151
|
Rogers RS, Nishimune H. The role of laminins in the organization and function of neuromuscular junctions. Matrix Biol 2016; 57-58:86-105. [PMID: 27614294 DOI: 10.1016/j.matbio.2016.08.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
Abstract
The synapse between motor neurons and skeletal muscle is known as the neuromuscular junction (NMJ). Proper alignment of presynaptic and post-synaptic structures of motor neurons and muscle fibers, respectively, is essential for efficient motor control of skeletal muscles. The synaptic cleft between these two cells is filled with basal lamina. Laminins are heterotrimer extracellular matrix molecules that are key members of the basal lamina. Laminin α4, α5, and β2 chains specifically localize to NMJs, and these laminin isoforms play a critical role in maintenance of NMJs and organization of synaptic vesicle release sites known as active zones. These individual laminin chains exert their role in organizing NMJs by binding to their receptors including integrins, dystroglycan, and voltage-gated calcium channels (VGCCs). Disruption of these laminins or the laminin-receptor interaction occurs in neuromuscular diseases including Pierson syndrome and Lambert-Eaton myasthenic syndrome (LEMS). Interventions to maintain proper level of laminins and their receptor interactions may be insightful in treating neuromuscular diseases and aging related degeneration of NMJs.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| |
Collapse
|
152
|
Structural basis of laminin binding to the LARGE glycans on dystroglycan. Nat Chem Biol 2016; 12:810-4. [PMID: 27526028 PMCID: PMC5030134 DOI: 10.1038/nchembio.2146] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022]
Abstract
Dystroglycan is a highly glycosylated extracellular matrix receptor with essential functions in skeletal muscle and the nervous system. Reduced matrix binding by α-dystroglycan (α-DG) due to perturbed glycosylation is a pathological feature of several forms of muscular dystrophy. Like-acetylglucosaminyltransferase (LARGE) synthesizes the matrix-binding heteropolysaccharide [-glucuronic acid-β1,3-xylose-α1,3-]n. Using a dual exoglycosidase digestion, we confirm that this polysaccharide is present on native α-DG from skeletal muscle. The atomic details of matrix binding were revealed by a high-resolution crystal structure of laminin G-like (LG) domains 4-5 of laminin α2 bound to a LARGE-synthesized oligosaccharide. A single glucuronic acid-β1,3-xylose disaccharide repeat straddles a Ca2+ ion in the LG4 domain, with oxygen atoms from both sugars replacing Ca2+-bound water molecules. The chelating binding mode accounts for the high affinity of this protein-carbohydrate interaction. These results reveal a novel mechanism of carbohydrate recognition and provide a structural framework for elucidating the mechanisms underlying muscular dystrophy.
Collapse
|
153
|
The multifaceted role of metalloproteinases in physiological and pathological conditions in embryonic and adult brains. Prog Neurobiol 2016; 155:36-56. [PMID: 27530222 DOI: 10.1016/j.pneurobio.2016.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/10/2016] [Accepted: 08/08/2016] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a large family of ubiquitous extracellular endopeptidases, which play important roles in a variety of physiological and pathological conditions, from the embryonic stages throughout adult life. Their extraordinary physiological "success" is due to concomitant broad substrate specificities and strict regulation of their expression, activation and inhibition levels. In recent years, MMPs have gained increasing attention as significant effectors in various aspects of central nervous system (CNS) physiology. Most importantly, they have been recognized as main players in a variety of brain disorders having different etiologies and evolution. A common aspect of these pathologies is the development of acute or chronic neuroinflammation. MMPs play an integral part in determining the result of neuroinflammation, in some cases turning its beneficial outcome into a harmful one. This review summarizes the most relevant studies concerning the physiology of MMPs, highlighting their involvement in both the developing and mature CNS, in long-lasting and acute brain diseases and, finally, in nervous system repair. Recently, a concerted effort has been made in identifying therapeutic strategies for major brain diseases by targeting MMP activities. However, from this revision of the literature appears clear that MMPs have multifaceted functional characteristics, which modulate physiological processes in multiple ways and with multiple consequences. Therefore, when choosing MMPs as possible targets, great care must be taken to evaluate the delicate balance between their activation and inhibition and to determine at which stage of the disease and at what level they become active in order maximize chances of success.
Collapse
|
154
|
Rao PV, Maddala R. Ankyrin-B in lens architecture and biomechanics: Just not tethering but more. BIOARCHITECTURE 2016; 6:39-45. [PMID: 27044909 DOI: 10.1080/19490992.2016.1156284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ankyrins are a family of well-characterized metazoan adaptor proteins that play a key role in linking various membrane-spanning proteins to the underlying spectrin-actin cytoskeleton; a mechanistic understanding of their role in tissue architecture and mechanics, however, remains elusive. Here we comment on a recent study demonstrating a key role for ankyrin-B in maintaining the hexagonal shape and radial alignment of ocular lens fiber cells by regulating the membrane organization of periaxin, dystrophins/dystroglycan, NrCAM and spectrin-actin network of proteins, and revealing that ankyrin-B deficiency impairs fiber cell shape and mechanical properties of the ocular lens. These observations indicate that ankyrin-B plays an important role in maintaining tissue cytoarchitecture, cell shape and biomechanical properties via engaging in key protein: protein interactions required for membrane anchoring and organization of the spectrin-actin skeleton, scaffolding proteins and cell adhesive proteins.
Collapse
Affiliation(s)
- Ponugoti Vasantha Rao
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA.,b Department of Pharmacology & Cancer Biology , Duke University School of Medicine , Durham , NC , USA
| | - Rupalatha Maddala
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA
| |
Collapse
|
155
|
Kreipke RE, Kwon YV, Shcherbata HR, Ruohola-Baker H. Drosophila melanogaster as a Model of Muscle Degeneration Disorders. Curr Top Dev Biol 2016; 121:83-109. [PMID: 28057309 DOI: 10.1016/bs.ctdb.2016.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drosophila melanogaster provides a powerful platform with which researchers can dissect complex genetic questions and biochemical pathways relevant to a vast array of human diseases and disorders. Of particular interest, much work has been done with flies to elucidate the molecular mechanisms underlying muscle degeneration diseases. The fly is particularly useful for modeling muscle degeneration disorders because there are no identified satellite muscle cells to repair adult muscle following injury. This allows for the identification of endogenous processes of muscle degeneration as discrete events, distinguishable from phenotypes due to the lack of stem cell-based regeneration. In this review, we will discuss the ways in which the fruit fly provides a powerful platform with which to study human muscle degeneration disorders.
Collapse
Affiliation(s)
- R E Kreipke
- University of Washington, School of Medicine, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, United States
| | - Y V Kwon
- University of Washington, School of Medicine, Seattle, WA, United States
| | - H R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - H Ruohola-Baker
- University of Washington, School of Medicine, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, United States.
| |
Collapse
|
156
|
Inamori KI, Beedle AM, de Bernabé DBV, Wright ME, Campbell KP. LARGE2-dependent glycosylation confers laminin-binding ability on proteoglycans. Glycobiology 2016; 26:1284-1296. [PMID: 27496765 PMCID: PMC5137251 DOI: 10.1093/glycob/cww075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/08/2016] [Accepted: 07/18/2016] [Indexed: 01/16/2023] Open
Abstract
Both LARGE1 (formerly LARGE) and its paralog LARGE2 are bifunctional glycosyltransferases with xylosy- and glucuronyltransferase activities, and are capable of synthesizing polymers composed of a repeating disaccharide [-3Xylα1,3GlcAβ1-]. Post-translational modification of the O-mannosyl glycan of α-dystroglycan (α-DG) with the polysaccharide is essential for it to act as a receptor for ligands in the extracellular matrix (ECM), and both LARGE paralogs contribute to the modification in vivo. LARGE1 and LARGE2 have different tissue distribution profiles and enzymatic properties; however, the functional difference of the homologs remains to be determined, and α-DG is the only known substrate for the modification by LARGE1 or LARGE2. Here we show that LARGE2 can modify proteoglycans (PGs) with the laminin-binding glycan. We found that overexpression of LARGE2, but not LARGE1, mediates the functional modification on the surface of DG-/-, Pomt1-/- and Fktn-/- embryonic stem cells. We identified a heparan sulfate-PG glypican-4 as a substrate for the LARGE2-dependent modification by affinity purification and subsequent mass spectrometric analysis. Furthermore, we showed that LARGE2 could modify several additional PGs with the laminin-binding glycan, most likely within the glycosaminoglycan (GAG)-protein linkage region. Our results indicate that LARGE2 can modify PGs with the GAG-like polysaccharide composed of xylose and glucuronic acid to confer laminin binding. Thus, LARGE2 may play a differential role in stabilizing the basement membrane and modifying its functions by augmenting the interactions between laminin globular domain-containing ECM proteins and PGs.
Collapse
Affiliation(s)
- Kei-Ichiro Inamori
- Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, and.,Department of Neurology, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242-1101, USA.,Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Aaron M Beedle
- Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, and.,Department of Neurology, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242-1101, USA.,Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602
| | - Daniel Beltrán-Valero de Bernabé
- Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, and.,Department of Neurology, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242-1101, USA
| | - Michael E Wright
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602.,Department of Molecular Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242-1101, USA
| | - Kevin P Campbell
- Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, and .,Department of Neurology, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242-1101, USA
| |
Collapse
|
157
|
Lassa Virus Cell Entry via Dystroglycan Involves an Unusual Pathway of Macropinocytosis. J Virol 2016; 90:6412-6429. [PMID: 27147735 DOI: 10.1128/jvi.00257-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/25/2016] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The pathogenic Old World arenavirus Lassa virus (LASV) causes a severe hemorrhagic fever with a high rate of mortality in humans. Several LASV receptors, including dystroglycan (DG), TAM receptor tyrosine kinases, and C-type lectins, have been identified, suggesting complex receptor use. Upon receptor binding, LASV enters the host cell via an unknown clathrin- and dynamin-independent pathway that delivers the virus to late endosomes, where fusion occurs. Here we investigated the mechanisms underlying LASV endocytosis in human cells in the context of productive arenavirus infection, using recombinant lymphocytic choriomeningitis virus (rLCMV) expressing the LASV glycoprotein (rLCMV-LASVGP). We found that rLCMV-LASVGP entered human epithelial cells via DG using a macropinocytosis-related pathway independently of alternative receptors. Dystroglycan-mediated entry of rLCMV-LASVGP required sodium hydrogen exchangers, actin, and the GTPase Cdc42 and its downstream targets, p21-activating kinase-1 (PAK1) and Wiskott-Aldrich syndrome protein (N-Wasp). Unlike other viruses that enter cells via macropinocytosis, rLCMV-LASVGP entry did not induce overt changes in cellular morphology and hardly affected actin dynamics or fluid uptake. Screening of kinase inhibitors identified protein kinase C, phosphoinositide 3-kinase, and the receptor tyrosine kinase human hepatocyte growth factor receptor (HGFR) to be regulators of rLCMV-LASVGP entry. The HGFR inhibitor EMD 1214063, a candidate anticancer drug, showed antiviral activity against rLCMV-LASVGP at the level of entry. When combined with ribavirin, which is currently used to treat human arenavirus infection, EMD 1214063 showed additive antiviral effects. In sum, our study reveals that DG can link LASV to an unusual pathway of macropinocytosis that causes only minimal perturbation of the host cell and identifies cellular kinases to be possible novel targets for therapeutic intervention. IMPORTANCE Lassa virus (LASV) causes several hundred thousand infections per year in Western Africa, with the mortality rate among hospitalized patients being high. The current lack of a vaccine and the limited therapeutic options at hand make the development of new drugs against LASV a high priority. In the present study, we uncover that LASV entry into human cells via its major receptor, dystroglycan, involves an unusual pathway of macropinocytosis and define a set of cellular factors implicated in the regulation of LASV entry. A screen of kinase inhibitors revealed HGFR to be a possible candidate target for antiviral drugs against LASV. An HGFR candidate inhibitor currently being evaluated for cancer treatment showed potent antiviral activity and additive drug effects with ribavirin, which is used in the clinic to treat human LASV infection. In sum, our study reveals novel fundamental aspects of the LASV-host cell interaction and highlights a possible candidate drug target for therapeutic intervention.
Collapse
|
158
|
Native functionality and therapeutic targeting of arenaviral glycoproteins. Curr Opin Virol 2016; 18:70-5. [PMID: 27104809 DOI: 10.1016/j.coviro.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/08/2016] [Accepted: 04/01/2016] [Indexed: 12/31/2022]
Abstract
Surface glycoproteins direct cellular targeting, attachment, and membrane fusion of arenaviruses and are the primary target for neutralizing antibodies. Despite significant conservation of the glycoprotein architecture across the arenavirus family, there is considerable variation in the molecular recognition mechanisms used during host cell entry. We review recent progress in dissecting these infection events and describe how arenaviral glycoproteins can be targeted by small-molecule antivirals, the natural immune response, and immunoglobulin-based therapeutics. Arenaviral glycoprotein-mediated assembly and infection pathways present numerous opportunities and challenges for therapeutic intervention.
Collapse
|
159
|
Pasquato A, Kunz S. Novel drug discovery approaches for treating arenavirus infections. Expert Opin Drug Discov 2016; 11:383-93. [PMID: 26882218 DOI: 10.1517/17460441.2016.1153626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Arenaviruses are enveloped negative stranded viruses endemic in Africa, Europe and the Americas. Several arenaviruses cause severe viral hemorrhagic fever with high mortality in humans and pose serious public health threats. So far, there are no FDA-approved vaccines and therapeutic options are restricted to the off-label use of ribavirin. The major human pathogenic arenaviruses are classified as Category A agents and require biosafety level (BSL)-4 containment. AREAS COVERED Herein, the authors cover the recent progress in the development of BSL2 surrogate systems that recapitulate the entire or specific steps of the arenavirus life cycle and are serving as powerful platforms for drug discovery. Furthermore, they highlight the identification of selected novel drugs that target individual steps of arenavirus multiplication describing their discovery, their targets, and mode of action. EXPERT OPINION The lack of effective drugs against arenaviruses is an unmatched challenge in current medical virology. Novel technologies have provided important insights into the basic biology of arenaviruses and the mechanisms underlying virus-host cell interaction. Significant progress of our understanding of how the virus invades the host cell paved the way to develop powerful novel screening platforms. Recent efforts have provided a range of promising drug candidates currently under evaluation for therapeutic intervention in vivo.
Collapse
Affiliation(s)
- Antonella Pasquato
- a Institute of Microbiology , University Hospital Center and University of Lausanne , Lausanne , Switzerland
| | - Stefan Kunz
- a Institute of Microbiology , University Hospital Center and University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
160
|
Xu M, Yamada T, Sun Z, Eblimit A, Lopez I, Wang F, Manya H, Xu S, Zhao L, Li Y, Kimchi A, Sharon D, Sui R, Endo T, Koenekoop RK, Chen R. Mutations in POMGNT1 cause non-syndromic retinitis pigmentosa. Hum Mol Genet 2016; 25:1479-88. [PMID: 26908613 DOI: 10.1093/hmg/ddw022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/25/2016] [Indexed: 11/12/2022] Open
Abstract
A growing number of human diseases have been linked to defects in protein glycosylation that affects a wide range of organs. Among them, O-mannosylation is an unusual type of protein glycosylation that is largely restricted to the muscular and nerve system. Consistently, mutations in genes involved in the O-mannosylation pathway result in infantile-onset, severe developmental defects involving skeleton muscle, brain and eye, such as the muscle-eye-brain disease (MIM no. 253280). However, the functional importance of O-mannosylation in these tissues at later stages remains largely unknown. In our study, we have identified recessive mutations in POMGNT1, which encodes an essential component in O-mannosylation pathway, in three unrelated families with autosomal recessive retinitis pigmentosa (RP), but without extraocular involvement. Enzymatic assay of these mutant alleles demonstrate that they greatly reduce the POMGNT1 enzymatic activity and are likely to be hypomorphic. Immunohistochemistry shows that POMGNT1 is specifically expressed in photoreceptor basal body. Taken together, our work identifies a novel disease-causing gene for RP and indicates that proper protein O-mannosylation is not only essential for early organ development, but also important for maintaining survival and function of the highly specialized retinal cells at later stages.
Collapse
Affiliation(s)
- Mingchu Xu
- Department of Molecular and Human Genetics, Human Genome Sequencing Center
| | - Takeyuki Yamada
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Zixi Sun
- Department of Ophthalmology, Peking Union Medical College, Beijing 100730, China
| | - Aiden Eblimit
- Department of Molecular and Human Genetics, Human Genome Sequencing Center
| | - Irma Lopez
- McGill Ocular Genetics Laboratory, McGill University Health Centre, Montreal, Quebec H3H 1P3, Canada and
| | - Feng Wang
- Department of Molecular and Human Genetics, Human Genome Sequencing Center
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Shan Xu
- Department of Molecular and Human Genetics, Human Genome Sequencing Center
| | - Li Zhao
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Structural and Computational Biology and Molecular Biophysics Graduate Program
| | - Yumei Li
- Department of Molecular and Human Genetics, Human Genome Sequencing Center
| | - Adva Kimchi
- Departments of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Dror Sharon
- Departments of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College, Beijing 100730, China
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Robert K Koenekoop
- McGill Ocular Genetics Laboratory, McGill University Health Centre, Montreal, Quebec H3H 1P3, Canada and
| | - Rui Chen
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Structural and Computational Biology and Molecular Biophysics Graduate Program, The Verna and Marrs Mclean Department of Biochemistry and Molecular Biology and Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA,
| |
Collapse
|
161
|
Hepatocyte Growth Factor and Satellite Cell Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:1-25. [PMID: 27003394 DOI: 10.1007/978-3-319-27511-6_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Satellite cells are the "currency" for the muscle growth that is critical to meat production in many species, as well as to phenotypic distinctions in development at the level of species or taxa, and for human muscle growth, function and regeneration. Careful research on the activation and behaviour of satellite cells, the stem cells in skeletal muscle, including cross-species comparisons, has potential to reveal the mechanisms underlying pathological conditions in animals and humans, and to anticipate implications of development, evolution and environmental change on muscle function and animal performance.
Collapse
|
162
|
Yue Y, Binalsheikh IM, Leach SB, Domeier TL, Duan D. Prospect of gene therapy for cardiomyopathy in hereditary muscular dystrophy. Expert Opin Orphan Drugs 2015; 4:169-183. [PMID: 27340611 DOI: 10.1517/21678707.2016.1124039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cardiac involvement is a common feature in muscular dystrophies. It presents as heart failure and/or arrhythmia. Traditionally, dystrophic cardiomyopathy is treated with symptom-relieving medications. Identification of disease-causing genes and investigation on pathogenic mechanisms have opened new opportunities to treat dystrophic cardiomyopathy with gene therapy. Replacing/repairing the mutated gene and/or targeting the pathogenic process/mechanisms using alternative genes may attenuate heart disease in muscular dystrophies. AREAS COVERED Duchenne muscular dystrophy is the most common muscular dystrophy. Duchenne cardiomyopathy has been the primary focus of ongoing dystrophic cardiomyopathy gene therapy studies. Here, we use Duchenne cardiomyopathy gene therapy to showcase recent developments and to outline the path forward. We also discuss gene therapy status for cardiomyopathy associated with limb-girdle and congenital muscular dystrophies, and myotonic dystrophy. EXPERT OPINION Gene therapy for dystrophic cardiomyopathy has taken a slow but steady path forward. Preclinical studies over the last decades have addressed many fundamental questions. Adeno-associated virus-mediated gene therapy has significantly improved the outcomes in rodent models of Duchenne and limb girdle muscular dystrophies. Validation of these encouraging results in large animal models will pave the way to future human trials.
Collapse
Affiliation(s)
- Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri
| | | | - Stacey B Leach
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri
| | - Timothy L Domeier
- Department of Medical Physiology and Pharmacology, School of Medicine, University of Missouri
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri; Department of Neurology, School of Medicine, University of Missouri
| |
Collapse
|
163
|
Dystroglycan Depletion Impairs Actin-Dependent Functions of Differentiated Kasumi-1 Cells. PLoS One 2015; 10:e0144078. [PMID: 26630171 PMCID: PMC4668107 DOI: 10.1371/journal.pone.0144078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/12/2015] [Indexed: 01/20/2023] Open
Abstract
Background Dystroglycan has recently been characterised in blood tissue cells, as part of the dystrophin glycoprotein complex involved in the differentiation process of neutrophils. Purpose In the present study we have investigated the role of dystroglycan in the human promyelocytic leukemic cell line Kasumi-1 differentiated to macrophage-like cells. Methods We characterised the pattern expression and subcellular distribution of dystroglycans in non-differentiated and differentiated Kasumi-1 cells. Results Our results demonstrated by WB and flow cytometer assays that during the differentiation process to macrophages, dystroglycans were down-regulated; these results were confirmed with qRT-PCR assays. Additionally, depletion of dystroglycan by RNAi resulted in altered morphology and reduced properties of differentiated Kasumi-1 cells, including morphology, migration and phagocytic activities although secretion of IL-1β and expression of markers of differentiation are not altered. Conclusion Our findings strongly implicate dystroglycan as a key membrane adhesion protein involved in actin-based structures during the differentiation process in Kasumi-1 cells.
Collapse
|
164
|
Small molecules enhance functional O-mannosylation of Alpha-dystroglycan. Bioorg Med Chem 2015; 23:7661-70. [PMID: 26652968 DOI: 10.1016/j.bmc.2015.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/30/2015] [Accepted: 11/12/2015] [Indexed: 12/23/2022]
Abstract
Alpha-dystroglycan (α-DG), a highly glycosylated receptor for extracellular matrix proteins, plays a critical role in many biological processes. Hypoglycosylation of α-DG results in various types of muscular dystrophies and is also highly associated with progression of majority of cancers. Currently, there are no effective treatments for those devastating diseases. Enhancing functional O-mannosyl glycans (FOG) of α-DG on the cell surfaces is a potential approach to address this unmet challenge. Based on the hypothesis that the cells can up-regulate FOG of α-DG in response to certain chemical stimuli, we developed a cell-based high-throughput screening (HTS) platform for searching chemical enhancers of FOG of α-DG from a large chemical library with 364,168 compounds. Sequential validation of the hits from a primary screening campaign and chemical works led to identification of a cluster of compounds that positively modulate FOG of α-DG on various cell surfaces including patient-derived myoblasts. These compounds enhance FOG of α-DG by almost ten folds, which provide us powerful tools for O-mannosylation studies and potential starting points for the development of drug to treat dystroglycanopathy.
Collapse
|
165
|
Maddala R, Walters M, Brophy PJ, Bennett V, Rao PV. Ankyrin-B directs membrane tethering of periaxin and is required for maintenance of lens fiber cell hexagonal shape and mechanics. Am J Physiol Cell Physiol 2015; 310:C115-26. [PMID: 26538089 DOI: 10.1152/ajpcell.00111.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/31/2015] [Indexed: 12/22/2022]
Abstract
Periaxin (Prx), a PDZ domain protein expressed preferentially in myelinating Schwann cells and lens fibers, plays a key role in membrane scaffolding and cytoarchitecture. Little is known, however, about how Prx is anchored to the plasma membrane. Here we report that ankyrin-B (AnkB), a well-characterized adaptor protein involved in linking the spectrin-actin cytoskeleton to integral membrane proteins, is required for membrane association of Prx in lens fibers and colocalizes with Prx in hexagonal fiber cells. Under AnkB haploinsufficiency, Prx accumulates in the soluble fraction with a concomitant loss from the membrane-enriched fraction of mouse lenses. Moreover, AnkB haploinsufficiency induced age-dependent disruptions in fiber cell hexagonal geometry and radial alignment and decreased compressive stiffness in mouse lenses parallel to the changes observed in Prx null mouse lens. Both AnkB- and Prx-deficient mice exhibit disruptions in membrane organization of the spectrin-actin network and the dystrophin-glycoprotein complex in lens fiber cells. Taken together, these observations reveal that AnkB is required for Prx membrane anchoring and for maintenance of lens fiber cell hexagonal geometry, membrane skeleton organization, and biomechanics.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Mark Walters
- Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina
| | - Peter J Brophy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Vann Bennett
- Howard Hughes Medical Institute, Chevy Chase, Maryland; Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina; and
| | - Ponugoti V Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
166
|
Jensen BS, Willer T, Saade DN, Cox MO, Mozaffar T, Scavina M, Stefans VA, Winder TL, Campbell KP, Moore SA, Mathews KD. GMPPB-Associated Dystroglycanopathy: Emerging Common Variants with Phenotype Correlation. Hum Mutat 2015; 36:1159-63. [PMID: 26310427 DOI: 10.1002/humu.22898] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/12/2015] [Indexed: 11/11/2022]
Abstract
Mutations in GDP-mannose pyrophosphorylase B (GMPPB), a catalyst for the formation of the sugar donor GDP-mannose, were recently identified as a cause of muscular dystrophy resulting from abnormal glycosylation of α-dystroglycan. In this series, we report nine unrelated individuals with GMPPB-associated dystroglycanopathy. The most mildly affected subject has normal strength at 25 years, whereas three severely affected children presented in infancy with intellectual disability and epilepsy. Muscle biopsies of all subjects are dystrophic with abnormal immunostaining for glycosylated α-dystroglycan. This cohort, together with previously published cases, allows preliminary genotype-phenotype correlations to be made for the emerging GMPPB common variants c.79G>C (p.D27H) and c.860G>A (p.R287Q). We observe that c.79G>C (p.D27H) is associated with a mild limb-girdle muscular dystrophy phenotype, whereas c.860G>A (p.R287Q) is associated with a relatively severe congenital muscular dystrophy typically involving brain development. Sixty-six percent of GMPPB families to date have one of these common variants.
Collapse
Affiliation(s)
- Braden S Jensen
- Departments of Pediatrics and Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Tobias Willer
- Howard Hughes Medical Institute, Departments of Molecular Physiology and Biophysics, Neurology, and Internal Medicine, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Dimah N Saade
- Departments of Pediatrics and Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Mary O Cox
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Tahseen Mozaffar
- Departments of Neurology and Orthopaedic Surgery, University of California, Irvine, California
| | - Mena Scavina
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Vikki A Stefans
- Departments of Pediatrics and Physical Medicine and Rehabilitation, University of Arkansas for Medical Sciences College of Medicine, Little Rock, Arkansas
| | - Thomas L Winder
- Invitae Corp, San Francisco, California.,Prevention Genetics, Marshfield, Wisconsin
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Departments of Molecular Physiology and Biophysics, Neurology, and Internal Medicine, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Steven A Moore
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Katherine D Mathews
- Departments of Pediatrics and Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
167
|
Milcheva R, Ivanov D, Iliev I, Russev R, Petkova S, Babal P. Increased sialylation as a phenomenon in accommodation of the parasitic nematode Trichinella spiralis (Owen, 1835) in skeletal muscle fibres. Folia Parasitol (Praha) 2015; 62. [PMID: 26373236 DOI: 10.14411/fp.2015.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/01/2015] [Indexed: 01/09/2023]
Abstract
The biology of sialic acids has been an object of interest in many models of acquired and inherited skeletal muscle pathology. The present study focuses on the sialylation changes in mouse skeletal muscle after invasion by the parasitic nematode Trichinella spiralis (Owen, 1835). Asynchronous infection with T. spiralis was induced in mice that were sacrificed at different time points of the muscle phase of the disease. The amounts of free sialic acid, sialylated glycoproteins and total sialyltransferase activity were quantified. Histochemistry with lectins specific for sialic acid was performed in order to localise distribution of sialylated glycoconjugates and to clarify the type of linkage of the sialic acid residues on the carbohydrate chains. Elevated intracellular accumulation of α-2,3- and α-2,6-sialylated glycoconjugates was found only within the affected sarcoplasm of muscle fibres invaded by the parasite. The levels of free and protein-bound sialic acid were increased and the total sialyltransferase activity was also elevated in the skeletal muscle tissue of animals with trichinellosis. We suggest that the biological significance of this phenomenon might be associated with securing integrity of the newly formed nurse cell within the surrounding healthy skeletal muscle tissue. The increased sialylation might inhibit the affected muscle cell contractility through decreased membrane ion gating, helping the parasite accommodation process.
Collapse
Affiliation(s)
- Rositsa Milcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria.,Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Dimitar Ivanov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Russy Russev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Svetlozara Petkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Pavel Babal
- Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
168
|
Adams JC, Brancaccio A. The evolution of the dystroglycan complex, a major mediator of muscle integrity. Biol Open 2015; 4:1163-79. [PMID: 26319583 PMCID: PMC4582122 DOI: 10.1242/bio.012468] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Basement membrane (BM) extracellular matrices are crucial for the coordination of different tissue layers. A matrix adhesion receptor that is important for BM function and stability in many mammalian tissues is the dystroglycan (DG) complex. This comprises the non-covalently-associated extracellular α-DG, that interacts with laminin in the BM, and the transmembrane β-DG, that interacts principally with dystrophin to connect to the actin cytoskeleton. Mutations in dystrophin, DG, or several enzymes that glycosylate α-DG underlie severe forms of human muscular dystrophy. Nonwithstanding the pathophysiological importance of the DG complex and its fundamental interest as a non-integrin system of cell-ECM adhesion, the evolution of DG and its interacting proteins is not understood. We analysed the phylogenetic distribution of DG, its proximal binding partners and key processing enzymes in extant metazoan and relevant outgroups. We identify that DG originated after the divergence of ctenophores from porifera and eumetazoa. The C-terminal half of the DG core protein is highly-conserved, yet the N-terminal region, that includes the laminin-binding region, has undergone major lineage-specific divergences. Phylogenetic analysis based on the C-terminal IG2_MAT_NU region identified three distinct clades corresponding to deuterostomes, arthropods, and mollusks/early-diverging metazoans. Whereas the glycosyltransferases that modify α-DG are also present in choanoflagellates, the DG-binding proteins dystrophin and laminin originated at the base of the metazoa, and DG-associated sarcoglycan is restricted to cnidarians and bilaterians. These findings implicate extensive functional diversification of DG within invertebrate lineages and identify the laminin-DG-dystrophin axis as a conserved adhesion system that evolved subsequent to integrin-ECM adhesion, likely to enhance the functional complexity of cell-BM interactions in early metazoans.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Andrea Brancaccio
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Roma 00168, Italy
| |
Collapse
|
169
|
Zhang C, Hu B, Xiao L, Liu Y, Wang P. Pseudotyping lentiviral vectors with lymphocytic choriomeningitis virus glycoproteins for transduction of dendritic cells and in vivo immunization. Hum Gene Ther Methods 2015; 25:328-38. [PMID: 25416034 DOI: 10.1089/hgtb.2014.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lentiviral vectors (LVs) are promising delivery systems for gene therapy, and they can be further engineered to increase their potential for effectively delivering transgenes to desired cell populations. Here, we have engineered LVs pseudotyped with envelope glycoproteins derived from lymphocytic choriomeningitis virus (LCMV) for antigen delivery to elicit vaccine-directed immune responses. Two variants, LCMV-WE and LCMV-Arm53b, were evaluated for their ability to mediate LV-based cellular transduction in vitro. LCMV-WE with a leucine residue at position 260 (260L) is known for its high-affinity binding with a cellular receptor, α-dystroglycan (α-DG), whereas LCMV-Arm53b has low-affinity binding resulting from a phenylalanine residue at the same position. In contrast to LCMV-Arm53b, we found that LVs pseudotyped with LCMV-WE could transduce 293T cells and murine dendritic cells much more efficiently based, at least in part, on their favorable interaction with α-DG. In mice, LCMV-WE-bearing LVs encoding a model antigen, invariant chain ovalbumin, could elicit substantial antigen-specific CD8(+) T cell immune response. The response could be further enhanced by a homologous boosting immunization with the same vector. These findings offer evidence to support the potential utilization of LCMV-WE-bearing LVs for vectored vaccines against cancer and infectious diseases.
Collapse
Affiliation(s)
- Chupei Zhang
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, CA 90089
| | | | | | | | | |
Collapse
|
170
|
Abstract
Muscle fibres are very specialised cells with a complex structure that requires a high level of organisation of the constituent proteins. For muscle contraction to function properly, there is a need for not only sarcomeres, the contractile structures of the muscle fibre, but also costameres. These are supramolecular structures associated with the sarcolemma that allow muscle adhesion to the extracellular matrix. They are composed of protein complexes that interact and whose functions include maintaining cell structure and signal transduction mediated by their constituent proteins. It is important to improve our understanding of these structures, as mutations in various genes that code for costamere proteins cause many types of muscular dystrophy. In this review, we provide a description of costameres detailing each of their constituent proteins, such as dystrophin, dystrobrevin, syntrophin, sarcoglycans, dystroglycans, vinculin, talin, integrins, desmin, plectin, etc. We describe as well the diseases associated with deficiency thereof, providing a general overview of their importance.
Collapse
|
171
|
Nakagawa N, Yagi H, Kato K, Takematsu H, Oka S. Ectopic clustering of Cajal-Retzius and subplate cells is an initial pathological feature in Pomgnt2-knockout mice, a model of dystroglycanopathy. Sci Rep 2015; 5:11163. [PMID: 26060116 PMCID: PMC4461912 DOI: 10.1038/srep11163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/18/2015] [Indexed: 11/09/2022] Open
Abstract
Aberrant glycosylation of dystroglycan causes congenital muscular dystrophies associated with cobblestone lissencephaly, classified as dystroglycanopathy. However, pathological features in the onset of brain malformations, including the precise timing and primary cause of the pial basement membrane disruption and abnormalities in the migration of pyramidal neurons, remain unexplored. Using the Pomgnt2-knockout (KO) mouse as a dystroglycanopathy model, we show that breaches of the pial basement membrane appeared at embryonic day 11.5, coinciding with the ectopic clustering of Cajal-Retzius cells and subplate neurons and prior to the migration onset of pyramidal neurons. Furthermore, in the Pomgnt2-KO cerebral cortex, preplate splitting failure likely occurred due to the aggregation of Cajal-Retzius and subplate cells, and migrating pyramidal neurons lost polarity and radial orientation. Our findings demonstrate the initial pathological events in dystroglycanopathy mice and contribute to our understanding of how dystroglycan dysfunction affects brain development and progresses to cobblestone lissencephaly.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Koichi Kato
- 1] Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan [2] Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki 444-8787, Japan
| | - Hiromu Takematsu
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
172
|
Bijata M, Wlodarczyk J, Figiel I. Dystroglycan controls dendritic morphogenesis of hippocampal neurons in vitro. Front Cell Neurosci 2015; 9:199. [PMID: 26074769 PMCID: PMC4443029 DOI: 10.3389/fncel.2015.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/09/2015] [Indexed: 11/13/2022] Open
Abstract
Dendritic outgrowth and arborization are important for establishing neural circuit formation. To date, little information exists about the involvement of the extracellular matrix (ECM) and its cellular receptors in these processes. In our studies, we focus on the role of dystroglycan (DG), a cell adhesion molecule that links ECM components to the actin cytoskeleton, in dendritic development and branching. Using a lentiviral vector to deliver short-hairpin RNA (shRNA) that specifically silences DG in cultured hippocampal neurons, we found that DG knockdown exerted an inhibitory effect on dendritic tree growth and arborization. The structural changes were associated with activation of the guanosine triphosphatase Cdc42. The overexpression of DG promoted dendritic length and branching. Furthermore, exposure of the cultures to autoactivating matrix metalloproteinase-9 (aaMMP-9), a β-DG-cleaving protease, decreased the complexity of dendritic arbors. This effect was abolished in neurons that overexpressed a β-DG mutant that was defective in MMP-9-mediated cleavage. Altogether, our results indicate that DG controls dendritic arborization in vitro in MMP-9-dependent manner.
Collapse
Affiliation(s)
- Monika Bijata
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology Warsaw, Poland
| |
Collapse
|
173
|
The dystroglycan: Nestled in an adhesome during embryonic development. Dev Biol 2015; 401:132-42. [DOI: 10.1016/j.ydbio.2014.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/23/2014] [Accepted: 07/08/2014] [Indexed: 01/11/2023]
|
174
|
Bozzi M, Sciandra F, Brancaccio A. Role of gelatinases in pathological and physiological processes involving the dystrophin–glycoprotein complex. Matrix Biol 2015; 44-46:130-7. [DOI: 10.1016/j.matbio.2015.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/16/2022]
|
175
|
The Structure of the T190M Mutant of Murine α-Dystroglycan at High Resolution: Insight into the Molecular Basis of a Primary Dystroglycanopathy. PLoS One 2015; 10:e0124277. [PMID: 25932631 PMCID: PMC4416926 DOI: 10.1371/journal.pone.0124277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/12/2015] [Indexed: 11/19/2022] Open
Abstract
The severe dystroglycanopathy known as a form of limb-girdle muscular dystrophy (LGMD2P) is an autosomal recessive disease caused by the point mutation T192M in α-dystroglycan. Functional expression analysis in vitro and in vivo indicated that the mutation was responsible for a decrease in posttranslational glycosylation of dystroglycan, eventually interfering with its extracellular-matrix receptor function and laminin binding in skeletal muscle and brain. The X-ray crystal structure of the missense variant T190M of the murine N-terminal domain of α-dystroglycan (50-313) has been determined, and showed an overall topology (Ig-like domain followed by a basket-shaped domain reminiscent of the small subunit ribosomal protein S6) very similar to that of the wild-type structure. The crystallographic analysis revealed a change of the conformation assumed by the highly flexible loop encompassing residues 159-180. Moreover, a solvent shell reorganization around Met190 affects the interaction between the B1-B5 anti-parallel strands forming part of the floor of the basket-shaped domain, with likely repercussions on the folding stability of the protein domain(s) and on the overall molecular flexibility. Chemical denaturation and limited proteolysis experiments point to a decreased stability of the T190M variant with respect to its wild-type counterpart. This mutation may render the entire L-shaped protein architecture less flexible. The overall reduced flexibility and stability may affect the functional properties of α-dystroglycan via negatively influencing its binding behavior to factors needed for dystroglycan maturation, and may lay the molecular basis of the T190M-driven primary dystroglycanopathy.
Collapse
|
176
|
Quantitative T2 combined with texture analysis of nuclear magnetic resonance images identify different degrees of muscle involvement in three mouse models of muscle dystrophy: mdx, Largemyd and mdx/Largemyd. PLoS One 2015; 10:e0117835. [PMID: 25710816 PMCID: PMC4339395 DOI: 10.1371/journal.pone.0117835] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/01/2015] [Indexed: 11/19/2022] Open
Abstract
Quantitative nuclear magnetic resonance imaging (MRI) has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant—T2—measurements) to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice. The results were compared to histopathological findings. MRI showed increased intermuscular fat and higher muscle T2 in the three dystrophic mouse models when compared to the wild-type mice (T2: mdx/Largemyd: 37.6±2.8 ms; mdx: 35.2±4.5 ms; Largemyd: 36.6±4.0 ms; wild-type: 29.1±1.8 ms, p<0.05), in addition to higher muscle T2 in the mdx/Largemyd mice when compared to mdx (p<0.05). The areas with increased muscle T2 in the MRI correlated spatially with the identified histopathological alterations such as necrosis, inflammation, degeneration and regeneration foci. Nevertheless, muscle T2 values were not correlated with the severity of the phenotype in the 3 dystrophic mouse strains, since the severely affected Largemyd showed similar values than both the mild mdx and worst mdx/Largemyd lineages. On the other hand, all studied mouse strains could be unambiguously identified with texture analysis, which reflected the observed differences in the distribution of signals in muscle MRI. Thus, combined T2 intensity maps and texture analysis is a powerful approach for the characterization and differentiation of dystrophic muscles with diverse genotypes and phenotypes. These new findings provide important noninvasive tools in the evaluation of the efficacy of new therapies, and most importantly, can be directly applied in human translational research.
Collapse
|
177
|
Ohtsuka Y, Kanagawa M, Yu CC, Ito C, Chiyo T, Kobayashi K, Okada T, Takeda S, Toda T. Fukutin is prerequisite to ameliorate muscular dystrophic phenotype by myofiber-selective LARGE expression. Sci Rep 2015; 5:8316. [PMID: 25661440 PMCID: PMC4321163 DOI: 10.1038/srep08316] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/13/2015] [Indexed: 12/22/2022] Open
Abstract
α-Dystroglycanopathy (α-DGP) is a group of muscular dystrophy characterized by abnormal glycosylation of α-dystroglycan (α-DG), including Fukuyama congenital muscular dystrophy (FCMD), muscle-eye-brain disease, Walker-Warburg syndrome, and congenital muscular dystrophy type 1D (MDC1D), etc. LARGE, the causative gene for MDC1D, encodes a glycosyltransferase to form [-3Xyl-α1,3GlcAβ1-] polymer in the terminal end of the post-phosphoryl moiety, which is essential for α-DG function. It has been proposed that LARGE possesses the great potential to rescue glycosylation defects in α-DGPs regardless of causative genes. However, the in vivo therapeutic benefit of using LARGE activity is controversial. To explore the conditions needed for successful LARGE gene therapy, here we used Large-deficient and fukutin-deficient mouse models for MDC1D and FCMD, respectively. Myofibre-selective LARGE expression via systemic adeno-associated viral gene transfer ameliorated dystrophic pathology of Large-deficient mice even when intervention occurred after disease manifestation. However, the same strategy failed to ameliorate the dystrophic phenotype of fukutin-conditional knockout mice. Furthermore, forced expression of Large in fukutin-deficient embryonic stem cells also failed to recover α-DG glycosylation, however coexpression with fukutin strongly enhanced α-DG glycosylation. Together, our data demonstrated that fukutin is required for LARGE-dependent rescue of α-DG glycosylation, and thus suggesting new directions for LARGE-utilizing therapy targeted to myofibres.
Collapse
Affiliation(s)
- Yoshihisa Ohtsuka
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Chih-Chieh Yu
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Chiyomi Ito
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Tomoko Chiyo
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, 187-8502, Japan
| | - Kazuhiro Kobayashi
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Takashi Okada
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, 187-8502, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, 187-8502, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| |
Collapse
|
178
|
Peng J, Awad A, Sar S, Komaiha OH, Moyano R, Rayal A, Samuel D, Shewan A, Vanhaesebroeck B, Mostov K, Gassama-Diagne A. Phosphoinositide 3-kinase p110δ promotes lumen formation through the enhancement of apico-basal polarity and basal membrane organization. Nat Commun 2015; 6:5937. [PMID: 25583025 PMCID: PMC5094449 DOI: 10.1038/ncomms6937] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/22/2014] [Indexed: 01/04/2023] Open
Abstract
Signalling triggered by adhesion to the extracellular matrix plays a key role in the spatial orientation of epithelial polarity and formation of lumens in glandular tissues. Phosphoinositide 3-kinase signalling in particular is known to influence the polarization process during epithelial cell morphogenesis. Here, using Madin-Darby canine kidney epithelial cells grown in 3D culture, we show that the p110δ isoform of phosphoinositide 3-kinase co-localizes with focal adhesion proteins at the basal surface of polarized cells. Pharmacological, siRNA- or kinase-dead-mediated inhibition of p110δ impair the early stages of lumen formation, resulting in inverted polarized cysts, with no laminin or type IV collagen assembly at cell/extracellular matrix contacts. p110δ also regulates the organization of focal adhesions and membrane localization of dystroglycan. Thus, we uncover a previously unrecognized role for p110δ in epithelial cells in the orientation of the apico-basal axis and lumen formation.
Collapse
Affiliation(s)
- Juan Peng
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Aline Awad
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Sokhavuth Sar
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Ola Hamze Komaiha
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Romina Moyano
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Amel Rayal
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Didier Samuel
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, F-94800 Villejuif, France
| | - Annette Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Bart Vanhaesebroeck
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street London WC1E 6BT, UK
| | - Keith Mostov
- Departments of Anatomy, and Biochemistry and Biophysics, University of California San Francisco, School of Medicine, 600 16th Street, San Francisco, CA 94143-2140
| | - Ama Gassama-Diagne
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| |
Collapse
|
179
|
Humphrey EL, Lacey E, Le LT, Feng L, Sciandra F, Morris CR, Hewitt JE, Holt I, Brancaccio A, Barresi R, Sewry CA, Brown SC, Morris GE. A new monoclonal antibody DAG-6F4 against human alpha-dystroglycan reveals reduced core protein in some, but not all, dystroglycanopathy patients. Neuromuscul Disord 2015; 25:32-42. [DOI: 10.1016/j.nmd.2014.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 11/28/2022]
|
180
|
Rigo F, Seth PP, Bennett CF. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:303-52. [PMID: 25201110 DOI: 10.1007/978-1-4939-1221-6_9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Before a messenger RNA (mRNA) is translated into a protein in the cytoplasm, its pre-mRNA precursor is extensively processed through capping, splicing and polyadenylation in the nucleus. Defects in the processing of pre-mRNAs due to mutations in RNA sequences often cause disease. Traditional small molecules or protein-based therapeutics are not well suited for correcting processing defects by targeting RNA. However, antisense oligonucleotides (ASOs) designed to bind RNA by Watson-Crick base pairing can target most RNA transcripts and have emerged as the ideal therapeutic agents for diseases that are caused by pre-mRNA processing defects. Here we review the diverse ASO-based mechanisms that can be exploited to modulate the expression of RNA. We also discuss how advancements in medicinal chemistry and a deeper understanding of the pharmacokinetic and toxicological properties of ASOs have enabled their use as therapeutic agents. We end by describing how ASOs have been used successfully to treat various pre-mRNA processing diseases in animal models.
Collapse
Affiliation(s)
- Frank Rigo
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, USA,
| | | | | |
Collapse
|
181
|
Sbardella D, Sciandra F, Gioia M, Marini S, Gori A, Giardina B, Tarantino U, Coletta M, Brancaccio A, Bozzi M. α-dystroglycan is a potential target of matrix metalloproteinase MMP-2. Matrix Biol 2014; 41:2-7. [PMID: 25483986 DOI: 10.1016/j.matbio.2014.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/28/2014] [Accepted: 11/30/2014] [Indexed: 11/28/2022]
Abstract
Dystroglycan (DG) is a member of the glycoprotein complex associated to dystrophin and composed by two subunits, the β-DG, a transmembrane protein, and the α-DG, an extensively glycosylated extracellular protein. The β-DG ectodomain degradation by the matrix metallo-proteinases (i.e., MMP-2 and MMP-9) in both, pathological and physiological conditions, has been characterized in detail in previous publications. Since the amounts of α-DG and β-DG at the cell surface decrease when gelatinases are up-regulated, we investigated the degradation of α-DG subunit by MMP-2. Present data show, for the first time, that the proteolysis of α-DG indeed occurs on a native glycosylated molecule enriched from rabbit skeletal muscle. In order to characterize the α-DG portion, which is more prone to cleavage by MMP-2, we performed different degradations on tailored recombinant domains of α-DG spanning the whole subunit. The overall bulk of results casts light on a relevant susceptibility of the α-DG to MMP-2 degradation with particular reference to its C-terminal domain, thus opening a new scenario on the role of gelatinases (in particular of MMP-2) in the degradation of this glycoprotein complex, taking place in the course of pathological processes.
Collapse
Affiliation(s)
- Diego Sbardella
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Francesca Sciandra
- Istituto di Chimica del Riconoscimento Molecolare (CNR) c/c Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Magda Gioia
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Stefano Marini
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare (CNR), Milan, Italy
| | - Bruno Giardina
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Tarantino
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Massimo Coletta
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Andrea Brancaccio
- Istituto di Chimica del Riconoscimento Molecolare (CNR) c/c Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Manuela Bozzi
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
182
|
Theiler RN, Snyder RR, Theiler SK. Dystroglycan in human fetal membranes decreases in later gestation and with spontaneous membrane rupture. Gynecol Obstet Invest 2014; 79:244-9. [PMID: 25341560 DOI: 10.1159/000367894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/26/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The transmembrane protein dystroglycan (DG) is known to anchor the cell membrane to the extracellular matrix, and is susceptible to cleavage by matrix metalloproteinases. This study tested the hypothesis that changes in DG abundance in fetal membranes (FM) occur late in gestation, with spontaneous rupture of membranes (SROM), and during labor. METHODS FM were collected from a prospective cohort consisting of four groups of patients (term labor, term unlabored, preterm labor, and preterm unlabored). FM were subjected to immunohistochemical staining using antibodies specific for α- and β-DG subunits, and staining intensity was graded by a blinded pathologist. RESULTS α- and β-DG staining was significantly decreased at term and after SROM (p < 0.05), but not in the presence of labor. CONCLUSIONS Decreased DG intensity was seen in FM of patients at term and with SROM, but no change was observed with labor.
Collapse
Affiliation(s)
- Regan N Theiler
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Tex., USA
| | | | | |
Collapse
|
183
|
Praissman JL, Live DH, Wang S, Ramiah A, Chinoy ZS, Boons GJ, Moremen KW, Wells L. B4GAT1 is the priming enzyme for the LARGE-dependent functional glycosylation of α-dystroglycan. eLife 2014; 3:e03943. [PMID: 25279697 PMCID: PMC4227051 DOI: 10.7554/elife.03943] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/01/2014] [Indexed: 12/16/2022] Open
Abstract
Recent studies demonstrated that mutations in B3GNT1, an enzyme proposed to be involved in poly-N-acetyllactosamine synthesis, were causal for congenital muscular dystrophy with hypoglycosylation of α-dystroglycan (secondary dystroglycanopathies). Since defects in the O-mannosylation protein glycosylation pathway are primarily responsible for dystroglycanopathies and with no established O-mannose initiated structures containing a β3 linked GlcNAc known, we biochemically interrogated this human enzyme. Here we report this enzyme is not a β-1,3-N-acetylglucosaminyltransferase with catalytic activity towards β-galactose but rather a β-1,4-glucuronyltransferase, designated B4GAT1, towards both α- and β-anomers of xylose. The dual-activity LARGE enzyme is capable of extending products of B4GAT1 and we provide experimental evidence that B4GAT1 is the priming enzyme for LARGE. Our results further define the functional O-mannosylated glycan structure and indicate that B4GAT1 is involved in the initiation of the LARGE-dependent repeating disaccharide that is necessary for extracellular matrix protein binding to O-mannosylated α-dystroglycan that is lacking in secondary dystroglycanopathies.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - David H Live
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Shuo Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Annapoorani Ramiah
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Zoeisha S Chinoy
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| |
Collapse
|
184
|
Willer T, Inamori KI, Venzke D, Harvey C, Morgensen G, Hara Y, Beltrán Valero de Bernabé D, Yu L, Wright KM, Campbell KP. The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation. eLife 2014; 3. [PMID: 25279699 PMCID: PMC4227050 DOI: 10.7554/elife.03941] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022] Open
Abstract
Dystroglycan is a cell membrane receptor that organizes the basement membrane by binding ligands in the extracellular matrix. Proper glycosylation of the α-dystroglycan (α-DG) subunit is essential for these activities, and lack thereof results in neuromuscular disease. Currently, neither the glycan synthesis pathway nor the roles of many known or putative glycosyltransferases that are essential for this process are well understood. Here we show that FKRP, FKTN, TMEM5 and B4GAT1 (formerly known as B3GNT1) localize to the Golgi and contribute to the O-mannosyl post-phosphorylation modification of α-DG. Moreover, we assigned B4GAT1 a function as a xylose β1,4-glucuronyltransferase. Nuclear magnetic resonance studies confirmed that a glucuronic acid β1,4-xylose disaccharide synthesized by B4GAT1 acts as an acceptor primer that can be elongated by LARGE with the ligand-binding heteropolysaccharide. Our findings greatly broaden the understanding of α-DG glycosylation and provide mechanistic insight into why mutations in B4GAT1 disrupt dystroglycan function and cause disease. DOI:http://dx.doi.org/10.7554/eLife.03941.001 Dystroglycan is a protein that is critical for the proper function of many tissues, especially muscles and brain. Dystroglycan helps to connect the structural network inside the cell with the matrix outside of the cell. The extracellular matrix fills the space between the cells to serve as a scaffold and hold cells together within a tissue. It is well established that the interaction of cells with their extracellular environments is important for structuring tissues, as well as for helping cells to specialize and migrate. These interactions also play a role in the progression of cancer. As is the case for many proteins, dystroglycan must be modified with particular sugar molecules in order to work correctly. Enzymes called glycosyltransferases are responsible for sequentially assembling a complex array of sugar molecules on dystroglycan. This modification is essential for making dystroglycan ‘sticky’, so it can bind to the components of the extracellular matrix. If sugar molecules are added incorrectly, dystroglycan loses its ability to bind to these components. This causes congenital muscular dystrophies, a group of diseases that are characterized by a progressive loss of muscle function. Willer et al. use a wide range of experimental techniques to investigate the types of sugar molecules added to dystroglycan, the overall structure of the resulting ‘sticky’ complex and the mechanism whereby it is built. This reveals that a glycosyltransferase known as B3GNT1 is one of the enzymes responsible for adding a sugar molecule to the complex. This enzyme was first described in the literature over a decade ago, and the name B3GNT1 was assigned, according to a code, to reflect the sugar molecule it was thought to transfer to proteins. However, Willer et al. (and independently, Praissman et al.) find that this enzyme actually attaches a different sugar modification to dystroglycan, and so should therefore be called B4GAT1 instead. Willer et al. find that the sugar molecule added by the B4GAT1 enzyme acts as a platform for the assembly of a much larger sugar polymer that cells use to anchor themselves within a tissue. Some viruses–including Lassa virus, which causes severe fever and bleeding–also use the ‘sticky’ sugar modification of dystroglycan to bind to and invade cells, causing disease in humans. Understanding the structure of this complex, and how these sugar modifications are added to dystroglycan, could therefore help to develop treatments for a wide range of diseases like progressive muscle weakening and viral infections. DOI:http://dx.doi.org/10.7554/eLife.03941.002
Collapse
Affiliation(s)
- Tobias Willer
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, United States
| | - Kei-Ichiro Inamori
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, United States
| | - David Venzke
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, United States
| | - Corinne Harvey
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, United States
| | - Greg Morgensen
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, United States
| | - Yuji Hara
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, United States
| | | | - Liping Yu
- Medical Nuclear Magnetic Resonance Facility, University of Iowa, Carver College of Medicine, Iowa City, United States
| | - Kevin M Wright
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Kevin P Campbell
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, United States
| |
Collapse
|
185
|
Levery SB, Steentoft C, Halim A, Narimatsu Y, Clausen H, Vakhrushev SY. Advances in mass spectrometry driven O-glycoproteomics. Biochim Biophys Acta Gen Subj 2014; 1850:33-42. [PMID: 25284204 DOI: 10.1016/j.bbagen.2014.09.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Global analyses of proteins and their modifications by mass spectrometry are essential tools in cell biology and biomedical research. Analyses of glycoproteins represent particular challenges and we are only at the beginnings of the glycoproteomic era. Some of the challenges have been overcome with N-glycoproteins and proteome-wide analysis of N-glycosylation sites is accomplishable today but only by sacrificing information of structures at individual glycosites. More recently advances in analysis of O-glycoproteins have been made and proteome-wide analysis of O-glycosylation sites is becoming available as well. SCOPE OF REVIEW Here we discuss the challenges of analysis of O-glycans and new O-glycoproteomics strategies focusing on O-GalNAc and O-Man glycoproteomes. MAJOR CONCLUSIONS A variety of strategies are now available for proteome-wide analysis of O-glycosylation sites enabling functional studies. However, further developments are still needed for complete analysis of glycan structures at individual sites for both N- and O-glycoproteomics strategies. GENERAL SIGNIFICANCE The advances in O-glycoproteomics have led to identification of new biological functions of O-glycosylation and a new understanding of the importance of where O-glycans are positioned on proteins.
Collapse
Affiliation(s)
- Steven B Levery
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Catharina Steentoft
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
186
|
Leonoudakis D, Huang G, Akhavan A, Fata JE, Singh M, Gray JW, Muschler JL. Endocytic trafficking of laminin is controlled by dystroglycan and is disrupted in cancers. J Cell Sci 2014; 127:4894-903. [PMID: 25217627 DOI: 10.1242/jcs.152728] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamic interactions between cells and basement membranes serve as essential regulators of tissue architecture and function in metazoans, and perturbation of these interactions contributes to the progression of a wide range of human diseases, including cancers. Here, we reveal the pathway and mechanism for the endocytic trafficking of a prominent basement membrane protein, laminin-111 (referred to here as laminin), and their disruption in disease. Live-cell imaging of epithelial cells revealed pronounced internalization of laminin into endocytic vesicles. Laminin internalization was receptor mediated and dynamin dependent, and laminin proceeded to the lysosome through the late endosome. Manipulation of laminin receptor expression revealed that the dominant regulator of laminin internalization is dystroglycan, a laminin receptor that is functionally perturbed in muscular dystrophies and in many cancers. Correspondingly, laminin internalization was found to be deficient in aggressive cancer cells displaying non-functional dystroglycan, and restoration of dystroglycan function strongly enhanced the endocytosis of laminin in both breast cancer and glioblastoma cells. These results establish previously unrecognized mechanisms for the modulation of cell-basement-membrane communication in normal cells and identify a profound disruption of endocytic laminin trafficking in aggressive cancer subtypes.
Collapse
Affiliation(s)
- Dmitri Leonoudakis
- California Pacific Medical Center Research Institute, 475 Brannan St., Suite 220, San Francisco, CA 94107, USA
| | - Ge Huang
- Biomedical Engineering Department, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Armin Akhavan
- California Pacific Medical Center Research Institute, 475 Brannan St., Suite 220, San Francisco, CA 94107, USA
| | - Jimmie E Fata
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY 10314, USA
| | - Manisha Singh
- California Pacific Medical Center Research Institute, 475 Brannan St., Suite 220, San Francisco, CA 94107, USA
| | - Joe W Gray
- Biomedical Engineering Department, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA Center for Spatial Systems Biomedicine, and Knight Cancer Institute, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - John L Muschler
- California Pacific Medical Center Research Institute, 475 Brannan St., Suite 220, San Francisco, CA 94107, USA Biomedical Engineering Department, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
187
|
Kanagawa M, Lu Z, Ito C, Matsuda C, Miyake K, Toda T. Contribution of dysferlin deficiency to skeletal muscle pathology in asymptomatic and severe dystroglycanopathy models: generation of a new model for Fukuyama congenital muscular dystrophy. PLoS One 2014; 9:e106721. [PMID: 25198651 PMCID: PMC4157776 DOI: 10.1371/journal.pone.0106721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/01/2014] [Indexed: 11/18/2022] Open
Abstract
Defects in dystroglycan glycosylation are associated with a group of muscular dystrophies, termed dystroglycanopathies, that include Fukuyama congenital muscular dystrophy (FCMD). It is widely believed that abnormal glycosylation of dystroglycan leads to disease-causing membrane fragility. We previously generated knock-in mice carrying a founder retrotransposal insertion in fukutin, the gene responsible for FCMD, but these mice did not develop muscular dystrophy, which hindered exploring therapeutic strategies. We hypothesized that dysferlin functions may contribute to muscle cell viability in the knock-in mice; however, pathological interactions between glycosylation abnormalities and dysferlin defects remain unexplored. To investigate contributions of dysferlin deficiency to the pathology of dystroglycanopathy, we have crossed dysferlin-deficient dysferlin(sjl/sjl) mice to the fukutin-knock-in fukutin(Hp/-) and Large-deficient Largemyd/myd mice, which are phenotypically distinct models of dystroglycanopathy. The fukutin(Hp/-) mice do not show a dystrophic phenotype; however, (dysferlin(sjl/sjl): fukutin(Hp/-)) mice showed a deteriorated phenotype compared with (dysferlinsjl/sjl: fukutin(Hp/+)) mice. These data indicate that the absence of functional dysferlin in the asymptomatic fukutin(Hp/-) mice triggers disease manifestation and aggravates the dystrophic phenotype. A series of pathological analyses using double mutant mice for Large and dysferlin indicate that the protective effects of dysferlin appear diminished when the dystrophic pathology is severe and also may depend on the amount of dysferlin proteins. Together, our results show that dysferlin exerts protective effects on the fukutin(Hp/-) FCMD mouse model, and the (dysferlin(sjl/sjl): fukutin(Hp/-)) mice will be useful as a novel model for a recently proposed antisense oligonucleotide therapy for FCMD.
Collapse
Affiliation(s)
- Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Zhongpeng Lu
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chiyomi Ito
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chie Matsuda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Katsuya Miyake
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Ikenobe, Miki, Kagawa, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail:
| |
Collapse
|
188
|
Zhang X, Dong XH, Ma Y, Li LF, Wu H, Zhou M, Gu YH, Li GZ, Wang DS, Zhang XF, Mou J, Qi JP. Reduction of α-dystroglycan expression is correlated with poor prognosis in glioma. Tumour Biol 2014; 35:11621-9. [PMID: 25139094 DOI: 10.1007/s13277-014-2418-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/29/2014] [Indexed: 01/12/2023] Open
Abstract
Dystroglycan (DG), a multifunctional protein dimer of non-covalently linked α and β subunits, is best known as an adhesion and transduction molecule linking the cytoskeleton and intracellular signaling pathways to extracellular matrix proteins. Loss of DG binding, possibly by degradation or disturbed glycosylation, has been reported in a variety of cancers. DG is abundant at astroglial endfeet forming the blood-brain barrier (BBB) and glia limitans; so, we examined if loss of expression is associated with glioma. Expression levels of α-DG and β-DG were assessed by immunohistochemistry in a series of 78 glioma specimens to determine the relationship with tumor grade and possible prognostic significance. α-DG immunostaining was undetectable in 44 of 49 high-grade specimens (89.8%) compared to 15 of 29 low-grade specimens (51.72%) (P<0.05). Moreover, loss of α-DG expression was an independent predictor of shorter disease-free survival (DFS) (hazards ratio (HR) = 0.142, 95% confidence interval (CI) 0.033-0.611, P=0.0088). Reduced expression of both α-DG and β-DG was also a powerful negative prognostic factor for DFS (HR=2.556, 95% CI 1.403-4.654, P=0.0022) and overall survival (OS) (HR=2.193, 95% CI 1.031-4.666, P=0.0414). Lack of α-DG immunoreactivity is more frequent in high-grade glioma and is an independent predictor of poor clinical outcome. Similarly, lack of both α-DG and β-DG immunoreactivity is a strong independent predictor of clinical outcome.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, NanGang District, Harbin, 150001, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Inamori KI, Willer T, Hara Y, Venzke D, Anderson ME, Clarke NF, Guicheney P, Bönnemann CG, Moore SA, Campbell KP. Endogenous glucuronyltransferase activity of LARGE or LARGE2 required for functional modification of α-dystroglycan in cells and tissues. J Biol Chem 2014; 289:28138-48. [PMID: 25138275 DOI: 10.1074/jbc.m114.597831] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the LARGE gene have been identified in congenital muscular dystrophy (CMD) patients with brain abnormalities. Both LARGE and its paralog, LARGE2 (also referred to as GYLTL1B) are bifunctional glycosyltransferases with xylosyltransferase (Xyl-T) and glucuronyltransferase (GlcA-T) activities, and are capable of forming polymers consisting of [-3Xyl-α1,3GlcAβ1-] repeats. LARGE-dependent modification of α-dystroglycan (α-DG) with these polysaccharides is essential for the ability of α-DG to act as a receptor for ligands in the extracellular matrix. Here we report on the endogenous enzymatic activities of LARGE and LARGE2 in mice and humans, using a newly developed assay for GlcA-T activity. We show that normal mouse and human cultured cells have endogenous LARGE GlcA-T, and that this activity is absent in cells from the Large(myd) (Large-deficient) mouse model of muscular dystrophy, as well as in cells from CMD patients with mutations in the LARGE gene. We also demonstrate that GlcA-T activity is significant in the brain, heart, and skeletal muscle of wild-type and Large2(-/-) mice, but negligible in the corresponding tissues of the Large(myd) mice. Notably, GlcA-T activity is substantial, though reduced, in the kidneys of both the Large(myd) and Large2(-/-) mice, consistent with the observation of α-DG/laminin binding in these contexts. This study is the first to test LARGE activity in samples as small as cryosections and, moreover, provides the first direct evidence that not only LARGE, but also LARGE2, is vital to effective functional modification of α-DG in vivo.
Collapse
Affiliation(s)
- Kei-ichiro Inamori
- From the Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242-1101, Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Tobias Willer
- From the Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242-1101
| | - Yuji Hara
- From the Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242-1101
| | - David Venzke
- From the Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242-1101
| | - Mary E Anderson
- From the Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242-1101
| | - Nigel F Clarke
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | - Pascale Guicheney
- Inserm, U1166, Faculté de Médecine Pierre et Marie Curie, Institute of Cardiometabolism and Nutrition, ICAN, Paris, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Paris, France
| | - Carsten G Bönnemann
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Steven A Moore
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Kevin P Campbell
- From the Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242-1101,
| |
Collapse
|
190
|
Nigro V, Piluso G. Spectrum of muscular dystrophies associated with sarcolemmal-protein genetic defects. Biochim Biophys Acta Mol Basis Dis 2014; 1852:585-93. [PMID: 25086336 DOI: 10.1016/j.bbadis.2014.07.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 01/31/2023]
Abstract
Muscular dystrophies are heterogeneous genetic disorders that share progressive muscle wasting. This may generate partial impairment of motility as well as a dramatic and fatal course. Less than 30 years ago, the identification of the genetic basis of Duchenne muscular dystrophy opened a new era. An explosion of new information on the mechanisms of disease was witnessed, with many thousands of publications and the characterization of dozens of other genetic forms. Genes mutated in muscular dystrophies encode proteins of the plasma membrane and extracellular matrix, several of which are part of the dystrophin-associated complex. Other gene products localize at the sarcomere and Z band, or are nuclear membrane components. In the present review, we focus on muscular dystrophies caused by defects that affect the sarcolemmal and sub-sarcolemmal proteins. We summarize the nature of each disease, the genetic cause, and the pathogenic pathways that may suggest future treatment options. We examine X-linked Duchenne and Becker muscular dystrophies and the autosomal recessive limb-girdle muscular dystrophies caused by mutations in genes encoding sarcolemmal proteins. The mechanism of muscle damage is reviewed starting from disarray of the shock-absorbing dystrophin-associated complex at the sarcolemma and activation of inflammatory response up to the final stages of fibrosis. We trace only a part of the biochemical, physiopathological and clinical aspects of muscular dystrophy to avoid a lengthy list of different and conflicting observations. We attempt to provide a critical synthesis of what we consider important aspects to better understand the disease. In our opinion, it is becoming ever more important to go back to the bedside to validate and then translate each proposed mechanism. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Vincenzo Nigro
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, via Luigi De Crecchio 7, 80138 Napoli, Italy; Telethon Institute of Genetics and Medicine (TIGEM), via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Giulio Piluso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, via Luigi De Crecchio 7, 80138 Napoli, Italy; Telethon Institute of Genetics and Medicine (TIGEM), via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
191
|
Muscle and heart function restoration in a limb girdle muscular dystrophy 2I (LGMD2I) mouse model by systemic FKRP gene delivery. Mol Ther 2014; 22:1890-9. [PMID: 25048216 DOI: 10.1038/mt.2014.141] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/16/2014] [Indexed: 01/01/2023] Open
Abstract
Mutations in fukutin-related protein (FKRP) gene cause a wide spectrum of disease phenotypes including the mild limb-girdle muscular dystrophy 2I (LGMD2I), the severe Walker-Warburg syndrome, and muscle-eye-brain disease. FKRP deficiency results in α-dystroglycan (α-DG) hypoglycosylation in the muscle and heart, which is a biochemical hallmark of dystroglycanopathies. To study gene replacement therapy, we generated and characterized a new mouse model of LGMD2I harboring the human mutation leucine 276 to isoleucine (L276I) in the mouse alleles. The homozygous knock-in mice (L276I(KI)) mimic the classic late onset phenotype of LGMD2I in both skeletal and cardiac muscles. Systemic delivery of human FKRP gene by AAV9 vector in the L276I(KI) mice, at either neonatal age or at the age of 9 months, rendered body wide FKRP expression and restored glycosylation of α-DG in both skeletal and cardiac muscles. FKRP gene therapy ameliorated dystrophic pathology and cardiomyopathy such as muscle degeneration, fibrosis, and myofiber membrane leakage, resulting in restoration of muscle and heart contractile functions. Thus, these results demonstrated that the treatment based on FKRP gene replacement was effective.
Collapse
|
192
|
Di Costanzo S, Balasubramanian A, Pond HL, Rozkalne A, Pantaleoni C, Saredi S, Gupta VA, Sunu CM, Yu TW, Kang PB, Salih MA, Mora M, Gussoni E, Walsh CA, Manzini MC. POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum Mol Genet 2014; 23:5781-92. [PMID: 24925318 DOI: 10.1093/hmg/ddu296] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dystroglycan is a transmembrane glycoprotein whose interactions with the extracellular matrix (ECM) are necessary for normal muscle and brain development, and disruptions of its function lead to dystroglycanopathies, a group of congenital muscular dystrophies showing extreme genetic and clinical heterogeneity. Specific glycans bound to the extracellular portion of dystroglycan, α-dystroglycan, mediate ECM interactions and most known dystroglycanopathy genes encode glycosyltransferases involved in glycan synthesis. POMK, which was found mutated in two dystroglycanopathy cases, is instead involved in a glycan phosphorylation reaction critical for ECM binding, but little is known about the clinical presentation of POMK mutations or of the function of this protein in the muscle. Here, we describe two families carrying different truncating alleles, both removing the kinase domain in POMK, with different clinical manifestations ranging from Walker-Warburg syndrome, the most severe form of dystroglycanopathy, to limb-girdle muscular dystrophy with cognitive defects. We explored POMK expression in fetal and adult human muscle and identified widespread expression primarily during fetal development in myocytes and interstitial cells suggesting a role for this protein during early muscle differentiation. Analysis of loss of function in the zebrafish embryo and larva showed that pomk function is necessary for normal muscle development, leading to locomotor dysfuction in the embryo and signs of muscular dystrophy in the larva. In summary, we defined diverse clinical presentations following POMK mutations and showed that this gene is necessary for early muscle development.
Collapse
Affiliation(s)
- Stefania Di Costanzo
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | | | - Heather L Pond
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anete Rozkalne
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research
| | - Chiara Pantaleoni
- Division of Neuromuscular Disease and Neuroimmunology, Fondazione di Ricovero e Cura a Carattere Scientifico Istituto Neurologico C. Besta, 20126 Milan, Italy and
| | - Simona Saredi
- Division of Neuromuscular Disease and Neuroimmunology, Fondazione di Ricovero e Cura a Carattere Scientifico Istituto Neurologico C. Besta, 20126 Milan, Italy and
| | - Vandana A Gupta
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research
| | - Christine M Sunu
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research
| | - Timothy W Yu
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research
| | | | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, King Saud University College of Medicine, Riyadh 11461, Saudi Arabia
| | - Marina Mora
- Division of Neuromuscular Disease and Neuroimmunology, Fondazione di Ricovero e Cura a Carattere Scientifico Istituto Neurologico C. Besta, 20126 Milan, Italy and
| | - Emanuela Gussoni
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research
| | - Christopher A Walsh
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA,
| | - M Chiara Manzini
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA,
| |
Collapse
|
193
|
Clinical, pathologic, and mutational spectrum of dystroglycanopathy caused by LARGE mutations. J Neuropathol Exp Neurol 2014; 73:425-41. [PMID: 24709677 DOI: 10.1097/nen.0000000000000065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Dystroglycanopathies are a subtype of congenital muscular dystrophy of varying severity that can affect the brain and eyes, ranging from Walker-Warburg syndrome with severe brain malformation to milder congenital muscular dystrophy presentations with affected or normal cognition and later onset. Mutations in dystroglycanopathy genes affect a specific glycoepitope on α-dystroglycan; of the 14 genes implicated to date, LARGE encodes the glycosyltransferase that adds the final xylose and glucuronic acid, allowing α-dystroglycan to bind ligands, including laminin 211 and neurexin. Only 11 patients with LARGE mutations have been reported. We report the clinical, neuroimaging, and genetic features of 4 additional patients. We confirm that gross deletions and rearrangements are important mutational mechanisms for LARGE. The brain abnormalities overshadowed the initially mild muscle phenotype in all 4 patients. We present the first comprehensive postnatal neuropathology of the brain, spinal cord, and eyes of a patient with a homozygous LARGE mutation at Cys443. In this patient, polymicrogyria was the predominant cortical malformation; densely festooned polymicrogyria were overlaid by a continuous agyric surface. In view of the severity of these abnormalities, Cys443 may be a functionally important residue in the LARGE protein, whereas the mutation p.Glu509Lys of Patient 1 in this study may confer a milder phenotype. Overall, these results expand the clinical and genetic spectrum of dystroglycanopathy.
Collapse
|
194
|
Martínez-Zárate AD, Martínez-Vieyra I, Alonso-Rangel L, Cisneros B, Winder SJ, Cerecedo D. Dystroglycan depletion inhibits the functions of differentiated HL-60 cells. Biochem Biophys Res Commun 2014; 448:274-80. [DOI: 10.1016/j.bbrc.2014.04.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 04/22/2014] [Indexed: 12/16/2022]
|
195
|
Praissman JL, Wells L. Mammalian O-mannosylation pathway: glycan structures, enzymes, and protein substrates. Biochemistry 2014; 53:3066-78. [PMID: 24786756 PMCID: PMC4033628 DOI: 10.1021/bi500153y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
mammalian O-mannosylation pathway for protein post-translational
modification is intricately involved in modulating cell–matrix
interactions in the musculature and nervous system. Defects in enzymes
of this biosynthetic pathway are causative for multiple forms of congenital
muscular dystophy. The application of advanced genetic and biochemical
technologies has resulted in remarkable progress in this field over
the past few years, culminating with the publication of three landmark
papers in 2013 alone. In this review, we will highlight recent progress
focusing on the dramatic expansion of the set of genes known to be
involved in O-mannosylation and disease processes, the concurrent
acceleration of the rate of O-mannosylation pathway protein functional
assignments, the tremendous increase in the number of proteins now
known to be modified by O-mannosylation, and the recent progress in
protein O-mannose glycan quantification and site assignment. Also,
we attempt to highlight key outstanding questions raised by this abundance
of new information.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia , Athens, Georgia 30602, United States
| | | |
Collapse
|
196
|
Iwasaki M, Urata S, Cho Y, Ngo N, de la Torre JC. Cell entry of lymphocytic choriomeningitis virus is restricted in myotubes. Virology 2014; 458-459:22-32. [PMID: 24928036 DOI: 10.1016/j.virol.2014.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/25/2014] [Accepted: 04/08/2014] [Indexed: 11/27/2022]
Abstract
In mice persistently infected since birth with the prototypic arenavirus lymphocytic choriomeningitis viurs, viral antigen and RNA are readily detected in most organs and cell types but remarkably absent in skeletal muscle. Here we report that mouse C2C12 myoblasts that are readily infected by LCMV, become highly refractory to LCMV infection upon their differentiation into myotubes. Myotube's resistance to LCMV was not due to an intracellular restriction of virus replication but rather an impaired cell entry mediated by the LCMV surface glycoprotein. Our findings provide an explanation for the observation that in LCMV carrier mice myotubes, which are constantly exposed to blood-containing virus, remain free of viral antigen and RNA despite myotubes express high levels of the LCMV receptor alpha dystroglycan and do not pose an intracellular blockade to LCMV multiplication.
Collapse
Affiliation(s)
- Masaharu Iwasaki
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Shuzo Urata
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Yoshitake Cho
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nhi Ngo
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Juan C de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
197
|
Clinical, radiological, and genetic survey of patients with muscle-eye-brain disease caused by mutations in POMGNT1. Pediatr Neurol 2014; 50:491-7. [PMID: 24731844 DOI: 10.1016/j.pediatrneurol.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/16/2013] [Accepted: 01/01/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND To evaluate clinical, genetic, and radiologic features of our patients with muscle-eye-brain disease. METHODS The data of patients who were diagnosed with muscle-eye-brain disease from a cohort of patients with congenital muscular dystrophy in the Division of Pediatric Neurology of Dokuz Eylül University School of Medicine and Gaziantep Children's Hospital between 2005 and 2013 were analyzed retrospectively. RESULTS From a cohort of 34 patients with congenital muscular dystrophy, 12 patients from 10 families were diagnosed with muscle-eye-brain disease. The mean age of the patients was 9 ± 5.5 years (2-19 years). Mean serum creatine kinase value was 2485.80 ± 1308.54 IU/L (700-4267 IU/L). All patients presented with muscular hypotonia at birth followed by varying degrees of spasticity and exaggerated deep tendon reflexes in later stages of life. Three patients were able to walk. The most common ophthalmologic and radiologic abnormalities were cataracts, retinal detachment, periventricular white matter abnormalities, ventriculomegaly, pontocerebellar hypoplasia, and multiple cerebellar cysts. All of the patients had mutations in the POMGNT1 gene. The most common mutation detected in 66% of patients was c.1814 G > A (p.R605H). Two novel mutations were identified. CONCLUSIONS We suggest that muscle-eye-brain disease is a relatively common muscular dystrophy in Turkey. It should be suspected in patients with muscular hypotonia, increased creatine kinase, and structural eye and brain abnormalities. The c.1814 G > A mutation in exon 21 of the POMGNT1 gene is apparently a common mutation in the Turkish population. Individuals with this mutation show classical features of muscle-eye-brain disease, but others may exhibit a milder phenotype and retain the ability to walk independently. Congenital muscular dystrophy patients from Turkey carrying the clinical and radiologic features of muscle-eye-brain disease should be evaluated for mutations in POMGNT1 gene.
Collapse
|
198
|
Pereira NA, Pu HX, Goh H, Song Z. Golgi phosphoprotein 3 mediates the Golgi localization and function of protein O-linked mannose β-1,2-N-acetlyglucosaminyltransferase 1. J Biol Chem 2014; 289:14762-70. [PMID: 24733390 DOI: 10.1074/jbc.m114.548305] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
GOLPH3 is a highly conserved protein found across the eukaryotic lineage. The yeast homolog, Vps74p, interacts with and maintains the Golgi localization of several mannosyltransferases, which is subsequently critical for N- and O-glycosylation in yeast. Through the use of a T7 phage display, we discovered a novel interaction between GOLPH3 and a mammalian glycosyltransferase, POMGnT1, which is involved in the O-mannosylation of α-dystroglycan. The cytoplasmic tail of POMGnT1 was found to be critical for mediating its interaction with GOLPH3. Loss of this interaction resulted in the inability of POMGnT1 to localize to the Golgi and reduced the functional glycosylation of α-dystroglycan. In addition, we showed that three clinically relevant mutations present in the stem domain of POMGnT1 mislocalized to the endoplasmic reticulum, highlighting the importance of identifying the molecular mechanisms responsible for Golgi localization of glycosyltransferases. Our findings reveal a novel role for GOLPH3 in mediating the Golgi localization of POMGnT1.
Collapse
Affiliation(s)
- Natasha A Pereira
- From the Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, 06-01 Centros, 138668, Singapore
| | - Helen X Pu
- From the Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, 06-01 Centros, 138668, Singapore
| | - Hazel Goh
- From the Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, 06-01 Centros, 138668, Singapore
| | - Zhiwei Song
- From the Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, 06-01 Centros, 138668, Singapore
| |
Collapse
|
199
|
Bönnemann CG, Wang CH, Quijano-Roy S, Deconinck N, Bertini E, Ferreiro A, Muntoni F, Sewry C, Béroud C, Mathews KD, Moore SA, Bellini J, Rutkowski A, North KN. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014; 24:289-311. [PMID: 24581957 PMCID: PMC5258110 DOI: 10.1016/j.nmd.2013.12.011] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/23/2013] [Accepted: 12/31/2013] [Indexed: 12/14/2022]
Abstract
Congenital muscular dystrophies (CMDs) are early onset disorders of muscle with histological features suggesting a dystrophic process. The congenital muscular dystrophies as a group encompass great clinical and genetic heterogeneity so that achieving an accurate genetic diagnosis has become increasingly challenging, even in the age of next generation sequencing. In this document we review the diagnostic features, differential diagnostic considerations and available diagnostic tools for the various CMD subtypes and provide a systematic guide to the use of these resources for achieving an accurate molecular diagnosis. An International Committee on the Standard of Care for Congenital Muscular Dystrophies composed of experts on various aspects relevant to the CMDs performed a review of the available literature as well as of the unpublished expertise represented by the members of the committee and their contacts. This process was refined by two rounds of online surveys and followed by a three-day meeting at which the conclusions were presented and further refined. The combined consensus summarized in this document allows the physician to recognize the presence of a CMD in a child with weakness based on history, clinical examination, muscle biopsy results, and imaging. It will be helpful in suspecting a specific CMD subtype in order to prioritize testing to arrive at a final genetic diagnosis.
Collapse
Affiliation(s)
- Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| | - Ching H Wang
- Driscoll Children's Hospital, Corpus Christi, TX, United States
| | - Susana Quijano-Roy
- Hôpital Raymond Poincaré, Garches, and UFR des sciences de la santé Simone Veil (UVSQ), France
| | - Nicolas Deconinck
- Hôpital Universitaire des Enfants Reine Fabiola, Brussels and Ghent University Hospital, Ghent, Belgium
| | | | - Ana Ferreiro
- UMR787 INSERM/UPMC and Reference Center for Neuromuscular Disorders, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | - Caroline Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | - Christophe Béroud
- INSERM U827, Laboratoire de Génétique Moleculaire, Montpellier, France
| | | | | | - Jonathan Bellini
- Stanford University School of Medicine, Stanford, CA, United States
| | | | - Kathryn N North
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
200
|
Mahmood OA, Jiang XM. Limb-girdle muscular dystrophies: where next after six decades from the first proposal (Review). Mol Med Rep 2014; 9:1515-32. [PMID: 24626787 PMCID: PMC4020495 DOI: 10.3892/mmr.2014.2048] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 01/27/2014] [Indexed: 12/13/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of disorders, which has led to certain investigators disputing its rationality. The mutual feature of LGMD is limb-girdle affection. Magnetic resonance imaging (MRI), perioral skin biopsies, blood-based assays, reverse-protein arrays, proteomic analyses, gene chips and next generation sequencing are the leading diagnostic techniques for LGMD and gene, cell and pharmaceutical treatments are the mainstay therapies for these genetic disorders. Recently, more highlights have been shed on disease biomarkers to follow up disease progression and to monitor therapeutic responsiveness in future trials. In this study, we review LGMD from a variety of aspects, paying specific attention to newly evolving research, with the purpose of bringing this information into the clinical setting to aid the development of novel therapeutic strategies for this hereditary disease. In conclusion, substantial progress in our ability to diagnose and treat LGMD has been made in recent decades, however enhancing our understanding of the detailed pathophysiology of LGMD may enhance our ability to improve disease outcome in subsequent years.
Collapse
Affiliation(s)
- Omar A Mahmood
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xin Mei Jiang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|