are crucial not only for developing an understanding of the roles and functions of the aPKCs themselves, but also for more generally establishing a view of how specificity in signal transduction is achieved.
Collapse
Affiliation(s)
- J Moscat
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Universidad Autónoma, Canto Blanco, Spain.
| | | |
Collapse
|
182
|
Berkowitz LA, Strome S. MES-1, a protein required for unequal divisions of the germline in early C. elegans embryos, resembles receptor tyrosine kinases and is localized to the boundary between the germline and gut cells. Development 2000; 127:4419-31. [PMID: 11003841 PMCID: PMC2435362 DOI: 10.1242/dev.127.20.4419] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During Caenorhabditis elegans embryogenesis the primordial germ cell, P(4), is generated via a series of unequal divisions. These divisions produce germline blastomeres (P(1), P(2), P(3), P(4)) that differ from their somatic sisters in their size, fate and cytoplasmic content (e.g. germ granules). mes-1 mutant embryos display the striking phenotype of transformation of P(4) into a muscle precursor, like its somatic sister. A loss of polarity in P(2) and P(3) cell-specific events underlies the Mes-1 phenotype. In mes-1 embryos, P(2) and P(3) undergo symmetric divisions and partition germ granules to both daughters. This paper shows that mes-1 encodes a receptor tyrosine kinase-like protein, though it lacks several residues conserved in all kinases and therefore is predicted not to have kinase activity. Immunolocalization analysis shows that MES-1 is present in four- to 24-cell embryos, where it is localized in a crescent at the junction between the germline cell and its neighboring gut cell. This is the region of P(2) and P(3) to which the spindle and P granules must move to ensure normal division asymmetry and cytoplasmic partitioning. Indeed, during early stages of mitosis in P(2) and P(3), one centrosome is positioned adjacent to the MES-1 crescent. Staining of isolated blastomeres demonstrated that MES-1 was present in the membrane of the germline blastomeres, consistent with a cell-autonomous function. Analysis of MES-1 distribution in various cell-fate and patterning mutants suggests that its localization is not dependent on the correct fate of either the germline or the gut blastomere but is dependent upon correct spatial organization of the embryo. Our results suggest that MES-1 directly positions the developing mitotic spindle and its associated P granules within P(2) and P(3), or provides an orientation signal for P(2)- and P(3)-specific events.
Collapse
Affiliation(s)
- L A Berkowitz
- Department of Biology, Jordan Hall, Indiana University, Bloomington, IN 47405-3700, USA.
| | | |
Collapse
|
183
|
Wodarz A, Ramrath A, Grimm A, Knust E. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J Cell Biol 2000; 150:1361-74. [PMID: 10995441 PMCID: PMC2150710 DOI: 10.1083/jcb.150.6.1361] [Citation(s) in RCA: 386] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The establishment and maintenance of polarity is of fundamental importance for the function of epithelial and neuronal cells. In Drosophila, the multi-PDZ domain protein Bazooka (Baz) is required for establishment of apico-basal polarity in epithelia and in neuroblasts, the stem cells of the central nervous system. In the latter, Baz anchors Inscuteable in the apical cytocortex, which is essential for asymmetric localization of cell fate determinants and for proper orientation of the mitotic spindle. Here we show that Baz directly binds to the Drosophila atypical isoform of protein kinase C and that both proteins are mutually dependent on each other for correct apical localization. Loss-of-function mutants of the Drosophila atypical isoform of PKC show loss of apico-basal polarity, multilayering of epithelia, mislocalization of Inscuteable and abnormal spindle orientation in neuroblasts. Together, these data provide strong evidence for the existence of an evolutionary conserved mechanism that controls apico-basal polarity in epithelia and neuronal stem cells. This study is the first functional analysis of an atypical protein kinase C isoform using a loss-of-function allele in a genetically tractable organism.
Collapse
Affiliation(s)
- A Wodarz
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
184
|
Johansson A, Driessens M, Aspenström P. The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1. J Cell Sci 2000; 113 ( Pt 18):3267-75. [PMID: 10954424 DOI: 10.1242/jcs.113.18.3267] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mammalian homologue of the PDZ domain containing Caenorhabditis elegans protein PAR-6 was found in a yeast two-hybrid system screen as binding to the Rho family member Cdc42. PAR-6 contains a PDZ domain and in C. elegans it has been shown to be crucial for the asymmetric cleavage and establishment of cell polarity during the first cell divisions in the growing embryo. Mammalian PAR-6 interacted with Cdc42 and Rac1 both in the yeast two-hybrid system and in in vitro binding assays. Co-immunoprecipitation experiments, employing transiently transfected Cos-1 cells, further confirmed that Cdc42 and Rac1 are physiological binding partners for PAR-6. We found that, in epithelial Madin-Darby canine kidney cells (MDCK), endogenous PAR-6 was present in the tight junctions, as judged from its co-localisation with the tight junction protein ZO-1, however, PAR-6 was also detected in the cell nucleus. Stimulation of MDCK cells with scatter factor/hepatocyte growth factor induced a loss of PAR-6 from the areas of cell-cell contacts in conformity with their progressive breakdown. In C. elegans PAR-6 co-localises with PAR-3 and has been suggested to form a direct complex. In agreement with earlier studies, mammalian PAR-3 was found to be present in tight junctions of MDCK cells but, in contrast to PAR-6, the protein could not be detected in the nucleus. Furthermore, co-immunoprecipitation experiments, employing Cos-1 cells, demonstrated that mammalian PAR-6 and PAR-3 formed a direct complex. These findings, together with the reported roles of PAR-6 and PAR-3 in C. elegans, suggest that Cdc42 and Rac1 and PAR-6/PAR-3 are involved in the establishment of cell polarity in epithelial cells.
Collapse
Affiliation(s)
- A Johansson
- Ludwig Institute for Cancer Research, Biomedical Center, Box 595, S-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
185
|
Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2000; 2:540-7. [PMID: 10934475 DOI: 10.1038/35019582] [Citation(s) in RCA: 498] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cellular asymmetry is critical for the development of multicellular organisms. Here we show that homologues of proteins necessary for asymmetric cell division in Caenorhabditis elegans associate with each other in mammalian cells and tissues. mPAR-3 and mPAR-6 exhibit similar expression patterns and subcellular distributions in the CNS and associate through their PDZ (PSD-95/Dlg/ZO-1) domains. mPAR-6 binds to Cdc42/Rac1 GTPases, and mPAR-3 and mPAR-6 bind independently to atypical protein kinase C (aPKC) isoforms. In vitro, mPAR-3 acts as a substrate and an inhibitor of aPKC. We conclude that mPAR-3 and mPAR-6 have a scaffolding function, coordinating the activities of several signalling proteins that are implicated in mammalian cell polarity.
Collapse
Affiliation(s)
- D Lin
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
186
|
Pichler S, Gönczy P, Schnabel H, Pozniakowski A, Ashford A, Schnabel R, Hyman AA. OOC-3, a novel putative transmembrane protein required for establishment of cortical domains and spindle orientation in the P(1) blastomere of C. elegans embryos. Development 2000; 127:2063-73. [PMID: 10769231 DOI: 10.1242/dev.127.10.2063] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Asymmetric cell divisions require the establishment of an axis of polarity, which is subsequently communicated to downstream events. During the asymmetric cell division of the P(1) blastomere in C. elegans, establishment of polarity depends on the establishment of anterior and posterior cortical domains, defined by the localization of the PAR proteins, followed by the orientation of the mitotic spindle along the previously established axis of polarity. To identify genes required for these events, we have screened a collection of maternal-effect lethal mutations on chromosome II of C. elegans. We have identified a mutation in one gene, ooc-3, with mis-oriented division axes at the two-cell stage. Here we describe the phenotypic and molecular characterization of ooc-3. ooc-3 is required for the correct localization of PAR-2 and PAR-3 cortical domains after the first cell division. OOC-3 is a novel putative transmembrane protein, which localizes to a reticular membrane compartment, probably the endoplasmic reticulum, that spans the whole cytoplasm and is enriched on the nuclear envelope and cell-cell boundaries. Our results show that ooc-3 is required to form the cortical domains essential for polarity after cell division.
Collapse
Affiliation(s)
- S Pichler
- Max Planck Institute for Cell Biology and Genetics, D-01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
187
|
Watts JL, Morton DG, Bestman J, Kemphues KJ. The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. Development 2000; 127:1467-75. [PMID: 10704392 DOI: 10.1242/dev.127.7.1467] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the first cell cycle of Caenorhabditis elegans embryogenesis, asymmetries are established that are essential for determining the subsequent developmental fates of the daughter cells. The maternally expressed par genes are required for establishing this polarity. The products of several of the par genes have been found to be themselves asymmetrically distributed in the first cell cycle. We have identified the par-4 gene of C. elegans, and find that it encodes a putative serine-threonine kinase with similarity to a human kinase associated with Peutz-Jeghers Syndrome, LKB1 (STK11), and a Xenopus egg and embryo kinase, XEEK1. Several strong par-4 mutant alleles are missense mutations that alter conserved residues within the kinase domain, suggesting that kinase activity is essential for PAR-4 function. We find that the PAR-4 protein is present in the gonads, oocytes and early embryos of C. elegans, and is both cytoplasmically and cortically distributed. The cortical distribution begins at the late 1-cell stage, is more pronounced at the 2- and 4-cell stages and is reduced at late stages of embryonic development. We find no asymmetry in the distribution of PAR-4 protein in C. elegans embryos. The distribution of PAR-4 protein in early embryos is unaffected by mutations in the other par genes.
Collapse
Affiliation(s)
- J L Watts
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
188
|
Nishida H, Morokuma J, Nishikata T. Maternal cytoplasmic factors for generation of unique cleavage patterns in animal embryos. Curr Top Dev Biol 1999; 46:1-37. [PMID: 10417875 DOI: 10.1016/s0070-2153(08)60324-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- H Nishida
- Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
189
|
Abstract
Studies of about 20 maternally expressed genes are providing an understanding of mechanisms of patterning and cell-fate determination in the early Caenorhabditis elegans embryo. The analyses have revealed that fates of the early blastomeres are specified by a combination of intrinsically asymmetric cell divisions and two types of cell-cell interactions: inductions and polarizing interactions. In this review we summarize the current level of understanding of the molecular mechanisms underlying these processes in the specification of cell fates in the pregastrulation embryo.
Collapse
Affiliation(s)
- L S Rose
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA.
| | | |
Collapse
|
190
|
Hung TJ, Kemphues KJ. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development 1999; 126:127-35. [PMID: 9834192 DOI: 10.1242/dev.126.1.127] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The par genes are required to establish polarity in the Caenorhabditis elegans embryo. Mutations in two of these genes, par-3 and par-6, exhibit similar phenotypes. A third gene, pkc-3, gives a similar phenotype when the protein is depleted by RNA interference. PAR-3 and PKC-3 protein are colocalized to the anterior periphery of asymmetrically dividing cells of the germline lineage and the peripheral localizations of both proteins depends upon the activity of par-6. Here we report the molecular cloning of par-6 and the immunolocalization of PAR-6 protein. We found that par-6 encodes a PDZ-domain-containing protein and has homologues in mammals and flies. Moreover, we discovered that PAR-6 colocalizes with PAR-3 and that par-3 and pkc-3 activity are required for the peripheral localization of PAR-6. The localization of both PAR-3 and PAR-6 proteins is affected identically by mutations in the par-2, par-4 and par-5 genes. The co-dependence of PAR-3, PAR-6 and PKC-3 for peripheral localization and the overlap in their distributions lead us to propose that they act in a protein complex.
Collapse
Affiliation(s)
- T J Hung
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
191
|
Hunter CP. Caenorhabditis elegans: Embryonic Axis Formation; Signalling in Early Development. Development 1999. [DOI: 10.1007/978-3-642-59828-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
192
|
Srinivasan S, Peng CY, Nair S, Skeath JB, Spana EP, Doe CQ. Biochemical analysis of ++Prospero protein during asymmetric cell division: cortical Prospero is highly phosphorylated relative to nuclear Prospero. Dev Biol 1998; 204:478-87. [PMID: 9882484 DOI: 10.1006/dbio.1998.9079] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Drosophila neuroblasts are a model system for studying asymmetric cell division. Neuroblasts bud off a series of smaller progeny, called ganglion mother cells (GMCs). An essential regulator of GMC development is the Prospero homeodomain transcription factor: Prospero is asymmetrically localized to the basal cortex of the mitotic neuroblast and partitioned into the newborn GMC. Prospero is translocated into the GMC nucleus, where it is necessary to establish GMC-specific gene expression. Cortical localization of Prospero protein is observed only during mitosis; cortical localization requires entry into mitosis and cortical delocalization requires exit from mitosis. The tight correlation and functional requirement between mitosis and cortical Prospero localization suggests that mitosis-specific posttranslational modifications may be involved in regulating Prospero subcellular localization. Here we use monoclonals recognizing the N-terminal or C-terminal region of Prospero to explore its posttranslational regulation. One- and two-dimensional Western analysis reveal a complex pattern of Prospero isoforms; phosphatase assays show that there are several phosphoisoforms of Prospero. Developmental 2D Western blots, cell fractionation assays, and analysis of a missense prospero mutation show that cortical Prospero protein is highly phosphorylated compared to nuclear Prospero protein. Our results are consistent with two functions of Prospero phosphorylation: (i) phosphorylation may be required for Prospero cortical localization; or (ii) phosphorylation may be a consequence of Prospero cortical localization, in which case it may facilitate subsequent events, such as Prospero cortical release or nuclear localization.
Collapse
Affiliation(s)
- S Srinivasan
- Department of Cell and Structural Biology, HHMI, Urbana, Illinois, 61801, USA
| | | | | | | | | | | |
Collapse
|
193
|
Schumacher JM, Ashcroft N, Donovan PJ, Golden A. A highly conserved centrosomal kinase, AIR-1, is required for accurate cell cycle progression and segregation of developmental factors in Caenorhabditis elegans embryos. Development 1998; 125:4391-402. [PMID: 9778499 DOI: 10.1242/dev.125.22.4391] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
S. cerevisiae Ipl1, Drosophila Aurora, and the mammalian centrosomal protein IAK-1 define a new subfamily of serine/threonine kinases that regulate chromosome segregation and mitotic spindle dynamics. Mutations in ipl1 and aurora result in the generation of severely aneuploid cells and, in the case of aurora, monopolar spindles arising from a failure in centrosome separation. Here we show that a related, essential protein from C. elegans, AIR-1 (Aurora/Ipl1 related), is localized to mitotic centrosomes. Disruption of AIR-1 protein expression in C. elegans embryos results in severe aneuploidy and embryonic lethality. Unlike aurora mutants, this aneuploidy does not arise from a failure in centrosome separation. Bipolar spindles are formed in the absence of AIR-1, but they appear to be disorganized and are nucleated by abnormal-looking centrosomes. In addition to its requirement during mitosis, AIR-1 may regulate microtubule-based developmental processes as well. Our data suggests AIR-1 plays a role in P-granule segregation and the association of the germline factor PIE-1 with centrosomes.
Collapse
Affiliation(s)
- J M Schumacher
- Cell Biology of Development and Differentiation Group, Developmental Signal Transduction Group, ABL-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, PO Box B, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
194
|
Izumi Y, Hirose T, Tamai Y, Hirai S, Nagashima Y, Fujimoto T, Tabuse Y, Kemphues KJ, Ohno S. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J Cell Biol 1998; 143:95-106. [PMID: 9763423 PMCID: PMC2132825 DOI: 10.1083/jcb.143.1.95] [Citation(s) in RCA: 412] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell polarity is fundamental to differentiation and function of most cells. Studies in mammalian epithelial cells have revealed that the establishment and maintenance of cell polarity depends upon cell adhesion, signaling networks, the cytoskeleton, and protein transport. Atypical protein kinase C (PKC) isotypes PKCzeta and PKClambda have been implicated in signaling through lipid metabolites including phosphatidylinositol 3-phosphates, but their physiological role remains elusive. In the present study we report the identification of a protein, ASIP (atypical PKC isotype-specific interacting protein), that binds to aPKCs, and show that it colocalizes with PKClambda to the cell junctional complex in cultured epithelial MDCKII cells and rat intestinal epithelia. In addition, immunoelectron microscopy revealed that ASIP localizes to tight junctions in intestinal epithelial cells. Furthermore, ASIP shows significant sequence similarity to Caenorhabditis elegans PAR-3. PAR-3 protein is localized to the anterior periphery of the one-cell embryo, and is required for the establishment of cell polarity in early embryos. ASIP and PAR-3 share three PDZ domains, and can both bind to aPKCs. Taken together, our results suggest a role for a protein complex containing ASIP and aPKC in the establishment and/or maintenance of epithelial cell polarity. The evolutionary conservation of the protein complex and its asymmetric distribution in polarized cells from worm embryo to mammalian-differentiated cells may mean that the complex functions generally in the organization of cellular asymmetry.
Collapse
Affiliation(s)
- Y Izumi
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Tabuse Y, Izumi Y, Piano F, Kemphues KJ, Miwa J, Ohno S. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 1998; 125:3607-14. [PMID: 9716526 DOI: 10.1242/dev.125.18.3607] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Asymmetric cell divisions, critically important to specify cell types in the development of multicellular organisms, require polarized distribution of cytoplasmic components and the proper alignment of the mitotic apparatus. In Caenorhabditis elegans, the maternally expressed protein, PAR-3, is localized to one pole of asymmetrically dividing blastomeres and is required for these asymmetric divisions. In this paper, we report that an atypical protein kinase C (PKC-3) is essential for proper asymmetric cell divisions and co-localizes with PAR-3. Embryos depleted of PKC-3 by RNA interference die showing Par-like phenotypes including defects in early asymmetric divisions and mislocalized germline-specific granules (P granules). The defective phenotypes of PKC-3-depleted embryos are similar to those exhibited by mutants for par-3 and another par gene, par-6. Direct interaction of PKC-3 with PAR-3 is shown by in vitro binding analysis. This result is reinforced by the observation that PKC-3 and PAR-3 co-localize in vivo. Furthermore, PKC-3 and PAR-3 show mutual dependence on each other and on three of the other par genes for their localization. We conclude that PKC-3 plays an indispensable role in establishing embryonic polarity through interaction with PAR-3.
Collapse
Affiliation(s)
- Y Tabuse
- Fundamental Research Laboratories, NEC Corporation, Tsukuba, Ibaraki 305, Japan.
| | | | | | | | | | | |
Collapse
|
196
|
Tenenhaus C, Schubert C, Seydoux G. Genetic requirements for PIE-1 localization and inhibition of gene expression in the embryonic germ lineage of Caenorhabditis elegans. Dev Biol 1998; 200:212-24. [PMID: 9705228 DOI: 10.1006/dbio.1998.8940] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In early Caenorhabditis elegans embryos, production of new mRNAs is inhibited in the germ lineage. This inhibition requires the germline factor PIE-1, and correlates with the absence in germline blastomeres of a phosphoepitope on RNA polymerase II (RNAPII-H5). We show that PIE-1 is uniformly distributed in oocytes and newly fertilized eggs, and becomes localized asymmetrically in the late one-cell stage. To begin to dissect the mechanisms required for PIE-1 localization and inhibition of RNAPII-H5 expression, we have examined the distribution of PIE-1 and RNAPII-H5 in maternal-effect mutants that disrupt embryonic development. We find that mutants that disrupt the asymmetric divisions of germline blastomeres mislocalize PIE-1, and activate RNAPII-H5 expression in the germ lineage. In contrast, mutants that alter somatic cell identities do not affect PIE-1 localization or RNAPII-H5 expression. Our observations suggest that PIE-1 represses mRNA transcription in each germline blastomere in a concentration-dependent manner. We also show that in wild-type, and in mutants where PIE-1 is mislocalized, the cellular and subcellular distribution of PIE-1 remarkably parallels that of the P granules, suggesting that the localizations of these two germline components are coordinately regulated.
Collapse
Affiliation(s)
- C Tenenhaus
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21205-2185, USA
| | | | | |
Collapse
|
197
|
Abstract
Genetic screens for recessive, maternal-effect, embryonic-lethal mutations have identified about 25 genes that control early steps of pattern formation in the nematode Caenorhabditis elegans. These maternal genes are discussed as belonging to one of three groups. The par group genes establish and maintain polarity in the one-cell zygote in response to sperm entry, defining an anterior/posterior body axis at least in part through interactions with the cyto-skeleton mediated by cortically localized proteins. Blastomere identity group genes act down-stream of the par group to specify the identities of individual embryonic cells, or blastomeres, using both cell autonomous and non-cell autonomous mechanisms. Requirements for the blastomere identity genes are consistent with previous studies suggesting that early asymmetric cleavages in the C. elegans embryo generate six "founder" cells that account for much of the C. elegans body plan. Intermediate group genes, most recently identified, may link the establishment of polarity in the zygote by par group genes to the localization of blastomere identity group gene functions. This review summarizes the known requirements for the members of each group, although it seems clear that additional regulatory genes controlling pattern formation in the early embryo have yet to be identified. An emerging challenge is to link the function of the genes in these three groups into interacting pathways that can account for the specification of the six founder cell identities in the early embryo, five of which produce somatic cell types and one of which produces the germline.
Collapse
Affiliation(s)
- B Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene 97403, USA
| |
Collapse
|
198
|
Broadus J, Doe CQ. Extrinsic cues, intrinsic cues and microfilaments regulate asymmetric protein localization in Drosophila neuroblasts. Curr Biol 1997; 7:827-35. [PMID: 9382803 DOI: 10.1016/s0960-9822(06)00370-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The Drosophila central nervous system develops from stem cell like precursors called neuroblasts, which divide unequally to bud off a series of smaller daughter cells called ganglion mother cells. Neuroblasts show cell-cycle-specific asymmetric localization of both RNA and proteins: at late interphase, prospero RNA and Inscuteable, Prospero and Staufen proteins are all apically localized; at mitosis, Inscuteable remains apical whereas prospero RNA, Prospero protein and Staufen protein form basal cortical crescents. Here we use in vitro culture of neuroblasts to investigate the role of intrinsic and extrinsic cues and the cytoskeleton in asymmetric localization of Inscuteable, Prospero and Staufen proteins. RESULTS Neuroblast cytokinesis is normal in vitro, producing a larger neuroblast and a smaller ganglion mother cell. Apical localization of Inscuteable, Prospero and Staufen in interphase neuroblasts is reduced or eliminated in vitro, but all three proteins are localized normally during mitosis (apical Inscuteable, basal Prospero and Staufen). Microfilament inhibitors result in delocalization of all three proteins. Inscuteable becomes uniform at the cortex, whereas Prospero and Staufen become cytoplasmic; inhibitor washout leads to recovery of microfilaments and asymmetric localization of all three proteins. Microtubule disruption has no effect on protein localization, but disruption of both microtubules and microfilaments results in cytoplasmic localization of Inscuteable. CONCLUSIONS Both extrinsic and intrinsic cues regulate protein localization in neuroblasts. Microfilaments, but not microtubules, are essential for asymmetric protein anchoring (and possibly localization) in mitotic neuroblasts. Our results highlight the similarity between Drosophila, Caenorhabditis elegans, vertebrates, plants and yeast: in all organisms, asymmetric protein or RNA localization and/or anchoring requires microfilaments.
Collapse
Affiliation(s)
- J Broadus
- Department of Cell and Structural Biology, Howard Hughes Medical Institute, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
199
|
Böhm H, Brinkmann V, Drab M, Henske A, Kurzchalia TV. Mammalian homologues of C. elegans PAR-1 are asymmetrically localized in epithelial cells and may influence their polarity. Curr Biol 1997; 7:603-6. [PMID: 9259552 DOI: 10.1016/s0960-9822(06)00260-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The establishment of polarity in the embryo is fundamental for the correct development of an organism [1]. The first cleavage of the Caenorhabditis elegans embryo is asymmetric with certain cytoplasmic components being distributed unequally between the daughter cells [2-4]. Using a genetic screen, Kemphues and co-workers have identified six par genes (partition-defective) [5,6], which are involved in the process of asymmetric division. One of these genes encodes a highly conserved protein, PAR-1, which is a serine/threonine kinase that localizes asymmetrically to the posterior part of the zygote and to those blastocysts that give rise to the germ line [7-9]. We reasoned that the mammalian homologue of PAR-1 (mPAR-1) might be involved in the process of polarization of epithelial cells, which consist of apical and basolateral membrane domains. We found that mPAR-1 was expressed in a wide variety of epithelial tissues and cell lines and was associated with the cellular cortex. In polarized epithelial cells, mPAR-1 was asymmetrically localized to the lateral domain. A fusion protein lacking the kinase domain had the same localization as the full-length protein but its prolonged expression acted in a dominant-negative fashion: lateral adhesion of the transfected cells to neighbouring cells was diminished, resulting in the former cells being 'squeezed out' from the monolayer. Moreover, the polarity of these cells was disturbed resulting in mislocalization of E-cadherin. Thus, in the C. elegans embryo and in epithelial cells, polarity appears to be governed by similar mechanisms.
Collapse
Affiliation(s)
- H Böhm
- Department of Cell Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | |
Collapse
|