151
|
Bays JL, Peng X, Tolbert CE, Guilluy C, Angell AE, Pan Y, Superfine R, Burridge K, DeMali KA. Vinculin phosphorylation differentially regulates mechanotransduction at cell-cell and cell-matrix adhesions. ACTA ACUST UNITED AC 2014; 205:251-63. [PMID: 24751539 PMCID: PMC4003237 DOI: 10.1083/jcb.201309092] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vinculin phosphorylation on residue Y822 is necessary for cell stiffening in response to tension on cadherins but not integrins. Cells experience mechanical forces throughout their lifetimes. Vinculin is critical for transmitting these forces, yet how it achieves its distinct functions at cell–cell and cell–matrix adhesions remains unanswered. Here, we show vinculin is phosphorylated at Y822 in cell–cell, but not cell–matrix, adhesions. Phosphorylation at Y822 was elevated when forces were applied to E-cadherin and was required for vinculin to integrate into the cadherin complex. The mutation Y822F ablated these activities and prevented cells from stiffening in response to forces on E-cadherin. In contrast, Y822 phosphorylation was not required for vinculin functions in cell–matrix adhesions, including integrin-induced cell stiffening. Finally, forces applied to E-cadherin activated Abelson (Abl) tyrosine kinase to phosphorylate vinculin; Abl inhibition mimicked the loss of vinculin phosphorylation. These data reveal an unexpected regulatory mechanism in which vinculin Y822 phosphorylation determines whether cadherins transmit force and provides a paradigm for how a shared component of adhesions can produce biologically distinct functions.
Collapse
Affiliation(s)
- Jennifer L Bays
- Department of Biochemistry, University of Iowa Roy J. Carver College of Medicine, Iowa City, IA 52242
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
Integrins are heterodimeric, transmembrane receptors that are expressed in all cells, including those in the heart. They participate in multiple critical cellular processes including adhesion, extracellular matrix organization, signaling, survival, and proliferation. Particularly relevant for a contracting muscle cell, integrins are mechanotransducers, translating mechanical to biochemical information. Although it is likely that cardiovascular clinicians and scientists have the highest recognition of integrins in the cardiovascular system from drugs used to inhibit platelet aggregation, the focus of this article will be on the role of integrins specifically in the cardiac myocyte. After a general introduction to integrin biology, the article will discuss important work on integrin signaling, mechanotransduction, and lessons learned about integrin function from a range of model organisms. Then we will detail work on integrin-related proteins in the myocyte, how integrins may interact with ion channels and mediate viral uptake into cells, and also play a role in stem cell biology. Finally, we will discuss directions for future study.
Collapse
Affiliation(s)
- Sharon Israeli-Rosenberg
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Ana Maria Manso
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Hideshi Okada
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Robert S Ross
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
153
|
Thompson PM, Tolbert CE, Shen K, Kota P, Palmer SM, Plevock KM, Orlova A, Galkin VE, Burridge K, Egelman EH, Dokholyan NV, Superfine R, Campbell SL. Identification of an actin binding surface on vinculin that mediates mechanical cell and focal adhesion properties. Structure 2014; 22:697-706. [PMID: 24685146 DOI: 10.1016/j.str.2014.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/04/2014] [Accepted: 03/04/2014] [Indexed: 11/30/2022]
Abstract
Vinculin, a cytoskeletal scaffold protein essential for embryogenesis and cardiovascular function, localizes to focal adhesions and adherens junctions, connecting cell surface receptors to the actin cytoskeleton. While vinculin interacts with many adhesion proteins, its interaction with filamentous actin regulates cell morphology, motility, and mechanotransduction. Disruption of this interaction lowers cell traction forces and enhances actin flow rates. Although a model for the vinculin:actin complex exists, we recently identified actin-binding deficient mutants of vinculin outside sites predicted to bind actin and developed an alternative model to better define this actin-binding surface, using negative-stain electron microscopy (EM), discrete molecular dynamics, and mutagenesis. Actin-binding deficient vinculin variants expressed in vinculin knockout fibroblasts fail to rescue cell-spreading defects and reduce cellular response to external force. These findings highlight the importance of this actin-binding surface and provide the molecular basis for elucidating additional roles of this interaction, including actin-induced conformational changes that promote actin bundling.
Collapse
Affiliation(s)
- Peter M Thompson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caitlin E Tolbert
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kai Shen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pradeep Kota
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sean M Palmer
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen M Plevock
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Albina Orlova
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Vitold E Galkin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard Superfine
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
154
|
Abstract
Osteoclastic bone resorption depends upon the cell's ability to organize its cytoskeleton. Because vinculin (VCL) is an actin-binding protein, we asked whether it participates in skeletal degradation. Thus, we mated VCL(fl/fl) mice with those expressing cathepsin K-Cre (CtsK-VCL) to delete the gene in mature osteoclasts or lysozyme M-Cre (LysM-VCL) to target all osteoclast lineage cells. VCL-deficient osteoclasts differentiate normally but, reflecting cytoskeletal disorganization, form small actin rings and fail to effectively resorb bone. In keeping with inhibited resorptive function, CtsK-VCL and LysM-VCL mice exhibit a doubling of bone mass. Despite cytoskeletal disorganization, the capacity of VCL(-/-) osteoclastic cells to normally phosphorylate c-Src in response to αvβ3 integrin ligand is intact. Thus, integrin-activated signals are unrelated to the means by which VCL organizes the osteoclast cytoskeleton. WT VCL completely rescues actin ring formation and bone resorption, as does VCL(P878A), which is incapable of interacting with Arp2/3. As expected, deletion of the VCL tail domain (VCL(1-880)), which binds actin, does not normalize VCL(-/-) osteoclasts. The same is true regarding VCL(I997A), which also prevents VCL/actin binding, and VCL(A50I) and VCL(811-1066), both of which arrest talin association. Thus, VCL binding talin, but not Arp2/3, is critical for osteoclast function, and its selective inhibition retards physiological bone loss.
Collapse
|
155
|
Tragante V, Barnes MR, Ganesh SK, Lanktree MB, Guo W, Franceschini N, Smith EN, Johnson T, Holmes MV, Padmanabhan S, Karczewski KJ, Almoguera B, Barnard J, Baumert J, Chang YPC, Elbers CC, Farrall M, Fischer ME, Gaunt TR, Gho JMIH, Gieger C, Goel A, Gong Y, Isaacs A, Kleber ME, Mateo Leach I, McDonough CW, Meijs MFL, Melander O, Nelson CP, Nolte IM, Pankratz N, Price TS, Shaffer J, Shah S, Tomaszewski M, van der Most PJ, Van Iperen EPA, Vonk JM, Witkowska K, Wong COL, Zhang L, Beitelshees AL, Berenson GS, Bhatt DL, Brown M, Burt A, Cooper-DeHoff RM, Connell JM, Cruickshanks KJ, Curtis SP, Davey-Smith G, Delles C, Gansevoort RT, Guo X, Haiqing S, Hastie CE, Hofker MH, Hovingh GK, Kim DS, Kirkland SA, Klein BE, Klein R, Li YR, Maiwald S, Newton-Cheh C, O'Brien ET, Onland-Moret NC, Palmas W, Parsa A, Penninx BW, Pettinger M, Vasan RS, Ranchalis JE, M Ridker P, Rose LM, Sever P, Shimbo D, Steele L, Stolk RP, Thorand B, Trip MD, van Duijn CM, Verschuren WM, Wijmenga C, Wyatt S, Young JH, Zwinderman AH, Bezzina CR, Boerwinkle E, Casas JP, Caulfield MJ, Chakravarti A, Chasman DI, Davidson KW, Doevendans PA, Dominiczak AF, FitzGerald GA, Gums JG, Fornage M, et alTragante V, Barnes MR, Ganesh SK, Lanktree MB, Guo W, Franceschini N, Smith EN, Johnson T, Holmes MV, Padmanabhan S, Karczewski KJ, Almoguera B, Barnard J, Baumert J, Chang YPC, Elbers CC, Farrall M, Fischer ME, Gaunt TR, Gho JMIH, Gieger C, Goel A, Gong Y, Isaacs A, Kleber ME, Mateo Leach I, McDonough CW, Meijs MFL, Melander O, Nelson CP, Nolte IM, Pankratz N, Price TS, Shaffer J, Shah S, Tomaszewski M, van der Most PJ, Van Iperen EPA, Vonk JM, Witkowska K, Wong COL, Zhang L, Beitelshees AL, Berenson GS, Bhatt DL, Brown M, Burt A, Cooper-DeHoff RM, Connell JM, Cruickshanks KJ, Curtis SP, Davey-Smith G, Delles C, Gansevoort RT, Guo X, Haiqing S, Hastie CE, Hofker MH, Hovingh GK, Kim DS, Kirkland SA, Klein BE, Klein R, Li YR, Maiwald S, Newton-Cheh C, O'Brien ET, Onland-Moret NC, Palmas W, Parsa A, Penninx BW, Pettinger M, Vasan RS, Ranchalis JE, M Ridker P, Rose LM, Sever P, Shimbo D, Steele L, Stolk RP, Thorand B, Trip MD, van Duijn CM, Verschuren WM, Wijmenga C, Wyatt S, Young JH, Zwinderman AH, Bezzina CR, Boerwinkle E, Casas JP, Caulfield MJ, Chakravarti A, Chasman DI, Davidson KW, Doevendans PA, Dominiczak AF, FitzGerald GA, Gums JG, Fornage M, Hakonarson H, Halder I, Hillege HL, Illig T, Jarvik GP, Johnson JA, Kastelein JJP, Koenig W, Kumari M, März W, Murray SS, O'Connell JR, Oldehinkel AJ, Pankow JS, Rader DJ, Redline S, Reilly MP, Schadt EE, Kottke-Marchant K, Snieder H, Snyder M, Stanton AV, Tobin MD, Uitterlinden AG, van der Harst P, van der Schouw YT, Samani NJ, Watkins H, Johnson AD, Reiner AP, Zhu X, de Bakker PIW, Levy D, Asselbergs FW, Munroe PB, Keating BJ. Gene-centric meta-analysis in 87,736 individuals of European ancestry identifies multiple blood-pressure-related loci. Am J Hum Genet 2014; 94:349-60. [PMID: 24560520 DOI: 10.1016/j.ajhg.2013.12.016] [Show More Authors] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/20/2013] [Indexed: 11/29/2022] Open
Abstract
Blood pressure (BP) is a heritable risk factor for cardiovascular disease. To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP), we genotyped ~50,000 SNPs in up to 87,736 individuals of European ancestry and combined these in a meta-analysis. We replicated findings in an independent set of 68,368 individuals of European ancestry. Our analyses identified 11 previously undescribed associations in independent loci containing 31 genes including PDE1A, HLA-DQB1, CDK6, PRKAG2, VCL, H19, NUCB2, RELA, HOXC@ complex, FBN1, and NFAT5 at the Bonferroni-corrected array-wide significance threshold (p < 6 × 10(-7)) and confirmed 27 previously reported associations. Bioinformatic analysis of the 11 loci provided support for a putative role in hypertension of several genes, such as CDK6 and NUCB2. Analysis of potential pharmacological targets in databases of small molecules showed that ten of the genes are predicted to be a target for small molecules. In summary, we identified previously unknown loci associated with BP. Our findings extend our understanding of genes involved in BP regulation, which may provide new targets for therapeutic intervention or drug response stratification.
Collapse
Affiliation(s)
- Vinicius Tragante
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Department of Medical Genetics, Biomedical Genetics, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Michael R Barnes
- William Harvey Research Institute National Institute for Health Biomedical Research Unit, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Departments of Internal Medicine and Human Genetics, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Matthew B Lanktree
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Wei Guo
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Erin N Smith
- Department of Pediatrics and Rady's Children's Hospital, University of California at San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Toby Johnson
- Clinical Pharmacology and Barts and The London Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Michael V Holmes
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | - Konrad J Karczewski
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Berta Almoguera
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jens Baumert
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Yen-Pei Christy Chang
- Departments of Medicine and Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Clara C Elbers
- Department of Medical Genetics, Biomedical Genetics, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Martin Farrall
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Mary E Fischer
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53726, USA
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Johannes M I H Gho
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Anuj Goel
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL 32610, USA
| | - Aaron Isaacs
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Marcus E Kleber
- Medical Clinic V, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Irene Mateo Leach
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Caitrin W McDonough
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL 32610, USA
| | - Matthijs F L Meijs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Olle Melander
- Hypertension and Cardiovascular Disease, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden; Centre of Emergency Medicine, Skåne University Hospital, Malmö 20502, Sweden
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE3 9QP, UK; NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Nathan Pankratz
- Institute of Human Genetics, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tom S Price
- MRC SGDP Centre, Institute of Psychiatry, London SE5 8AF, UK
| | - Jonathan Shaffer
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Sonia Shah
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Kathleen Lonsdale Building, Gower Place, London WC1E 6BT, UK
| | - Maciej Tomaszewski
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE3 9QP, UK
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Erik P A Van Iperen
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, 3511 GC Utrecht, the Netherlands; Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Kate Witkowska
- Clinical Pharmacology and Barts and The London Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Caroline O L Wong
- Clinical Pharmacology and Barts and The London Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Li Zhang
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amber L Beitelshees
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Gerald S Berenson
- Department of Epidemiology, Tulane University, New Orleans, LA 70118, USA
| | - Deepak L Bhatt
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Morris Brown
- Clinical Pharmacology Unit, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Amber Burt
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195, USA
| | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL 32610, USA
| | - John M Connell
- University of Dundee, Ninewells Hospital &Medical School, Dundee DD1 9SY, UK
| | - Karen J Cruickshanks
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53726, USA; Department of Population Health Sciences, University of Wisconsin, Madison, WI 53726, USA
| | - Sean P Curtis
- Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065, USA
| | - George Davey-Smith
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Ron T Gansevoort
- Division of Nephrology, Department of Medicine, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Xiuqing Guo
- Cedars-Sinai Med Ctr-PEDS, Los Angeles, CA 90048, USA
| | - Shen Haiqing
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Claire E Hastie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Marten H Hofker
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Department Pathology and Medical Biology, Medical Biology Division, Molecular Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Daniel S Kim
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Susan A Kirkland
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, NS B3H 1V7, Canada
| | - Barbara E Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53726, USA
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53726, USA
| | - Yun R Li
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Steffi Maiwald
- Department of Vascular Medicine, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | | | - Eoin T O'Brien
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - N Charlotte Onland-Moret
- Department of Medical Genetics, Biomedical Genetics, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Walter Palmas
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Afshin Parsa
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brenda W Penninx
- Department of Psychiatry/EMGO Institute, VU University Medical Centre, 1081 BT Amsterdam, the Netherlands
| | - Mary Pettinger
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ramachandran S Vasan
- Department of Medicine, Boston University School of Medicine, Framingham, MA 02118, USA
| | - Jane E Ranchalis
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Lynda M Rose
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Peter Sever
- International Centre for Circulatory Health, Imperial College London, W2 1LA UK
| | - Daichi Shimbo
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Laura Steele
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronald P Stolk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Barbara Thorand
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Mieke D Trip
- Department of Cardiology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands
| | - W Monique Verschuren
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Sharon Wyatt
- Schools of Nursing and Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - J Hunter Young
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Connie R Bezzina
- Heart Failure Research Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands; Molecular and Experimental Cardiology Group, Academic Medical Centre, 1105 AZ Amsterdam, the Netherlands
| | - Eric Boerwinkle
- Human Genetics Center and Institute of Molecular Medicine and Division of Epidemiology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Juan P Casas
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; Genetic Epidemiology Group, Department of Epidemiology and Public Health, University College London, London WC1E 6BT, UK
| | - Mark J Caulfield
- Clinical Pharmacology and Barts and The London Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Karina W Davidson
- Departments of Medicine & Psychiatry, Columbia University, New York, NY 10032, USA
| | - Pieter A Doevendans
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Anna F Dominiczak
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | - Garret A FitzGerald
- The Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John G Gums
- Departments of Pharmacotherapy and Translational Research and Community Health and Family Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Myriam Fornage
- Institute of Molecular Medicine and School of Public Health Division of Epidemiology Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Indrani Halder
- School of Medicine, University of Pittsburgh, PA 15261, USA
| | - Hans L Hillege
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Hannover Unified Biobank, Hannover Medical School, Hannover 30625, Germany
| | - Gail P Jarvik
- International Centre for Circulatory Health, Imperial College London, W2 1LA UK
| | - Julie A Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL 32610, USA
| | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Wolfgang Koenig
- Department of Internal Medicine II - Cardiology, University of Ulm Medical Centre, Ulm 89081, Germany
| | - Meena Kumari
- Department of Epidemiology and Public Health, Division of Population Health, University College London, Torrington Place, London WC1E 7HB, UK
| | - Winfried März
- Medical Clinic V, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany; Synlab Academy, Synlab Services GmbH, Mannheim 69214, Germany; Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz 8036, Austria
| | - Sarah S Murray
- Department of Pathology, University of California San Diego, La Jolla, CA 92037, USA
| | - Jeffery R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55454, USA
| | - Daniel J Rader
- Cardiovascular Institute, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Muredach P Reilly
- Cardiovascular Institute, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alice V Stanton
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - André G Uitterlinden
- Departments of Epidemiology and Internal Medicine, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands; Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, 3511 GC Utrecht, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE3 9QP, UK; NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK
| | - Hugh Watkins
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Andrew D Johnson
- National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA 01702, USA
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Paul I W de Bakker
- Department of Medical Genetics, Biomedical Genetics, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA and Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel Levy
- Center for Population Studies, National Heart, Lung, and Blood Institute, Framingham, MA 01702, USA
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, 3511 GC Utrecht, the Netherlands; Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London WC1E 6BT, UK
| | - Patricia B Munroe
- Clinical Pharmacology and Barts and The London Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Brendan J Keating
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
156
|
Simon NC, Barbieri JT. Bacillus cereus Certhrax ADP-ribosylates vinculin to disrupt focal adhesion complexes and cell adhesion. J Biol Chem 2014; 289:10650-10659. [PMID: 24573681 DOI: 10.1074/jbc.m113.500710] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus cereus is often associated with mild to moderate gastroenteritis; however, some recent isolates cause inhalational anthrax-like diseases and death. These potential emerging human pathogens express multiple virulence factors. B. cereus strain G9241 expresses anthrax toxin, several polysaccharide capsules, and the novel ADP-ribosyltransferase, Certhrax. In this study, we show that Certhrax ADP-ribosylates Arg-433 of vinculin, a protein that coordinates actin cytoskeleton and extracellular matrix interactions. ADP-ribosylation of vinculin disrupted focal adhesion complexes and redistributed vinculin to the cytoplasm. Exogenous vinculin rescued these phenotypes. This provides a mechanism for strain G9241 to breach host barrier defenses and promote bacterial growth and spread. Certhrax is the first bacterial toxin to add a post-translational modification to vinculin to disrupt the actin cytoskeleton.
Collapse
Affiliation(s)
- Nathan C Simon
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Joseph T Barbieri
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
157
|
Samarel AM. Focal adhesion signaling in heart failure. Pflugers Arch 2014; 466:1101-11. [PMID: 24515292 DOI: 10.1007/s00424-014-1456-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 11/28/2022]
Abstract
In this brief review, recent evidence is presented to indicate a role for specific components of the cardiomyocyte costamere (and its related structure the focal adhesion complex of cultured cardiomyocytes) in initiating and sustaining the aberrant signal transduction that contributes to myocardial remodeling and the progression to heart failure (HF). Special attention is devoted to the focal adhesion kinase family of nonreceptor protein tyrosine kinases in bidirectional signal transduction during cardiac remodeling and HF progression. Finally, some speculations and directions for future study are provided for this rapidly developing field of research.
Collapse
Affiliation(s)
- Allen M Samarel
- The Cardiovascular Institute and the Department of Medicine, Loyola University Chicago Stritch School of Medicine, Building 110, Rm 5222, 2160 South First Avenue, Maywood, IL, 60153, USA,
| |
Collapse
|
158
|
Hirata H, Tatsumi H, Lim CT, Sokabe M. Force-dependent vinculin binding to talin in live cells: a crucial step in anchoring the actin cytoskeleton to focal adhesions. Am J Physiol Cell Physiol 2014; 306:C607-20. [PMID: 24452377 DOI: 10.1152/ajpcell.00122.2013] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mechanical forces play a pivotal role in the regulation of focal adhesions (FAs) where the actin cytoskeleton is anchored to the extracellular matrix through integrin and a variety of linker proteins including talin and vinculin. The localization of vinculin at FAs depends on mechanical forces. While in vitro studies have demonstrated the force-induced increase in vinculin binding to talin, it remains unclear whether such a mechanism exists at FAs in vivo. In this study, using fibroblasts cultured on elastic silicone substrata, we have examined the role of forces in modulating talin-vinculin binding at FAs. Stretching the substrata caused vinculin accumulation at talin-containing FAs, and this accumulation was abrogated by expressing the talin-binding domain of vinculin (domain D1, which inhibits endogenous vinculin from binding to talin). These results indicate that mechanical forces loaded to FAs facilitate vinculin binding to talin at FAs. In cell-protruding regions, the actin network moved backward over talin-containing FAs in domain D1-expressing cells while it was anchored to FAs in control cells, suggesting that the force-dependent vinculin binding to talin is crucial for anchoring the actin cytoskeleton to FAs in living cells.
Collapse
Affiliation(s)
- Hiroaki Hirata
- Mechanobiology Institute, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
159
|
Zemljic-Harpf AE, Godoy JC, Platoshyn O, Asfaw EK, Busija AR, Domenighetti AA, Ross RS. Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci 2014; 127:1104-16. [PMID: 24413171 DOI: 10.1242/jcs.143743] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Vinculin (Vcl) links actin filaments to integrin- and cadherin-based cellular junctions. Zonula occludens-1 (ZO-1, also known as TJP1) binds connexin-43 (Cx43, also known as GJA1), cadherin and actin. Vcl and ZO-1 anchor the actin cytoskeleton to the sarcolemma. Given that loss of Vcl from cardiomyocytes causes maldistribution of Cx43 and predisposes cardiomyocyte-specific Vcl-knockout mice with preserved heart function to arrhythmia and sudden death, we hypothesized that Vcl and ZO-1 interact and that loss of this interaction destabilizes gap junctions. We found that Vcl, Cx43 and ZO-1 colocalized at the intercalated disc. Loss of cardiomyocyte Vcl caused parallel loss of ZO-1 from intercalated dics. Vcl co-immunoprecipitated Cx43 and ZO-1, and directly bound ZO-1 in yeast two-hybrid studies. Excision of the Vcl gene in neonatal mouse cardiomyocytes caused a reduction in the amount of Vcl mRNA transcript and protein expression leading to (1) decreased protein expression of Cx43, ZO-1, talin, and β1D-integrin, (2) reduced PI3K activation, (3) increased activation of Akt, Erk1 and Erk2, and (4) cardiomyocyte necrosis. In summary, this is the first study showing a direct interaction between Vcl and ZO-1 and illustrates how Vcl plays a crucial role in stabilizing gap junctions and myocyte integrity.
Collapse
|
160
|
Jahed Z, Shams H, Mehrbod M, Mofrad MRK. Mechanotransduction pathways linking the extracellular matrix to the nucleus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:171-220. [PMID: 24725427 DOI: 10.1016/b978-0-12-800180-6.00005-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cells contain several mechanosensing components that transduce mechanical signals into biochemical cascades. During cell-ECM adhesion, a complex network of molecules mechanically couples the extracellular matrix (ECM), cytoskeleton, and nucleoskeleton. The network comprises transmembrane receptor proteins and focal adhesions, which link the ECM and cytoskeleton. Additionally, recently identified protein complexes extend this linkage to the nucleus by linking the cytoskeleton and the nucleoskeleton. Despite numerous studies in this field, due to the complexity of this network, our knowledge of the mechanisms of cell-ECM adhesion at the molecular level remains remarkably incomplete. Herein, we present a review of the structures of key molecules involved in cell-ECM adhesion, along with an evaluation of their predicted roles in mechanical sensing. Additionally, specific binding events prompted by force-induced conformational changes of each molecule are discussed. Finally, we propose a model for the biomechanical events prominent in cell-ECM adhesion.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Hengameh Shams
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Mehrdad Mehrbod
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA.
| |
Collapse
|
161
|
The detection and role of molecular tension in focal adhesion dynamics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:3-24. [PMID: 25081612 DOI: 10.1016/b978-0-12-394624-9.00001-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cells are exquisitely sensitive to the mechanical nature of their environment, including applied force and the stiffness of the extracellular matrix (ECM). Recent evidence has shown that these variables are critical regulators of diverse processes mediating embryonic development, adult tissue physiology, and many disease states, including cancer, atherosclerosis, and myopathies. Often, detection of mechanical stimuli is mediated by the structures that link cells that surround ECM, the focal adhesions (FAs). FAs are intrinsically force sensitive and display altered dynamics, structure, and composition in response to applied load. While much progress has been made in determining the proteins that localize to and regulate the formation of these structures, less is known about the role of tension across specific proteins in this process. A recently developed class of force-sensitive biosensors is enabling a greater understanding of the molecular bases of cellular mechanosensitivity and cell migration.
Collapse
|
162
|
The interplay between cell signalling and mechanics in developmental processes. Nat Rev Genet 2013; 14:733-44. [PMID: 24045690 DOI: 10.1038/nrg3513] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Force production and the propagation of stress and strain within embryos and organisms are crucial physical processes that direct morphogenesis. In addition, there is mounting evidence that biomechanical cues created by these processes guide cell behaviours and cell fates. In this Review we discuss key roles for biomechanics during development to directly shape tissues, to provide positional information for cell fate decisions and to enable robust programmes of development. Several recently identified molecular mechanisms suggest how cells and tissues might coordinate their responses to biomechanical cues. Finally, we outline long-term challenges in integrating biomechanics with genetic analysis of developing embryos.
Collapse
|
163
|
Abstract
Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures.
Collapse
Affiliation(s)
- Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | | | | |
Collapse
|
164
|
Duperret EK, Ridky TW. Focal adhesion complex proteins in epidermis and squamous cell carcinoma. Cell Cycle 2013; 12:3272-85. [PMID: 24036537 DOI: 10.4161/cc.26385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Focal adhesions (FAs) are large, integrin-containing, multi-protein assemblies spanning the plasma membrane that link the cellular cytoskeleton to surrounding extracellular matrix. They play critical roles in adhesion and cell signaling and are major regulators of epithelial homeostasis, tissue response to injury, and tumorigenesis. Most integrin subunits and their associated FA proteins are expressed in skin, and murine genetic models have provided insight into the functional roles of FAs in normal and neoplastic epidermis. Here, we discuss the roles of these proteins in normal epidermal proliferation, adhesion, wound healing, and cancer. While many downstream signaling mechanisms remain unclear, the critically important roles of FAs are highlighted by the development of therapeutics targeting FAs for human cancer.
Collapse
|
165
|
Thievessen I, Thompson PM, Berlemont S, Plevock KM, Plotnikov SV, Zemljic-Harpf A, Ross RS, Davidson MW, Danuser G, Campbell SL, Waterman CM. Vinculin-actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth. ACTA ACUST UNITED AC 2013; 202:163-77. [PMID: 23836933 PMCID: PMC3704983 DOI: 10.1083/jcb.201303129] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vinculin functions as a molecular clutch that organizes leading edge F-actin, generates traction, and promotes focal adhesion formation and turnover but not adhesion growth. In migrating cells, integrin-based focal adhesions (FAs) assemble in protruding lamellipodia in association with rapid filamentous actin (F-actin) assembly and retrograde flow. How dynamic F-actin is coupled to FA is not known. We analyzed the role of vinculin in integrating F-actin and FA dynamics by vinculin gene disruption in primary fibroblasts. Vinculin slowed F-actin flow in maturing FA to establish a lamellipodium–lamellum border and generate high extracellular matrix (ECM) traction forces. In addition, vinculin promoted nascent FA formation and turnover in lamellipodia and inhibited the frequency and rate of FA maturation. Characterization of a vinculin point mutant that specifically disrupts F-actin binding showed that vinculin–F-actin interaction is critical for these functions. However, FA growth rate correlated with F-actin flow speed independently of vinculin. Thus, vinculin functions as a molecular clutch, organizing leading edge F-actin, generating ECM traction, and promoting FA formation and turnover, but vinculin is dispensible for FA growth.
Collapse
Affiliation(s)
- Ingo Thievessen
- Laboratory of Cell and Tissue Morphodynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Saez de Guinoa J, Barrio L, Carrasco YR. Vinculin Arrests Motile B Cells by Stabilizing Integrin Clustering at the Immune Synapse. THE JOURNAL OF IMMUNOLOGY 2013; 191:2742-51. [DOI: 10.4049/jimmunol.1300684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
167
|
Abstract
Focal adhesions mediate force transfer between ECM-integrin complexes and the cytoskeleton. Although vinculin has been implicated in force transmission, few direct measurements have been made, and there is little mechanistic insight. Using vinculin-null cells expressing vinculin mutants, we demonstrate that vinculin is not required for transmission of adhesive and traction forces but is necessary for myosin contractility-dependent adhesion strength and traction force and for the coupling of cell area and traction force. Adhesion strength and traction forces depend differentially on vinculin head (V(H)) and tail domains. V(H) enhances adhesion strength by increasing ECM-bound integrin-talin complexes, independently from interactions with vinculin tail ligands and contractility. A full-length, autoinhibition-deficient mutant (T12) increases adhesion strength compared with VH, implying roles for both vinculin activation and the actin-binding tail. In contrast to adhesion strength, vinculin-dependent traction forces absolutely require a full-length and activated molecule; V(H) has no effect. Physical linkage of the head and tail domains is required for maximal force responses. Residence times of vinculin in focal adhesions, but not T12 or V(H), correlate with applied force, supporting a mechanosensitive model for vinculin activation in which forces stabilize vinculin's active conformation to promote force transfer.
Collapse
|
168
|
Winkler U, Hirrlinger PG, Sestu M, Wilhelm F, Besser S, Zemljic-Harpf AE, Ross RS, Bornschein G, Krügel U, Ziegler WH, Hirrlinger J. Deletion of the cell adhesion adaptor protein vinculin disturbs the localization of GFAP in Bergmann glial cells. Glia 2013; 61:1067-83. [DOI: 10.1002/glia.22495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 02/22/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Ulrike Winkler
- Carl-Ludwig-Institute for Physiology; Faculty of Medicine; University of Leipzig; Liebigstr. 27; D-04103; Leipzig; Germany
| | | | - Marcello Sestu
- Mechanisms of Cell Migration; Interdisciplinary Center for Clinical Research (IZKF); Faculty of Medicine; University of Leipzig; Liebigstr. 21; D-04103; Leipzig; Germany
| | - Franziska Wilhelm
- Carl-Ludwig-Institute for Physiology; Faculty of Medicine; University of Leipzig; Liebigstr. 27; D-04103; Leipzig; Germany
| | - Stefanie Besser
- Carl-Ludwig-Institute for Physiology; Faculty of Medicine; University of Leipzig; Liebigstr. 27; D-04103; Leipzig; Germany
| | | | | | - Grit Bornschein
- Carl-Ludwig-Institute for Physiology; Faculty of Medicine; University of Leipzig; Liebigstr. 27; D-04103; Leipzig; Germany
| | - Ute Krügel
- Rudolf-Boehm-Institute of Pharmacology and Toxicology; Faculty of Medicine; University of Leipzig; Härtelstr. 16-18; D-04107; Leipzig; Germany
| | | | | |
Collapse
|
169
|
Huveneers S, de Rooij J. Mechanosensitive systems at the cadherin-F-actin interface. J Cell Sci 2013; 126:403-13. [PMID: 23524998 DOI: 10.1242/jcs.109447] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells integrate biochemical and mechanical information to function within multicellular tissue. Within developing and remodeling tissues, mechanical forces contain instructive information that governs important cellular processes that include stem cell maintenance, differentiation and growth. Although the principles of signal transduction (protein phosphorylation, allosteric regulation of enzymatic activity and binding sites) are the same for biochemical and mechanical-induced signaling, the first step of mechanosensing, in which protein complexes under tension transduce changes in physical force into cellular signaling, is very different, and the molecular mechanisms are only beginning to be elucidated. In this Commentary, we focus on mechanotransduction at cell-cell junctions, aiming to comprehend the molecular mechanisms involved. We describe how different junction structures are associated with the actomyosin cytoskeleton and how this relates to the magnitude and direction of forces at cell-cell junctions. We discuss which cell-cell adhesion receptors have been shown to take part in mechanotransduction. Then we outline the force-induced molecular events that might occur within a key mechanosensitive system at cell-cell junctions; the cadherin-F-actin interface, at which α-catenin and vinculin form a central module. Mechanotransduction at cell-cell junctions emerges as an important signaling mechanism, and we present examples of its potential relevance for tissue development and disease.
Collapse
Affiliation(s)
- Stephan Huveneers
- Sanquin Research and Swammerdam Institute for Life Sciences, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands.
| | | |
Collapse
|
170
|
Goldmann WH, Auernheimer V, Thievessen I, Fabry B. Vinculin, cell mechanics and tumour cell invasion. Cell Biol Int 2013; 37:397-405. [PMID: 23494917 DOI: 10.1002/cbin.10064] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/20/2013] [Indexed: 01/13/2023]
Abstract
The focal adhesion protein, vinculin, is important for transmitting mechanical forces and orchestrating mechanical signalling events. Deregulation of vinculin results in altered cell adhesion, contractility, motility and growth, all of which are important processes in cancer metastasis. This review summarises recent reports on the role of vinculin in cellular force generation and signalling, and discusses implications for a role of vinculin in promoting cancer cell migration in 3D environments.
Collapse
Affiliation(s)
- Wolfgang H Goldmann
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany.
| | | | | | | |
Collapse
|
171
|
Vinculin and metavinculin: Oligomerization and interactions with F-actin. FEBS Lett 2013; 587:1220-9. [DOI: 10.1016/j.febslet.2013.02.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 01/09/2023]
|
172
|
Ciofani G, Genchi GG, Liakos I, Athanassiou A, Mattoli V, Bandiera A. Human recombinant elastin-like protein coatings for muscle cell proliferation and differentiation. Acta Biomater 2013; 9:5111-21. [PMID: 23085563 DOI: 10.1016/j.actbio.2012.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/12/2012] [Accepted: 10/11/2012] [Indexed: 12/31/2022]
Abstract
Recombinant proteins represent a new and promising class of polymeric materials in the field of biomaterials research. An important model for biomaterial design is elastin, the protein accounting for the elasticity of several tissues. Human elastin-like polypeptides (HELPs) have been developed as recombinant versions of elastin with the purpose of enhancing some peculiar characteristics of the native protein, like self-assembling. In this paper, we report on a comparative study of rat myoblasts response to coatings based on two different HELP macromolecules, with respect to control cultures on bare cell culture polystyrene and on a standard collagen coating. Cell behavior was analyzed in terms of adhesion, proliferation and differentiation. The collected data strongly suggest the use of HELPs as excellent biomaterials for tissue engineering and regenerative medicine applications.
Collapse
|
173
|
Tolbert CE, Burridge K, Campbell SL. Vinculin regulation of F-actin bundle formation: what does it mean for the cell? Cell Adh Migr 2013; 7:219-25. [PMID: 23307141 DOI: 10.4161/cam.23184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Vinculin is an essential cell adhesion protein, found at both focal adhesions and adherens junctions, where it couples transmembrane proteins to the actin cytoskeleton. Vinculin is involved in controlling cell shape, motility and cell survival, and has more recently been shown to play a role in force transduction. The tail domain of vinculin (Vt) has the ability to both bind and bundle actin filaments. Binding to actin induces a conformational change in Vt believed to promote formation of a Vt dimer that is able to crosslink actin filaments. We have recently provided additional evidence for the actin-induced Vt dimer and have shown that the vinculin carboxyl (C)-terminal hairpin is critical for both the formation of the Vt dimer and for bundling F-actin. We have also demonstrated the importance of the C-terminal hairpin in cells as deletion of this region impacts both adhesion properties and force transduction. Intriguingly, we have identified bundling deficient variants of vinculin that show different cellular phenotypes. These results suggest additional role(s) for the C-terminal hairpin, distinct from its bundling function. In this commentary, we will expand on our previous findings and further investigate these actin bundling deficient vinculin variants.
Collapse
Affiliation(s)
- Caitlin E Tolbert
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | |
Collapse
|
174
|
Borisova M, Shi Y, Buntru A, Wörner S, Ziegler WH, Hauck CR. Integrin-mediated internalization of Staphylococcus aureus does not require vinculin. BMC Cell Biol 2013; 14:2. [PMID: 23294665 PMCID: PMC3562162 DOI: 10.1186/1471-2121-14-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 12/21/2012] [Indexed: 11/23/2022] Open
Abstract
Background Disease manifestations of Staphylococcus aureus are connected to the fibronectin (Fn)-binding capacity of these Gram-positive pathogens. Fn deposition on the surface of S. aureus allows engagement of α5β1 integrins and triggers uptake by host cells. For several integrin- and actin-associated cytoplasmic proteins, including FAK, Src, N-WASP, tensin and cortactin, a functional role during bacterial invasion has been demonstrated. As reorganization of the actin cytoskeleton is critical for bacterial entry, we investigated whether vinculin, an essential protein linking integrins with the actin cytoskeleton, may contribute to the integrin-mediated internalization of S. aureus. Results Complementation of vinculin in vinculin -/- cells, vinculin overexpression, as well as shRNA-mediated vinculin knock-down in different eukaryotic cell types demonstrate, that vinculin does not have a functional role during the integrin-mediated uptake of S. aureus. Conclusions Our results suggest that vinculin is insignificant for the integrin-mediated uptake of S. aureus despite the critical role of vinculin as a linker between integrins and F-actin.
Collapse
Affiliation(s)
- Marina Borisova
- Lehrstuhl Zellbiologie, Universität Konstanz, Postfach X908, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
175
|
Miller PW, Clarke DN, Weis WI, Lowe CJ, Nelson WJ. The evolutionary origin of epithelial cell-cell adhesion mechanisms. CURRENT TOPICS IN MEMBRANES 2013; 72:267-311. [PMID: 24210433 PMCID: PMC4118598 DOI: 10.1016/b978-0-12-417027-8.00008-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple epithelium forms a barrier between the outside and the inside of an organism, and is the first organized multicellular tissue found in evolution. We examine the relationship between the evolution of epithelia and specialized cell-cell adhesion proteins comprising the classical cadherin/β-catenin/α-catenin complex (CCC). A review of the divergent functional properties of the CCC in metazoans and non-metazoans, and an updated phylogenetic coverage of the CCC using recent genomic data reveal: (1) The core CCC likely originated before the last common ancestor of unikonts and their closest bikont sister taxa. (2) Formation of the CCC may have constrained sequence evolution of the classical cadherin cytoplasmic domain and β-catenin in metazoa. (3) The α-catenin-binding domain in β-catenin appears to be the favored mutation site for disrupting β-catenin function in the CCC. (4) The ancestral function of the α/β-catenin heterodimer appears to be an actin-binding module. In some metazoan groups, more complex functions of α-catenin were gained by sequence divergence in the non-actin-binding (N-, M-) domains. (5) Allosteric regulation of α-catenin may have evolved for more complex regulation of the actin cytoskeleton.
Collapse
Affiliation(s)
- Phillip W. Miller
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | | | - William I. Weis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | | | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
176
|
Abstract
Focal adhesions are large protein complexes organized at the basal surface of cells, which physically connect the extracellular matrix to the cytoskeleton and have long been speculated to mediate cell migration. However, whether clustering of these molecular components into focal adhesions is actually required for these proteins to regulate cell motility is unclear. Here we use quantitative microscopy to characterize descriptors of focal adhesion and cell motility for mouse embryonic fibroblasts and human fibrosarcoma cells, across a wide range of matrix compliance and following genetic manipulations of focal adhesion proteins (vinculin, talin, zyxin, FAK, and paxilin). This analysis reveals a tight, biphasic gaussian relationship between mean size of focal adhesions (not their number, surface density, or shape) and cell speed. The predictive power of this relationship is comprehensively validated by disrupting nonfocal adhesion proteins (α-actinin, F-actin, and myosin II) and subcellular organelles (mitochondria, nuclear DNA, etc.) not known to affect either focal adhesions or cell migration. This study suggests that the mean size of focal adhesions robustly and precisely predicts cell speed independently of focal adhesion surface density and molecular composition.
Collapse
Affiliation(s)
- Dong-Hwee Kim
- Johns Hopkins Physical Sciences-Oncology Center and Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
177
|
Yamaguchi Y, Miura M. How to form and close the brain: insight into the mechanism of cranial neural tube closure in mammals. Cell Mol Life Sci 2012; 70:3171-86. [PMID: 23242429 PMCID: PMC3742426 DOI: 10.1007/s00018-012-1227-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/07/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022]
Abstract
The development of the embryonic brain critically depends on successfully completing cranial neural tube closure (NTC). Failure to properly close the neural tube results in significant and potentially lethal neural tube defects (NTDs). We believe these malformations are caused by disruptions in normal developmental programs such as those involved in neural plate morphogenesis and patterning, tissue fusion, and coordinated cell behaviors. Cranial NTDs include anencephaly and craniorachischisis, both lethal human birth defects. Newly emerging methods for molecular and cellular analysis offer a deeper understanding of not only the developmental NTC program itself but also mechanical and kinetic aspects of closure that may contribute to cranial NTDs. Clarifying the underlying mechanisms involved in NTC and how they relate to the onset of specific NTDs in various experimental models may help us develop novel intervention strategies to prevent NTDs.
Collapse
Affiliation(s)
- Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, and CREST, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
178
|
Sen A, Nagy-Zsvér-Vadas Z, Krahn MP. Drosophila PATJ supports adherens junction stability by modulating Myosin light chain activity. ACTA ACUST UNITED AC 2012; 199:685-98. [PMID: 23128243 PMCID: PMC3494860 DOI: 10.1083/jcb.201206064] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The assembly and consolidation of the adherens junctions (AJs) are key events in the establishment of an intact epithelium. However, AJs are further modified to obtain flexibility for cell migration and morphogenetic movements. Intact AJs in turn are a prerequisite for the establishment and maintenance of apical-basal polarity in epithelial cells. In this study, we report that the conserved PDZ (PSD95, Discs large, ZO-1) domain-containing protein PATJ (Pals1-associated tight junction protein) was not per se crucial for the maintenance of apical-basal polarity in Drosophila melanogaster epithelial cells but rather regulated Myosin localization and phosphorylation. PATJ directly bound to the Myosin-binding subunit of Myosin phosphatase and decreased Myosin dephosphorylation, resulting in activated Myosin. Thereby, PATJ supports the stability of the Zonula Adherens. Notably, weakening of AJ in a PATJ mutant epithelium led first to a loss of Myosin from the AJ, subsequently to a disassembly of the AJ, and finally, to a loss of apical-basal polarity and disruption of the tissue.
Collapse
Affiliation(s)
- Arnab Sen
- Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | | | | |
Collapse
|
179
|
Reciprocal expression of MRTF-A and myocardin is crucial for pathological vascular remodelling in mice. EMBO J 2012; 31:4428-40. [PMID: 23103763 DOI: 10.1038/emboj.2012.296] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 10/02/2012] [Indexed: 01/12/2023] Open
Abstract
Myocardin-related transcription factor (MRTF)-A is a Rho signalling-responsive co-activator of serum response factor (SRF). Here, we show that induction of MRTF-A expression is key to pathological vascular remodelling. MRTF-A expression was significantly higher in the wire-injured femoral arteries of wild-type mice and in the atherosclerotic aortic tissues of ApoE(-/-) mice than in healthy control tissues, whereas myocardin expression was significantly lower. Both neointima formation in wire-injured femoral arteries in MRTF-A knockout (Mkl1(-/-)) mice and atherosclerotic lesions in Mkl1(-/-); ApoE(-/-) mice were significantly attenuated. Expression of vinculin, matrix metallopeptidase 9 (MMP-9) and integrin β1, three SRF targets and key regulators of cell migration, in injured arteries was significantly weaker in Mkl1(-/-) mice than in wild-type mice. In cultured vascular smooth muscle cells (VSMCs), knocking down MRTF-A reduced expression of these genes and significantly impaired cell migration. Underlying the increased MRTF-A expression in dedifferentiated VSMCs was the downregulation of microRNA-1. Moreover, the MRTF-A inhibitor CCG1423 significantly reduced neointima formation following wire injury in mice. MRTF-A could thus be a novel therapeutic target for the treatment of vascular diseases.
Collapse
|
180
|
Duleh SN, Welch MD. Regulation of integrin trafficking, cell adhesion, and cell migration by WASH and the Arp2/3 complex. Cytoskeleton (Hoboken) 2012; 69:1047-58. [PMID: 23012235 DOI: 10.1002/cm.21069] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 11/05/2022]
Abstract
WASH is a nucleation-promoting factor for the Arp2/3 complex that is implicated in multiple endocytic trafficking pathways including receptor recycling, cargo degradation, and retromer-mediated receptor retrieval. We sought to examine whether WASH plays an important role in trafficking of specialized cargo molecules such as integrins, for which trafficking is highly regulated during cell migration. We observed that subdomains of early/sorting endosomes associated with dynamic WASH and filamentous actin, and α5-integrins trafficked through this population of endosomes. Depletion of WASH caused accumulation of α5-integrins in intracellular compartments, reduction of α5-integrin localization at focal adhesions, and reduction in focal adhesion number. Transport of α5-integrins from internal endocytic structures to focal adhesions was disrupted upon WASH depletion or Arp2/3 complex inhibition. Furthermore, WASH-depleted cells displayed greatly reduced affinity for specific extracellular matrix proteins including fibronectin and impaired cell spreading ability. Interestingly, the reduced adhesion capacity of WASH-depleted cells resulted in their migrating more rapidly than control cells in wound healing assays. Our results define a requirement for WASH, Arp2/3 complex, and actin in specialized trafficking of integrins. These findings highlight a role for actin dynamics in influencing cell adhesion and migration via endocytic trafficking of integrins, in addition to the well-established role of actin in plasma membrane dynamics and contractility. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steve N Duleh
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
181
|
Rust MB, Kullmann JA, Witke W. Role of the actin-binding protein profilin1 in radial migration and glial cell adhesion of granule neurons in the cerebellum. Cell Adh Migr 2012; 6:13-7. [PMID: 22647936 DOI: 10.4161/cam.19845] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Profilins are small G-actin-binding proteins essential for cytoskeletal dynamics. Of the four mammalian profilin isoforms, profilin1 shows a broad expression pattern, profilin2 is abundant in the brain, and profilin3 and profilin4 are restricted to the testis. In vitro studies on cancer and epithelial cell lines suggested a role for profilins in cell migration and cell-cell adhesion. Genetic studies in mice revealed the importance of profilin1 in neuronal migration, while profilin2 has apparently acquired a specific function in synaptic physiology. We recently reported a mouse mutant line lacking profilin1 in the brain; animals display morphological defects that are typical for impaired neuronal migration. We found that during cerebellar development, profilin1 is specifically required for radial migration and glial cell adhesion of granule neurons. Profilin1 mutants showed cerebellar hypoplasia and aberrant organization of cerebellar cortex layers, with ectopically arranged granule neurons. In this commentary, we briefly introduce the profilin family and summarize the current knowledge on profilin activity in cell migration and adhesion. Employing cerebellar granule cells as a model, we shed some light on the mechanisms by which profilin1 may control radial migration and glial cell adhesion. Finally, a potential implication of profilin1 in human developmental neuropathies is discussed.
Collapse
Affiliation(s)
- Marco B Rust
- Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern, Germany.
| | | | | |
Collapse
|
182
|
Wang Y, Kuramitsu Y, Ueno T, Suzuki N, Yoshino S, Iizuka N, Zhang X, Akada J, Oka M, Nakamura K. Proteomic differential display identifies upregulated vinculin as a possible biomarker of pancreatic cancer. Oncol Rep 2012; 28:1845-50. [PMID: 22940724 DOI: 10.3892/or.2012.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/02/2012] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer (PC) is characterized by rapid tumor spread, and very few patients with PC survive for more than 5 years. It is imperative to discover additional diagnostic biomarkers or specific therapeutic targets in order to improve the treatment of patients with PC. In search for useful biomarkers, we analyzed ten pairs of non-cancerous and cancer tissues from patients with PC by two-dimensional gel electrophoresis (2-DE). Nineteen protein spots showed differential expression on 2-DE gels between the cancer and non-cancerous tissues. Six upregulated protein spots were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) as calreticulin, glutathione synthetase, stathmin, vinculin, α-enolase and glyceraldehyde-3-phosphate dehydrogenase. Western blotting demonstrated that vinculin was predominantly expressed in the pancreatic cancer tissues compared with to non-cancerous tissues. Our findings indicate that vinculin may be a clinically useful biomarker of PC.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Coyer SR, Singh A, Dumbauld DW, Calderwood DA, Craig SW, Delamarche E, García AJ. Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension. J Cell Sci 2012; 125:5110-23. [PMID: 22899715 DOI: 10.1242/jcs.108035] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Integrin-based focal adhesions (FA) transmit anchorage and traction forces between the cell and the extracellular matrix (ECM). To gain further insight into the physical parameters of the ECM that control FA assembly and force transduction in non-migrating cells, we used fibronectin (FN) nanopatterning within a cell adhesion-resistant background to establish the threshold area of ECM ligand required for stable FA assembly and force transduction. Integrin-FN clustering and adhesive force were strongly modulated by the geometry of the nanoscale adhesive area. Individual nanoisland area, not the number of nanoislands or total adhesive area, controlled integrin-FN clustering and adhesion strength. Importantly, below an area threshold (0.11 µm(2)), very few integrin-FN clusters and negligible adhesive forces were generated. We then asked whether this adhesive area threshold could be modulated by intracellular pathways known to influence either adhesive force, cytoskeletal tension, or the structural link between the two. Expression of talin- or vinculin-head domains that increase integrin activation or clustering overcame this nanolimit for stable integrin-FN clustering and increased adhesive force. Inhibition of myosin contractility in cells expressing a vinculin mutant that enhances cytoskeleton-integrin coupling also restored integrin-FN clustering below the nanolimit. We conclude that the minimum area of integrin-FN clusters required for stable assembly of nanoscale FA and adhesive force transduction is not a constant; rather it has a dynamic threshold that results from an equilibrium between pathways controlling adhesive force, cytoskeletal tension, and the structural linkage that transmits these forces, allowing the balance to be tipped by factors that regulate these mechanical parameters.
Collapse
Affiliation(s)
- Sean R Coyer
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30330, USA
| | | | | | | | | | | | | |
Collapse
|
184
|
Ohmura T, Shioi G, Hirano M, Aizawa S. Neural tube defects by NUAK1 and NUAK2 double mutation. Dev Dyn 2012; 241:1350-64. [PMID: 22689267 DOI: 10.1002/dvdy.23816] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND NUAK1 and NUAK2, members of the AMP-activated protein kinase family of serine/threonine kinases, are prominently expressed in neuroectoderm, but their functions in neurulation have not been elucidated. RESULTS NUAK1 and NUAK2 double mutants exhibited exencephaly, facial clefting, and spina bifida. Median hinge point was formed, but dorsolateral hinge point formation was not apparent in cranial neural plate; neither apical constriction nor apico-basal elongation took place efficiently in the double mutants during the 5-10-somite stages. Concomitantly, the apical concentration of phosphorylated myosin light chain 2, F-actin, and cortactin was insignificant, and development of acetylated α-tubulin-positive microtubules was poor. However, the distribution of F-actin, cortactin, Shroom3, Rho, myosin heavy chain IIB, phosphorylated myosin light chain 2, α-tubulin, γ-tubulin, or acetylated α-tubulin was apparently normal in the double mutant neuroepithelia at the 5-somite stage. CONCLUSIONS NUAK1 and NUAK2 complementarily function in the apical constriction and apico-basal elongation that associate with the dorsolateral hinge point formation in cephalic neural plate during the 5- to 10-somite stages. In the double mutant neural plate, phosphorylated myosin light chain 2, F-actin, and cortactin did not concentrate efficiently in apical surfaces, and acetylated α-tubulin-positive microtubules did not develop significantly.
Collapse
Affiliation(s)
- Tomomi Ohmura
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, Kobe, Japan
| | | | | | | |
Collapse
|
185
|
Janssen MEW, Liu H, Volkmann N, Hanein D. The C-terminal tail domain of metavinculin, vinculin's splice variant, severs actin filaments. ACTA ACUST UNITED AC 2012; 197:585-93. [PMID: 22613835 PMCID: PMC3365496 DOI: 10.1083/jcb.201111046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Relative to vinculin, a unique 68-residue insert in the C-terminal tail of metavinculin results in a loss of actin filament-bundling activity but gain of actin filament-severing activity. Vinculin and its splice variant, metavinculin (MV), are key elements of multiple protein assemblies linking the extracellular matrix to the actin cytoskeleton. Vinculin is expressed ubiquitously, whereas MV is mainly expressed in smooth and cardiac muscle tissue. The only difference in amino acid sequence between the isoforms is a 68-residue insert in the C-terminal tail domain of MV (MVt). Although the functional role of this insert remains elusive, its importance is exemplified by point mutations that are associated with dilated and hypertrophic cardiomyopathy. In vinculin, the actin binding site resides in the tail domain. In this paper, we show that MVt binds actin filaments similarly to the vinculin tail domain. Unlike its splice variant, MVt did not bundle actin filaments. Instead, MVt promoted severing of actin filaments, most efficiently at substoichiometric concentrations. This surprising and seemingly contradictory alteration of vinculin function by the 68-residue insert may be essential for modulating compliance of vinculin-induced actin bundles when exposed to rapidly increasing external forces.
Collapse
Affiliation(s)
- Mandy E W Janssen
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
186
|
Bate N, Gingras AR, Bachir A, Horwitz R, Ye F, Patel B, Goult BT, Critchley DR. Talin contains a C-terminal calpain2 cleavage site important in focal adhesion dynamics. PLoS One 2012; 7:e34461. [PMID: 22496808 PMCID: PMC3319578 DOI: 10.1371/journal.pone.0034461] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 02/15/2012] [Indexed: 12/31/2022] Open
Abstract
Talin is a large (∼2540 residues) dimeric adaptor protein that associates with the integrin family of cell adhesion molecules in cell-extracellular matrix junctions (focal adhesions; FAs), where it both activates integrins and couples them to the actin cytoskeleton. Calpain2-mediated cleavage of talin between the head and rod domains has previously been shown to be important in FA turnover. Here we identify an additional calpain2-cleavage site that removes the dimerisation domain from the C-terminus of the talin rod, and show that an E2492G mutation inhibits calpain cleavage at this site in vitro, and increases the steady state levels of talin1 in vivo. Expression of a GFP-tagged talin1 E2492G mutant in CHO.K1 cells inhibited FA turnover and the persistence of cell protrusion just as effectively as a L432G mutation that inhibits calpain cleavage between the talin head and rod domains. Moreover, incorporation of both mutations into a single talin molecule had an additive effect clearly demonstrating that calpain cleavage at both the N- and C-terminal regions of talin contribute to the regulation of FA dynamics. However, the N-terminal site was more sensitive to calpain cleavage suggesting that lower levels of calpain are required to liberate the talin head and rod fragments than are needed to clip off the C-terminal dimerisation domain. The talin head and rod liberated by calpain2 cleavage have recently been shown to play roles in an integrin activation cycle important in FA turnover and in FAK-dependent cell cycle progression respectively. The half-life of the talin head is tightly regulated by ubiquitination and we suggest that removal of the C-terminal dimerisation domain from the talin rod may provide a mechanism both for terminating the signalling function of the talin rod and indeed for inactivating full-length talin thereby promoting FA turnover at the rear of the cell.
Collapse
Affiliation(s)
- Neil Bate
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | | | - Alexia Bachir
- Department of Cell Biology, Univeristy of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Rick Horwitz
- Department of Cell Biology, Univeristy of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Feng Ye
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Bipin Patel
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Benjamin T. Goult
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - David R. Critchley
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
187
|
Brockschmidt A, Trost D, Peterziel H, Zimmermann K, Ehrler M, Grassmann H, Pfenning PN, Waha A, Wohlleber D, Brockschmidt FF, Jugold M, Hoischen A, Kalla C, Waha A, Seifert G, Knolle PA, Latz E, Hans VH, Wick W, Pfeifer A, Angel P, Weber RG. KIAA1797/FOCAD encodes a novel focal adhesion protein with tumour suppressor function in gliomas. ACTA ACUST UNITED AC 2012; 135:1027-41. [PMID: 22427331 DOI: 10.1093/brain/aws045] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In a strategy to identify novel genes involved in glioma pathogenesis by molecular characterization of chromosomal translocation breakpoints, we identified the KIAA1797 gene, encoding a protein with an as yet undefined function, to be disrupted by a 7;9 translocation in a primary glioblastoma culture. Array-based comparative genomic hybridization detected deletions involving KIAA1797 in around half of glioblastoma cell lines and glioblastomas investigated. Quantification of messenger RNA levels in human tissues demonstrated highest KIAA1797 expression in brain, reduced levels in all glioblastoma cell lines and most glioblastomas and similar levels in glial and neuronal cells by analysis of different hippocampal regions from murine brain. Antibodies against KIAA1797 were generated and showed similar protein levels in cortex and subcortical white matter of human brain, while levels were significantly reduced in glioblastomas with KIAA1797 deletion. By immunofluorescence of astrocytoma cells, KIAA1797 co-localized with vinculin in focal adhesions. Physical interaction between KIAA1797 and vinculin was demonstrated via co-immunoprecipitation. Functional in vitro assays demonstrated a significant decrease in colony formation, migration and invasion capacity of LN18 and U87MG glioma cells carrying a homozygous KIAA1797 deletion ectopically expressing KIAA1797 compared with mock-transduced cells. In an in vivo orthotopic xenograft mouse model, U87MG tumour lesions expressing KIAA1797 had a significantly reduced volume compared to tumours not expressing KIAA1797. In summary, the frequently deleted KIAA1797 gene encodes a novel focal adhesion complex protein with tumour suppressor function in gliomas, which we name 'focadhesin'. Since KIAA1797 genetic variation has been implicated in Alzheimer's disease, our data are also relevant for neurodegeneration.
Collapse
Affiliation(s)
- Antje Brockschmidt
- Institute of Human Genetics, Biomedical Center (BMZ), University of Bonn, 53105 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Koshimizu T, Kawai M, Kondou H, Tachikawa K, Sakai N, Ozono K, Michigami T. Vinculin functions as regulator of chondrogenesis. J Biol Chem 2012; 287:15760-75. [PMID: 22416133 DOI: 10.1074/jbc.m111.308072] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify the genes involved in chondrocytic differentiation, we applied gene trap mutagenesis to a murine mesenchymal chondrogenic cell line ATDC5 and isolated a clone in which the gene encoding vinculin was trapped. The trapped allele was assumed to express a fusion protein containing a truncated vinculin lacking the tail domain and the geo product derived from the trap vector. The truncated vinculin was suggested to exert a dominant negative effect. Impaired functioning of vinculin caused by gene trapping in ATDC5 cells or knockdown in primary chondrocytes resulted in the reduced expression of chondrocyte-specific genes, including Col2a1, aggrecan, and Col10a1. The expression of Runx2 also was suppressed by the dysfunctional vinculin. On the other hand, the expression of Sox9, encoding a key transcription factor for chondrogenesis, was retained. Knockdown of vinculin in metatarsal organ cultures impaired the growth of the explants and reduced the expression of Col2a1 and aggrecan. Gene trapping or knockdown of vinculin decreased the phosphorylation of ERK1/2 but increased that of Src homology 2 domain-containing tyrosine phosphatase 2 (SHP2) and Akt during chondrocytic differentiation, suggesting a disturbance of signaling by insulin-like growth factor I (IGF-I). Knockdown of vinculin in the metatarsal organ culture abrogated the IGF-I-induced growth and inhibited the up-regulation of Col2a1 and aggrecan expression by IGF-I. Loss of vinculin function in differentiating chondrocytes impaired the activation of the p38 MAPK pathway also, suggesting its involvement in the regulation of chondrogenesis by vinculin. Our results indicate a tissue-specific function of vinculin in cartilage whereby it controls chondrocytic differentiation.
Collapse
Affiliation(s)
- Takao Koshimizu
- Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | | | | | | | | | | | | |
Collapse
|
189
|
Leitner L, Shaposhnikov D, Mengel A, Descot A, Julien S, Hoffmann R, Posern G. MAL/MRTF-A controls migration of non-invasive cells by upregulation of cytoskeleton-associated proteins. J Cell Sci 2012; 124:4318-31. [PMID: 22223881 DOI: 10.1242/jcs.092791] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Monomeric actin regulates gene expression through serum response factor (SRF) by inhibiting its transcriptional coactivator myocardin-related transcription factor (MAL/MRTF). Many affected genes encode cytoskeletal components. We have analysed the migratory effects of actin-MAL signalling and of new target genes in non-invasive highly adherent cells. Expression of active MAL impaired migration of both fibroblasts and epithelial cells, whereas dominant-negative constructs and partial knockdown of MAL/MRTF enhanced motility. Knockdown of three newly characterised G-actin-regulated MAL targets, integrin α5, plakophilin 2 (Pkp2) and FHL1, enhanced cell migration. All three were upregulated by external stimulation through actin-MAL-SRF signalling, and MAL and SRF were inducibly recruited to cis-regulatory elements of the integrin α5 and Pkp2 genes. Finally, the reduced migration of epithelial cells stably expressing MAL was partially reversed by knockdown of Pkp2 and FHL1. We conclude that the actin-MAL pathway promotes adhesive gene expression, including integrin α5, Pkp2 and FHL1, and that this is anti-motile for non-invasive cells harbouring high basal activity.
Collapse
Affiliation(s)
- Laura Leitner
- AG Regulation of Gene Expression, Department of Molecular Biology, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
190
|
Boggetti B, Niessen CM. Adherens junctions in mammalian development, homeostasis and disease: lessons from mice. Subcell Biochem 2012; 60:321-55. [PMID: 22674078 DOI: 10.1007/978-94-007-4186-7_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mice have proven to be a particularly powerful model to study molecular mechanisms of development and disease. The reason for this is the close evolutionary relationship between rodents and humans, similarities in physiological mechanisms in mice and human, and the large number of techniques available to study gene functions in mice. A large number of mice mutations, either germ line, conditional or inducible, have been generated in the past years for adherens junctions components, and the number is still increasing. In this review we will discuss mice models that have contributed to understanding the developmental and physiological role of adherens junctions and their components in mammals and have revealed novel mechanistic aspects of how adherens junctions regulate morphogenesis and tissue homeostasis.
Collapse
Affiliation(s)
- Barbara Boggetti
- Department of Dermatology, Center for Molecular Medicine, University of Cologne, Room 4A.05, Robert Kochstrasse 21, 50931, Cologne, Germany
| | | |
Collapse
|
191
|
Topographic control of the growth and function of cardiomyoblast H9c2 cells using nanodot arrays. Biomaterials 2012; 33:20-8. [DOI: 10.1016/j.biomaterials.2011.09.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 09/21/2011] [Indexed: 11/20/2022]
|
192
|
Shen K, Tolbert CE, Guilluy C, Swaminathan VS, Berginski ME, Burridge K, Superfine R, Campbell SL. The vinculin C-terminal hairpin mediates F-actin bundle formation, focal adhesion, and cell mechanical properties. J Biol Chem 2011; 286:45103-15. [PMID: 22052910 DOI: 10.1074/jbc.m111.244293] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vinculin is an essential and highly conserved cell adhesion protein, found at both focal adhesions and adherens junctions, where it couples integrins or cadherins to the actin cytoskeleton. Vinculin is involved in controlling cell shape, motility, and cell survival, and has more recently been shown to play a role in force transduction. The tail domain of vinculin (Vt) contains determinants necessary for binding and bundling of actin filaments. Actin binding to Vt has been proposed to induce formation of a Vt dimer that is necessary for cross-linking actin filaments. Results from this study provide additional support for actin-induced Vt self-association. Moreover, the actin-induced Vt dimer appears distinct from the dimer formed in the absence of actin. To better characterize the role of the Vt strap and carboxyl terminus (CT) in actin binding, Vt self-association, and actin bundling, we employed smaller amino-terminal (NT) and CT deletions that do not perturb the structural integrity of Vt. Although both NT and CT deletions retain actin binding, removal of the CT hairpin (1061-1066) selectively impairs actin bundling in vitro. Moreover, expression of vinculin lacking the CT hairpin in vinculin knock-out murine embryonic fibroblasts affects the number of focal adhesions formed, cell spreading as well as cellular stiffening in response to mechanical force.
Collapse
Affiliation(s)
- Kai Shen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Scales TME, Parsons M. Spatial and temporal regulation of integrin signalling during cell migration. Curr Opin Cell Biol 2011; 23:562-8. [DOI: 10.1016/j.ceb.2011.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/29/2011] [Accepted: 05/30/2011] [Indexed: 11/26/2022]
|
194
|
Yonemura S. Cadherin-actin interactions at adherens junctions. Curr Opin Cell Biol 2011; 23:515-22. [PMID: 21807490 DOI: 10.1016/j.ceb.2011.07.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/02/2011] [Accepted: 07/07/2011] [Indexed: 12/12/2022]
Abstract
The adherens junction (AJ) is a major cell-cell junction that mediates cell recognition, adhesion, morphogenesis, and tissue integrity. Although AJs transmit forces generated by actomyosin from one cell to another, AJs have long been considered as an area where signal transduction from cadherin ligation takes place through cell adhesion. Through the efforts to understand embryonic or cellular morphogenesis, dynamic interactions between the AJ and actin filaments have become crucial issues to be addressed since actin association is essential for AJ development, remodeling and function. Here, I provide an overview of cadherin-actin interaction from morphological aspects and of possible molecular mechanisms revealed by recent studies.
Collapse
Affiliation(s)
- Shigenobu Yonemura
- Electron Microscope Laboratory, Riken Center for Developmental Biology, Kobe, 650-0047, Japan.
| |
Collapse
|
195
|
Pajaniappan M, Glober NK, Kennard S, Liu H, Zhao N, Lilly B. Endothelial cells downregulate apolipoprotein D expression in mural cells through paracrine secretion and Notch signaling. Am J Physiol Heart Circ Physiol 2011; 301:H784-93. [PMID: 21705670 DOI: 10.1152/ajpheart.00116.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial and mural cell interactions are vitally important for proper formation and function of blood vessels. These two cell types communicate to regulate multiple aspects of vessel function. In studying genes regulated by this interaction, we identified apolipoprotein D (APOD) as one gene that is downregulated in mural cells by coculture with endothelial cells. APOD is a secreted glycoprotein that has been implicated in governing stress response, lipid metabolism, and aging. Moreover, APOD is known to regulate smooth muscle cells and is found in abundance within atherosclerotic lesions. Our data show that the regulation of APOD in mural cells is bimodal. Paracrine secretion by endothelial cells causes partial downregulation of APOD expression. Additionally, cell contact-dependent Notch signaling plays a role. NOTCH3 on mural cells promotes the downregulation of APOD, possibly through interaction with the JAGGED-1 ligand on endothelial cells. Our results show that NOTCH3 contributes to the downregulation of APOD and by itself is sufficient to attenuate APOD transcript expression. In examining the consequence of decreased APOD expression in mural cells, we show that APOD negatively regulates cell adhesion. APOD attenuates adhesion by reducing focal contacts; however, it has no effect on stress fiber formation. These data reveal a novel mechanism in which endothelial cells control neighboring mural cells through the downregulation of APOD, which, in turn, influences mural cell function by modulating adhesion.
Collapse
|
196
|
Abstract
Regulation of cell-cell and cell-matrix interaction is essential for the normal physiology of metazoans and is important in many diseases. Integrin adhesion receptors can rapidly increase their affinity (integrin activation) in response to intracellular signaling events in a process termed inside-out signaling. The transmembrane domains of integrins and their interactions with the membrane are important in inside-out signaling. Moreover, integrin activation is tightly regulated by a complex network of signaling pathways. Here, we review recent progress in understanding how the membrane environment can, in cooperation with integrin-binding proteins, regulate integrin activation.
Collapse
Affiliation(s)
- Chungho Kim
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
197
|
Nelson ES, Folkmann AW, Henry MD, DeMali KA. Vinculin activators target integrins from within the cell to increase melanoma sensitivity to chemotherapy. Mol Cancer Res 2011; 9:712-23. [PMID: 21460181 PMCID: PMC3134390 DOI: 10.1158/1541-7786.mcr-10-0599] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metastatic melanoma is an aggressive skin disease for which there are no effective therapies. Emerging evidence indicates that melanomas can be sensitized to chemotherapy by increasing integrin function. Current integrin therapies work by targeting the extracellular domain, resulting in complete gains or losses of integrin function that lead to mechanism-based toxicities. An attractive alternative approach is to target proteins, such as vinculin, that associate with the integrin cytoplasmic domains and regulate its ligand-binding properties. Here, we report that a novel reagent, denoted vinculin-activating peptide or VAP, increases integrin activity from within the cell, as measured by elevated (i) numbers of active integrins, (ii) adhesion of cells to extracellular matrix ligands, (iii) numbers of cell-matrix adhesions, and (iv) downstream signaling. These effects are dependent on both integrins and a key regulatory residue A50 in the vinculin head domain. We further show that VAP dramatically increases the sensitivity of melanomas to chemotherapy in clonal growth assays and in vivo mouse models of melanoma. Finally, we show that the increase in chemosensitivity results from increases in DNA damage-induced apoptosis in a p53-dependent manner. Collectively, these findings show that integrin function can be manipulated from within the cell and validate integrins as a new therapeutic target for the treatment of chemoresistant melanomas.
Collapse
Affiliation(s)
- Elke S Nelson
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
198
|
Abstract
Costameres are sub-membranous, Z-line associated structures found in striated muscle. They have been shown to have important roles in transmission of force from the sarcomere to the sarcolemma and extracellular matrix, maintaining mechanical integrity of the sarcolemma, and orchestrating mechanically related signaling. The costamere is akin to the more well-known focal adhesion complex present in most cells. The Z-line is a critical structural anchor for the sarcomere, but it is also a hot-spot for muscle cell signaling. Therefore functionally, the costamere represents a two-way signaling highway tethered between the Z-line and the extracellular matrix, relaying mechanical stress signals from outside the cell to intracellular signaling networks. In this role it can modulate myofibril growth and contraction. The major force generated by sarcomeres is transduced in the lateral direction from the sarcomere to the extracellular matrix through the costamere. Two major protein complexes have been described at the costamere: the dystrophin-glycoprotein complex and the integrin-vinculin-talin complex. The importance of these two protein complexes in striated muscle function has between demonstrated both in human disease and mouse models. Members of the dystrophin glycoprotein complex and integrins have both been reported to interact directly with filamin-C, thus linking costameric complexes with those present at the Z-line. Moreover, studies from our labs and others have shown that the Z-line proteins belonging to the PDZ-LIM domain protein family, enigma homolog (ENH) and cypher, may directly or indirectly be involved in this linkage. The following review will focus on the protein components of this linkage, their function in force transmission, and how the dysfunction or loss of proteins within these complexes contributes to muscular disease.
Collapse
|
199
|
Enciso JM, Konecny CM, Karpen HE, Hirschi KK. Endothelial cell migration during murine yolk sac vascular remodeling occurs by means of a Rac1 and FAK activation pathway in vivo. Dev Dyn 2011; 239:2570-83. [PMID: 20737513 DOI: 10.1002/dvdy.22389] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The molecular mechanism(s) controlling cell migration during vascular morphogenesis in vivo remain largely undefined. To address this within a physiological context, we used retinaldehyde dehydrogenase-2 (Raldh2) null mouse embryos and demonstrate that retinoic acid (RA) deficiency results in abnormal yolk sac vascular remodeling due to decreased Rac1 activation, increased RhoA activation, and increased focal adhesions. Vinculin was increased in Raldh2-/- yolk sacs, and molecular events important for focal adhesion turnover, FAK phosphorylation (Tyr397) and FAK-paxillin association, were decreased. RA-rescue of vascular remodeling down-regulated vinculin and restored FAK phosphorylation (Tyr397) and FAK-paxillin association. Furthermore, vascular rescue with vascular endothelial growth factor-A, Indian hedgehog, and basic fibroblast growth factor restored FAK phosphorylation (Tyr397) in the endothelium of Raldh2-/- yolk sacs. Our results provide new insights into the regulation of endothelial cell migration during vascular remodeling in vivo by adding the Rac1 and FAK activation pathway as a critical mediator of focal adhesion formation and turnover during vascular remodeling.
Collapse
Affiliation(s)
- Josephine M Enciso
- Division of Neonatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
200
|
Diez G, Auernheimer V, Fabry B, Goldmann WH. Head/tail interaction of vinculin influences cell mechanical behavior. Biochem Biophys Res Commun 2011; 406:85-8. [PMID: 21295550 DOI: 10.1016/j.bbrc.2011.01.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 01/31/2011] [Indexed: 01/13/2023]
Abstract
This study evaluates the influence of vinculin in closed conformation on the mechanical properties of cells. We demonstrate that MEFvin(-/-) cells transfected with the eGFP-vinculin mutant A50I (talin-binding-deficient-vinculin in a constitutively closed conformation) show 2-fold lower stiffness and focal adhesion density compared to MEFvin(+/+) and MEF(Rescue) cells. MEF(A50I) cells are as stiff as MEFvin(-/-) cells with similar focal adhesion density. Further, 2D traction microscopy indicates that MEF(A50I) and MEFvin(-/-) cells generate 3- to 4-fold less strain energy than MEFvin(+/+) and MEF(Rescue) cells. These results demonstrate that vinculin's mechano-coupling function is dependent on its conformational state.
Collapse
Affiliation(s)
- Gerold Diez
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 91, 91052 Erlangen, Germany
| | | | | | | |
Collapse
|