151
|
Hirose SI, Takahashi M, Ogawa R, Morimoto H, Izawa A, Sato H, Ise H, Hongo M, Ikeda U. Erythropoietin attenuates the development of experimental autoimmune myocarditis. Cardiovasc Drugs Ther 2007; 21:17-27. [PMID: 17297593 DOI: 10.1007/s10557-007-6005-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 11/29/2006] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Erythropoietin (EPO) has been shown to not only have cardioprotective effects but also attenuate autoimmune diseases. In the present study, we investigated the effect of EPO on cardiac inflammation and function, inflammatory cell infiltration, and cytokine expression in a rat model of experimental autoimmune myocarditis (EAM). METHODS AND RESULTS Male Lewis rats (6-8 weeks old) were immunized on day 0 with porcine cardiac myosin to establish EAM. The rats were subcutaneously administered either vehicle (saline) or human recombinant EPO (6,000 U/kg, 3 days/week) from day 0 to 20, and they were evaluated on day 21. In the EPO group, the inflammation area and heart weight/body weight ratio were significantly attenuated as compared with those in the vehicle group. Blood pressure and cardiac function were also improved in the EPO group. Immunohistochemistry revealed that EPO decreased the infiltration of macrophages and CD4 T cells, and degranulated mast cells in the myocardium. Real-time RT-PCR analysis demonstrated that inflammatory cytokine expression in the myocardium and lymphocytes was suppressed in the EPO group. However, in vitro experiments showed that EPO had no effect on antigen-induced proliferation and cytokine expression in lymphocytes. CONCLUSION EPO attenuates inflammatory cell infiltration and cytokine expression, and it improves cardiac function and reduces cardiac inflammation in EAM. This beneficial effect of EPO is unlikely to arise from a direct anti-inflammatory action on lymphocytes. These findings suggest the therapeutic potential of EPO for the treatment of myocarditis.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Autoimmune Diseases/blood
- Autoimmune Diseases/chemically induced
- Autoimmune Diseases/drug therapy
- Blood Pressure/drug effects
- Blotting, Western
- Cardiac Myosins/administration & dosage
- Cardiac Myosins/toxicity
- Cells, Cultured
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Cytokines/classification
- Cytokines/genetics
- Cytokines/metabolism
- Erythropoietin/pharmacology
- Erythropoietin/therapeutic use
- Hemoglobins/metabolism
- Immunochemistry
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- Mast Cells/cytology
- Mast Cells/drug effects
- Mast Cells/metabolism
- Models, Animal
- Myocarditis/drug therapy
- Myocarditis/immunology
- Myocarditis/physiopathology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Rats
- Rats, Inbred Lew
- Rats, Sprague-Dawley
- Receptors, Erythropoietin/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Spleen/cytology
- Spleen/drug effects
- Spleen/metabolism
- Ventricular Function, Left/drug effects
Collapse
Affiliation(s)
- Sho-Ichi Hirose
- Division of Cardiovascular Sciences, Department of Organ Regeneration, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
In the light of the enthusiasm regarding the use of recombinant human erythropoietin (Epo) and its analogues for treatment of the anaemias of chronic renal failure and malignancies it is worth remembering that today's success has been based on a century of laborious research. The concept of the humoral regulation of haematopoiesis was first formulated in 1906. The term 'erythropoietin' for the erythropoiesis-stimulating hormone was introduced in 1948. Native human Epo was isolated in 1977 and its gene cloned in 1985. During the last 15 yr, major progress has been made in identifying the molecules controlling Epo gene expression, primarily the hypoxia-inducible transcription factors (HIF) that are regulated by specific O2 and oxoglutarate requiring Fe2+-containing dioxygenases. With respect to the action of Epo, its dimeric receptor (Epo-R) has been characterised and shown to signal through protein kinases, anti-apoptotic proteins and transcription factors. The demonstration of Epo-R in non-haematopoietic tissues indicates that Epo is a pleiotropic viability and growth factor. The neuroprotective and cardioprotective potentials of Epo are reviewed with a focus on clinical research. In addition, studies utilising the Epo derivatives with prolonged half-life, peptidic and non-peptidic Epo mimetics, orally active drugs stimulating endogenous Epo production and Epo gene transfer are reviewed.
Collapse
|
153
|
Lee JS, Yu Q, Shin JT, Sebzda E, Bertozzi C, Chen M, Mericko P, Stadtfeld M, Zhou D, Cheng L, Graf T, MacRae CA, Lepore JJ, Lo CW, Kahn ML. Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev Cell 2007; 11:845-57. [PMID: 17141159 DOI: 10.1016/j.devcel.2006.09.006] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 07/27/2006] [Accepted: 09/11/2006] [Indexed: 10/23/2022]
Abstract
Hemodynamic responses that control blood pressure and the distribution of blood flow to different organs are essential for survival. Shear forces generated by blood flow regulate hemodynamic responses, but the molecular and genetic basis for such regulation is not known. The transcription factor KLF2 is activated by fluid shear stress in cultured endothelial cells, where it regulates a large number of vasoactive endothelial genes. Here, we show that Klf2 expression during development mirrors the rise of fluid shear forces, and that endothelial loss of Klf2 results in lethal embryonic heart failure due to a high-cardiac-output state. Klf2 deficiency does not result in anemia or structural vascular defects, and it can be rescued by administration of phenylephrine, a catecholamine that raises vessel tone. These findings identify Klf2 as an essential hemodynamic regulator in vivo and suggest that hemodynamic regulation in response to fluid shear stress is required for cardiovascular development and function.
Collapse
MESH Headings
- Anemia/physiopathology
- Animals
- Arteriovenous Malformations/physiopathology
- Blood Flow Velocity
- Blood Vessels/cytology
- Blood Vessels/drug effects
- Blood Vessels/physiology
- Cells, Cultured
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Embryo, Nonmammalian
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gene Expression Regulation, Developmental
- Genes, Lethal
- Heart Failure
- Integrases/metabolism
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/physiology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Microfilament Proteins/genetics
- Microfilament Proteins/physiology
- Muscle Proteins/genetics
- Muscle Proteins/physiology
- Muscle, Smooth/cytology
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Myocardium/cytology
- Myocardium/metabolism
- Phenylephrine/pharmacology
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Receptor, TIE-2/genetics
- Receptor, TIE-2/physiology
- Stress, Mechanical
- Transcription, Genetic
- Umbilical Veins/cytology
- Umbilical Veins/drug effects
- Umbilical Veins/metabolism
- Zebrafish/embryology
- Zebrafish/metabolism
Collapse
Affiliation(s)
- John S Lee
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Fu P, Arcasoy MO. Erythropoietin protects cardiac myocytes against anthracycline-induced apoptosis. Biochem Biophys Res Commun 2007; 354:372-8. [PMID: 17250809 PMCID: PMC1831847 DOI: 10.1016/j.bbrc.2007.01.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 01/05/2007] [Indexed: 11/17/2022]
Abstract
The cardiotoxic adverse effects of anthracycline antibiotics limit their therapeutic utility as essential components of chemotherapy regimens for hematologic and solid malignancies. Here we show that the hematopoietic cytokine erythropoietin attenuates doxorubicin-induced apoptosis of primary neonatal rat ventricular cardiomyocytes in a dose-dependent manner. Erythropoietin treatment induced rapid, time-dependent phosphorylation of MAP kinases (MAPK) Erk1/2 and the phosphatidylinositol 3-kinase substrate Akt. Treatment of cardiomyocytes with inhibitors of phosphatidylinositol 3-kinase (LY294002) or Akt (Akti-1/2) abolished the protective effect of erythropoietin, whereas treatment with MAPK kinase (MEK1) inhibitor U0126 did not. Erythropoietin also induced the phosphorylation of GSK-3beta, a downstream target of PI3K-Akt. Because phosphorylation is known to inactivate GSK-3beta, we investigated whether GSK-3beta inhibition is cardioprotective. We found that GSK-3beta inhibitors SB216763 or lithium chloride blocked doxorubicin-induced cardiomyocyte apoptosis in a manner similar to erythropoietin, suggesting that GSK-3beta inhibition is involved in erythropoietin-mediated cardioprotection. Erythropoietin may serve as a novel cardioprotective agent against anthracycline-induced cardiotoxicity.
Collapse
Affiliation(s)
- Ping Fu
- Department of Medicine, Duke University School of Medicine, DUMC Box 3912, Durham, NC 27710, USA
| | | |
Collapse
|
155
|
Abstract
Transcriptional regulation of animal genes has been classified into two major categories: tissue-specific and stress-inducible. Erythropoietin (EPO), an erythroid growth factor, plays a central role in the regulation of red blood cell production. In response to hypoxic and/or anemic stresses, Epo gene expression is markedly induced in kidney and liver; thus, the Epo gene has been used as a model for elucidating stress-inducible gene expression in animals. A key transcriptional regulator of the hypoxia response, hypoxia-inducible transcription factor (HIF), has been identified and cloned through studies on the Epo gene. Recently developed gene-modified mouse lines have proven to be a powerful means of exploring the regulatory mechanisms as well as the physiological significance of the tissue-specific and hypoxia-inducible expression of the Epo gene. In this chapter, several gene-modified mouse lines related to EPO and the EPO receptor are introduced, with emphasis placed on the examination of in vivo EPO activity, EPO function in nonhematopoietic tissues, EPO-producing cells in the kidney, and cis-acting regulatory elements for Epo gene expression. These in vivo studies of the Epo gene have allowed for a deeper understanding of transcriptional regulation operated in a tissue-specific and stress-inducible manner.
Collapse
|
156
|
McPherson RJ, Demers EJ, Juul SE. Safety of high-dose recombinant erythropoietin in a neonatal rat model. Neonatology 2007; 91:36-43. [PMID: 17344650 DOI: 10.1159/000096969] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 03/09/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND High-dose recombinant erythropoietin (rEpo) is neuroprotective in neonatal animal models of brain injury, but the long-term consequences of neonatal exposure have not been studied. OBJECTIVES We hypothesized that multiple injections of high-dose rEpo during the neonatal period would be safe, and would improve neurologic outcomes after exposure to neonatal hypoxia or hypoxic-ischemic injury. METHODS Three experimental groups of Sprague-Dawley rats were assessed: (1) normoxia, (2) hypoxia and (3) hypoxia-ischemia. Groups 1 and 2 were given 0, 2,500 or 5,000 U/kg rEpo subcutaneously for the first 5 days of life (P1-P5). Group 2 animals also underwent 2 h of hypoxia (8% O(2)) daily from P1-P3. Group 3 animals underwent right carotid artery ligation followed by hypoxia (8% O(2) x 90 min) on P7, followed by either vehicle or rEpo (2,500 U/kg subcutaneously QD x3). We evaluated short- and long-term physiologic and behavioral outcomes. Major organs were evaluated grossly and histologically. RESULTS rEpo treatment transiently raised hematocrit, prevented hypoxia-induced delays in geotaxis and growth, improved forelimb strength, promoted liver growth in males, lowered the adult platelet count, but did not alter other CBC indices or histology. rEpo prevented hypoxia-ischemia-induced learning impairment and substantia nigra neuron loss. CONCLUSIONS Repeated treatment of newborn rats with high-dose rEpo was safe under all conditions tested. rEpo treatment improved the development of hypoxia-exposed newborns and prevented the learning impairment and dopamine neuron loss due to unilateral hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Ronald J McPherson
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, WA98195-6320, USA
| | | | | |
Collapse
|
157
|
Taha MF, Valojerdi MR, Mowla SJ. Effect of bone morphogenetic protein-4 (BMP-4) on cardiomyocyte differentiation from mouse embryonic stem cell. Int J Cardiol 2006; 120:92-101. [PMID: 17156864 DOI: 10.1016/j.ijcard.2006.08.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 08/07/2006] [Accepted: 08/12/2006] [Indexed: 11/25/2022]
Abstract
The present study was designed to evaluate the effect of BMP-4 on mouse embryonic stem cells (ESCs)-derived cardiomyocyte. Cardiac differentiation of the mouse ESCs was initiated by embryoid bodies (EBs) formation in hanging drops, transfer of EBs to the suspension culture and then plating onto gelatin-coated tissue culture plates. BMP-4 was added to culture medium throughout the suspension period. Cultures were observed daily with an inverted microscope for the appearance of contracting clusters. At the early, intermediate and terminal stages of differentiation, the choronotropic responses of cardiomyocytes to cardioactive drugs were assessed, and the cardiomyocytes immunostained for cardiac troponin I, desmin, alpha-actinin and nebulin. The contracting clusters were isolated for ultrastructural evaluation, at day 14 after plating. Moreover, total RNA extracted from contracting EBs of early and terminal stages of differentiation were examined for oct-4, alpha- and beta-myosin heavy chain, myosin light chain-2V and atrial natriuretic factor expression. The BMP-4 treatment resulted in a decrease in the percent of beating EBs and the percent of developing cardiomyocytes per EBs. As a whole, the chronotropic responses of beating cardiac clusters to cardioactive drugs in control group were better than BMP-4 treated group. The cardiomyocytes of both groups were positive immunostained for applied antibodies except for nebulin. Moreover, in the BMP-4 treated group, the ultrastructural characteristics and cardiac-specific genes expression were all retarded in the terminal stage of cardiomyocytes development. In conclusion, BMP-4 had an inhibitory effect on cardiomyocyte differentiation from the mouse ESCs in terms of ultrastructural characteristics, genes expression and functional properties.
Collapse
Affiliation(s)
- Masoumeh Fakhr Taha
- Department of Anatomy, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | | | | |
Collapse
|
158
|
Dunlop EA, Percy MJ, Boland MP, Maxwell AP, Lappin TR. Induction of signalling in non-erythroid cells by pharmacological levels of erythropoietin. NEURODEGENER DIS 2006; 3:94-100. [PMID: 16909043 DOI: 10.1159/000092099] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Erythropoiesis is maintained by the hormone erythropoietin (Epo) binding to its cognate receptor (EpoR) on erythroid progenitor cells. The Epo-EpoR interaction initiates a signal transduction process that regulates the survival, growth and differentiation of these cells. Originally perceived as highly lineage-restricted, Epo is now recognised to have pleiotropic effects extending beyond the maintenance of red cell mass. Functional interactions between Epo and EpoR have been demonstrated in numerous cells and tissues. EpoR expression on neoplastic cells leads to concern that recombinant human erythropoietin, used to treat anaemia in cancer patients, may augment tumour growth. Here we demonstrate that EPO, at pharmacological concentrations, can activate three major signalling cascades, viz. the Jak2/STAT5, Ras/ERK and PI3K/Akt pathways in non-small cell lung carcinoma (NSCLC) cell lines. EpoR synthesis is normally under the control of GATA-1, but NSCLC cells exhibit decreased GATA-1 levels compared to GATA-2, -3 and -6, suggesting that GATA-1 is not essential for EpoR production. The increased Epo-induced signalling was not associated with a growth advantage for the NSCLC cells.
Collapse
Affiliation(s)
- E A Dunlop
- Centre for Cancer Research and Cell Biology, Queens University Belfast, and Haematology Department, Belfast City Hospital, UK
| | | | | | | | | |
Collapse
|
159
|
|
160
|
Um M, Gross AW, Lodish HF. A "classical" homodimeric erythropoietin receptor is essential for the antiapoptotic effects of erythropoietin on differentiated neuroblastoma SH-SY5Y and pheochromocytoma PC-12 cells. Cell Signal 2006; 19:634-45. [PMID: 17045782 DOI: 10.1016/j.cellsig.2006.08.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 08/21/2006] [Indexed: 02/01/2023]
Abstract
The hematopoietic cytokine erythropoietin (Epo) exerts cytoprotective effects on several types of neuronal cells both in vivo and in culture. Detailed molecular mechanisms underlying this phenomenon have not been elucidated and even the identity of the cytoprotective Epo receptors in neuronal cells is controversial. Here we show that Epo prevents staurosporine-induced apoptosis of differentiated human neuroblastoma SH-SY5Y cells, and activates the STAT5, AKT and MAPK signaling pathways. Differentiated SH-SY5Y cells have fewer than 50 high affinity Epo surface binding sites per cell, which could not be detected by standard assays measuring binding of 125I-labeled Epo. However, by measuring endocytosis of 125I-Epo, we could reliably quantify very small numbers of high-affinity Epo surface binding sites. Using SH-SY5Y cells stably expressing an Epo receptor (EpoR) shRNA and thus lacking detectable EpoR expression, we show that high affinity binding of Epo to these neuronal cells is mediated by the hematopoietic EpoR, and that this EpoR is also essential for the antiapoptotic activity of Epo. In contrast, a mutant Epo that has an intact binding site 1 but a non-functional binding site 2 and hence binds only to one cell surface EpoR molecule ("site 2" Epo mutant) displays significantly lower antiapoptotic activity than wild-type Epo. Furthermore, expression of the GM-CSF/IL-3/IL-5 receptor common beta chain, which was proposed to be responsible for the cytoprotective activity of Epo on certain types of neuronal cells, was undetectable in differentiated SH-SY5Y cells. Epo also alleviated staurosporine-induced apoptosis of rat PC-12 pheochromocytoma cells while the R103A "site 2" Epo mutant did not, and we could not detect expression of the common beta chain in PC-12 cells. Together our results indicate that Epo exerts its antiapoptotic effects on differentiated SH-SY5Y and PC-12 cells through the standard stoichiometry of one molecule of Epo binding to two EpoR subunits, comprising the "classical" Epo receptor signaling complex.
Collapse
Affiliation(s)
- Moonkyoung Um
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
161
|
Bhattacharya S, Macdonald ST, Farthing CR. Molecular mechanisms controlling the coupled development of myocardium and coronary vasculature. Clin Sci (Lond) 2006; 111:35-46. [PMID: 16764556 DOI: 10.1042/cs20060003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac failure affects 1.5% of the adult population and is predominantly caused by myocardial dysfunction secondary to coronary vascular insufficiency. Current therapeutic strategies improve prognosis only modestly, as the primary cause -- loss of normally functioning cardiac myocytes -- is not being corrected. Adult cardiac myocytes are unable to divide and regenerate to any significant extent following injury. New cardiac myocytes are, however, created during embryogenesis from progenitor cells and then by cell division from existing cardiac myocytes. This process is intimately linked to the development of coronary vasculature from progenitors originating in the endothelium, the proepicardial organ and neural crest. In this review, we systematically evaluate approx. 90 mouse mutations that impair heart muscle growth during development. These studies provide genetic evidence for interactions between myocytes, endothelium and cells derived from the proepicardial organ and the neural crest that co-ordinate myocardial and coronary vascular development. Conditional knockout and transgenic rescue experiments indicate that Vegfa, Bmpr1a (ALK3), Fgfr1/2, Mapk14 (p38), Hand1, Hand2, Gata4, Zfpm2 (FOG2), Srf and Txnrd2 in cardiac myocytes, Rxra and Wt1 in the proepicardial organ, EfnB2, Tek, Mapk7, Pten, Nf1 and Casp8 in the endothelium, and Bmpr1a and Pax3 in neural crest cells are key molecules controlling myocardial development. Coupling of myocardial and coronary development is mediated by BMP (bone morphogenetic protein), FGF (fibroblast growth factor) and VEGFA (vascular endothelial growth factor A) signalling, and also probably involves hypoxia. Pharmacological targeting of these molecules and pathways could, in principle, be used to recreate the embryonic state and achieve coupled myocardial and coronary vascular regeneration in failing hearts.
Collapse
Affiliation(s)
- Shoumo Bhattacharya
- Department of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.
| | | | | |
Collapse
|
162
|
Dai W, Kloner RA. Myocardial regeneration by embryonic stem cell transplantation: present and future trends. Expert Rev Cardiovasc Ther 2006; 4:375-83. [PMID: 16716098 DOI: 10.1586/14779072.4.3.375] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Embryonic stem cells are a promising source for myocardial regeneration due to their pluripotency and plasticity. In theory, embryonic stem cells are capable of self-renewal in an unlimited fashion, and can differentiate into any cell type required for cell-based therapy, including cardiac myocytes. In recent years, embryonic stem cells have been transplanted for cardiac regeneration in animal models, and the results are encouraging. However, there are still many hurdles to be overcome for the clinical application of embryonic stem cells.
Collapse
Affiliation(s)
- Wangde Dai
- The Heart Institute, Good Samaritan Hospital, Division of Cardiovascular Medicine of the Keck School of Medicine at University of Southern California, Los Angeles, CA 90017-2395, USA.
| | | |
Collapse
|
163
|
Abstract
The realization of regenerative cardiac medicine depends on the availability of cardiomyocytes in sufficient numbers for transplantation of cardiac tissue and the accompanying blood vessels. Embryonic stem (ES) cells, bone marrow (BM) stem cells, and tissue-derived stem cells are all potential cell sources. Although ES cells are highly proliferative and suitable for mass production, an efficient protocol is yet to be established to ensure selective cardiomyocyte induction using these cells. Recent advances in developmental biology have clarified the involvement of critical factors in cardiomyocyte differentiation, including bone morphogenic protein and Wnt signaling proteins, and such factors have the potential to improve the efficiency of stem cell induction. Initial studies of the intracoronary administration of BM mononuclear cells after myocardial infarction has yielded promising results; however, intensive investigation of the underlying molecular mechanisms at play as well as double-blinded clinical trials will be necessary to establish the extent of both migration of the BM stem cells into the damaged cardiac tissue and their differentiation into cardiomyocytes. Several types of cardiac tissue stem cells have also been reported, but an accurate and extensive comparison of these cells with regard to their characteristics and multipotency remains to be done. An integrative study involving developmental biology, stem cell biology, and tissue engineering is required to achieve the full potential of cardiac regeneration.
Collapse
Affiliation(s)
- Keiichi Fukuda
- Department of Regenerative Medicine and Advanced Cardiac Therapeutics, Keio University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
164
|
Dame C, Kirschner KM, Bartz KV, Wallach T, Hussels CS, Scholz H. Wilms tumor suppressor, Wt1, is a transcriptional activator of the erythropoietin gene. Blood 2006; 107:4282-90. [PMID: 16467207 DOI: 10.1182/blood-2005-07-2889] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AbstractMolecular mechanisms for the developmental stage and tissue-specific regulation of the erythropoietin (EPO) gene are poorly understood. Recent findings indicate a role of the Wilms tumor suppressor, Wt1, in the formation of the hematopoietic system. Herein, we tested the hypothesis that Wt1 is a transcriptional regulator of the EPO gene. Binding of the transcriptionally competent Wt1(–KTS) isoform to the minimal EPO promoter was demonstrated by electrophoretic mobility shift assay and chromatin immunoprecipitation. Under normoxia, EPO expression was significantly increased in HEK 293 and HepG2 cells with forced expression of Wt1(–KTS). A reporter construct harboring the 117-bp minimal human EPO promoter was activated up to 20-fold by transient cotransfection of Wt1(–KTS) in different cell lines. Mutation of the Wt1 binding site in the EPO promoter abrogated this stimulatory effect of the Wt1(–KTS) protein. Hepatic Epo mRNA expression was significantly reduced in embryonic mice with homozygous Wt1 deletion. Furthermore, Wt1 and EPO were colocalized in hepatocytes of the liver and in neuronal cells of the dorsal root ganglia in developing mice. Both proteins were also detected in Sertoli cells of the adult murine testis. In conclusion, we identified Wt1(–KTS) as a novel transcriptional activator for the tissue-specific expression of the EPO gene.
Collapse
Affiliation(s)
- Christof Dame
- Department of Neonatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
165
|
Affiliation(s)
- Yi-Da Tang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
166
|
van der Meer P, Lipsic E, Henning RH, de Boer RA, Suurmeijer AJH, van Veldhuisen DJ, van Gilst WH. Erythropoietin improves left ventricular function and coronary flow in an experimental model of ischemia-reperfusion injury. Eur J Heart Fail 2006; 6:853-9. [PMID: 15556046 DOI: 10.1016/j.ejheart.2004.03.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2003] [Revised: 02/03/2004] [Accepted: 03/03/2004] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Recent studies show that erythropoietin (EPO) plays a protective role in brain ischemia. In this condition, administration of EPO protects neurons from ischemic damage. Recently, it has been shown that in patients with chronic heart failure (CHF), EPO treatment improved cardiac function. In the present study we assessed the role of EPO and EPO-receptor (EPO-R) in the heart. METHODS AND RESULTS We studied the presence and functionality of the EPO-R in isolated rat hearts in the Langendorff set-up. Hearts were perfused for 20 min with 10 U/ml EPO or vehicle. Immunohistochemistry revealed the presence of the EPO-R on endothelial cells, fibroblasts and to a lesser extent cardiomyocytes. Furthermore, perfusion with EPO resulted in a 50% increase in the phosphorylated MAP kinases p42/p44. To evaluate the protective role of EPO in cardiac ischemia, we performed low-flow (0.6 ml/min) ischemia/reperfusion experiments in isolated rat hearts. Administration of EPO (10 U/ml) reduced the cellular damage by 56% (P<0.05) during reperfusion, diminished apoptosis by 15% (P<0.05) and resulted in a significantly improved recovery of left ventricular pressure (P=0.02) and coronary flow (P=0.01). CONCLUSION The present data suggest that a functional EPO-R is present in rat adult cardiac tissue and that exogenous EPO administration improves cardiac function after ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Peter van der Meer
- Department of Cardiology, University Hospital Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
167
|
Ito T, Arimitsu N, Takeuchi M, Kawamura N, Nagata M, Saso K, Akimitsu N, Hamamoto H, Natori S, Miyajima A, Sekimizu K. Transcription elongation factor S-II is required for definitive hematopoiesis. Mol Cell Biol 2006; 26:3194-203. [PMID: 16581793 PMCID: PMC1446961 DOI: 10.1128/mcb.26.8.3194-3203.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Transcription elongation factor S-II/TFIIS promotes readthrough of transcriptional blocks by stimulating nascent RNA cleavage activity of RNA polymerase II in vitro. The biologic significance of S-II function in higher eukaryotes, however, remains unclear. To determine its role in mammalian development, we generated S-II-deficient mice through targeted gene disruption. Homozygous null mutants died at midgestation with marked pallor, suggesting severe anemia. S-II(-/-) embryos had a decreased number of definitive erythrocytes in the peripheral blood and disturbed erythroblast differentiation in fetal liver. There was a dramatic increase in apoptotic cells in S-II(-/-) fetal liver, which was consistent with a reduction in Bcl-x(L) gene expression. The presence of phenotypically defined hematopoietic stem cells and in vitro colony-forming hematopoietic progenitors in S-II(-/-) fetal liver indicates that S-II is dispensable for the generation and differentiation of hematopoietic stem cells. S-II-deficient fetal liver cells, however, exhibited a loss of long-term repopulating potential when transplanted into lethally irradiated adult mice, indicating that S-II deficiency causes an intrinsic defect in the self-renewal of hematopoietic stem cells. Thus, S-II has critical and nonredundant roles in definitive hematopoiesis.
Collapse
Affiliation(s)
- Takahiro Ito
- Division of Developmental Biochemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Männer J. Extracardiac tissues and the epigenetic control of myocardial development in vertebrate embryos. Ann Anat 2006; 188:199-212. [PMID: 16711159 DOI: 10.1016/j.aanat.2006.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During the past few years, research on the developing cardiovascular system has given new insights into the origin and development of the myocardium in vertebrate embryos. In the present paper, a review is given on our current knowledge about two aspects of myocardial development that have been found to depend on signals from extracardiac tissues. These two aspects are, firstly, the development of the so-called heart-forming fields and, secondly, the morphogenesis of the outer compact layer of the myocardial wall.
Collapse
Affiliation(s)
- Jörg Männer
- Abteilung Anatomie und Embryologie, Georg-August-Universität zu Göttingen, Kreuzbergring 36, 37075 Göttingen, Germany.
| |
Collapse
|
169
|
Abstract
Analysis of the biologic effects of erythropoietin and pathophysiology of chronic kidney diseases (CKD) suggests that treatment with erythropoiesis-stimulating agents (ESA) could slow the progression of CKD. By decreasing hypoxia and oxidative stress, it could prevent the development of interstitial fibrosis and the destruction of tubular cells. It could have direct protective effects on tubular cells through its antiapoptotic properties. It could help maintain the integrity of the interstitial capillary network through its effects on endothelial cells. Thus, suggesting that correcting anemia with ESA could slow the progression of CKD is biologically plausible. In patients with CKD, three small prospective studies and a retrospective study have suggested that treatment with ESA may have protective effects. Post-hoc analysis of the Reduction in Endpoints in Noninsulin-dependent Diabetes Mellitus with the Angiotensin II Antagonist Losartan study has also shown that anemia was an independent risk factor for progression of nephropathy in patients with type 2 diabetes. In addition, a large clinical trial, which had to be stopped prematurely because of labeling change for subcutaneous administration of epoetin alfa, suggests that complete normalization of hemoglobin levels is safe in CKD patients not on dialysis and without severe cardiovascular disease. Thus, it seems reasonable to advocate starting a large randomized, prospective study to determine if normalization of hemoglobin concentration can effectively slow the progression of CKD.
Collapse
Affiliation(s)
- Jerome Rossert
- Paris-Descartes University School of Medicine, INSERM U652, AP-HP (Hôpital Européen Georges Pompidou), Paris, France.
| | | | | |
Collapse
|
170
|
van den Hoff MJB, Postma AV, Michel MC. Candidate genes for the hereditary component of cardiac hypertrophy. J Hypertens 2006; 24:273-7. [PMID: 16508570 DOI: 10.1097/01.hjh.0000200520.93190.7d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Maurice J B van den Hoff
- Department of Anatomy and Embryology, Experimental and Molecular Cardiology Group, Amsterdam, The Netherlands
| | | | | |
Collapse
|
171
|
Abstract
Erythropoietin (Epo) has long been known to be the principal hematopoietic growth factor that regulates cellular proliferation and differentiation along the erythroid lineage. Recent studies have shown that Epo is a pleiotropic cytokine that is proangiogenic and exerts broad tissue-protective effects in diverse nonhematopoietic organs. Recombinant Epo (rEpo) has been widely used in the clinic to prevent or treat malignancy-associated anemia. A series of clinical trials have documented the efficacy of rEpo in reducing RBC transfusion requirements and improving quality of life in cancer patients, and a recent meta-analysis suggested a positive effect on survival. However, two randomized trials reported negative outcomes with rEpo, as patients in the rEpo arm fared worse than their placebo-treated counterparts with respect to progression-free survival. The expression of Epo receptor (EpoR) in cancer cells has raised the possibility that exogenous rEpo may exert direct effects on tumor cells associated with the potential for stimulation of proliferation, inhibition of apoptosis, or modulation of sensitivity to chemoradiation therapy. The presence of an autocrine-paracrine Epo-EpoR system in tumors and potential effects of Epo on tumor microenvironment and angiogenesis are consistent with a complex biology for Epo-EpoR signaling in cancer that requires further research. This review describes Epo and EpoR biology, focusing on the pleiotropic effects of Epo on nonhematopoietic tissues as well as the expression and function of EpoR in cancer cells.
Collapse
Affiliation(s)
- Matthew E Hardee
- Department of Pathology, Duke University Medical Center, Durham, NC 22710, USA
| | | | | | | | | |
Collapse
|
172
|
Itoh K, Sawasaki Y, Takeuchi K, Kato S, Imai N, Kato Y, Shibata N, Kobayashi M, Moriguchi Y, Higuchi M, Ishihata F, Sudoh Y, Miura S. Erythropoietin -induced proliferation of gastric mucosal cells. World J Gastroenterol 2006; 12:234-9. [PMID: 16482623 PMCID: PMC4066032 DOI: 10.3748/wjg.v12.i2.234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the localization of erythropoietin receptor on gastric specimens and characterize the effects of erythropoietin on the normal gastric epithelial proliferation using a porcine gastric epithelial cell culture model.
METHODS: Erythropoietin receptor was detected by RT-PCR, Western blotting and immunohistochermistry. Growth stimulation effects of erythropoietin on cultured gastric mucosal cells were determined by ELISA using bromodeoxyuridine (BrdU).
RESULTS: Erythropoietin receptor was detected on cultured porcine gastric mucosal epithelial cells. Erythropoietin receptor was also detected histochemically at the base of gastric mucosal epithelium. BrdU assay demonstrated a dose-dependent increase in growth potential of cultured porcine gastric mucosal epithelial cells by administration of erythropoietin, as well as these effects were inhibited by administration of anti- erythropoietin antibody (P < 0.01).
CONCLUSION: These findings indicate that erythropoietin has a potential to proliferate gastric mucosal epithelium via erythropoietin receptor.
Collapse
Affiliation(s)
- Kazuro Itoh
- Second Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama 359-8513, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Abstract
Anaemia is a frequent complication of diabetic nephropathy. It has only recently been recognised that in diabetic patients anaemia is seen not only in preterminal renal failure, but also frequently in patients with only minor derangement of renal function. At any level of glomerular filtration rate (GFR) anaemia is more frequent and severe in diabetic compared to nondiabetic patients. A major cause of anaemia is an inappropriate response of erythropoietin to anaemia. Additional factors are iron deficiency and iatrogenic factors, e.g. ACE inhibitor treatment. When serum creatinine is still normal, the erythropoietin concentration is predictive of more rapid loss of glomerular function. When serum creatinine is elevated, the haemoglobin values are predictive of the rate of progression. It is currently under investigation whether reversal of anaemia attenuates the rate of progression. Because most of the late complications of diabetes (retinopathy, neuropathy, heart disease, peripheral arterial disease) involve ischaemic tissue damage, it would be intuitively plausible that treatment with human recombinant erythropoietin should be beneficial, but definite evidence for this hypothesis is currently not available.
Collapse
Affiliation(s)
- E Ritz
- Department Internal Medicine, Ruperto Carola University Heidelberg, Germany.
| | | |
Collapse
|
174
|
Tomanek RJ. Formation of the coronary vasculature during development. Angiogenesis 2005; 8:273-84. [PMID: 16308734 DOI: 10.1007/s10456-005-9014-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/11/2005] [Accepted: 04/12/2005] [Indexed: 12/01/2022]
Abstract
The formation of the coronary vasculature involves a series of carefully regulated temporal events that include vasculogenesis, angiogenesis, arteriogenesis and remodeling. This review explores these events, which begin with the migration of proepicardial cells to form the epicardium and end with postnatal growth and remodeling. Coronary endothelial, smooth muscle and fibroblast cells differentiate via epithelial-mesenchymal transformation; these cells delaminate from the epicardium. Following the formation of a tubular network by endothelial cells, an aortic ring of endothelial cells penetrates the aorta at the left and right aortic cusps to form the two ostia. Smooth muscle cell recruitment occurs rapidly and the coronary artery network begins forming as blood flow is established. Recent studies have identified a number of regulatory molecules that play key roles in epicardial formation and the transformation of its component cells into mesenchyme. Moreover, we are finally gaining some understanding regarding the interplay of angiogenic growth factors in the complex process of establishing the coronary vascular tree. Understanding coronary embryogenesis is important for interventions regarding adult cardiovascular diseases as well as those necessary to correct congenital defects.
Collapse
Affiliation(s)
- Robert J Tomanek
- Department of Anatomy and Cell Biology, The University of Iowa, 1-402 BSB Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
175
|
Singla DK, Sobel BE. Enhancement by growth factors of cardiac myocyte differentiation from embryonic stem cells: A promising foundation for cardiac regeneration. Biochem Biophys Res Commun 2005; 335:637-42. [PMID: 16004962 DOI: 10.1016/j.bbrc.2005.06.105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 06/20/2005] [Indexed: 11/22/2022]
Abstract
Cell transplantation is a promising, still novel, potentially therapeutic approach for the treatment of heart diseases. Clinical applications require generation of large number of donor cells. Embryonic stem (ES) cells are capable of self-renewal apparently in an unlimited fashion, in vitro. Theoretically, they can differentiate into any cell type required for cell transplantation, including cardiac myocytes. Diverse growth factors have been implicated in programming diverse cellular processes, including development of the embryonic heart, ES cell self-renewal, and cardiac myocyte differentiation from ES cells. This review addresses the current understanding of the role of growth factors in the differentiation of cardiac myocytes from ES-embryoid body cell systems in vitro as well as cardiac regeneration in vivo.
Collapse
Affiliation(s)
- Dinender K Singla
- Department of Medicine, Vascular Biology Unit, and Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA.
| | | |
Collapse
|
176
|
McMullen NM, Gaspard GJ, Pasumarthi KBS. Reactivation of cardiomyocyte cell cycle: A potential approach for myocardial regeneration. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/sita.200400050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
177
|
Müller-Ehmsen J, Schmidt A, Krausgrill B, Schwinger RHG, Bloch W. Role of erythropoietin for angiogenesis and vasculogenesis: from embryonic development through adulthood. Am J Physiol Heart Circ Physiol 2005; 290:H331-40. [PMID: 16024562 DOI: 10.1152/ajpheart.01269.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erythropoietin (EPO), a stimulator of erythropoiesis, was previously shown to stimulate angiogenesis and proliferation of endothelial cells. Here, we investigated and compared the influence of EPO on cell number, proliferation, apoptosis, migration, and differentiation of endothelial cells in intact mouse embryoid bodies (EB), isolated endothelial cells from EB (EBEC), and adult human endothelial progenitor cells (hEPC). EB were treated with EPO (0.5 U/ml) immediately after plating was completed (day 5+0) or 3 days later. EPO treatment was continued until days 5+3 or 5+6. Cultured EBEC were treated 3 days after being plated, and primary hEPC from young healthy adults were treated 5 days after being plated with EPO for 48 h. Immunohistochemistry was performed with anti-PECAM (CD31), anti-Ki67, anti-CD34, anti-CD133, anti-EphB4, and anti-ephrinB2 antibodies. In all, mouse EB and EBEC and hEPC, EPO-treatment resulted in increased number of endothelial cells, increased proliferation, decreased apoptosis, and enhanced migration. In EB, this EPO effect was most pronounced when treatment was begun early (day 5+0) and was accompanied by an enhanced endothelial tube formation. In EBEC and hEPC, EPO shifted the phenotypic differentiation toward an increased ratio of EphB4-positive cells, i.e., toward a venous phenotype. These results are consistent with an important role of EPO for the number, proliferation, apoptosis, function, and phenotypical development of immature endothelial cells, which persists from early development through adulthood. They provide additional and further evidence for a strong interrelation between hematopoiesis and vasculogenesis/angiogenesis (sharing the same pathways), which may be important in many physiological and pathophysiological conditions.
Collapse
|
178
|
Richmond TD, Chohan M, Barber DL. Turning cells red: signal transduction mediated by erythropoietin. Trends Cell Biol 2005; 15:146-55. [PMID: 15752978 DOI: 10.1016/j.tcb.2005.01.007] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Erythropoietin (EPO) is the crucial cytokine regulator of red blood-cell production. Since the discovery of EPO in 1985 and the isolation of its cognate receptor four years later, there has been significant interest in understanding the unique ability of this ligand-receptor pair to promote erythroid mitogenesis, survival and differentiation. The development of knockout mice has elucidated the precise role of the ligand, receptor and downstream players in murine erythroid development. In this review, we summarize EPO-mediated signaling pathways and examine their significance in vivo.
Collapse
Affiliation(s)
- Terri D Richmond
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | | | | |
Collapse
|
179
|
Sola A, Wen TC, Hamrick SEG, Ferriero DM. Potential for protection and repair following injury to the developing brain: a role for erythropoietin? Pediatr Res 2005; 57:110R-117R. [PMID: 15817504 DOI: 10.1203/01.pdr.0000159571.50758.39] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Perinatal brain injury is a major contributor to perinatal morbidity and mortality, and a considerable number of these children will develop long term neurodevelopmental disabilities. Despite the severe clinical and socio-economic significance and the advances in neonatal care over the past twenty years, no therapy yet exists that effectively prevents or ameliorates detrimental neurodevelopmental effects in cases of perinatal/neonatal brain injury. Our objective is to review recent evidence in relation to the pervading hypothesis for targeting time-dependent molecular and cellular repair mechanisms in the developing brain. In addition we review several potential neuroprotective strategies specific to the developing nervous system, with a focus on erythropoietin (Epo) because of its potential role in protection as well as repair.
Collapse
Affiliation(s)
- Augusto Sola
- Division of Neonatal-Perinatal Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
180
|
Rossert J, Eckardt KU. Erythropoietin receptors: their role beyond erythropoiesis. Nephrol Dial Transplant 2005; 20:1025-8. [PMID: 15840686 DOI: 10.1093/ndt/gfh800] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
181
|
Lavine KJ, Yu K, White AC, Zhang X, Smith C, Partanen J, Ornitz DM. Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell 2005; 8:85-95. [PMID: 15621532 DOI: 10.1016/j.devcel.2004.12.002] [Citation(s) in RCA: 296] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 11/06/2004] [Accepted: 12/01/2004] [Indexed: 10/26/2022]
Abstract
The epicardium regulates growth and survival of the underlying myocardium. This activity depends on intrinsic retinoic acid (RA) and erythropoietin signals. However, these signals do not act directly on the myocardium and instead are proposed to regulate the production of an unidentified soluble epicardial derived mitogen. Here, we show that Fgf9, Fgf16, and Fgf20 are expressed in the endocardium and epicardium and that RA can induce epicardial expression of Fgf9. Using knockout mice and an embryonic heart organ culture system, we show that endocardial and epicardial derived FGF signals regulate myocardial proliferation during midgestation heart development. We further show that this FGF signal is received by both FGF receptors 1 and 2 acting redundantly in the cardiomyoblast. In the absence of this signal, premature differentiation results in cellular hypertrophy and newborn mice develop a dilated cardiomyopathy. FGFs thus constitute all or part of the epicardial signal regulating myocardial growth and differentiation.
Collapse
Affiliation(s)
- Kory J Lavine
- Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Wang Z, Zhai W, Richardson JA, Olson EN, Meneses JJ, Firpo MT, Kang C, Skarnes WC, Tjian R. Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes Dev 2004; 18:3106-16. [PMID: 15601824 PMCID: PMC535920 DOI: 10.1101/gad.1238104] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 10/12/2004] [Indexed: 11/24/2022]
Abstract
BAF and PBAF are two related mammalian chromatin remodeling complexes essential for gene expression and development. PBAF, but not BAF, is able to potentiate transcriptional activation in vitro mediated by nuclear receptors, such as RXRalpha, VDR, and PPARgamma. Here we show that the ablation of PBAF-specific subunit BAF180 in mouse embryos results in severe hypoplastic ventricle development and trophoblast placental defects, similar to those found in mice lacking RXRalpha and PPARgamma. Embryonic aggregation analyses reveal that in contrast to PPARgamma-deficient mice, the heart defects are likely a direct result of BAF180 ablation, rather than an indirect consequence of trophoblast placental defects. We identified potential target genes for BAF180 in heart development, such as S100A13 as well as retinoic acid (RA)-induced targets RARbeta2 and CRABPII. Importantly, BAF180 is recruited to the promoter of these target genes and BAF180 deficiency affects the RA response for CRABPII and RARbeta2. These studies reveal unique functions of PBAF in cardiac chamber maturation.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Winkler J, Hescheler J, Sachinidis A. Embryonic stem cells for basic research and potential clinical applications in cardiology. Biochim Biophys Acta Mol Basis Dis 2004; 1740:240-8. [PMID: 15949691 DOI: 10.1016/j.bbadis.2004.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/09/2004] [Accepted: 11/22/2004] [Indexed: 11/29/2022]
Abstract
Embryonic stem (ES) cells are pluripotent, possessing the unique property to differentiate into any somatic cell type while retaining the ability to proliferate indefinitely. Due to their ability to recapitulate embryonic differentiation, ES cells are an ideal tool to study the process of early embryogenesis in vitro. Signalling cascades and genes involved in differentiation can be easily studied, and functional genomics approaches aim to identify the regulatory networks underlying lineage commitment. Their unique ability to differentiate into any cell type make ES cells a prime candidate for cell replacement therapy (CRT) of various degenerative disorders. Results from various disease models are promising and have demonstrated their principal suitability as a therapeutic agent in diseases such as myocardial infarctions, diabetes mellitus and Parkinson's disease. Prior to clinical trials in humans, two issues remain to be solved: due to their high proliferative potential, ES cells can form teratocarcinomas in the recipient, and depending on the source of the cells, ES cell grafts may be rejected by the host organism. This review discusses the current state of basic ES cell research with a focus on cardiac differentiation and gives an overview of their use in CRT approaches.
Collapse
Affiliation(s)
- Johannes Winkler
- Centre of Physiology and Pathophysiology, Institute of Neurophysiology, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | | | | |
Collapse
|
184
|
Kertesz N, Wu J, Chen THP, Sucov HM, Wu H. The role of erythropoietin in regulating angiogenesis. Dev Biol 2004; 276:101-10. [PMID: 15531367 DOI: 10.1016/j.ydbio.2004.08.025] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 08/10/2004] [Accepted: 08/11/2004] [Indexed: 01/22/2023]
Abstract
Erythropoietin (EPO) is an essential growth factor that regulates erythrocyte production in mammals. In this study, we demonstrate a novel role of EPO in regulating angiogenesis in vivo. Epo and Epo receptor (EpoR) are expressed in the vasculature during embryogenesis. Deletion of Epo or EpoR leads to angiogenic defects starting at E10.5, 2 days before ventricular hypoplasia and 3 days before the onset of the embryonic lethal phenotype. Overall, angiogenesis was severely affected in the mutant embryos: vascular anomalies included decreased complexity of the vessel networks. However, de novo vasculogenesis remained intact, consistent with the differential expression of Epo and EpoR during the early stages of embryonic development. The aforementioned angiogenesis defect can be partially rescued by expressing human EPO during embryogenesis. Moreover, Ang-1 expression is regulated by EPO/EPOR under normoxic conditions. Taken together, our results suggest important roles of EPO and EPOR in angiogenesis.
Collapse
Affiliation(s)
- Nathalie Kertesz
- Howard Hughes Medical Institute and Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA, 90095-1735, USA
| | | | | | | | | |
Collapse
|
185
|
Foster DJ, Moe OW, Hsia CCW. Upregulation of erythropoietin receptor during postnatal and postpneumonectomy lung growth. Am J Physiol Lung Cell Mol Physiol 2004; 287:L1107-15. [PMID: 15286000 DOI: 10.1152/ajplung.00119.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circulating erythropoietin (EPO) stimulates erythrocytosis, whereas organ-specific local EPO receptor (EPOR) expression has been linked to angiogenesis, tissue growth, and development. On the basis of the observation of concurrent enhancement of lung growth and erythrocyte production during exposure to chronic hypoxia, we hypothesized that a paracrine EPO system is involved in mediating lung growth. We analyzed EPOR protein expression in normal dog lung tissue during postnatal maturation and during compensatory lung growth after right pneumonectomy (PNX). Membrane-bound EPOR was significantly more abundant in the immature lung compared with mature lung and in the remaining lung 3 wk after PNX compared with matched sham controls. COOH-terminal cytosolic EPOR peptides, which were even more abundant than membrane-bound EPOR, were also upregulated in immature lung but differentially processed after PNX. Apoptosis was enhanced during both types of lung growth in direct relationship to cellular proliferation and EPOR expression. We conclude that both developmental and compensatory lung growth involve paracrine EPO signaling with parallel upregulation but differential processing of EPOR.
Collapse
Affiliation(s)
- David J Foster
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9034, USA
| | | | | |
Collapse
|
186
|
Cuzzocrea S, Mazzon E, Di Paola R, Patel NSA, Genovese T, Muià C, De Sarro A, Thiemermann C. Erythropoietin reduces the development of experimental inflammatory bowel disease. J Pharmacol Exp Ther 2004; 311:1272-80. [PMID: 15302898 DOI: 10.1124/jpet.104.073197] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Inflammatory bowel disease is characterized by oxidative and nitrosative stress, leukocyte infiltration, and up-regulation of the expression of intercellular adhesion molecule-1 (ICAM-1) in the colon. Erythropoietin (EPO) is a potent stimulator of erythroid progenitor cells, and its expression is enhanced by hypoxia. Here we investigate the effects EPO has on the development of experimental colitis. To address this question, we used an experimental model of colitis induced by dinitrobenzene sulfonic acid (DNBS). When compared with DNBS-treated mice, EPO (1000 IU/kg day s.c.)-treated mice subjected to DNBS-induced colitis experienced significantly lower rates in the extent and severity of the histological signs of colon injury. DNBS-treated mice experienced diarrhea and weight loss. At 4 days after administration of DNBS, the mucosa of the colon exhibited large areas of necrosis. Neutrophil infiltration (determined by histology as well as an increase in myeloperoxidase activity in the mucosa) was associated with up-regulation of ICAM-1. Immunohistochemistry for nitrotyrosine and poly(ADP-ribose) showed an intense staining in the inflamed colon. On the contrary, the treatment of DNBS-treated mice with EPO significantly reduced the degree of diarrhea and weight loss caused by administration of DNBS. EPO also caused a substantial reduction of the degree of colon injury, the rise in myeloperoxidase activity (mucosa), and the increase in staining (immunohistochemistry) for nitrotyrosine as well as the up-regulation of ICAM-1 caused by DNBS in the colon. Thus, treatment of rat with EPO reduces the degree of colitis caused by DNBS. We propose that EPO may be useful in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Torre Biologica, Policino Universitario, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Fraidenraich D, Stillwell E, Romero E, Wilkes D, Manova K, Basson C, Benezra R. Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science 2004; 306:247-52. [PMID: 15472070 PMCID: PMC1351017 DOI: 10.1126/science.1102612] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We report that Id knockout mouse embryos display multiple cardiac defects, but mid-gestation lethality is rescued by the injection of 15 wild-type embryonic stem (ES) cells into mutant blastocysts. Myocardial markers altered in Id mutant cells are restored to normal throughout the chimeric myocardium. Intraperitoneal injection of ES cells into female mice before conception also partially rescues the cardiac phenotype with no incorporation of ES cells. Insulin-like growth factor 1, a long-range secreted factor, in combination with WNT5a, a locally secreted factor, likely account for complete reversion of the cardiac phenotype. Thus, ES cells have the potential to reverse congenital defects through Id-dependent local and long-range effects in a mammalian embryo.
Collapse
Affiliation(s)
| | | | | | - David Wilkes
- Molecular Cardiology Laboratory, Greenberg Cardiology Division, Department of Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Katia Manova
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, and
| | - Craig Basson
- Molecular Cardiology Laboratory, Greenberg Cardiology Division, Department of Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Robert Benezra
- Cancer Biology and Genetics Program
- Corresponding author e-mail:
| |
Collapse
|
188
|
Ferrario E, Ferrari L, Bidoli P, De Candis D, Del Vecchio M, De Dosso S, Buzzoni R, Bajetta E. Treatment of cancer-related anemia with epoetin alfa: a review. Cancer Treat Rev 2004; 30:563-75. [PMID: 15325036 DOI: 10.1016/j.ctrv.2004.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Erythropoietin (EPO) is a hematopoietic growth hormone that regulates survival, proliferation, and differentiation of erythroid progenitor cells. A reduction in tissue oxygenation stimulates EPO production, through a complex feedback mechanism. Patients with cancer-related anemia have an inadequate EPO response that is further impaired by cancer treatments such as chemotherapy. Cancer-related anemia substantially impairs patient functioning and may contribute to poor treatment outcomes. A significant number of studies demonstrates that treatment of anemia in cancer patients using recombinant human EPO (rHuEPO, epoetin alfa) significantly increases haemoglobin (Hb) levels, reduces transfusion requirements, and improves quality of life, particularly by relieving fatigue. Recent data also show that epoetin alfa therapy may improve cognitive function in patients receiving chemotherapy. In addition, the correction of anemia may prolong survival by enhancing tumor oxygenation, thus increasing tumor sensitivity to chemotherapy or radiation. The indicated dose of epoetin alfa is 150-300 IU/kg three times per week, but it is commonly dosed at 40,000-60,000 IU once weekly based on trial data and extensive clinical use. Determining the timing of initiation of epoetin alfa is a clinical judgement; however, data suggest that patient functioning declines and the risk of transfusion increases when the Hb level falls under 12 g/dL.
Collapse
Affiliation(s)
- Erminia Ferrario
- Medical Oncology Unit B, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Abstract
Anemia is highly prevalent in patients with chronic heart failure (HF) and is associated with poor clinical outcomes. Multiple mechanisms contribute to anemia in chronic HF, and subnormal compensatory rise in endogenous erythropoietin levels in response to anemia is one contributory factor. Randomized trials with recombinant human erythropoietin therapy in anemic patients with chronic kidney disease and concomitant heart disease have demonstrated a reduction in left ventricular hypertrophy but variable effects on clinical outcome. Preliminary clinical trials in anemic patients with chronic HF demonstrate that erythropoietin therapy is well tolerated and associated with short-term clinical improvement. The optimum target hemoglobin, erythropoietic agent, and dosing regimen, and the role of iron supplementation in patients with chronic HF, are not known. Additional studies are needed to determine the safety and efficacy of long-term erythropoietic therapy in chronic HF patients.
Collapse
Affiliation(s)
- Stuart D Katz
- Yale University School of Medicine, 135 College Street, Suite 301, New Haven, CT 06510, USA.
| |
Collapse
|
190
|
Jelkmann W, Wagner K. Beneficial and ominous aspects of the pleiotropic action of erythropoietin. Ann Hematol 2004; 83:673-86. [PMID: 15322761 DOI: 10.1007/s00277-004-0911-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 06/17/2004] [Indexed: 02/07/2023]
Abstract
The primary function of the glycoprotein hormone erythropoietin (Epo) is to promote red cell production by inhibiting apoptosis of erythrocytic progenitors in hemopoietic tissues. However, functional Epo receptors (Epo-R) have recently been demonstrated in various nonhemopoietic tissues indicating that Epo is a more pleiotropic viability and growth factor. Herein, in vitro and in vivo effects of Epo in the brain and the cardiovascular system are reviewed. In addition, the therapeutic impact of Epo in oncology is considered, including the question of whether Epo might promote tumor growth. Convincing evidence is available that Epo acts as a neurotrophic and neuroprotective factor in the brain. Epo prevents neuronal cells from hypoxia-induced and glutamate-induced cell death. Epo-R is expressed by neurons and glia cells in specific regions of the brain. Epo supports the survival of neurons in the ischemic brain. The neuroprotective potential of Epo has already been confirmed in a clinical trial on patients with acute stroke. With respect to the vasculature, Epo acts on both endothelial and smooth muscle cells. Epo promotes angiogenesis and stimulates the production of endothelin and other vasoactive mediators. In addition, Epo-R is expressed by cardiomyocytes. The role of Epo as a myocardial protectant is at the focus of present research. Epo therapy in tumor patients is practiced primarily to maintain the hemoglobin concentration above the transfusion trigger and to reduce fatigue. In addition, increased tumor oxygenation may improve the efficacy of chemotherapy and radiotherapy. However, tumor cells often express Epo-R. Therefore, careful studies are required to fully exclude that recombinant human Epo (rHuEpo) promotes tumor growth.
Collapse
Affiliation(s)
- Wolfgang Jelkmann
- Institute of Physiology, University of Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany.
| | | |
Collapse
|
191
|
Wessels A, Pérez-Pomares JM. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. ACTA ACUST UNITED AC 2004; 276:43-57. [PMID: 14699633 DOI: 10.1002/ar.a.10129] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
After its initial formation the epicardium forms the outermost cell layer of the heart. As a result of an epithelial-to-mesenchymal transformation (EMT) individual cells delaminate from this primitive epicardial epithelium and migrate into the subepicardial space (Pérez-Pomares et al., Dev Dyn 1997; 210:96-105; Histochem J 1998a;30:627-634). Several studies have demonstrated that these epicardially derived cells (EPDCs) subsequently invade myocardial and valvuloseptal tissues (Mikawa and Fischman, Proc Natl Acad Sci USA 1992;89:9504-9508; Mikawa and Gourdie, Dev Biol 1996;174:221-232; Dettman et al., Dev Biol 1998;193:169-181; Gittenberger de Groot et al., Circ Res 1998;82:1043-1052; Manner, Anat Rec 1999;255:212-226; Pérez-Pomares et al., Dev. Biol. 2002b;247:307-326). A subset of EPDCs continue to differentiate in a variety of different cell types (including coronary endothelium, coronary smooth muscle cells (CoSMCs), interstitial fibroblasts, and atrioventricular cushion mesenchymal cells), whereas other EPDCs remain in a more or less undifferentiated state. Based on its specific characteristics, we consider the EPDC as the ultimate 'cardiac stem cell'. In this review we briefly summarize what is known about events that relate to EPDC development and differentiation while at the same time identifying some of the directions where EPDC-related research might lead us in the near future.
Collapse
Affiliation(s)
- A Wessels
- Department of Cell Biology and Anatomy, Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | |
Collapse
|
192
|
Abstract
The glycoprotein hormone erythropoietin (EPO) is an essential viability and growth factor for the erythrocytic progenitors. EPO is mainly produced in the kidneys. EPO gene expression is induced by hypoxia-inducible transcription factors (HIF). The principal representative of the HIF-family (HIF-1, -2 and -3) is HIF-1, which is composed of an O2-labile alpha-subunit and a constant nuclear beta-subunit. In normoxia, the alpha-subunit of HIF is inactivated following prolyl- and asparaginyl-hydroxylation by means of alpha-oxoglutarate and Fe(2+)-dependent HIF specific dioxygenases. While HIF-1 and HIF-2 activate the EPO gene, HIF-3, GATA-2 and NFkappaB are likely inhibitors of EPO gene transcription. EPO signalling involves tyrosine phosphorylation of the homodimeric EPO receptor and subsequent activation of intracellular antiapoptotic proteins, kinases and transcription factors. Lack of EPO leads to anemia. Treatment with recombinant human EPO (rHuEPO) is efficient and safe in improving the management of the anemia associated with chronic renal failure. RHuEPO analogues with prolonged survival in circulation have been developed. Whether the recent demonstration of EPO receptors in various non-hemopoietic tissues, including tumor cells, is welcome or ominous still needs to be clarified. Evidence suggests that rHuEPO may be a useful neuroprotective agent.
Collapse
|
193
|
Wexler D, Silverberg D, Sheps D, Blum M, Keren G, Iaina A, Schwartz D. Prevalence of anemia in patients admitted to hospital with a primary diagnosis of congestive heart failure. Int J Cardiol 2004; 96:79-87. [PMID: 15203265 DOI: 10.1016/j.ijcard.2003.04.073] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Accepted: 04/06/2003] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To find the prevalence of anemia in patients hospitalized with the primary diagnosis of congestive heart failure (CHF). BACKGROUND There is growing evidence that anemia is common in CHF and may contribute to the high morbidity and mortality associated with this condition. However, there is considerable disagreement about the prevalence of anemia in this condition. METHODS In 338 consecutive patients who were admitted to the medical wards with a primary diagnosis of CHF we extracted from the charts the hemoglobin (Hb), serum creatinine, age, sex, New York Heart Association (NYHA) functional class, presence of smoking, diabetes, hypertension, hyperlipidemia and the primary cardiac etiology of the CHF. Anemia was considered to be present when the Hb on admission was <12 g/dl. RESULTS All the patients were NYHA functional class III-IV. One hundred seventy seven (52.4%) of the 338 patients had a Hb on admission that was <12 g/dl. The mean Hb for the entire group was 12.0+/-1.8 g/dl. One hundred three (51.0%) of the 202 males were anemic compared to 74 (54.4%) of the 136 women. The mean serum creatinine was 1.7+/-1.1 mg/dl. The prevalence of renal insufficiency (serum creatinine >1.5 mg%) was 47.6%. There was a negative correlation between the level of serum creatinine and Hb (r=-0.294) P<0.00001. Of the 177 patients who were anemic, most of 114 (64.4%) had a serum creatinine >1.5 mg/dl. CONCLUSIONS Anemia is a common finding in patients hospitalized with CHF and most anemic CHF patients have some degree of renal insufficiency. In view of the negative effect of anemia on cardiac function, it may be a common and important contributor to the mortality and morbidity of CHF in these patients.
Collapse
Affiliation(s)
- Dov Wexler
- Cardiology and Heart Failure Unit, Tel Aviv Souraski Medical Center, Weizman 6, 64239 Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
194
|
Beleslin-Cokic BB, Cokic VP, Yu X, Weksler BB, Schechter AN, Noguchi CT. Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood 2004; 104:2073-80. [PMID: 15205261 DOI: 10.1182/blood-2004-02-0744] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Erythropoietin (EPO), a hypoxia-inducible cytokine, is required for survival, proliferation, and differentiation of erythroid progenitor cells. EPO can also stimulate proliferation and angiogenesis of endothelial cells that express EPO receptors (EPORs). In this study we investigated the EPO response of vascular endothelial cells at reduced oxygen tension (5% and 2%), in particular the effect of EPO on nitric oxide (NO) release. Endothelial nitric oxide synthase (eNOS) produces NO, which maintains blood pressure homeostasis and blood flow. We find that EPOR is inducible by EPO in primary human endothelial cells of vein (HUVECs) and artery (HUAECs) and cells from a human bone marrow microvascular endothelial line (TrHBMEC) to a much greater extent at low oxygen tension than in room air. We found a corresponding increase in eNOS expression and NO production in response to EPO during hypoxia. Stimulation of NO production was dose dependent on EPO concentration and was maximal at 5 U/mL. NO activates soluble guanosine cyclase to produce cyclic guanosine monophosphate (cGMP), and we observed that EPO induced cGMP activity. These results suggest that low oxygen tension increases endothelial cell capacity to produce NO in response to EPO by induction of both EPOR and eNOS. This effect of EPO on eNOS may be a physiologically relevant mechanism to counterbalance the hypertensive effects of increased hemoglobin-related NO destruction resulting from hypoxia-induced increased red cell mass.
Collapse
Affiliation(s)
- Bojana B Beleslin-Cokic
- Laboratory of Chemical Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1822, USA
| | | | | | | | | | | |
Collapse
|
195
|
Geng YJ. Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure. Ann N Y Acad Sci 2004; 1010:687-97. [PMID: 15033813 DOI: 10.1196/annals.1299.126] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the heart with atherosclerotic coronary disease, chronic ischemia causes progressive loss of cardiovascular cells and ultimately triggers myocardial dysfunctions or heart failure. Various types of stem cells from embryonic and adult tissues have potentials for regenerating functional cardiovascular cells in the heart undergoing ischemic injury. However, native or exogenous stem cells in the ischemic hearts are exposed to various proapoptotic or cytotoxic factors. Furthermore, during repopulation and differentiation, certain numbers of newly produced cells may die by apoptosis during neocardiovascular tissue remodeling and morphogenesis. Embryonic and adult stem cells may have different life spans, as being programmed genetically to apoptosis. The endogenous and environmental factors play important roles in regulation of stem cells, including inflammatory cytokines, growth factors, surface receptors, proteolytic enzymes, mitochondrial respiration, nuclear proteins, telomerase activities, hypoxia-responding proteins, and stem cell-host cell interaction. Clarification of the molecular mechanisms may help us understand and design stem cell therapies.
Collapse
Affiliation(s)
- Yong-Jian Geng
- Center for Cardiovascular Biology and Atherosclerosis, Department of Internal Medicine, The University of Texas, Health Science Center at Houston, Medical School, Texas Heart Institute, Houston, Texas 77030, USA.
| |
Collapse
|
196
|
Fandrey J. Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am J Physiol Regul Integr Comp Physiol 2004; 286:R977-88. [PMID: 15142852 DOI: 10.1152/ajpregu.00577.2003] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hypoxia-inducible expression of the gene encoding for the glycoprotein hormone erythropoietin (EPO) is the paradigm of oxygen-regulated gene expression. EPO is the main regulator of red blood cell production and more than 100 years of research on the regulation of EPO production have led to the identification of a widespread cellular oxygen sensing mechanism. Central to this signaling cascade is the transcription factor complex hypoxia-inducible factor-1 (HIF-1). Meanwhile, it is known that HIF-1 controls more than 50 oxygen-dependent genes and is now recognized as the main regulator of oxygen homoeostasis in the body. In addition to hypoxic induction, expression of the EPO gene is tightly regulated in a tissue-specific manner. During ontogeny, production of EPO required for erythropoiesis is switched from the fetal liver to the kidneys. Here EPO is mainly synthesized in adulthood. Production of EPO has also been found in organs where it has nonerythropoietic functions: EPO is important for development of the brain and is neuroprotective, whereas it stimulates angiogenesis in the reproductive tract and possibly in other organs. Understanding oxygen and tissue-specific regulation of EPO production is of high relevance for physiology. Moreover, this knowledge might be useful for new therapies to treat human diseases.
Collapse
Affiliation(s)
- Joachim Fandrey
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstr. 55, D-45147 Essen, Germany.
| |
Collapse
|
197
|
Abstract
Heart failure is defined as the inability of the heart to pump blood at an amount sufficient to meet the metabolic needs of the body. In heart failure, the inability to meet the body's metabolic needs is based on hemodynamic derangement and suboptimal oxygen-carrying capacity of the blood itself. Current pharmacologic therapy attempts to improve survival and reduce symptomatology by optimizing hemodynamics to increase oxygen delivery, but does not address oxygen-carrying capacity. Unfortunately, there is a high prevalence of anemia in patients with heart failure, which compromises oxygen-carrying capacity, is an independent predictor of mortality, and may be caused in part by pharmacologic agents that confer morbidity and mortality benefits in this population. Recombinant human erythropoietin supplementation improves the functional capacity of the failing myocardium, reverses and antagonizes the detrimental remodeling induced by autoimmune activity, and may reduce mortality and morbidity among patients receiving maximal pharmacologic therapy for heart failure. However, limited clinical data prohibit widespread recommendations for its use in patients with heart failure.
Collapse
Affiliation(s)
- Brian F McBride
- Hartford Hospital Drug Information Center, Hartford, Connecticut 06102-5037, USA
| | | |
Collapse
|
198
|
Abstract
Many forms of cardiovascular disease are associated with cardiomyocyte loss via apoptosis and/or necrosis. Although there is currently debate regarding the level at which adult cardiomyocytes can reenter the cell cycle and proliferate, it is clear that the intrinsic regenerative growth capacity is insufficient to reverse the progression to failure in badly injured hearts. The ability to reactivate cardiomyocyte proliferation in damaged hearts might permit regenerative growth, provided that the nascent cells are able to participate in a functional syncytium with the surviving myocardium. In this review, techniques commonly used to monitor cardiomyocyte cell cycle activity in normal and injured hearts are discussed. In addition, several genetic models are described wherein the expression of fundamental cell cycle regulatory proteins has been altered in cardiomyocytes.
Collapse
Affiliation(s)
- Loren J Field
- Herman B Wells Center and Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, 46202, USA.
| |
Collapse
|
199
|
Wright GL, Hanlon P, Amin K, Steenbergen C, Murphy E, Arcasoy MO. Erythropoietin receptor expression in adult rat cardiomyocytes is associated with an acute cardioprotective effect for recombinant erythropoietin during ischemia-reperfusion injury. FASEB J 2004; 18:1031-3. [PMID: 15059965 DOI: 10.1096/fj.03-1289fje] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Erythropoietin (EPO), the principal hematopoietic cytokine that regulates mammalian erythropoiesis, exhibits diverse cellular effects in non-hematopoietic tissues. The physiologic functions of EPO are mediated by its specific cell-surface receptor EPOR. In this study, we demonstrate EPOR expression in adult rat cardiac myocytes and examine the direct effects of EPO on the heart to investigate whether recombinant EPO may exert an acute cardioprotective effect during ischemia-reperfusion injury. To determine whether EPO is cardioprotective, isolated rat hearts were perfused for 10 min in the Langendorff-mode with Krebs-Henseleit buffer in the absence or presence of brief recombinant EPO treatment while left-ventricular-developed pressure (LVDP) was measured continuously to assess contractile function. The hearts were then subjected to 20 min of normothermic global ischemia followed by 25 min of reperfusion. The post-ischemic recovery of LVDP in the untreated control hearts was 26 +/- 5% of their baseline LVDP, whereas hearts pretreated with EPO exhibited significantly improved post-ischemic recovery to 57 +/- 7%. We used 31P nuclear magnetic resonance (NMR) spectroscopy to determine whether modulation of intracellular pH and/or high-energy phosphate levels during ischemia contributed to EPO-mediated cardioprotection. These experiments revealed that the rapid cardioprotective effect of EPO during ischemia-reperfusion injury was associated with preservation of ATP levels in the ischemic myocardium.
Collapse
Affiliation(s)
- Gary L Wright
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
200
|
Abstract
Erythropoietin (Epo) is a hematopoietic growth factor and cytokine which stimulates erythropoiesis. In recent years, Epo has been shown to have important nonhematopoietic functions in the nervous system. Nonerythropoietic actions of Epo include a critical role in the development, maintenance, protection and repair of the nervous system. A wide variety of experimental studies have shown that Epo and its receptor are expressed in the nervous system and Epo exerts remarkable neuroprotection in cell culture and animal models of nervous system disorders. In this review, we summarize the current knowledge on the neurotrophic and neuroprotective properties of Epo, the mechanisms by which Epo produces neuroprotection and the signal transduction systems regulated by Epo in the nervous system.
Collapse
Affiliation(s)
- Sermin Genc
- Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylul University, Inciralti, 35340, Izmir, Turkey.
| | | | | |
Collapse
|