151
|
Walugembe M, Bertolini F, Dematawewa CMB, Reis MP, Elbeltagy AR, Schmidt CJ, Lamont SJ, Rothschild MF. Detection of Selection Signatures Among Brazilian, Sri Lankan, and Egyptian Chicken Populations Under Different Environmental Conditions. Front Genet 2019; 9:737. [PMID: 30693019 PMCID: PMC6339939 DOI: 10.3389/fgene.2018.00737] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022] Open
Abstract
Extreme environmental conditions are a major challenge in livestock production. Changes in climate, particularly those that contribute to weather extremes like drought or excessive humidity, may result in reduced performance and reproduction and could compromise the animal's immune function. Animal survival within extreme environmental conditions could be in response to natural selection and to artificial selection for production traits that over time together may leave selection signatures in the genome. The aim of this study was to identify selection signatures that may be involved in the adaptation of indigenous chickens from two different climatic regions (Sri Lanka = Tropical; Egypt = Arid) and in non-indigenous chickens that derived from human migration events to the generally tropical State of São Paulo, Brazil. To do so, analyses were conducted using fixation index (Fst) and hapFLK analyses. Chickens from Brazil (n = 156), Sri Lanka (n = 92), and Egypt (n = 96) were genotyped using the Affymetrix Axiom®600k Chicken Genotyping Array. Pairwise Fst analyses among countries did not detect major regions of divergence between chickens from Sri Lanka and Brazil, with ecotypes/breeds from Brazil appearing to be genetically related to Asian-Indian (Sri Lanka) ecotypes. However, several differences were detected in comparisons of Egyptian with either Sri Lankan or Brazilian populations, and common regions of difference on chromosomes 2, 3 and 8 were detected. The hapFLK analyses for the three separate countries suggested unique regions that are potentially under selection on chromosome 1 for all three countries, on chromosome 4 for Sri Lankan, and on chromosomes 3, 5, and 11 for the Egyptian populations. Some of identified regions under selection with hapFLK analyses contained genes such as TLR3, SOCS2, EOMES, and NFAT5 whose biological functions could provide insights in understanding adaptation mechanisms in response to arid and tropical environments.
Collapse
Affiliation(s)
- Muhammed Walugembe
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Francesca Bertolini
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | - Matheus P Reis
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, Brazil
| | - Ahmed R Elbeltagy
- Department of Animal Biotechnology, Animal Production Research Institute, Giza, Egypt
| | - Carl J Schmidt
- Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
152
|
Guadarrama SS, Domínguez-Vega H, Díaz-Albiter HM, Quijano A, Bastiaans E, Carrillo-Castilla P, Manjarrez J, Gómez-Ortíz Y, Fajardo V. Hypoxia by Altitude and Welfare of Captive Beaded Lizards ( Heloderma Horridum) in Mexico: Hematological Approaches. J APPL ANIM WELF SCI 2019; 23:74-82. [PMID: 30626215 DOI: 10.1080/10888705.2018.1562350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Heloderma horridum is one of the few known venomous lizards in the world. Their populations are in decline due to habitat destruction and capture for the pet trade. In México, many zoos have decided to take care of this species, most of them at altitudes greater than the natural altitudinal distribution. However, we know little about the capacity of the reptiles to face high-altitude environments. The objective of this study was to compare hematological traits of H. horridum in captivity in high and low altitude environments. Our findings show that H. horridum does not respond to hypoxic environments, at least in blood traits, and that the organisms appear to be in homeostasis. Although we cannot know if individual H. horridum housed in high-altitude environments are completely comfortable, it appears hypoxia can be avoid without modifications of blood parameters. We suggest that future work should address changes in metabolic rates and in behavioral aspects to understand how to maintain the health and comfort of the reptiles native to low altitude when they are housed in high-altitude environments.
Collapse
Affiliation(s)
- Sonia S Guadarrama
- Posgrado en Ciencias Agropecuarias y Recursos Naturales, Universidad Autónoma del Estado de México, Toluca, México
| | - Hublester Domínguez-Vega
- División de Desarrollo Sustentable, Universidad Intercultural del Estado de México, San Felipe del Progreso, Mexico
| | - Hector M Díaz-Albiter
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Unidad Villahermosa, El Colegio de la Frontera Sur (ECOSUR), Tabasco, Mexico
| | - Alejandro Quijano
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Elizabeth Bastiaans
- Biology Department, State University of New York College at Oneonta, Oneonta, NY, USA
| | - Porfirio Carrillo-Castilla
- Laboratorio de Neurobiología del Desarrollo, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, México
| | - Javier Manjarrez
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, México
| | - Yuriana Gómez-Ortíz
- División de Desarrollo Sustentable, Universidad Intercultural del Estado de México, San Felipe del Progreso, Mexico
| | - Victor Fajardo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| |
Collapse
|
153
|
Kouyoumdjian L, Gangloff EJ, Souchet J, Cordero GA, Dupoué A, Aubret F. Transplanting gravid lizards to high elevation alters maternal and embryonic oxygen physiology, but not reproductive success or hatchling phenotype. J Exp Biol 2019; 222:jeb.206839. [DOI: 10.1242/jeb.206839] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Abstract
Increased global temperatures have opened previously inhospitable habitats, such as at higher elevations. However, the reduction of oxygen partial pressure with increase in elevation represents an important physiological constraint that may limit colonization of such habitats, even if the thermal niche is appropriate. To test the mechanisms underlying the response to ecologically-relevant levels of hypoxia, we performed a translocation experiment with the common wall lizard (Podarcis muralis), a widespread European lizard amenable to establishing populations outside its natural range. We investigated the impacts of hypoxia on the oxygen physiology and reproductive output of gravid common wall lizards and the subsequent development and morphology of their offspring. Lowland females transplanted to high elevations increased their haematocrit and haemoglobin concentration within days and maintained routine metabolism compared to lizards kept at native elevations. However, transplanted lizards suffered from increased reactive oxygen metabolite production near the oviposition date, suggesting a cost of reproduction at high elevation. Transplanted females and females native to different elevations did not differ in reproductive output (clutch size, egg mass, relative clutch mass, or embryonic stage at oviposition) or in post-oviposition body condition. Developing embryos reduced heart rates and prolonged incubation times at high elevations within the native range and at extreme high elevations beyond the current range, but this reduced oxygen availability did not affect metabolic rate, hatching success, or hatchling size. These results suggest that this opportunistic colonizer is capable of successfully responding to novel environmental constraints in these important life-history stages.
Collapse
Affiliation(s)
- Laura Kouyoumdjian
- Station d'Ecologie Théorique et Expérimentale du CNRS – UMR 5321, Moulis, France
| | - Eric J. Gangloff
- Station d'Ecologie Théorique et Expérimentale du CNRS – UMR 5321, Moulis, France
| | - Jérémie Souchet
- Station d'Ecologie Théorique et Expérimentale du CNRS – UMR 5321, Moulis, France
| | - Gerardo A. Cordero
- Fachbereich Geowissenschaften, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Andréaz Dupoué
- CNRS UPMC, UMR 7618, iEES Paris, Université Pierre et Marie Curie, Paris, France
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale du CNRS – UMR 5321, Moulis, France
- School of Molecular and Life Sciences, Curtin University, 6102 WA, Australia
| |
Collapse
|
154
|
Suzuki TA, Martins FM, Nachman MW. Altitudinal variation of the gut microbiota in wild house mice. Mol Ecol 2018; 28:2378-2390. [PMID: 30346069 DOI: 10.1111/mec.14905] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/25/2018] [Accepted: 10/06/2018] [Indexed: 12/11/2022]
Abstract
The maintenance of oxygen homeostasis in the gut is critical for the maintenance of a healthy gut microbiota. However, few studies have explored how the concentration of atmospheric oxygen affects the gut microbiota in natural populations. High-altitude environments provide an opportunity to study the potential effects of atmospheric oxygen on the composition and function of the gut microbiota. Here, we characterized the caecal microbial communities of wild house mice (Mus musculus domesticus) in two independent altitudinal transects, one in Ecuador and one in Bolivia, from sea level to nearly 4,000 m. First, we found that differences in altitude were associated with differences in the gut microbial community after controlling for the effects of body mass, diet, reproductive status and population of origin. Second, obligate anaerobes tended to show a positive correlation with altitude, while all other microbes tended to show a negative correlation with altitude. These patterns were seen independently in both transects, consistent with the expected effects of atmospheric oxygen on gut microbes. Prevotella was the most-enriched genus at high elevations in both transects, consistent with observations in high-altitude populations of pikas, ruminants and humans, and also consistent with observations of laboratory mice exposed to hypoxic conditions. Lastly, the renin-angiotensin system, a recently proposed microbiota-mediated pathway of blood pressure regulation, was the top predicted metagenomic pathway enriched in high altitudes in both transects. These results suggest that high-altitude environments affect the composition and function of the gut microbiota in wild mammals.
Collapse
Affiliation(s)
- Taichi A Suzuki
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California
| | - Felipe M Martins
- Department of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Michael W Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California
| |
Collapse
|
155
|
Velotta JP, Ivy CM, Wolf CJ, Scott GR, Cheviron ZA. Maladaptive phenotypic plasticity in cardiac muscle growth is suppressed in high-altitude deer mice. Evolution 2018; 72:2712-2727. [PMID: 30318588 DOI: 10.1111/evo.13626] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022]
Abstract
How often phenotypic plasticity acts to promote or inhibit adaptive evolution is an ongoing debate among biologists. Recent work suggests that adaptive phenotypic plasticity promotes evolutionary divergence, though several studies have also suggested that maladaptive plasticity can potentiate adaptation. The role of phenotypic plasticity, adaptive, or maladaptive, in evolutionary divergence remains controversial. We examined the role of plasticity in evolutionary divergence between two species of Peromyscus mice that differ in native elevations. We used cardiac mass as a model phenotype, since ancestral hypoxia-induced responses of the heart may be both adaptive and maladaptive at high-altitude. While left ventricle growth should enhance oxygen delivery to tissues, hypertrophy of the right ventricle can lead to heart failure and death. We compared left- and right-ventricle plasticity in response to hypoxia between captive-bred P. leucopus (representing the ancestral lowland condition) and P. maniculatus from high-altitude. We found that maladaptive ancestral plasticity in right ventricle hypertrophy is reduced in high-altitude deer mice. Analysis of the heart transcriptome suggests that changes in expression of inflammatory signaling genes, particularly interferon regulatory factors, contribute to the suppression of right ventricle hypertrophy. We found weak evidence that adaptive plasticity of left ventricle mass contributes to evolution. Our results suggest that selection to suppress ancestral maladaptive plasticity plays a role in adaptation.
Collapse
Affiliation(s)
- Jonathan P Velotta
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Cole J Wolf
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| |
Collapse
|
156
|
Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. Proc Natl Acad Sci U S A 2018; 115:E10634-E10641. [PMID: 30348757 DOI: 10.1073/pnas.1813593115] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although many cases of genetic adaptations to high elevations have been reported, the processes driving these modifications and the pace of their evolution remain unclear. Many high-elevation adaptations (HEAs) are thought to have arisen in situ as populations rose with growing mountains. In contrast, most high-elevation lineages of the Qinghai-Tibetan Plateau appear to have colonized from low-elevation areas. These lineages provide an opportunity for studying recent HEAs and comparing them with ancestral low-elevation alternatives. Herein, we compare four frogs (three species of Nanorana and a close lowland relative) and four lizards (Phrynocephalus) that inhabit a range of elevations on or along the slopes of the Qinghai-Tibetan Plateau. The sequential cladogenesis of these species across an elevational gradient allows us to examine the gradual accumulation of HEA at increasing elevations. Many adaptations to high elevations appear to arise gradually and evolve continuously with increasing elevational distributions. Numerous related functions, especially DNA repair and energy metabolism pathways, exhibit rapid change and continuous positive selection with increasing elevations. Although the two studied genera are distantly related, they exhibit numerous convergent evolutionary changes, especially at the functional level. This functional convergence appears to be more extensive than convergence at the individual gene level, although we found 32 homologous genes undergoing positive selection for change in both high-elevation groups. We argue that species groups distributed along a broad elevational gradient provide a more powerful system for testing adaptations to high-elevation environments compared with studies that compare only pairs of high-elevation versus low-elevation species.
Collapse
|
157
|
Chaillou T. Skeletal Muscle Fiber Type in Hypoxia: Adaptation to High-Altitude Exposure and Under Conditions of Pathological Hypoxia. Front Physiol 2018; 9:1450. [PMID: 30369887 PMCID: PMC6194176 DOI: 10.3389/fphys.2018.01450] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/24/2018] [Indexed: 01/16/2023] Open
Abstract
Skeletal muscle is able to modify its size, and its metabolic/contractile properties in response to a variety of stimuli, such as mechanical stress, neuronal activity, metabolic and hormonal influences, and environmental factors. A reduced oxygen availability, called hypoxia, has been proposed to induce metabolic adaptations and loss of mass in skeletal muscle. In addition, several evidences indicate that muscle fiber-type composition could be affected by hypoxia. The main purpose of this review is to explore the adaptation of skeletal muscle fiber-type composition to exposure to high altitude (ambient hypoxia) and under conditions of pathological hypoxia, including chronic obstructive pulmonary disease (COPD), chronic heart failure (CHF) and obstructive sleep apnea syndrome (OSAS). The muscle fiber-type composition of both adult animals and humans is not markedly altered during chronic exposure to high altitude. However, the fast-to-slow fiber-type transition observed in hind limb muscles during post-natal development is impaired in growing rats exposed to severe altitude. A slow-to-fast transition in fiber type is commonly found in lower limb muscles from patients with COPD and CHF, whereas a transition toward a slower fiber-type profile is often found in the diaphragm muscle in these two pathologies. A slow-to-fast transformation in fiber type is generally observed in the upper airway muscles in rodent models of OSAS. The factors potentially responsible for the adaptation of fiber type under these hypoxic conditions are also discussed in this review. The impaired locomotor activity most likely explains the changes in fiber type composition in growing rats exposed to severe altitude. Furthermore, chronic inactivity and muscle deconditioning could result in the slow-to-fast fiber-type conversion in lower limb muscles during COPD and CHF, while the factors responsible for the adaptation of muscle fiber type during OSAS remain hypothetical. Finally, the role played by cellular hypoxia, hypoxia-inducible factor-1 alpha (HIF-1α), and other molecular regulators in the adaptation of muscle fiber-type composition is described in response to high altitude exposure and conditions of pathological hypoxia.
Collapse
Affiliation(s)
- Thomas Chaillou
- School of Health Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
158
|
McClelland GB, Scott GR. Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives. Annu Rev Physiol 2018; 81:561-583. [PMID: 30256727 DOI: 10.1146/annurev-physiol-021317-121527] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Comparative physiology studies of high-altitude species provide an exceptional opportunity to understand naturally evolved mechanisms of hypoxia resistance. Aerobic capacity (VO2max) is a critical performance trait under positive selection in some high-altitude taxa, and several high-altitude natives have evolved to resist the depressive effects of hypoxia on VO2max. This is associated with enhanced flux capacity through the O2 transport cascade and attenuation of the maladaptive responses to chronic hypoxia that can impair O2 transport. Some highlanders exhibit elevated rates of carbohydrate oxidation during exercise, taking advantage of its high ATP yield per mole of O2. Certain highland native animals have also evolved more oxidative muscles and can sustain high rates of lipid oxidation to support thermogenesis. The underlying mechanisms include regulatory adjustments of metabolic pathways and to gene expression networks. Therefore, the evolution of hypoxia resistance in high-altitude natives involves integrated functional changes in the pathways for O2 and substrate delivery and utilization by mitochondria.
Collapse
Affiliation(s)
- Grant B McClelland
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada;
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada;
| |
Collapse
|
159
|
Qi D, Chao Y, Wu R, Xia M, Chen Q, Zheng Z. Transcriptome Analysis Provides Insights Into the Adaptive Responses to Hypoxia of a Schizothoracine Fish ( Gymnocypris eckloni). Front Physiol 2018; 9:1326. [PMID: 30298021 PMCID: PMC6160557 DOI: 10.3389/fphys.2018.01326] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/03/2018] [Indexed: 01/12/2023] Open
Abstract
The schizothoracine fish endemic to the Qinghai-Tibetan Plateau are comparatively well adapted to aquatic environments with low oxygen partial pressures. However, few studies have used transcriptomic profiling to investigate the adaptive responses of schizothoracine fish tissues to hypoxic stress. This study compared the transcriptomes of Gymnocypris eckloni subjected to 72 h of hypoxia (Dissolved oxygen, DO = 3.0 ± 0.1 mg/L) to those of G. eckloni under normoxia (DO = 8.4 ± 0.1 mg/L). To identify the potential genes and pathways activated in response to hypoxic stress, we collected muscle, liver, brain, heart, and blood samples from normoxic and hypoxic fish for RNA-Seq analysis. We annotated 337,481 gene fragments. Of these, 462 were differentially expressed in the hypoxic fish as compared to the normoxic fish. Under hypoxia, the transcriptomic profiles of the tissues differed, with muscle the most strongly affected by hypoxia. Our data indicated that G. eckloni underwent adaptive changes in gene expression in response to hypoxia. Several strategies used by G. eckloni to cope with hypoxia were similar to those used by other fish, including a switch from aerobic oxidation to anaerobic glycolysis and the suppression of major energy-requiring processes. However, G. eckloni used an additional distinct strategy to survive hypoxic environments: a strengthening of the antioxidant system and minimization of ischemic injury. Here, we identified several pathways and related genes involved in the hypoxic response of the schizothoracine fish. This study provides insights into the mechanisms used by schizothoracine fish to adapt to hypoxic environments.
Collapse
Affiliation(s)
- Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Yan Chao
- Animal Science Department, Agriculture and Animal Husbandry College, Qinghai University, Xining, China
| | - Rongrong Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Mingzhe Xia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Qichang Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Zhiqin Zheng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
160
|
Ivy CM, Scott GR. Evolved changes in breathing and CO 2 sensitivity in deer mice native to high altitudes. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1027-R1037. [PMID: 30183337 DOI: 10.1152/ajpregu.00220.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We examined the control of breathing by O2 and CO2 in deer mice native to high altitude to help uncover the physiological specializations used to cope with hypoxia in high-altitude environments. Highland deer mice ( Peromyscus maniculatus) and lowland white-footed mice ( P. leucopus) were bred in captivity at sea level. The first and second generation progeny of each population was raised to adulthood and then acclimated to normoxia or hypobaric hypoxia (12 kPa O2, simulating hypoxia at ~4,300 m) for 6-8 wk. Ventilatory responses to poikilocapnic hypoxia (stepwise reductions in inspired O2) and hypercapnia (stepwise increases in inspired CO2) were then compared between groups. Both generations of lowlanders appeared to exhibit ventilatory acclimatization to hypoxia (VAH), in which hypoxia acclimation enhanced the hypoxic ventilatory response and/or made the breathing pattern more effective (higher tidal volumes and lower breathing frequencies at a given total ventilation). In contrast, hypoxia acclimation had no effect on breathing in either generation of highlanders, and breathing was generally similar to hypoxia-acclimated lowlanders. Therefore, attenuation of VAH may be an evolved feature of highlanders that persists for multiple generations in captivity. Hypoxia acclimation increased CO2 sensitivity of breathing, but in this case, the effect of hypoxia acclimation was similar in highlanders and lowlanders. Our results suggest that highland deer mice have evolved high rates of alveolar ventilation that are unaltered by exposure to chronic hypoxia, but they have preserved ventilatory sensitivity to CO2.
Collapse
Affiliation(s)
- Catherine M Ivy
- Department of Biology, McMaster University , Hamilton, ON , Canada
| | - Graham R Scott
- Department of Biology, McMaster University , Hamilton, ON , Canada
| |
Collapse
|
161
|
Pelster B, Egg M. Hypoxia-inducible transcription factors in fish: expression, function and interconnection with the circadian clock. J Exp Biol 2018; 221:221/13/jeb163709. [DOI: 10.1242/jeb.163709] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ABSTRACT
The hypoxia-inducible transcription factors are key regulators for the physiological response to low oxygen availability. In vertebrates, typically three Hif-α isoforms, Hif-1α, Hif-2α and Hif-3α, are expressed, each of which, together with Hif-1β, may form a functional heterodimer under hypoxic conditions, controlling expression of hundreds of genes. A teleost-specific whole-genome duplication complicates the analysis of isoform-specific functions in fish, but recent studies suggest that the existence of paralogues of a specific isoform opens up the possibility for a subfunctionalization. In contrast to during development inside the uterus, fish eggs are freely accessible and studies analyzing Hif expression in fish embryos during development have revealed that Hif proteins are not only controlling the hypoxic response, but are also crucial for proper development and organ differentiation. Significant advances have been made in our knowledge about tissue-specific functions of Hif proteins, especially with respect to gill or gonadal tissue. The hypoxia signalling pathway is known to be tightly and mutually intertwined with the circadian clock in zebrafish and mammals. Recently, a mechanistic explanation for the hypoxia-induced dampening of the transcriptional clock was detected in zebrafish, including also metabolically induced alterations of cellular redox signalling. In turn, MAP kinase-mediated H2O2 signalling modulates the temporal expression of Hif-1α protein, similar to the redox regulation of the circadian clock itself. Once again, the zebrafish has emerged as an excellent model organism with which to explore these specific functional aspects of basic eukaryotic cell biology.
Collapse
Affiliation(s)
- Bernd Pelster
- Institute of Zoology, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| |
Collapse
|
162
|
Lozano‐Jaramillo M, McCracken KG, Cadena CD. Neutral and functionally important genes shed light on phylogeography and the history of high-altitude colonization in a widespread New World duck. Ecol Evol 2018; 8:6515-6528. [PMID: 30038753 PMCID: PMC6053577 DOI: 10.1002/ece3.4108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 12/16/2022] Open
Abstract
Phylogeographic studies often infer historical demographic processes underlying species distributions based on patterns of neutral genetic variation, but spatial variation in functionally important genes can provide additional insights about biogeographic history allowing for inferences about the potential role of adaptation in geographic range evolution. Integrating data from neutral markers and genes involved in oxygen (O2)-transport physiology, we test historical hypotheses about colonization and gene flow across low- and high-altitude regions in the Ruddy Duck (Oxyura jamaicensis), a widely distributed species in the New World. Using multilocus analyses that for the first time include populations from the Colombian Andes, we also examined the hypothesis that Ruddy Duck populations from northern South America are of hybrid origin. We found that neutral and functional genes appear to have moved into the Colombian Andes from both North America and southern South America, and that high-altitude Colombian populations do not exhibit evidence of adaptation to hypoxia in hemoglobin genes. Therefore, the biogeographic history of Ruddy Ducks is likely more complex than previously inferred. Our new data raise questions about the hypothesis that adaptation via natural selection to high-altitude conditions through amino acid replacements in the hemoglobin protein allowed Ruddy Ducks to disperse south along the high Andes into southern South America. The existence of shared genetic variation with populations from both North America and southern South America as well as private alleles suggests that the Colombian population of Ruddy Ducks may be of old hybrid origin. This study illustrates the breadth of inferences one can make by combining data from nuclear and functionally important loci in phylogeography, and underscores the importance of complete range-wide sampling to study species history in complex landscapes.
Collapse
Affiliation(s)
- Maria Lozano‐Jaramillo
- Laboratorio de Biología Evolutiva de VertebradosDepartamento de Ciencias BiológicasUniversidad de Los AndesBogotáColombia
- Wageningen University & Research Animal Breeding and GenomicsWageningenThe Netherlands
| | - Kevin G. McCracken
- Department of BiologyUniversity of MiamiCoral GablesFlorida
- Rosenstiel School of Marine and Atmospheric SciencesUniversity of MiamiMiamiFlorida
- Human Genetics and GenomicsHussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFlorida
- Institute of Arctic Biology and University of Alaska MuseumUniversity of Alaska FairbanksFairbanksAlaska
| | - Carlos Daniel Cadena
- Laboratorio de Biología Evolutiva de VertebradosDepartamento de Ciencias BiológicasUniversidad de Los AndesBogotáColombia
| |
Collapse
|
163
|
Senner NR, Stager M, Verhoeven MA, Cheviron ZA, Piersma T, Bouten W. High-altitude shorebird migration in the absence of topographical barriers: avoiding high air temperatures and searching for profitable winds. Proc Biol Sci 2018; 285:rspb.2018.0569. [PMID: 30051848 DOI: 10.1098/rspb.2018.0569] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/05/2018] [Indexed: 02/05/2023] Open
Abstract
Nearly 20% of all bird species migrate between breeding and nonbreeding sites annually. Their migrations include storied feats of endurance and physiology, from non-stop trans-Pacific crossings to flights at the cruising altitudes of jetliners. Despite intense interest in these performances, there remains great uncertainty about which factors most directly influence bird behaviour during migratory flights. We used GPS trackers that measure an individual's altitude and wingbeat frequency to track the migration of black-tailed godwits (Limosa limosa) and identify the abiotic factors influencing their in-flight migratory behaviour. We found that godwits flew at altitudes above 5000 m during 21% of all migratory flights, and reached maximum flight altitudes of nearly 6000 m. The partial pressure of oxygen at these altitudes is less than 50% of that at sea level, yet these extremely high flights occurred in the absence of topographical barriers. Instead, they were associated with high air temperatures at lower altitudes and increasing wind support at higher altitudes. Our results therefore suggest that wind, temperature and topography all play a role in determining migratory behaviour, but that their relative importance is context dependent. Extremely high-altitude flights may thus not be especially rare, but they may only occur in very specific environmental contexts.
Collapse
Affiliation(s)
- Nathan R Senner
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700, CC, Groningen, The Netherlands .,Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Maria Stager
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Mo A Verhoeven
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700, CC, Groningen, The Netherlands
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Theunis Piersma
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700, CC, Groningen, The Netherlands.,NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, PO Box 59, 1790, AB Den Burg, Texel, The Netherlands
| | - Willem Bouten
- Computational Geo-Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098, XH Amsterdam, The Netherlands
| |
Collapse
|
164
|
Wang GD, Zhang BL, Zhou WW, Li YX, Jin JQ, Shao Y, Yang HC, Liu YH, Yan F, Chen HM, Jin L, Gao F, Zhang Y, Li H, Mao B, Murphy RW, Wake DB, Zhang YP, Che J. Selection and environmental adaptation along a path to speciation in the Tibetan frog Nanorana parkeri. Proc Natl Acad Sci U S A 2018; 115:E5056-E5065. [PMID: 29760079 PMCID: PMC5984489 DOI: 10.1073/pnas.1716257115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tibetan frogs, Nanorana parkeri, are differentiated genetically but not morphologically along geographical and elevational gradients in a challenging environment, presenting a unique opportunity to investigate processes leading to speciation. Analyses of whole genomes of 63 frogs reveal population structuring and historical demography, characterized by highly restricted gene flow in a narrow geographic zone lying between matrilines West (W) and East (E). A population found only along a single tributary of the Yalu Zangbu River has the mitogenome only of E, whereas nuclear genes of W comprise 89-95% of the nuclear genome. Selection accounts for 579 broadly scattered, highly divergent regions (HDRs) of the genome, which involve 365 genes. These genes fall into 51 gene ontology (GO) functional classes, 14 of which are likely to be important in driving reproductive isolation. GO enrichment analyses of E reveal many overrepresented functional categories associated with adaptation to high elevations, including blood circulation, response to hypoxia, and UV radiation. Four genes, including DNAJC8 in the brain, TNNC1 and ADORA1 in the heart, and LAMB3 in the lung, differ in levels of expression between low- and high-elevation populations. High-altitude adaptation plays an important role in maintaining and driving continuing divergence and reproductive isolation. Use of total genomes enabled recognition of selection and adaptation in and between populations, as well as documentation of evolution along a stepped cline toward speciation.
Collapse
Affiliation(s)
- Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Wei-Wei Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, 05282 Nay Pyi Taw, Myanmar
| | - Yong-Xin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Jie-Qiong Jin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - He-Chuan Yang
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Yan-Hu Liu
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
| | - Fang Yan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hong-Man Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development of the Ministry of Education and Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Feng Gao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yaoguang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development of the Ministry of Education and Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Haipeng Li
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, Canada M5S 2C6
| | - David B Wake
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720-3160
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, 05282 Nay Pyi Taw, Myanmar
| |
Collapse
|
165
|
Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nat Ecol Evol 2018; 2:1139-1145. [DOI: 10.1038/s41559-018-0562-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/20/2018] [Indexed: 12/23/2022]
|
166
|
Molecular basis of hemoglobin adaptation in the high-flying bar-headed goose. PLoS Genet 2018; 14:e1007331. [PMID: 29608560 PMCID: PMC5903655 DOI: 10.1371/journal.pgen.1007331] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/17/2018] [Accepted: 03/23/2018] [Indexed: 01/14/2023] Open
Abstract
During the adaptive evolution of a particular trait, some selectively fixed mutations may be directly causative and others may be purely compensatory. The relative contribution of these two classes of mutation to adaptive phenotypic evolution depends on the form and prevalence of mutational pleiotropy. To investigate the nature of adaptive substitutions and their pleiotropic effects, we used a protein engineering approach to characterize the molecular basis of hemoglobin (Hb) adaptation in the high-flying bar-headed goose (Anser indicus), a hypoxia-tolerant species renowned for its trans-Himalayan migratory flights. To test the effects of observed substitutions on evolutionarily relevant genetic backgrounds, we synthesized all possible genotypic intermediates in the line of descent connecting the wildtype bar-headed goose genotype with the most recent common ancestor of bar-headed goose and its lowland relatives. Site-directed mutagenesis experiments revealed one major-effect mutation that significantly increased Hb-O2 affinity on all possible genetic backgrounds. Two other mutations exhibited smaller average effect sizes and less additivity across backgrounds. One of the latter mutations produced a concomitant increase in the autoxidation rate, a deleterious side-effect that was fully compensated by a second-site mutation at a spatially proximal residue. The experiments revealed three key insights: (i) subtle, localized structural changes can produce large functional effects; (ii) relative effect sizes of function-altering mutations may depend on the sequential order in which they occur; and (iii) compensation of deleterious pleiotropic effects may play an important role in the adaptive evolution of protein function.
Collapse
|
167
|
Barts N, Greenway R, Passow CN, Arias-Rodriguez L, Kelley JL, Tobler M. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs. Genome 2018; 61:273-286. [DOI: 10.1139/gen-2017-0051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen sulfide (H2S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H2S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H2S—along with related lineages from non-sulfidic environments—to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H2S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H2S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H2S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H2S-rich environments are not necessarily repeatable across replicated lineages.
Collapse
Affiliation(s)
- Nicholas Barts
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Ryan Greenway
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Courtney N. Passow
- Ecology, Evolution and Behavior, University of Minnesota St. Paul, 205 Cargill Building, St. Paul, MN 55108, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), C.P. 86150, Villahermosa, Tabasco, México
| | - Joanna L. Kelley
- Department of Biological Sciences, Washington State University, 431 Heald Hall, Pullman, WA 99164, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| |
Collapse
|
168
|
50 years of comparative biochemistry: The legacy of Peter Hochachka. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:1-11. [PMID: 29501788 DOI: 10.1016/j.cbpb.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/29/2022]
Abstract
Peter Hochachka was an early pioneer in the field of comparative biochemistry. He passed away in 2002 after 4 decades of research in the discipline. To celebrate his contributions and to coincide with what would have been his 80th birthday, a group of his former students organized a symposium that ran as a satellite to the 2017 Canadian Society of Zoologists annual meeting in Winnipeg, Manitoba (Canada). This Special Issue of CBP brings together manuscripts from symposium attendees and other authors who recognize the role Peter played in the evolution of the discipline. In this article, the symposium organizers and guest editors look back on his career, celebrating his many contributions to research, acknowledging his role in training of generations of graduate students and post-doctoral fellows in comparative biochemistry and physiology.
Collapse
|
169
|
Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau. Proc Natl Acad Sci U S A 2018; 115:1865-1870. [PMID: 29432191 DOI: 10.1073/pnas.1720487115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
When different species experience similar selection pressures, the probability of evolving similar adaptive solutions may be influenced by legacies of evolutionary history, such as lineage-specific changes in genetic background. Here we test for adaptive convergence in hemoglobin (Hb) function among high-altitude passerine birds that are native to the Qinghai-Tibet Plateau, and we examine whether convergent increases in Hb-O2 affinity have a similar molecular basis in different species. We documented that high-altitude parid and aegithalid species from the Qinghai-Tibet Plateau have evolved derived increases in Hb-O2 affinity in comparison with their closest lowland relatives in East Asia. However, convergent increases in Hb-O2 affinity and convergence in underlying functional mechanisms were seldom attributable to the same amino acid substitutions in different species. Using ancestral protein resurrection and site-directed mutagenesis, we experimentally confirmed two cases in which parallel substitutions contributed to convergent increases in Hb-O2 affinity in codistributed high-altitude species. In one case involving the ground tit (Parus humilis) and gray-crested tit (Lophophanes dichrous), parallel amino acid replacements with affinity-enhancing effects were attributable to nonsynonymous substitutions at a CpG dinucleotide, suggesting a possible role for mutation bias in promoting recurrent changes at the same site. Overall, most altitude-related changes in Hb function were caused by divergent amino acid substitutions, and a select few were caused by parallel substitutions that produced similar phenotypic effects on the divergent genetic backgrounds of different species.
Collapse
|
170
|
Graham AM, Lavretsky P, Muñoz-Fuentes V, Green AJ, Wilson RE, McCracken KG. Migration-Selection Balance Drives Genetic Differentiation in Genes Associated with High-Altitude Function in the Speckled Teal (Anas flavirostris) in the Andes. Genome Biol Evol 2018; 10:14-32. [PMID: 29211852 PMCID: PMC5757641 DOI: 10.1093/gbe/evx253] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Local adaptation frequently occurs across populations as a result of migration-selection balance between divergent selective pressures and gene flow associated with life in heterogeneous landscapes. Studying the effects of selection and gene flow on the adaptation process can be achieved in systems that have recently colonized extreme environments. This study utilizes an endemic South American duck species, the speckled teal (Anas flavirostris), which has both high- and low-altitude populations. High-altitude speckled teal (A. f. oxyptera) are locally adapted to the Andean environment and mostly allopatric from low-altitude birds (A. f. flavirostris); however, there is occasional gene flow across altitudinal gradients. In this study, we used next-generation sequencing to explore genetic patterns associated with high-altitude adaptation in speckled teal populations, as well as the extent to which the balance between selection and migration have affected genetic architecture. We identified a set of loci with allele frequencies strongly correlated with altitude, including those involved in the insulin-like signaling pathway, bone morphogenesis, oxidative phosphorylation, responders to hypoxia-induced DNA damage, and feedback loops to the hypoxia-inducible factor pathway. These same outlier loci were found to have depressed gene flow estimates, as well as being highly concentrated on the Z-chromosome. Our results suggest a multifactorial response to life at high altitudes through an array of interconnected pathways that are likely under positive selection and whose genetic components seem to be providing an effective genomic barrier to interbreeding, potentially functioning as an avenue for population divergence and speciation.
Collapse
Affiliation(s)
| | | | - Violeta Muñoz-Fuentes
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| | - Andy J Green
- Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| | - Robert E Wilson
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska, Fairbanks
| | - Kevin G McCracken
- Department of Biology, University of Miami
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska, Fairbanks
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine
| |
Collapse
|
171
|
Barve S, Dhondt AA, Mathur VB, Cheviron ZA. Life-history characteristics influence physiological strategies to cope with hypoxia in Himalayan birds. Proc Biol Sci 2017; 283:rspb.2016.2201. [PMID: 27903874 DOI: 10.1098/rspb.2016.2201] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022] Open
Abstract
Hypobaric hypoxia at high elevation represents an important physiological stressor for montane organisms, but optimal physiological strategies to cope with hypoxia may vary among species with different life histories. Montane birds exhibit a range of migration patterns; elevational migrants breed at high elevations but winter at low elevations or migrate further south, while high-elevation residents inhabit the same elevation throughout the year. Optimal physiological strategies to cope with hypoxia might therefore differ between species that exhibit these two migratory patterns, because they differ in the amount time spent at high elevation. We examined physiological parameters associated with blood-oxygen transport (haemoglobin concentration and haematocrit, i.e. the proportion of red blood cells in blood) in nine species of elevational migrants and six species of high-elevation residents that were sampled along a 2200 m (1000-3200 m) elevational gradient. Haemoglobin concentration increased with elevation within species regardless of migratory strategy, but it was only significantly correlated with haematocrit in elevational migrants. Surprisingly, haemoglobin concentration was not correlated with haematocrit in high-elevation residents, and these species exhibited higher mean cellular haemoglobin concentration than elevational migrants. Thus, alternative physiological strategies to regulate haemoglobin concentration and blood O2 carrying capacity appear to differ among birds with different annual elevational movement patterns.
Collapse
Affiliation(s)
- S Barve
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA .,Wildlife Institute of India, Chandrabani, Uttarakhand, India
| | - A A Dhondt
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - V B Mathur
- Wildlife Institute of India, Chandrabani, Uttarakhand, India
| | - Z A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
172
|
Tian R, Yin D, Liu Y, Seim I, Xu S, Yang G. Adaptive Evolution of Energy Metabolism-Related Genes in Hypoxia-Tolerant Mammals. Front Genet 2017; 8:205. [PMID: 29270192 PMCID: PMC5725996 DOI: 10.3389/fgene.2017.00205] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/24/2017] [Indexed: 01/26/2023] Open
Abstract
Animals that are able to sustain life under hypoxic conditions have long captured the imagination of biologists and medical practitioners alike. Although the associated morphological modifications have been extensively described, the mechanisms underlying the evolution of hypoxia tolerance are not well understood. To provide such insights, we investigated genes in four major energy metabolism pathways, and provide evidence of distinct evolutionary paths to mammalian hypoxia-tolerance. Positive selection of genes in the oxidative phosphorylation pathway mainly occurred in terrestrial hypoxia-tolerant species; possible adaptations to chronically hypoxic environments. The strongest candidate for positive selection along cetacean lineages was the citrate cycle signaling pathway, suggestive of enhanced aerobic metabolism during and after a dive. Six genes with cetacean-specific amino acid changes are rate-limiting enzymes involved in the gluconeogenesis pathway, which would be expected to enhance the lactate removal after diving. Intriguingly, 38 parallel amino acid substitutions in 29 genes were observed between hypoxia-tolerant mammals. Of these, 76.3% were radical amino acid changes, suggesting that convergent molecular evolution drives the adaptation to hypoxic stress and similar phenotypic changes. This study provides further insights into life under low oxygen conditions and the evolutionary trajectories of hypoxia-tolerant species.
Collapse
Affiliation(s)
- Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Daiqing Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yanzhi Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Inge Seim
- Comparative and Endocrine Biology Laboratory, Translational Research Institute–Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
173
|
Ivy CM, Scott GR. Control of breathing and ventilatory acclimatization to hypoxia in deer mice native to high altitudes. Acta Physiol (Oxf) 2017. [PMID: 28640969 DOI: 10.1111/apha.12912] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM We compared the control of breathing and heart rate by hypoxia between high- and low-altitude populations of Peromyscus mice, to help elucidate the physiological specializations that help high-altitude natives cope with O2 limitation. METHODS Deer mice (Peromyscus maniculatus) native to high altitude and congeneric mice native to low altitude (Peromyscus leucopus) were bred in captivity at sea level. The F1 progeny of each population were raised to adulthood and then acclimated to normoxia or hypobaric hypoxia (12 kPa, simulating hypoxia at ~4300 m) for 5 months. Responses to acute hypoxia were then measured during stepwise reductions in inspired O2 fraction. RESULTS Lowlanders exhibited ventilatory acclimatization to hypoxia (VAH), in which hypoxia acclimation enhanced the hypoxic ventilatory response, made breathing pattern more effective (higher tidal volumes and lower breathing frequencies at a given total ventilation), increased arterial O2 saturation and heart rate during acute hypoxia, augmented respiratory water loss and led to significant growth of the carotid body. In contrast, highlanders did not exhibit VAH - exhibiting a fixed increase in breathing that was similar to hypoxia-acclimated lowlanders - and they maintained even higher arterial O2 saturations in hypoxia. However, the carotid bodies of highlanders were not enlarged by hypoxia acclimation and were similar in size to those of normoxic lowlanders. Highlanders also maintained consistently higher heart rates than lowlanders during acute hypoxia. CONCLUSIONS Our results suggest that highland deer mice have evolved high rates of alveolar ventilation and respiratory O2 uptake without the significant enlargement of the carotid bodies that is typical of VAH in lowlanders, possibly to adjust the hypoxic chemoreflex for life in high-altitude hypoxia.
Collapse
Affiliation(s)
- C. M. Ivy
- Department of Biology; McMaster University; Hamilton ON Canada
| | - G. R. Scott
- Department of Biology; McMaster University; Hamilton ON Canada
| |
Collapse
|
174
|
Nikel KE, Shanishchara NK, Ivy CM, Dawson NJ, Scott GR. Effects of hypoxia at different life stages on locomotory muscle phenotype in deer mice native to high altitudes. Comp Biochem Physiol B Biochem Mol Biol 2017; 224:98-104. [PMID: 29175484 DOI: 10.1016/j.cbpb.2017.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
Animals native to high altitude must overcome the constraining effects of hypoxia on tissue O2 supply to support routine metabolism, thermoregulation in the cold, and exercise. Deer mice (Peromyscus maniculatus) native to high altitude have evolved an enhanced aerobic capacity in hypoxia, along with increased capillarity and oxidative capacity of locomotory muscle. Here, we examined whether exposure to chronic hypoxia during development or adulthood affects muscle phenotype. Deer mice from a highland population were bred in captivity at sea level, and exposed to normoxia or one of four treatments of hypobaric hypoxia (12kPa O2, simulating hypoxia at ~4300m): adult hypoxia (6-8weeks), post-natal hypoxia (birth to adulthood), pre-natal hypoxia (before conception to adulthood), and parental hypoxia (in which mice were conceived and raised in normoxia, but their parents were previously exposed to hypoxia). Litter size was similar across treatments, and pups survived the hypoxia exposures and grew to similar body masses at ~6-8months of age. Hypoxia had no effect on the masses of gastrocnemius and soleus muscles. There was a strong concordance between two distinct histological methods for staining capillaries in the gastrocnemius - alkaline phosphatase activity and binding of Griffonia simplicifolia lectin I - each of which showed that capillarity and muscle fibre size were largely unaffected by hypoxia. Maximal activities of several metabolic enzymes (cytochrome c oxidase, citrate synthase, isocitrate dehydrogenase, and lactate dehydrogenase) in the gastrocnemius were also largely unaffected by hypoxia. Therefore, the evolved muscle phenotype of high-altitude deer mice is relatively insensitive to hypoxia across life stages.
Collapse
Affiliation(s)
- Kirsten E Nikel
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | - Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Neal J Dawson
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
175
|
González-Morales JC, Beamonte-Barrientos R, Bastiaans E, Guevara-Fiore P, Quintana E, Fajardo V. A Mountain or a Plateau? Hematological Traits Vary Nonlinearly with Altitude in a Highland Lizard. Physiol Biochem Zool 2017; 90:638-645. [PMID: 28991507 DOI: 10.1086/694833] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
High-altitude organisms exhibit hematological adaptations to augment blood transport of oxygen. One common mechanism is through increased values of blood traits such as erythrocyte count, hematocrit, and hemoglobin concentration. However, a positive relationship between altitude and blood traits is not observed in all high-altitude systems. To understand how organisms adapt to high altitudes, it is important to document physiological patterns related to hypoxia gradients from a greater variety of species. Here, we present an extensive hematological description for three populations of Sceloporus grammicus living at 2,500, 3,400, and 4,300 m. We did not find a linear increase with altitude for any of the blood traits we measured. Instead, we found nonlinear relationships between altitude and the blood traits erythrocyte number, erythrocyte size, hematocrit, and hemoglobin concentration. Erythrocyte number and hematocrit leveled off as altitude increased, whereas hemoglobin concentration and erythrocyte size were highest at intermediate altitude. Additionally, lizards from our three study populations are similar in blood pH, serum electrolytes, glucose, and lactate. Given that the highest-altitude population did not show the highest levels of the variables we measured, we suggest these lizards may be using different adaptations to cope with hypoxia than lizards at low or intermediate altitudes. We discuss future directions that research could take to investigate such potential adaptations.
Collapse
|
176
|
Cordero GA, Andersson BA, Souchet J, Micheli G, Noble DW, Gangloff EJ, Uller T, Aubret F. Physiological plasticity in lizard embryos exposed to high-altitude hypoxia. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:423-432. [DOI: 10.1002/jez.2115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Jeremie Souchet
- Station d'Ecologie Théorique et Expérimentale du CNRS à Moulis; Moulis France
| | - Gaëlle Micheli
- Station d'Ecologie Théorique et Expérimentale du CNRS à Moulis; Moulis France
| | - Daniel W.A. Noble
- Ecology & Evolution Research Centre; School of Biological; Earth and Environmental Sciences; The University of New South Wales; Sydney NSW Australia
| | - Eric J. Gangloff
- Station d'Ecologie Théorique et Expérimentale du CNRS à Moulis; Moulis France
- Department of Ecology; Evolution, and Organismal Biology; Iowa State University; Ames Iowa USA
| | - Tobias Uller
- Department of Biology; Lund University; Lund Sweden
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale du CNRS à Moulis; Moulis France
| |
Collapse
|
177
|
Longhini LS, Zena LA, da Silva GSF, Bícego KC, Gargaglioni LH. Temperature effects on the cardiorespiratory control of American bullfrog tadpoles based on a non-invasive methodology. ACTA ACUST UNITED AC 2017; 220:3763-3770. [PMID: 28819055 DOI: 10.1242/jeb.160911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/14/2017] [Indexed: 11/20/2022]
Abstract
Temperature effects on cardiac autonomic tonus in amphibian larval stages have never been investigated. Therefore, we evaluated the effect of different temperatures (15, 25 and 30°C) on the cardiorespiratory rates and cardiac autonomic tonus of premetamorphic tadpoles of the bullfrog, Lithobates catesbeianus To this end, a non-invasive method was developed to permit measurements of electrocardiogram (ECG) and buccal movements (fB; surface electromyography of the buccal floor). For evaluation of autonomic regulation, intraperitoneal injections of Ringer solution (control), atropine (cholinergic muscarinic antagonist) and sotalol (β-adrenergic antagonist) were performed. Ringer solution injections did not affect heart rate (fH) or fB across temperatures. Cardiorespiratory parameters were significantly augmented by temperature (fH: 24.5±1.0, 54.5±2.0 and 75.8±2.8 beats min-1 at 15, 25 and 30°C, respectively; fB: 30.3±1.1, 73.1±4.0 and 100.6±3.7 movements min-1 at 15, 25 and 30°C, respectively). A predominant vagal tone was observed at 15°C (32.0±3.2%) and 25°C (27.2±6.7%) relative to the adrenergic tone. At 30°C, the adrenergic tone increased relative to the lower temperature. In conclusion, the cholinergic and adrenergic tones seem to be independent of temperature for colder thermal intervals (15-25°C), while exposure to a hotter ambient temperature (30°C) seems to be followed by a significant increase in adrenergic tone and may reflect cardiovascular adjustments made to match oxygen delivery to demand. Furthermore, while excluding the use of implantable electrodes or cannulae, this study provides a suitable non-invasive method for investigating cardiorespiratory function (cardiac and respiratory rates) in water-breathing animals such as the tadpole.
Collapse
Affiliation(s)
- Leonardo S Longhini
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Lucas A Zena
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, São Paulo, Brazil .,National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| | - Glauber S F da Silva
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, São Paulo, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, São Paulo, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, São Paulo, Brazil .,National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| |
Collapse
|
178
|
Abstract
Evolutionary theory has been extended almost continually since the evolutionary synthesis (ES), but except for the much greater importance afforded genetic drift, the principal tenets of the ES have been strongly supported. Adaptations are attributable to the sorting of genetic variation by natural selection, which remains the only known cause of increase in fitness. Mutations are not adaptively directed, but as principal authors of the ES recognized, the material (structural) bases of biochemistry and development affect the variety of phenotypic variations that arise by mutation and recombination. Against this historical background, I analyse major propositions in the movement for an 'extended evolutionary synthesis'. 'Niche construction' is a new label for a wide variety of well-known phenomena, many of which have been extensively studied, but (as with every topic in evolutionary biology) some aspects may have been understudied. There is no reason to consider it a neglected 'process' of evolution. The proposition that phenotypic plasticity may engender new adaptive phenotypes that are later genetically assimilated or accommodated is theoretically plausible; it may be most likely when the new phenotype is not truly novel, but is instead a slight extension of a reaction norm already shaped by natural selection in similar environments. However, evolution in new environments often compensates for maladaptive plastic phenotypic responses. The union of population genetic theory with mechanistic understanding of developmental processes enables more complete understanding by joining ultimate and proximate causation; but the latter does not replace or invalidate the former. Newly discovered molecular phenomena have been easily accommodated in the past by elaborating orthodox evolutionary theory, and it appears that the same holds today for phenomena such as epigenetic inheritance. In several of these areas, empirical evidence is needed to evaluate enthusiastic speculation. Evolutionary theory will continue to be extended, but there is no sign that it requires emendation.
Collapse
Affiliation(s)
- Douglas J. Futuyma
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
179
|
Weber RE, Jarvis JUM, Fago A, Bennett NC. O 2 binding and CO 2 sensitivity in haemoglobins of subterranean African mole rats. ACTA ACUST UNITED AC 2017; 220:3939-3948. [PMID: 28851819 DOI: 10.1242/jeb.160457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/23/2017] [Indexed: 01/05/2023]
Abstract
Inhabiting deep and sealed subterranean burrows, mole rats exhibit a remarkable suite of specializations, including eusociality (living in colonies with single breeding queens), extraordinary longevity, cancer immunity and poikilothermy, and extreme tolerance of hypoxia and hypercapnia. With little information available on adjustments in haemoglobin (Hb) function that may mitigate the impact of exogenous and endogenous constraints on the uptake and internal transport of O2, we measured haematological characteristics, as well as Hb-O2 binding affinity and sensitivity to pH (Bohr effect), CO2, temperature and 2,3-diphosphoglycerate (DPG, the major allosteric modulator of Hb-O2 affinity in red blood cells) in four social and two solitary species of African mole rats (family Bathyergidae) originating from different biomes and soil types across Central and Southern Africa. We found no consistent patterns in haematocrit (Hct) and blood and red cell DPG and Hb concentrations or in intrinsic Hb-O2 affinity and its sensitivity to pH and DPG that correlate with burrowing, sociality and soil type. However, the results reveal low specific (pH independent) effects of CO2 on Hb-O2 affinity compared with humans that predictably safeguard pulmonary loading under hypoxic and hypercapnic burrow conditions. The O2 binding characteristics are discussed in relation to available information on the primary structure of Hbs from adult and developmental stages of mammals subjected to hypoxia and hypercapnia and the molecular mechanisms underlying functional variation in rodent Hbs.
Collapse
Affiliation(s)
- Roy E Weber
- Department of Bioscience, Aarhus University, C.F. Møllers Alle 3, Aarhus C 8000, Denmark
| | | | - Angela Fago
- Department of Bioscience, Aarhus University, C.F. Møllers Alle 3, Aarhus C 8000, Denmark
| | - Nigel C Bennett
- Zoology and Entomology Department, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
180
|
Tate KB, Ivy CM, Velotta JP, Storz JF, McClelland GB, Cheviron ZA, Scott GR. Circulatory mechanisms underlying adaptive increases in thermogenic capacity in high-altitude deer mice. ACTA ACUST UNITED AC 2017; 220:3616-3620. [PMID: 28839010 DOI: 10.1242/jeb.164491] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/18/2017] [Indexed: 01/08/2023]
Abstract
We examined the circulatory mechanisms underlying adaptive increases in thermogenic capacity in deer mice (Peromyscus maniculatus) native to the cold hypoxic environment at high altitudes. Deer mice from high- and low-altitude populations were born and raised in captivity to adulthood, and then acclimated to normoxia or hypobaric hypoxia (simulating hypoxia at ∼4300 m). Thermogenic capacity [maximal O2 consumption (V̇O2,max), during cold exposure] was measured in hypoxia, along with arterial O2 saturation (SaO2 ) and heart rate (fH). Hypoxia acclimation increased V̇O2,max by a greater magnitude in highlanders than in lowlanders. Highlanders also had higher SaO2 and extracted more O2 from the blood per heartbeat (O2 pulse=V̇O2,max/fH). Hypoxia acclimation increased fH, O2 pulse and capillary density in the left ventricle of the heart. Our results suggest that adaptive increases in thermogenic capacity involve integrated functional changes across the O2 cascade that augment O2 circulation and extraction from the blood.
Collapse
Affiliation(s)
- Kevin B Tate
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.,School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Jonathan P Velotta
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
181
|
Comparative Transcriptome Analysis Reveals Adaptive Evolution of Notopterygium incisum and Notopterygium franchetii, Two High-Alpine Herbal Species Endemic to China. Molecules 2017; 22:molecules22071158. [PMID: 28696392 PMCID: PMC6152189 DOI: 10.3390/molecules22071158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 02/04/2023] Open
Abstract
The extreme conditions (e.g., cold, low oxygen, and strong ultraviolet radiation) of the high mountains provide an ideal natural laboratory for studies on speciation and the adaptive evolution of organisms. Up to now, few genome/transcriptome-based studies have been carried out on how plants adapt to conditions at extremely high altitudes. Notopterygium incisum and Notopterygiumfranchetii (Notopterygium, Apiaceae) are two endangered high-alpine herbal plants endemic to China. To explore the molecular genetic mechanisms of adaptation to high altitudes, we performed high-throughput RNA sequencing (RNA-seq) to characterize the transcriptomes of the two species. In total, more than 130 million sequence reads, 81,446 and 63,153 unigenes with total lengths of 86,924,837 and 62,615,693 bp, were generated for the two herbal species, respectively. OrthoMCL analysis identified 6375 single-copy orthologous genes between N. incisum and N. franchetii. In total, 381 positively-selected candidate genes were identified for both plants by using estimations of the non-synonymous to synonymous substitution rate. At least 18 of these genes potentially participate in RNA splicing, DNA repair, glutathione metabolism and the plant–pathogen interaction pathway, which were further enriched in various functional gene categories possibly responsible for environment adaptation in high mountains. Meanwhile, we detected various transcription factors that regulated the material and energy metabolism in N. incisum and N. franchetii, which probably play vital roles in the tolerance to stress in surroundings. In addition, 60 primer pairs based on orthologous microsatellite-containing sequences between the both Notopterygium species were determined. Finally, 17 polymorphic microsatellite markers (SSR) were successfully characterized for the two endangered species. Based on these candidate orthologous and SSR markers, we detected that the adaptive evolution and species divergence of N. incisum and N. franchetii were significantly associated with the extremely heterogeneous environments and climatic oscillations in high-altitude areas. This work provides important insights into the molecular mechanisms of adaptation to high-altitudes in alpine herbal plants.
Collapse
|
182
|
Yang W, Qi Y, Lu B, Qiao L, Wu Y, Fu J. Gene expression variations in high-altitude adaptation: a case study of the Asiatic toad (Bufo gargarizans). BMC Genet 2017; 18:62. [PMID: 28673260 PMCID: PMC5496230 DOI: 10.1186/s12863-017-0529-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/23/2017] [Indexed: 12/30/2022] Open
Abstract
Background Genome-wide investigation of molecular mechanisms for high-altitude adaptation has attracted great attention in the last few years. In order to understand the contribution of gene expression level variations to high-altitude adaptation in Asiatic toads (Bufo gargarizans), we implemented a reciprocal transplant experiment between low- and high-altitude sites and sequenced 12 transcriptomes from brain, heart, and liver tissues. Results A large number of genes with expression differences (DEGs) between high- and low-altitude individuals (193 fixed and 844 plastic) were identified, and the majority of them were tissue specific. Heart displayed the largest number of DEGs, both plastic and fixed. Fixed DEGs were particularly concentrated in functions associated with muscle contraction, and the majority of them were down-regulated in high-altitude individuals. Plastic DEGs were highly concentrated in several energy metabolism related functional categories, and the majority of them were also down-regulated at high-altitude environments. In liver samples, genes associated with nutrient metabolism experienced a broad-scale expression down-regulation in high-altitude toads. Conclusions These broadly suppressed expression patterns at high altitudes are in strong contrast to those of endothermic homeotherms, suggesting poikilothermic vertebrates may have adopted different strategies at high altitudes. Our results strongly support that both genotypic specialization and phenotypic plasticity play crucial role in adaptation to high altitude for Asiatic toads. Poikilothermic vertebrates are among the most hypoxia-tolerant animals known, and many molecular mechanisms remain elusive. We hope that our results will provide useful directions for future research. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0529-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weizhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yin Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Liang Qiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yayong Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jinzhong Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
183
|
Mahalingam S, McClelland GB, Scott GR. Evolved changes in the intracellular distribution and physiology of muscle mitochondria in high-altitude native deer mice. J Physiol 2017; 595:4785-4801. [PMID: 28418073 DOI: 10.1113/jp274130] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Mitochondrial function changes over time at high altitudes, but the potential benefits of these changes for hypoxia resistance remains unclear. We used high-altitude-adapted populations of deer mice, which exhibit enhanced aerobic performance in hypoxia, to examine whether changes in mitochondrial physiology or intracellular distribution in the muscle contribute to hypoxia resistance. Permeabilized muscle fibres from the gastrocnemius muscle had higher respiratory capacities in high-altitude mice than in low-altitude mice. Highlanders also had higher mitochondrial volume densities, due entirely to an enriched abundance of subsarcolemmal mitochondria, such that more mitochondria were situated near the cell membrane and adjacent to capillaries. There were several effects of hypoxia acclimation on mitochondrial function, some of which were population specific, but they differed from the evolved changes in high-altitude natives, which probably provide a better indication of adaptive traits that improve performance and hypoxia resistance at high altitudes. ABSTRACT High-altitude natives that have evolved to live in hypoxic environments provide a compelling system to understand how animals can overcome impairments in oxygen availability. We examined whether these include changes in mitochondrial physiology or intracellular distribution that contribute to hypoxia resistance in high-altitude deer mice (Peromyscus maniculatus). Mice from populations native to high and low altitudes were born and raised in captivity, and as adults were acclimated to normoxia or hypobaric hypoxia (equivalent to 4300 m elevation). We found that highlanders had higher respiratory capacities in the gastrocnemius (but not soleus) muscle than lowlanders (assessed using permeabilized fibres with single or multiple inputs to the electron transport system), due in large part to higher mitochondrial volume densities in the gastrocnemius. The latter was attributed to an increased abundance of subsarcolemmal (but not intermyofibrillar) mitochondria, such that more mitochondria were situated near the cell membrane and adjacent to capillaries. Hypoxia acclimation had no significant effect on these population differences, but it did increase mitochondrial cristae surface densities of mitochondria in both populations. Hypoxia acclimation also altered the physiology of isolated mitochondria by affecting respiratory capacities and cytochrome c oxidase activities in population-specific manners. Chronic hypoxia decreased the release of reactive oxygen species by isolated mitochondria in both populations. There were subtle differences in O2 kinetics between populations, with highlanders exhibiting increased mitochondrial O2 affinity or catalytic efficiency in some conditions. Our results suggest that evolved changes in mitochondrial physiology in high-altitude natives are distinct from the effects of hypoxia acclimation, and probably provide a better indication of adaptive traits that improve performance and hypoxia resistance at high altitudes.
Collapse
Affiliation(s)
- Sajeni Mahalingam
- Department of Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|
184
|
Cho JI, Basnyat B, Jeong C, Di Rienzo A, Childs G, Craig SR, Sun J, Beall CM. Ethnically Tibetan women in Nepal with low hemoglobin concentration have better reproductive outcomes. EVOLUTION MEDICINE AND PUBLIC HEALTH 2017; 2017:82-96. [PMID: 28567284 PMCID: PMC5442430 DOI: 10.1093/emph/eox008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/12/2017] [Indexed: 12/24/2022]
Abstract
Background and objectives: Tibetans have distinctively low hemoglobin concentrations at high altitudes compared with visitors and Andean highlanders. This study hypothesized that natural selection favors an unelevated hemoglobin concentration among Tibetans. It considered nonheritable sociocultural factors affecting reproductive success and tested the hypotheses that a higher percent of oxygen saturation of hemoglobin (indicating less stress) or lower hemoglobin concentration (indicating dampened response) associated with higher lifetime reproductive success. Methodology: We sampled 1006 post-reproductive ethnically Tibetan women residing at 3000–4100 m in Nepal. We collected reproductive histories by interviews in native dialects and noninvasive physiological measurements. Regression analyses selected influential covariates of measures of reproductive success: the numbers of pregnancies, live births and children surviving to age 15. Results: Taking factors such as marriage status, age of first birth and access to health care into account, we found a higher percent of oxygen saturation associated weakly and an unelevated hemoglobin concentration associated strongly with better reproductive success. Women who lost all their pregnancies or all their live births had hemoglobin concentrations significantly higher than the sample mean. Elevated hemoglobin concentration associated with a lower probability a pregnancy progressed to a live birth. Conclusions and implications: These findings are consistent with the hypothesis that unelevated hemoglobin concentration is an adaptation shaped by natural selection resulting in the relatively low hemoglobin concentration of Tibetans compared with visitors and Andean highlanders.
Collapse
Affiliation(s)
- Jang Ik Cho
- Department of Epidemiology and Biostatistics, Case Western Reserve University, School of Medicine, Cleveland, OH 44109, USA
| | - Buddha Basnyat
- Patan Hospital, Oxford University Clinical Research Unit-Nepal, Kathmandu, Nepal and Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Choongwon Jeong
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Geoff Childs
- Department of Anthropology, Washington University, St. Louis, MO 63130, USA
| | - Sienna R Craig
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
| | - Jiayang Sun
- Department of Epidemiology and Biostatistics, Case Western Reserve University, School of Medicine, Cleveland, OH 44109, USA
| | - Cynthia M Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
185
|
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
186
|
Natarajan C, Hoffmann FG, Weber RE, Fago A, Witt CC, Storz JF. Predictable convergence in hemoglobin function has unpredictable molecular underpinnings. Science 2017; 354:336-339. [PMID: 27846568 DOI: 10.1126/science.aaf9070] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/20/2016] [Indexed: 12/28/2022]
Abstract
To investigate the predictability of genetic adaptation, we examined the molecular basis of convergence in hemoglobin function in comparisons involving 56 avian taxa that have contrasting altitudinal range limits. Convergent increases in hemoglobin-oxygen affinity were pervasive among high-altitude taxa, but few such changes were attributable to parallel amino acid substitutions at key residues. Thus, predictable changes in biochemical phenotype do not have a predictable molecular basis. Experiments involving resurrected ancestral proteins revealed that historical substitutions have context-dependent effects, indicating that possible adaptive solutions are contingent on prior history. Mutations that produce an adaptive change in one species may represent precluded possibilities in other species because of differences in genetic background.
Collapse
Affiliation(s)
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology and Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Roy E Weber
- Zoophysiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Christopher C Witt
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
187
|
Inoguchi N, Mizuno N, Baba S, Kumasaka T, Natarajan C, Storz JF, Moriyama H. Alteration of the α1β2/α2β1 subunit interface contributes to the increased hemoglobin-oxygen affinity of high-altitude deer mice. PLoS One 2017; 12:e0174921. [PMID: 28362841 PMCID: PMC5376325 DOI: 10.1371/journal.pone.0174921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/17/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Deer mice (Peromyscus maniculatus) that are native to high altitudes in the Rocky Mountains have evolved hemoglobins with an increased oxygen-binding affinity relative to those of lowland conspecifics. To elucidate the molecular mechanisms responsible for the evolved increase in hemoglobin-oxygen affinity, the crystal structure of the highland hemoglobin variant was solved and compared with the previously reported structure for the lowland variant. RESULTS Highland hemoglobin yielded at least two crystal types, in which the longest axes were 507 and 230 Å. Using the smaller unit cell crystal, the structure was solved at 2.2 Å resolution. The asymmetric unit contained two tetrameric hemoglobin molecules. CONCLUSIONS The analyses revealed that αPro50 in the highland hemoglobin variant promoted a stable interaction between αHis45 and heme that was not seen in the αHis50 lowland variant. The αPro50 mutation also altered the nature of atomic contacts at the α1β2/α2β1 intersubunit interfaces. These results demonstrate how affinity-altering changes in intersubunit interactions can be produced by mutations at structurally remote sites.
Collapse
Affiliation(s)
- Noriko Inoguchi
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Nobuhiro Mizuno
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Seiki Baba
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Takashi Kumasaka
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Chandrasekhar Natarajan
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| |
Collapse
|
188
|
York JM, Chua BA, Ivy CM, Alza L, Cheek R, Scott GR, McCracken KG, Frappell PB, Dawson NJ, Laguë SL, Milsom WK. Respiratory mechanics of eleven avian species resident at high and low altitude. J Exp Biol 2017; 220:1079-1089. [DOI: 10.1242/jeb.151191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/26/2016] [Indexed: 01/07/2023]
Abstract
ABSTRACT
The metabolic cost of breathing at rest has never been successfully measured in birds, but has been hypothesized to be higher than in mammals of a similar size because of the rocking motion of the avian sternum being encumbered by the pectoral flight muscles. To measure the cost and work of breathing, and to investigate whether species resident at high altitude exhibit morphological or mechanical changes that alter the work of breathing, we studied 11 species of waterfowl: five from high altitudes (>3000 m) in Perú, and six from low altitudes in Oregon, USA. Birds were anesthetized and mechanically ventilated in sternal recumbency with known tidal volumes and breathing frequencies. The work done by the ventilator was measured, and these values were applied to the combinations of tidal volumes and breathing frequencies used by the birds to breathe at rest. We found the respiratory system of high-altitude species to be of a similar size, but consistently more compliant than that of low-altitude sister taxa, although this did not translate to a significantly reduced work of breathing. The metabolic cost of breathing was estimated to be between 1 and 3% of basal metabolic rate, as low or lower than estimates for other groups of tetrapods.
Collapse
Affiliation(s)
- Julia M. York
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | - Beverly A. Chua
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | - Catherine M. Ivy
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 3K1
| | - Luis Alza
- Department of Biology and Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Coral Gables, FL 33146, USA
- Division of Ornithology, Centro de Ornitología y Biodiversidad - CORBIDI, Lima 33, Peru
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Rebecca Cheek
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Graham R. Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 3K1
| | - Kevin G. McCracken
- Department of Biology and Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Coral Gables, FL 33146, USA
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Peter B. Frappell
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Neal J. Dawson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 3K1
- Department of Biology and Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Coral Gables, FL 33146, USA
| | - Sabine L. Laguë
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | - William K. Milsom
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
189
|
Genetic Variation of Nine Chicken Breeds Collected from Different Altitudes Revealed by Microsatellites. J Poult Sci 2017; 54:18-25. [PMID: 32908404 PMCID: PMC7477183 DOI: 10.2141/jpsa.0160033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genetic polymorphisms of 19 microsatellites were investigated in nine local chicken breeds collected from low, middle and high altitudes areas in China (total number was 256) and their population genetic diversity and population structure were analyzed. All breeds were assigned into three groups, including the high (Tibetan chicken (T) and Grey chicken (G), their altitudes were above 1000 m); middle (Chengkou mountainous chicken (CK), Jiuyuan chicken (JY) and Pengxian yellow chicken (PY), their altitudes were between 500 and 1000 m), and low groups (Da ninghe chicken (DH), Tassel first chicken (TF), Gushi chicken (GS) and Wenchang chicken (WC), their altitudes were below 500 m). We found 780 genotypes and 324 alleles via the 19 microsatellites primers, and the results showed that the mean number of alleles (Na) was 17.05; the average polymorphism information content (PIC) was 0.767; the mean expected heterozygosity (He) was 0.662; as for observed heterozygosity (Ho), it was 0.647. The AMOVA results indicated the genetic variation mainly existed within individuals among populations (80%). There was no genetic variation among the three altitude groups (0%). The mean inbreeding coefficient among individuals within population (FIS) was 0.031 and the mean gene flow (Nm) was 1.790. The mean inbreeding coefficient among populations within a group (FST) was 0.157. All loci deviated Hardy-Weinberg equilibrium. The genetic distance ranged from 0.090 to 0.704. Generally, genetic variations were mainly made up of the variations among populations and within individuals. There were rich gene diversities in the populations for the detected loci. Meanwhile, frequent genes exchange existed among the populations. This can lead to extinction of the peripheral species, such as the Tibetan chicken breed.
Collapse
|
190
|
Lau DS, Connaty AD, Mahalingam S, Wall N, Cheviron ZA, Storz JF, Scott GR, McClelland GB. Acclimation to hypoxia increases carbohydrate use during exercise in high-altitude deer mice. Am J Physiol Regul Integr Comp Physiol 2017; 312:R400-R411. [PMID: 28077391 DOI: 10.1152/ajpregu.00365.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/13/2016] [Accepted: 01/05/2017] [Indexed: 12/24/2022]
Abstract
The low O2 experienced at high altitude is a significant challenge to effective aerobic locomotion, as it requires sustained tissue O2 delivery in addition to the appropriate allocation of metabolic substrates. Here, we tested whether high- and low-altitude deer mice (Peromyscus maniculatus) have evolved different acclimation responses to hypoxia with respect to muscle metabolism and fuel use during submaximal exercise. Using F1 generation high- and low-altitude deer mice that were born and raised in common conditions, we assessed 1) fuel use during exercise, 2) metabolic enzyme activities, and 3) gene expression for key transporters and enzymes in the gastrocnemius. After hypoxia acclimation, highland mice showed a significant increase in carbohydrate oxidation and higher relative reliance on this fuel during exercise at 75% maximal O2 consumption. Compared with lowland mice, highland mice had consistently higher activities of oxidative and fatty acid oxidation enzymes in the gastrocnemius. In contrast, only after hypoxia acclimation did activities of hexokinase increase significantly in the muscle of highland mice to levels greater than lowland mice. Highland mice also responded to acclimation with increases in muscle gene expression for hexokinase 1 and 2 genes, whereas both populations increased mRNA expression for glucose transporters. Changes in skeletal muscle with acclimation suggest that highland mice had an increased capacity for the uptake and oxidation of circulatory glucose. Our results demonstrate that highland mice have evolved a distinct mode of hypoxia acclimation that involves an increase in carbohydrate use during exercise.
Collapse
Affiliation(s)
- Daphne S Lau
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Alex D Connaty
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Sajeni Mahalingam
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Nastashya Wall
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana; and
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
191
|
Developmental plasticity in the neural control of breathing. Exp Neurol 2017; 287:176-191. [DOI: 10.1016/j.expneurol.2016.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/13/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022]
|
192
|
Abstract
More than 140 million people permanently reside in high-altitude regions of Asia, South America, North America, and Africa. Another 40 million people travel to these places annually for occupational and recreational reasons, and are thus exposed to the low ambient partial pressure of oxygen. This review will focus on the pulmonary circulatory responses to acute and chronic high-altitude hypoxia, and the various expressions of maladaptation and disease arising from acute pulmonary vasoconstriction and subsequent remodeling of the vasculature when the hypoxic exposure continues. These unique conditions include high-altitude pulmonary edema, high-altitude pulmonary hypertension, subacute mountain sickness, and chronic mountain sickness.
Collapse
Affiliation(s)
- Maniraj Neupane
- Mountain Medicine Society of Nepal, Maharajgunj, Kathmandu, Nepal
| | - Erik R. Swenson
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, VA Puget Sound Health Care System, University of Washington, Seattle, WA
| |
Collapse
|
193
|
Crossley DA, Burggren WW, Reiber CL, Altimiras J, Rodnick KJ. Mass Transport: Circulatory System with Emphasis on Nonendothermic Species. Compr Physiol 2016; 7:17-66. [PMID: 28134997 DOI: 10.1002/cphy.c150010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mass transport can be generally defined as movement of material matter. The circulatory system then is a biological example given its role in the movement in transporting gases, nutrients, wastes, and chemical signals. Comparative physiology has a long history of providing new insights and advancing our understanding of circulatory mass transport across a wide array of circulatory systems. Here we focus on circulatory function of nonmodel species. Invertebrates possess diverse convection systems; that at the most complex generate pressures and perform at a level comparable to vertebrates. Many invertebrates actively modulate cardiovascular function using neuronal, neurohormonal, and skeletal muscle activity. In vertebrates, our understanding of cardiac morphology, cardiomyocyte function, and contractile protein regulation by Ca2+ highlights a high degree of conservation, but differences between species exist and are coupled to variable environments and body temperatures. Key regulators of vertebrate cardiac function and systemic blood pressure include the autonomic nervous system, hormones, and ventricular filling. Further chemical factors regulating cardiovascular function include adenosine, natriuretic peptides, arginine vasotocin, endothelin 1, bradykinin, histamine, nitric oxide, and hydrogen sulfide, to name but a few. Diverse vascular morphologies and the regulation of blood flow in the coronary and cerebral circulations are also apparent in nonmammalian species. Dynamic adjustments of cardiovascular function are associated with exercise on land, flying at high altitude, prolonged dives by marine mammals, and unique morphology, such as the giraffe. Future studies should address limits of gas exchange and convective transport, the evolution of high arterial pressure across diverse taxa, and the importance of the cardiovascular system adaptations to extreme environments. © 2017 American Physiological Society. Compr Physiol 7:17-66, 2017.
Collapse
Affiliation(s)
- Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Warren W Burggren
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Carl L Reiber
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Jordi Altimiras
- AVIAN Behavioral Genomics and Physiology, IFM Biology, Linköping University, Linköping, Sweden
| | - Kenneth J Rodnick
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, USA
| |
Collapse
|
194
|
Mortola JP, Wilfong D. Hematocrit and Hemoglobin Levels of Nonhuman Apes at Moderate Altitudes: A Comparison with Humans. High Alt Med Biol 2016; 17:323-335. [PMID: 27959666 DOI: 10.1089/ham.2016.0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mortola, Jacopo P. and DeeAnn Wilfong. Hematocrit and hemoglobin levels of nonhuman apes at moderate altitudes: a comparison with humans. High Alt Med Biol. 17:323-335, 2016.-We asked to what extent the hematologic response (increase in hematocrit [Hct] and in blood hemoglobin concentration [Hb]) of humans to altitude hypoxia was shared by our closest relatives, the nonhuman apes. Data were collected from 29 specimens of 7 species of apes at 2073 m altitude (barometric pressure Pb = 598 mm Hg); additional data originated from apes located at a lower altitude (1493 m, Pb = 639 mm Hg). The human altitude profiles of Hct and Hb between sea level and 3000 m were constructed from a compilation of literature sources that (all combined) comprised data sets of 10,000-12,000 subjects for each gender. These human data were binned for 0-250 m altitude (sea level) and for each 500 m of progressively higher altitudes. Values of Hb and Hct of both men and women were significantly higher than at sea level at the 1500 bin (1250-1750 m); hence, the altitude threshold for the human hematological responses must be between 1000 and 1500 m. In the nonhuman apes, no increase in Hct or Hb was apparent at 1500 m; at 2000 m, the increase was significant only for the Hb of females. At either altitude in the group of nonhuman apes, the increase in Hct was much less than in humans, and that of Hb was significantly less at 1500 m. We conclude that lack of, or minimal, hematopoietic response to moderate altitude can occur in mammalian species that are not genetically adapted to high altitudes. Polycythemia is not a common response to altitude hypoxia and, at least at moderate altitudes, the degree of the human response may represent the exception among apes rather than the rule.
Collapse
Affiliation(s)
- Jacopo P Mortola
- 1 Department of Physiology, McGill University , Montreal, Canada
| | | |
Collapse
|
195
|
Storz JF. Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend? J Exp Biol 2016; 219:3190-3203. [PMID: 27802149 PMCID: PMC5091379 DOI: 10.1242/jeb.127134] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In air-breathing vertebrates at high altitude, fine-tuned adjustments in hemoglobin (Hb)-O2 affinity provide an energetically efficient means of mitigating the effects of arterial hypoxemia. However, it is not always clear whether an increased or decreased Hb-O2 affinity should be expected to improve tissue O2 delivery under different degrees of hypoxia, due to the inherent trade-off between arterial O2 loading and peripheral O2 unloading. Theoretical results indicate that the optimal Hb-O2 affinity varies as a non-linear function of environmental O2 availability, and the threshold elevation at which an increased Hb-O2 affinity becomes advantageous depends on the magnitude of diffusion limitation (the extent to which O2 equilibration at the blood-gas interface is limited by the kinetics of O2 exchange). This body of theory provides a framework for interpreting the possible adaptive significance of evolved changes in Hb-O2 affinity in vertebrates that have colonized high-altitude environments. To evaluate the evidence for an empirical generalization and to test theoretical predictions, I synthesized comparative data in a phylogenetic framework to assess the strength of the relationship between Hb-O2 affinity and native elevation in mammals and birds. Evidence for a general trend in mammals is equivocal, but there is a remarkably strong positive relationship between Hb-O2 affinity and native elevation in birds. Evolved changes in Hb function in high-altitude birds provide one of the most compelling examples of convergent biochemical adaptation in vertebrates.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
196
|
Yang W, Qi Y, Fu J. Genetic signals of high-altitude adaptation in amphibians: a comparative transcriptome analysis. BMC Genet 2016; 17:134. [PMID: 27716028 PMCID: PMC5048413 DOI: 10.1186/s12863-016-0440-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/20/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND High-altitude adaptation provides an excellent system for studying how organisms cope with multiple environmental stressors and interacting genetic modifications. To explore the genetic basis of high-altitude adaptation in poikilothermic animals, we acquired transcriptome sequences from a high-altitude population and a low-altitude population of the Asiatic toad (Bufo gargarizans). Transcriptome data from another high-altitude amphibian, Rana kukunoris and its low-altitude relative R. chensiensis, which are from a previous study, were also incorporated into our comparative analysis. RESULTS More than 40,000 transcripts were obtained from each transcriptome, and 5107 one-to-one orthologs were identified among the four taxa for comparative analysis. A total of 29 (Bufo) and 33 (Rana) putative positively selected genes were identified for the two high-altitude species, which were mainly concentrated in nutrient metabolism related functions. Using SNP-tagging and FST outlier analysis, we further tested 89 other nutrient metabolism related genes for signatures of natural selection, and found that two genes, CAPN2 and ITPR1, were likely under balancing selection. We did not detect any positively selected genes associated with response to hypoxia. CONCLUSIONS Amphibians clearly employ different genetic mechanisms for high-altitude adaptation compared to endotherms. Modifications of genes associated with nutrient metabolism feature prominently while genes related to hypoxia tolerance appear to be insignificant. Poikilotherms represent the majority of animal diversity, and we hope that our results will provide useful directions for future studies of amphibians as well as other poikilotherms.
Collapse
Affiliation(s)
- Weizhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,Present address: Department of Biology, Lund University, 223 62, Lund, Sweden
| | - Yin Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jinzhong Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Department of Integrative Biology, University of Guelph, Guelph, N1G 2 W1, ON, Canada.
| |
Collapse
|
197
|
Han J, Guo R, Li J, Guan C, Chen Y, Zhao W. Organ Mass Variation in a Toad Headed Lizard Phrynocephalus vlangalii in Response to Hypoxia and Low Temperature in the Qinghai-Tibet Plateau, China. PLoS One 2016; 11:e0162572. [PMID: 27603795 PMCID: PMC5015776 DOI: 10.1371/journal.pone.0162572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/24/2016] [Indexed: 11/18/2022] Open
Abstract
Hypoxia and low temperature at high altitudes are the main environmental pressures for alpine animals, inducing phenotypic plasticity at several levels. To investigate the effect of these variables on the organ mass of Phrynocephalus vlangalii, 138 individuals belonging to four populations living along an altitudinal gradient in the Qinghai-Tibet Plateau (China) were dissected to remove heart, lungs, stomach, and intestinal tract. Organ dry mass, individuals’ sex, and body mass, as well as mean annual temperature and average air pressure (calculated from a 30-year-data series obtained from the National Climatic Data Center) were subjected to two-way analyses of covariance and generalized linear mixed models (GLMMs). Except for the heart, organ mass varied significantly among populations, although only lung and stomach mass increased significantly with increasing altitude. Males’ heart and lung mass was higher than that of females, which might be due to their different behavior and reproductive efforts. GLMM analyses indicated that air pressure had a positive effect on heart, lung and intestinal tract mass, whereas temperature had a negative effect on these three organs. In order to explain the effect of hypoxia and low temperature on P. vlangalii’s organ mass, further rigorous study on respiration, energy budget and food intake was encouraged.
Collapse
Affiliation(s)
- Jimin Han
- School of life sciences, Lanzhou University, Lanzhou, Gansu province, China
| | - Ronghui Guo
- School of life sciences, Lanzhou University, Lanzhou, Gansu province, China
| | - Jiaqi Li
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, Jiangsu province, China
| | - Chen Guan
- School of life sciences, Lanzhou University, Lanzhou, Gansu province, China
| | - Yu Chen
- School of life sciences, Lanzhou University, Lanzhou, Gansu province, China
| | - Wei Zhao
- School of life sciences, Lanzhou University, Lanzhou, Gansu province, China
- * E-mail:
| |
Collapse
|
198
|
Xia M, Chao Y, Jia J, Li C, Kong Q, Zhao Y, Guo S, Qi D. Changes of hemoglobin expression in response to hypoxia in a Tibetan schizothoracine fish, Schizopygopsis pylzovi. J Comp Physiol B 2016; 186:1033-1043. [PMID: 27424163 DOI: 10.1007/s00360-016-1013-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/10/2016] [Accepted: 07/09/2016] [Indexed: 11/26/2022]
Abstract
Fishes endemic to the Qinghai-Tibetan Plateau are comparatively well adapted to aquatic environments with low oxygen partial pressures (hypoxia). Here, we cloned the complete cDNA of hemoglobin (Hb) α and β from the Tibetan schizothoracine fish Schizopygopsis pylzovi, and then investigated changes in Hb mRNA and protein levels in spleen, liver and kidney in response to hypoxia. We applied severe hypoxia (4 h at PO2 = 0.6 kPa) and moderate hypoxia (72 h at PO2 = 6.0 kPa) to adult S. pylzovi. Changes of Hb expression under hypoxia, together with the investigations of spleen somatic index, kidney somatic index and Hb concentration in circulation, suggest that the kidney may not only serve as the erythropoietic organ, but also act as the major blood reservoir in S. pylzovi. From this perspective, the transcriptional activity of Hb in S. pylzovi, as reflected in the kidney, was turned down quickly after the onset of severe hypoxia, while under moderate hypoxia the transcriptional activity of Hb showed upregulation for a short time, but then the transcriptional machinery was turned down slowly on prolonged exposure. Notably, the changes in Hb protein levels in spleen, liver and kidney in response to severe and moderate hypoxia were not in line with the changes in mRNA levels, which are related with the blood reservoir in the kidney. Tibetan schizothoracine fish, at least S. pylzovi, show a particular response of the transcription regulation of Hb to moderate hypoxia, which is different from that of other fish species.
Collapse
Affiliation(s)
- Mingzhe Xia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining, 810016, China
| | - Yan Chao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining, 810016, China
| | - Jianlei Jia
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining, 810016, China
| | - Changzhong Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Qinghui Kong
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining, 810016, China
| | - Yongli Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining, 810016, China
| | - Songchang Guo
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, The Chinese Academy of Sciences, Xining, 810001, China.
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China.
| |
Collapse
|
199
|
Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia. Nat Commun 2016; 7:12086. [PMID: 27417539 PMCID: PMC4947158 DOI: 10.1038/ncomms12086] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/26/2016] [Indexed: 12/19/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive signalling lipid highly enriched in mature erythrocytes, with unknown functions pertaining to erythrocyte physiology. Here by employing nonbiased high-throughput metabolomic profiling, we show that erythrocyte S1P levels rapidly increase in 21 healthy lowland volunteers at 5,260 m altitude on day 1 and continue increasing to 16 days with concurrently elevated erythrocyte sphingonisne kinase 1 (Sphk1) activity and haemoglobin (Hb) oxygen (O2) release capacity. Mouse genetic studies show that elevated erythrocyte Sphk1-induced S1P protects against tissue hypoxia by inducing O2 release. Mechanistically, we show that intracellular S1P promotes deoxygenated Hb anchoring to the membrane, enhances the release of membrane-bound glycolytic enzymes to the cytosol, induces glycolysis and thus the production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific glycolytic intermediate, which facilitates O2 release. Altogether, we reveal S1P as an intracellular hypoxia-responsive biolipid promoting erythrocyte glycolysis, O2 delivery and thus new therapeutic opportunities to counteract tissue hypoxia. The presence of the signalling lipid Sphingosine 1-phosphate (S1P) in erythrocytes has unclear physiological implications. Here the authors show that the S1P-generating enzyme Sphingosine kinase type 1 and its product S1P play an important role in the red blood cell adaptation to hypoxic environments in mice and humans.
Collapse
|
200
|
Fischer EK, Ghalambor CK, Hoke KL. Can a Network Approach Resolve How Adaptive vs Nonadaptive Plasticity Impacts Evolutionary Trajectories? Integr Comp Biol 2016; 56:877-888. [DOI: 10.1093/icb/icw087] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|