151
|
A neonicotinoid impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults. Sci Rep 2015; 5:10989. [PMID: 26086769 PMCID: PMC4471740 DOI: 10.1038/srep10989] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/01/2015] [Indexed: 01/27/2023] Open
Abstract
Xenobiotics such as the neonicotinoid pesticide, imidacloprid, are used globally, but their effects on native bee species are poorly understood. We studied the effects of sublethal doses of imidacloprid on olfactory learning in the native honey bee species, Apis cerana, an important pollinator of agricultural and native plants throughout Asia. We provide the first evidence that imidacloprid can impair learning in A. cerana workers exposed as adults or as larvae. Adults that ingested a single imidacloprid dose as low as 0.1 ng/bee had significantly reduced olfactory learning acquisition, which was 1.6-fold higher in control bees. Longer-term learning (1-17 h after the last learning trial) was also impaired. Bees exposed as larvae to a total dose of 0.24 ng/bee did not have reduced survival to adulthood. However, these larval-treated bees had significantly impaired olfactory learning when tested as adults: control bees exhibited up to 4.8-fold better short-term learning acquisition, though longer-term learning was not affected. Thus, sublethal cognitive deficits elicited by neonicotinoids on a broad range of native bee species deserve further study.
Collapse
|
152
|
Alburaki M, Boutin S, Mercier PL, Loublier Y, Chagnon M, Derome N. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials. PLoS One 2015; 10:e0125790. [PMID: 25993642 PMCID: PMC4436261 DOI: 10.1371/journal.pone.0125790] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/26/2015] [Indexed: 11/18/2022] Open
Abstract
Thirty-two honeybee (Apis mellifera) colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV) and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS) was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads.
Collapse
Affiliation(s)
- Mohamed Alburaki
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), Québec, Canada
| | - Sébastien Boutin
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
| | - Pierre-Luc Mercier
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), Québec, Canada
| | - Yves Loublier
- CNRS, Laboratoire Evolution, Génomes et Spéciation LEGS, Gif-sur-Yvette, France
| | | | - Nicolas Derome
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Université Laval, Département de biologie, Faculté des sciences et de génie, Québec, Canada
| |
Collapse
|
153
|
Kessler S, Tiedeken EJ, Simcock KL, Derveau S, Mitchell J, Softley S, Stout JC, Wright GA. Bees prefer foods containing neonicotinoid pesticides. Nature 2015; 521:74-76. [PMID: 25901684 PMCID: PMC4772122 DOI: 10.1038/nature14414] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/20/2015] [Indexed: 01/25/2023]
Abstract
The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.
Collapse
|
154
|
McMahon DP, Fürst MA, Caspar J, Theodorou P, Brown MJF, Paxton RJ. A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees. J Anim Ecol 2015; 84:615-624. [PMID: 25646973 PMCID: PMC4832299 DOI: 10.1111/1365-2656.12345] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/18/2015] [Indexed: 11/30/2022]
Abstract
Declining populations of bee pollinators are a cause of concern, with major repercussions for biodiversity loss and food security. RNA viruses associated with honeybees represent a potential threat to other insect pollinators, but the extent of this threat is poorly understood. This study aims to attain a detailed understanding of the current and ongoing risk of emerging infectious disease (EID) transmission between managed and wild pollinator species across a wide range of RNA viruses. Within a structured large‐scale national survey across 26 independent sites, we quantify the prevalence and pathogen loads of multiple RNA viruses in co‐occurring managed honeybee (Apis mellifera) and wild bumblebee (Bombus spp.) populations. We then construct models that compare virus prevalence between wild and managed pollinators. Multiple RNA viruses associated with honeybees are widespread in sympatric wild bumblebee populations. Virus prevalence in honeybees is a significant predictor of virus prevalence in bumblebees, but we remain cautious in speculating over the principle direction of pathogen transmission. We demonstrate species‐specific differences in prevalence, indicating significant variation in disease susceptibility or tolerance. Pathogen loads within individual bumblebees may be high and in the case of at least one RNA virus, prevalence is higher in wild bumblebees than in managed honeybee populations. Our findings indicate widespread transmission of RNA viruses between managed and wild bee pollinators, pointing to an interconnected network of potential disease pressures within and among pollinator species. In the context of the biodiversity crisis, our study emphasizes the importance of targeting a wide range of pathogens and defining host associations when considering potential drivers of population decline.
Collapse
Affiliation(s)
- Dino P McMahon
- School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, UK.,Institute of Biology, Free University Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Matthias A Fürst
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 OEX, UK.,IST Austria (Institute of Science and Technology Austria), 3400, Klosterneuburg, Austria
| | - Jesicca Caspar
- Institute for Biology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Panagiotis Theodorou
- Institute for Biology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany.,German Centre for integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Mark J F Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 OEX, UK
| | - Robert J Paxton
- School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, UK.,Institute for Biology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany.,German Centre for integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
155
|
Goulson D, Nicholls E, Botías C, Rotheray EL. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015; 347:1255957. [PMID: 25721506 DOI: 10.1126/science.1255957] [Citation(s) in RCA: 1664] [Impact Index Per Article: 166.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bees are subject to numerous pressures in the modern world. The abundance and diversity of flowers has declined; bees are chronically exposed to cocktails of agrochemicals, and they are simultaneously exposed to novel parasites accidentally spread by humans. Climate change is likely to exacerbate these problems in the future. Stressors do not act in isolation; for example, pesticide exposure can impair both detoxification mechanisms and immune responses, rendering bees more susceptible to parasites. It seems certain that chronic exposure to multiple interacting stressors is driving honey bee colony losses and declines of wild pollinators, but such interactions are not addressed by current regulatory procedures, and studying these interactions experimentally poses a major challenge. In the meantime, taking steps to reduce stress on bees would seem prudent; incorporating flower-rich habitat into farmland, reducing pesticide use through adopting more sustainable farming methods, and enforcing effective quarantine measures on bee movements are all practical measures that should be adopted. Effective monitoring of wild pollinator populations is urgently needed to inform management strategies into the future.
Collapse
Affiliation(s)
- Dave Goulson
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | - Elizabeth Nicholls
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Cristina Botías
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Ellen L Rotheray
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
156
|
Moffat C, Pacheco JG, Sharp S, Samson AJ, Bollan KA, Huang J, Buckland ST, Connolly CN. Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris). FASEB J 2015; 29:2112-9. [PMID: 25634958 PMCID: PMC4415021 DOI: 10.1096/fj.14-267179] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/07/2015] [Indexed: 01/22/2023]
Abstract
The global decline in the abundance and diversity of insect pollinators could result from habitat loss, disease, and pesticide exposure. The contribution of the neonicotinoid insecticides (e.g., clothianidin and imidacloprid) to this decline is controversial, and key to understanding their risk is whether the astonishingly low levels found in the nectar and pollen of plants is sufficient to deliver neuroactive levels to their site of action: the bee brain. Here we show that bumblebees (Bombus terrestris audax) fed field levels [10 nM, 2.1 ppb (w/w)] of neonicotinoid accumulate between 4 and 10 nM in their brains within 3 days. Acute (minutes) exposure of cultured neurons to 10 nM clothianidin, but not imidacloprid, causes a nicotinic acetylcholine receptor-dependent rapid mitochondrial depolarization. However, a chronic (2 days) exposure to 1 nM imidacloprid leads to a receptor-dependent increased sensitivity to a normally innocuous level of acetylcholine, which now also causes rapid mitochondrial depolarization in neurons. Finally, colonies exposed to this level of imidacloprid show deficits in colony growth and nest condition compared with untreated colonies. These findings provide a mechanistic explanation for the poor navigation and foraging observed in neonicotinoid treated bumblebee colonies.—Moffat, C., Pacheco, J. G., Sharp, S., Samson, A. J., Bollan, K. A., Huang, J., Buckland, S. T., Connolly, C. N. Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris).
Collapse
Affiliation(s)
- Christopher Moffat
- *Medical Research Institute, University of Dundee, Dundee, United Kingdom; and Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews, United Kingdom
| | - Joao Goncalves Pacheco
- *Medical Research Institute, University of Dundee, Dundee, United Kingdom; and Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews, United Kingdom
| | - Sheila Sharp
- *Medical Research Institute, University of Dundee, Dundee, United Kingdom; and Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews, United Kingdom
| | - Andrew J Samson
- *Medical Research Institute, University of Dundee, Dundee, United Kingdom; and Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews, United Kingdom
| | - Karen A Bollan
- *Medical Research Institute, University of Dundee, Dundee, United Kingdom; and Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews, United Kingdom
| | - Jeffrey Huang
- *Medical Research Institute, University of Dundee, Dundee, United Kingdom; and Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews, United Kingdom
| | - Stephen T Buckland
- *Medical Research Institute, University of Dundee, Dundee, United Kingdom; and Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews, United Kingdom
| | - Christopher N Connolly
- *Medical Research Institute, University of Dundee, Dundee, United Kingdom; and Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews, United Kingdom
| |
Collapse
|
157
|
Schmehl DR, Teal PEA, Frazier JL, Grozinger CM. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). JOURNAL OF INSECT PHYSIOLOGY 2014; 71:177-90. [PMID: 25450567 DOI: 10.1016/j.jinsphys.2014.10.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/19/2014] [Accepted: 10/06/2014] [Indexed: 05/11/2023]
Abstract
Populations of pollinators are in decline worldwide. These declines are best documented in honey bees and are due to a combination of stressors. In particular, pesticides have been linked to decreased longevity and performance in honey bees; however, the molecular and physiological pathways mediating sensitivity and resistance to pesticides are not well characterized. We explored the impact of coumaphos and fluvalinate, the two most abundant and frequently detected pesticides in the hive, on genome-wide gene expression patterns of honey bee workers. We found significant changes in 1118 transcripts, including genes involved in detoxification, behavioral maturation, immunity, and nutrition. Since behavioral maturation is regulated by juvenile hormone III (JH), we examined effects of these miticides on hormone titers; while JH titers were unaffected, titers of methyl farnesoate (MF), the precursor to JH, were decreased. We further explored the association between nutrition- and pesticide-regulated gene expression patterns and demonstrated that bees fed a pollen-based diet exhibit reduced sensitivity to a third pesticide, chlorpyrifos. Finally, we demonstrated that expression levels of several of the putative pesticide detoxification genes identified in our study and previous studies are also upregulated in response to pollen feeding, suggesting that these pesticides and components in pollen modulate similar molecular response pathways. Our results demonstrate that pesticide exposure can substantially impact expression of genes involved in several core physiological pathways in honey bee workers. Additionally, there is substantial overlap in responses to pesticides and pollen-containing diets at the transcriptional level, and subsequent analyses demonstrated that pollen-based diets reduce workers' pesticide sensitivity. Thus, providing honey bees and other pollinators with high quality nutrition may improve resistance to pesticides.
Collapse
Affiliation(s)
- Daniel R Schmehl
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, USA.
| | - Peter E A Teal
- United States Department of Agriculture, Agricultural Research Service, Gainesville, FL, USA.
| | - James L Frazier
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, USA.
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
158
|
Dulin F, Zatylny-Gaudin C, Ballandonne C, Guillet B, Bonafos R, Bureau R, Halm MP. Protecting honey bees: identification of a new varroacide by in silico, in vitro, and in vivo studies. Parasitol Res 2014; 113:4601-10. [PMID: 25358237 DOI: 10.1007/s00436-014-4150-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/23/2014] [Indexed: 11/28/2022]
Abstract
Varroa destructor is the main concern related to the gradual decline of honeybees. Nowadays, among the various acaricides used in the control of V. destructor, most presents increasing resistance. An interesting alternative could be the identification of existent molecules as new acaricides with no effect on honeybee health. We have previously constructed the first 3D model of AChE for honeybee. By analyzing data concerning amino acid mutations implicated in the resistance associated to pesticides, it appears that pirimicarb should be a good candidate for varroacide. To check this hypothesis, we characterized the AChE gene of V. destructor. In the same way, we proposed a 3D model for the AChE of V. destructor. Starting from the definition of these two 3D models of AChE in honeybee and varroa, a comparison between the gorges of the active site highlighted some major differences and particularly different shapes. Following this result, docking studies have shown that pirimicarb adopts two distinct positions with the strongest intermolecular interactions with VdAChE. This result was confirmed with in vitro and in vivo data for which a clear inhibition of VdAChE by pirimicarb at 10 μM (contrary to HbAChE) and a 100% mortality of varroa (dose corresponding to the LD50 (contact) for honeybee divided by a factor 100) were observed. These results demonstrate that primicarb could be a new varroacide candidate and reinforce the high relationships between in silico, in vitro, and in vivo data for the design of new selective pesticides.
Collapse
|
159
|
Human H, Archer CR, du Rand EE, Pirk CWW, Nicolson SW. Resistance of developing honeybee larvae during chronic exposure to dietary nicotine. JOURNAL OF INSECT PHYSIOLOGY 2014; 69:74-79. [PMID: 24819201 DOI: 10.1016/j.jinsphys.2014.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
The effects of pesticides on honeybee larvae are less understood than for adult bees, even though larvae are chronically exposed to pesticide residues that accumulate in comb and food stores in the hive. We investigated how exposure to a plant alkaloid, nicotine, affects survival, growth and body composition of honeybee larvae. Larvae of Apis mellifera scutellata were reared in vitro and fed throughout development on standard diets with nicotine included at concentrations from 0 to 1000μg/100g diet. Overall mortality across all nicotine treatments was low, averaging 9.8% at the prepupal stage and 18.1% at the white-eyed pupal stage, but survival was significantly reduced by nicotine. The mass of prepupae and white-eyed pupae was not affected by nicotine. In terms of body composition, nicotine affected water content but did not influence either protein or lipid stores of white-eyed pupae. We attribute the absence of consistent negative effects of dietary nicotine to detoxification mechanisms in developing honeybees, which enable them to resist both natural and synthetic xenobiotics.
Collapse
Affiliation(s)
- H Human
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - C R Archer
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - E E du Rand
- Department of Biochemistry, University of Pretoria, Pretoria 0002, South Africa
| | - C W W Pirk
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - S W Nicolson
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
160
|
Herbert LT, Vázquez DE, Arenas A, Farina WM. Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour. J Exp Biol 2014; 217:3457-64. [PMID: 25063858 DOI: 10.1242/jeb.109520] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glyphosate (GLY) is a broad-spectrum herbicide used for weed control. The sub-lethal impact of GLY on non-target organisms such as insect pollinators has not yet been evaluated. Apis mellifera is the main pollinator in agricultural environments and is a well-known model for behavioural research. Honeybees are also accurate biosensors of environmental pollutants and their appetitive behavioural response is a suitable tool with which to test sub-lethal effects of agrochemicals. We studied the effects of field-realistic doses of GLY on honeybees exposed chronically or acutely to the herbicide. We focused on sucrose sensitivity, elemental and non-elemental associative olfactory conditioning of the proboscis extension response (PER), and foraging-related behaviour. We found a reduced sensitivity to sucrose and learning performance for the groups chronically exposed to GLY concentrations within the range of recommended doses. When olfactory PER conditioning was performed with sucrose reward with the same GLY concentrations (acute exposure), elemental learning and short-term memory retention decreased significantly compared with controls. Non-elemental associative learning was also impaired by an acute exposure to GLY traces. Altogether, these results imply that GLY at concentrations found in agro-ecosystems as a result of standard spraying can reduce sensitivity to nectar reward and impair associative learning in honeybees. However, no effect on foraging-related behaviour was found. Therefore, we speculate that successful forager bees could become a source of constant inflow of nectar with GLY traces that could then be distributed among nestmates, stored in the hive and have long-term negative consequences on colony performance.
Collapse
Affiliation(s)
- Lucila T Herbert
- Grupo de Estudio de Insectos Sociales. Departamento de Biodiversidad y Biología Experimental, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Diego E Vázquez
- Grupo de Estudio de Insectos Sociales. Departamento de Biodiversidad y Biología Experimental, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Andrés Arenas
- Grupo de Estudio de Insectos Sociales. Departamento de Biodiversidad y Biología Experimental, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Walter M Farina
- Grupo de Estudio de Insectos Sociales. Departamento de Biodiversidad y Biología Experimental, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| |
Collapse
|
161
|
Williamson SM, Willis SJ, Wright GA. Exposure to neonicotinoids influences the motor function of adult worker honeybees. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1409-18. [PMID: 25011924 PMCID: PMC4165879 DOI: 10.1007/s10646-014-1283-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/27/2014] [Indexed: 05/07/2023]
Abstract
Systemic pesticides such as neonicotinoids are commonly used on flowering crops visited by pollinators, and their use has been implicated in the decline of insect pollinator populations in Europe and North America. Several studies show that neonicotinoids affect navigation and learning in bees but few studies have examined whether these substances influence their basic motor function. Here, we investigated how prolonged exposure to sublethal doses of four neonicotinoid pesticides (imidacloprid, thiamethoxam, clothianidin, dinotefuran) and the plant toxin, nicotine, affect basic motor function and postural control in foraging-age worker honeybees. We used doses of 10 nM for each neonicotinoid: field-relevant doses that we determined to be sublethal and willingly consumed by bees. The neonicotinoids were placed in food solutions given to bees for 24 h. After the exposure period, bees were more likely to lose postural control during the motor function assay and fail to right themselves if exposed to imidacloprid, thiamethoxam, clothianidin. Bees exposed to thiamethoxam and nicotine also spent more time grooming. Other behaviours (walking, sitting and flying) were not significantly affected. Expression of changes in motor function after exposure to imidacloprid was dose-dependent and affected all measured behaviours. Our data illustrate that 24 h exposure to sublethal doses of neonicotinoid pesticides has a subtle influence on bee behaviour that is likely to affect normal function in a field setting.
Collapse
Affiliation(s)
- Sally M. Williamson
- Faculty of Medical Sciences, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
| | - Sarah J. Willis
- School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
| | - Geraldine A. Wright
- Faculty of Medical Sciences, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
| |
Collapse
|
162
|
Sandrock C, Tanadini M, Tanadini LG, Fauser-Misslin A, Potts SG, Neumann P. Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLoS One 2014; 9:e103592. [PMID: 25084279 PMCID: PMC4118897 DOI: 10.1371/journal.pone.0103592] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/03/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Honeybees provide economically and ecologically vital pollination services to crops and wild plants. During the last decade elevated colony losses have been documented in Europe and North America. Despite growing consensus on the involvement of multiple causal factors, the underlying interactions impacting on honeybee health and colony failure are not fully resolved. Parasites and pathogens are among the main candidates, but sublethal exposure to widespread agricultural pesticides may also affect bees. METHODOLOGY/PRINCIPAL FINDINGS To investigate effects of sublethal dietary neonicotinoid exposure on honeybee colony performance, a fully crossed experimental design was implemented using 24 colonies, including sister-queens from two different strains, and experimental in-hive pollen feeding with or without environmentally relevant concentrations of thiamethoxam and clothianidin. Honeybee colonies chronically exposed to both neonicotinoids over two brood cycles exhibited decreased performance in the short-term resulting in declining numbers of adult bees (-28%) and brood (-13%), as well as a reduction in honey production (-29%) and pollen collections (-19%), but colonies recovered in the medium-term and overwintered successfully. However, significantly decelerated growth of neonicotinoid-exposed colonies during the following spring was associated with queen failure, revealing previously undocumented long-term impacts of neonicotinoids: queen supersedure was observed for 60% of the neonicotinoid-exposed colonies within a one year period, but not for control colonies. Linked to this, neonicotinoid exposure was significantly associated with a reduced propensity to swarm during the next spring. Both short-term and long-term effects of neonicotinoids on colony performance were significantly influenced by the honeybees' genetic background. CONCLUSIONS/SIGNIFICANCE Sublethal neonicotinoid exposure did not provoke increased winter losses. Yet, significant detrimental short and long-term impacts on colony performance and queen fate suggest that neonicotinoids may contribute to colony weakening in a complex manner. Further, we highlight the importance of the genetic basis of neonicotinoid susceptibility in honeybees which can vary substantially.
Collapse
Affiliation(s)
| | | | - Lorenzo G. Tanadini
- Division of Biostatistics, Institute for Social and Preventive Medicine, University of Zurich, Zurich, Switzerland
| | - Aline Fauser-Misslin
- Agroscope, Swiss Bee Research Centre, Berne, Switzerland
- Institute of Bee Health, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - Simon G. Potts
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Peter Neumann
- Agroscope, Swiss Bee Research Centre, Berne, Switzerland
- Institute of Bee Health, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| |
Collapse
|
163
|
Nakasu EYT, Williamson SM, Edwards MG, Fitches EC, Gatehouse JA, Wright GA, Gatehouse AMR. Novel biopesticide based on a spider venom peptide shows no adverse effects on honeybees. Proc Biol Sci 2014; 281:20140619. [PMID: 24898372 PMCID: PMC4071547 DOI: 10.1098/rspb.2014.0619] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/07/2014] [Indexed: 11/15/2022] Open
Abstract
Evidence is accumulating that commonly used pesticides are linked to decline of pollinator populations; adverse effects of three neonicotinoids on bees have led to bans on their use across the European Union. Developing insecticides that pose negligible risks to beneficial organisms such as honeybees is desirable and timely. One strategy is to use recombinant fusion proteins containing neuroactive peptides/proteins linked to a 'carrier' protein that confers oral toxicity. Hv1a/GNA (Galanthus nivalis agglutinin), containing an insect-specific spider venom calcium channel blocker (ω-hexatoxin-Hv1a) linked to snowdrop lectin (GNA) as a 'carrier', is an effective oral biopesticide towards various insect pests. Effects of Hv1a/GNA towards a non-target species, Apis mellifera, were assessed through a thorough early-tier risk assessment. Following feeding, honeybees internalized Hv1a/GNA, which reached the brain within 1 h after exposure. However, survival was only slightly affected by ingestion (LD50>100 µg bee(-1)) or injection of fusion protein. Bees fed acute (100 µg bee(-1)) or chronic (0.35 mg ml(-1)) doses of Hv1a/GNA and trained in an olfactory learning task had similar rates of learning and memory to no-pesticide controls. Larvae were unaffected, being able to degrade Hv1a/GNA. These tests suggest that Hv1a/GNA is unlikely to cause detrimental effects on honeybees, indicating that atracotoxins targeting calcium channels are potential alternatives to conventional pesticides.
Collapse
Affiliation(s)
- Erich Y T Nakasu
- School of Biology, Newcastle Institute for Research and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU, UK Capes Foundation, Ministry of Education of Brazil, Caixa Postal 250, Brasília 70040-020, Brazil
| | - Sally M Williamson
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Martin G Edwards
- School of Biology, Newcastle Institute for Research and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Elaine C Fitches
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK
| | - John A Gatehouse
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Geraldine A Wright
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Angharad M R Gatehouse
- School of Biology, Newcastle Institute for Research and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
164
|
Tan K, Chen W, Dong S, Liu X, Wang Y, Nieh JC. Imidacloprid alters foraging and decreases bee avoidance of predators. PLoS One 2014; 9:e102725. [PMID: 25025334 PMCID: PMC4099376 DOI: 10.1371/journal.pone.0102725] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/20/2014] [Indexed: 11/18/2022] Open
Abstract
Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb) imidacloprid, honey bees (Apis cerana) showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera), to other important bee species.
Collapse
Affiliation(s)
- Ken Tan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, Yunnan Province, China
- Eastern Bee Research Institute, Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province, China
- * E-mail:
| | - Weiwen Chen
- Eastern Bee Research Institute, Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province, China
| | - Shihao Dong
- Eastern Bee Research Institute, Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province, China
| | - Xiwen Liu
- Eastern Bee Research Institute, Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province, China
| | - Yuchong Wang
- Eastern Bee Research Institute, Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province, China
| | - James C. Nieh
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
165
|
Gill RJ, Raine NE. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12292] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Richard J. Gill
- School of Biological Sciences; Royal Holloway University of London; Egham Surrey TW20 0EX UK
| | - Nigel E. Raine
- School of Biological Sciences; Royal Holloway University of London; Egham Surrey TW20 0EX UK
| |
Collapse
|
166
|
Kasiotis KM, Anagnostopoulos C, Anastasiadou P, Machera K. Pesticide residues in honeybees, honey and bee pollen by LC-MS/MS screening: reported death incidents in honeybees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 485-486:633-642. [PMID: 24747255 DOI: 10.1016/j.scitotenv.2014.03.042] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to investigate reported cases of honeybee death incidents with regard to the potential interrelation to the exposure to pesticides. Thus honeybee, bee pollen and honey samples from different areas of Greece were analyzed for the presence of pesticide residues. In this context an LC-ESI-MS/MS multiresidue method of total 115 analytes of different chemical classes such as neonicotinoids, organophosphates, triazoles, carbamates, dicarboximides and dinitroanilines in honeybee bodies, honey and bee pollen was developed and validated. The method presents good linearity over the ranges assayed with correlation coefficient values r(2)≥0.99, recoveries ranging for all matrices from 59 to 117% and precision (RSD%) values ranging from 4 to 27%. LOD and LOQ values ranged - for honeybees, honey and bee pollen - from 0.03 to 23.3 ng/g matrix weight and 0.1 up to 78 ng/g matrix weight, respectively. Therefore this method is sufficient to act as a monitoring tool for the determination of pesticide residues in cases of suspected honeybee poisoning incidents. From the analysis of the samples the presence of 14 active substances was observed in all matrices with concentrations ranging for honeybees from 0.3 to 81.5 ng/g, for bee pollen from 6.1 to 1273 ng/g and for honey one sample was positive to carbendazim at 1.6 ng/g. The latter confirmed the presence of such type of compounds in honeybee body and apicultural products.
Collapse
Affiliation(s)
- Konstantinos M Kasiotis
- Benaki Phytopathological Institute, Department of Pesticides Control and Phytopharmacy, Laboratory of Pesticides' Toxicology, 8 St. Delta Street, Kifissia, 14561 Athens, Greece
| | - Chris Anagnostopoulos
- Benaki Phytopathological Institute, Department of Pesticides Control and Phytopharmacy, Laboratory of Pesticides' Residues, 8 St. Delta Street, Kifissia, 14561 Athens, Greece
| | - Pelagia Anastasiadou
- Benaki Phytopathological Institute, Department of Pesticides Control and Phytopharmacy, Laboratory of Pesticides' Toxicology, 8 St. Delta Street, Kifissia, 14561 Athens, Greece
| | - Kyriaki Machera
- Benaki Phytopathological Institute, Department of Pesticides Control and Phytopharmacy, Laboratory of Pesticides' Toxicology, 8 St. Delta Street, Kifissia, 14561 Athens, Greece.
| |
Collapse
|
167
|
Barbieri RF, Lester PJ, Miller AS, Ryan KG. A neurotoxic pesticide changes the outcome of aggressive interactions between native and invasive ants. Proc Biol Sci 2014; 280:20132157. [PMID: 24266038 DOI: 10.1098/rspb.2013.2157] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neurotoxic pesticides, such as neonicotinoids, negatively affect the cognitive capacity and fitness of non-target species, and could also modify interspecific interactions. We tested whether sublethal contamination with neonicotinoid could affect foraging, colony fitness and the outcome of behavioural interactions between a native (Monomorium antarcticum) and an invasive ant species (Linepithema humile). The foraging behaviour of both ants was not affected by neonicotinoid exposure. Colonies of the invasive species exposed to the neonicotinoid produced significantly fewer brood. In interspecific confrontations, individuals of the native species exposed to the neonicotinoid lowered their aggression towards the invasive species, although their survival probability was not affected. Exposed individuals of the invasive species interacting with non-exposed native ants displayed increased aggression and had their survival probability reduced. Non-exposed individuals of the invasive species were less aggressive but more likely to survive when interacting with exposed native ants. These results suggest that non-target exposure of invaders to neonicotinoids could either increase or decrease the probability of survival according to the exposure status of the native species. Given that, in any community, different species have different food preferences, and thus different exposure to pesticides, non-target exposure could potentially change the dynamics of communities and influence invasion success.
Collapse
|
168
|
Belofsky G, Aronica M, Foss E, Diamond J, Santana F, Darley J, Dowd P, Coleman CM, Ferreira D. Antimicrobial and antiinsectan phenolic metabolites of Dalea searlsiae. JOURNAL OF NATURAL PRODUCTS 2014; 77:1140-9. [PMID: 24761805 PMCID: PMC4039355 DOI: 10.1021/np401083g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Indexed: 05/24/2023]
Abstract
Continued interest in the chemistry of Dalea spp. led to investigation of Dalea searlsiae, a plant native to areas of the western United States. Methanol extractions of D. searlsiae roots and subsequent chromatographic fractionation afforded the new prenylated and geranylated flavanones malheurans A-D (1-4) and known flavanones (5 and 6). Known rotenoids (7 and 8) and isoflavones (9 and 10) were isolated from aerial portions. Structure determination of pure compounds was accomplished primarily by extensive 1D- and 2D-NMR spectroscopy. The absolute configurations of compounds 1-5, 7, and 8 were assigned using electronic circular dichroism spectroscopy. Antimicrobial bioassays revealed significant activity concentrated in the plant roots. Compounds 1-6 exhibited MICs of 2-8 μg/mL against Streptococcus mutans, Bacillus cereus, and oxacillin-sensitive and -resistant Staphylococcus aureus. Aerial metabolites 7-10 were inactive against these organisms, but the presence of 7 and 8 prompted investigation of the antiinsectan activity of D. searlsiae metabolites toward the major crop pest Spodoptera frugiperda (fall armyworm). While compounds 1-10 all caused significant reductions in larval growth rates, associated mortality (33-66%) was highest with flavanone 4 and rotenoids 7 and 8. These findings suggest a differential allocation of antimicrobial and antiinsectan plant resources to root and aerial portions of the plant, respectively.
Collapse
Affiliation(s)
- Gil Belofsky
- Department of Chemistry, Central Washington University, Ellensburg, Washington 98926, United States
| | - Mario Aronica
- Department of Chemistry, Central Washington University, Ellensburg, Washington 98926, United States
| | - Eric Foss
- Department
of Biological Sciences, Central Washington
University, Ellensburg, Washington 98926, United States
| | - Jane Diamond
- Department
of Biological Sciences, Central Washington
University, Ellensburg, Washington 98926, United States
| | - Felipe Santana
- Department
of Biological Sciences, Central Washington
University, Ellensburg, Washington 98926, United States
| | - Jacob Darley
- Department
of Biological Sciences, Central Washington
University, Ellensburg, Washington 98926, United States
| | - Patrick
F. Dowd
- Crop Bioprotection Research Unit, USDA-ARS, National Center for Agricultural Utilization
Research,1815 N. University
Street, Peoria, Illinois 61604, United States
| | - Christina M. Coleman
- Department of Pharmacognosy and the Research Institute of Pharmaceutical
Sciences, School of Pharmacy, The University
of Mississippi, University, Mississippi 38677, United States
| | - Daneel Ferreira
- Department of Pharmacognosy and the Research Institute of Pharmaceutical
Sciences, School of Pharmacy, The University
of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
169
|
Feltham H, Park K, Goulson D. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:317-23. [PMID: 24448674 DOI: 10.1007/s10646-014-1189-7] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/07/2014] [Indexed: 05/04/2023]
Abstract
Bumblebees and other pollinators provide a vital ecosystem service for the agricultural sector. Recent studies however have suggested that exposure to systemic neonicotinoid insecticides in flowering crops has sub-lethal effects on the bumblebee workforce, and hence in reducing queen production. The mechanism behind reduced nest performance, however, remains unclear. Here we use Radio Frequency Identification (RFID) technology to test whether exposure to a low, field realistic dose (0.7 ppb in sugar water and 6 ppb in pollen) of the neonicotinoid imidacloprid, reduces worker foraging efficiency. Whilst the nectar foraging efficiency of bees treated with imidacloprid was not significantly different than that of control bees, treated bees brought back pollen less often than control bees (40 % of trips vs 63 % trips, respectively) and, where pollen was collected, treated bees brought back 31 % less pollen per hour than controls. This study demonstrates that field-realistic doses of these pesticides substantially impacts on foraging ability of bumblebee workers when collecting pollen, and we suggest that this provides a causal mechanism behind reduced queen production in imidacloprid exposed colonies.
Collapse
Affiliation(s)
- Hannah Feltham
- School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK,
| | | | | |
Collapse
|
170
|
Fairbrother A, Purdy J, Anderson T, Fell R. Risks of neonicotinoid insecticides to honeybees. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:719-31. [PMID: 24692231 PMCID: PMC4312970 DOI: 10.1002/etc.2527] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 10/31/2013] [Accepted: 12/04/2013] [Indexed: 05/21/2023]
Abstract
The European honeybee, Apis mellifera, is an important pollinator of agricultural crops. Since 2006, when unexpectedly high colony losses were first reported, articles have proliferated in the popular press suggesting a range of possible causes and raising alarm over the general decline of bees. Suggested causes include pesticides, genetically modified crops, habitat fragmentation, and introduced diseases and parasites. Scientists have concluded that multiple factors in various combinations-including mites, fungi, viruses, and pesticides, as well as other factors such as reduction in forage, poor nutrition, and queen failure-are the most probable cause of elevated colony loss rates. Investigators and regulators continue to focus on the possible role that insecticides, particularly the neonicotinoids, may play in honeybee health. Neonicotinoid insecticides are insect neurotoxicants with desirable features such as broad-spectrum activity, low application rates, low mammalian toxicity, upward systemic movement in plants, and versatile application methods. Their distribution throughout the plant, including pollen, nectar, and guttation fluids, poses particular concern for exposure to pollinators. The authors describe how neonicotinoids interact with the nervous system of honeybees and affect individual honeybees in laboratory situations. Because honeybees are social insects, colony effects in semifield and field studies are discussed. The authors conclude with a review of current and proposed guidance in the United States and Europe for assessing the risks of pesticides to honeybees.
Collapse
Affiliation(s)
| | - John Purdy
- Abacus Consulting Services, CampbellvilleOntario, Canada
| | - Troy Anderson
- Department of Entomology and Fralin Life Science Institute, Virginia TechBlacksburg, Virginia, USA
| | - Richard Fell
- Department of Entomology, Virginia TechBlacksburg, Virginia, USA
| |
Collapse
|
171
|
Scholer J, Krischik V. Chronic exposure of imidacloprid and clothianidin reduce queen survival, foraging, and nectar storing in colonies of Bombus impatiens. PLoS One 2014; 9:e91573. [PMID: 24643057 PMCID: PMC3958374 DOI: 10.1371/journal.pone.0091573] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 02/12/2014] [Indexed: 11/18/2022] Open
Abstract
In an 11-week greenhouse study, caged queenright colonies of Bombus impatiens Cresson, were fed treatments of 0 (0 ppb actual residue I, imidacloprid; C, clothianidin), 10 (14 I, 9 C), 20 (16 I, 17C), 50 (71 I, 39 C) and 100 (127 I, 76 C) ppb imidacloprid or clothianidin in sugar syrup (50%). These treatments overlapped the residue levels found in pollen and nectar of many crops and landscape plants, which have higher residue levels than seed-treated crops (less than 10 ppb, corn, canola and sunflower). At 6 weeks, queen mortality was significantly higher in 50 ppb and 100 ppb and by 11 weeks in 20 ppb-100 ppb neonicotinyl-treated colonies. The largest impact for both neonicotinyls starting at 20 (16 I, 17 C) ppb was the statistically significant reduction in queen survival (37% I, 56% C) ppb, worker movement, colony consumption, and colony weight compared to 0 ppb treatments. Bees at feeders flew back to the nest box so it appears that only a few workers were collecting syrup in the flight box and returning the syrup to the nest. The majority of the workers sat immobilized for weeks on the floor of the flight box without moving to fed at sugar syrup feeders. Neonicotinyl residues were lower in wax pots in the nest than in the sugar syrup that was provided. At 10 (14) ppb I and 50 (39) ppb C, fewer males were produced by the workers, but queens continued to invest in queen production which was similar among treatments. Feeding on imidacloprid and clothianidin can cause changes in behavior (reduced worker movement, consumption, wax pot production, and nectar storage) that result in detrimental effects on colonies (queen survival and colony weight). Wild bumblebees depending on foraging workers can be negatively impacted by chronic neonicotinyl exposure at 20 ppb.
Collapse
Affiliation(s)
- Jamison Scholer
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Vera Krischik
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
172
|
Doublet V, Labarussias M, de Miranda JR, Moritz RFA, Paxton RJ. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ Microbiol 2014; 17:969-83. [DOI: 10.1111/1462-2920.12426] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/24/2014] [Accepted: 01/31/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Vincent Doublet
- Institut für Biologie; Martin-Luther-Universität Halle-Wittenberg; Halle (Saale) Germany
| | - Maureen Labarussias
- Institut für Biologie; Martin-Luther-Universität Halle-Wittenberg; Halle (Saale) Germany
| | | | - Robin F. A. Moritz
- Institut für Biologie; Martin-Luther-Universität Halle-Wittenberg; Halle (Saale) Germany
- German Center for Integrative Biodiversity Research (iDiv); Halle-Jena-Leipzig; Leipzig Germany
| | - Robert J. Paxton
- Institut für Biologie; Martin-Luther-Universität Halle-Wittenberg; Halle (Saale) Germany
- German Center for Integrative Biodiversity Research (iDiv); Halle-Jena-Leipzig; Leipzig Germany
- School of Biological Sciences; Queen's University Belfast; Belfast UK
| |
Collapse
|
173
|
Forkpah C, Dixon LR, Fahrbach SE, Rueppell O. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L) workers. PLoS One 2014; 9:e91180. [PMID: 24608542 PMCID: PMC3946715 DOI: 10.1371/journal.pone.0091180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 02/11/2014] [Indexed: 12/18/2022] Open
Abstract
The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species.
Collapse
Affiliation(s)
- Cordelia Forkpah
- Department of Biology, University of North Carolina, Greensboro, North Carolina, United States of America
| | - Luke R. Dixon
- Department of Biology, University of North Carolina, Greensboro, North Carolina, United States of America
| | - Susan E. Fahrbach
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Olav Rueppell
- Department of Biology, University of North Carolina, Greensboro, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
174
|
Abstract
Whiteflies are a key pest of crops in open-field production throughout the tropics and subtropics. This is due in large part to the long and diverse list of devastating plant viruses transmitted by these vectors. Open-field production provides many challenges to manage these viruses and in many cases adequate management has not been possible. Diseases caused by whitefly-transmitted viruses have become limiting factors in open-field production of a wide range of crops, i.e., bean golden mosaic disease in beans, tomato yellow leaf curl disease in tomato, cassava mosaic disease and cassava brown streak disease in cassava, and cotton leaf crumple disease in cotton. While host resistance has proven to be the most cost-effective management solution, few examples of host resistance have been developed to date. The main strategy to limit the incidence of virus-infected plants has been the application of insecticides to reduce vector populations aided to some extent by the use of selected cultural practices. However, due to concerns about the effect of insecticides on pollinators, consumer demand for reduced pesticide use, and the ability of the whitefly vectors to develop insecticide-resistance, there is a growing need to develop and deploy strategies that do not rely on insecticides. The reduction in pesticide use will greatly increase the need for genetic resistance to more viruses in more crop plants. Resistance combined with selected IPM strategies could become a viable means to increase yields in crops produced in open fields despite the presence of whitefly-transmitted viruses.
Collapse
|
175
|
Smith KM, Loh EH, Rostal MK, Zambrana-Torrelio CM, Mendiola L, Daszak P. Pathogens, pests, and economics: drivers of honey bee colony declines and losses. ECOHEALTH 2013; 10:434-45. [PMID: 24496582 DOI: 10.1007/s10393-013-0870-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/30/2013] [Accepted: 08/19/2013] [Indexed: 05/14/2023]
Abstract
The Western honey bee (Apis mellifera) is responsible for ecosystem services (pollination) worth US$215 billion annually worldwide and the number of managed colonies has increased 45% since 1961. However, in Europe and the U.S., two distinct phenomena; long-term declines in colony numbers and increasing annual colony losses, have led to significant interest in their causes and environmental implications. The most important drivers of a long-term decline in colony numbers appear to be socioeconomic and political pressure on honey production. In contrast, annual colony losses seem to be driven mainly by the spread of introduced pathogens and pests, and management problems due to a long-term intensification of production and the transition from large numbers of small apiaries to fewer, larger operations. We conclude that, while other causal hypotheses have received substantial interest, the role of pests, pathogens, and management issues requires increased attention.
Collapse
Affiliation(s)
- Kristine M Smith
- EcoHealth Alliance, 460 West 34th Street, 17th Floor, New York, NY, 10001, USA
| | | | | | | | | | | |
Collapse
|
176
|
Chauzat MP, Cauquil L, Roy L, Franco S, Hendrikx P, Ribière-Chabert M. Demographics of the European apicultural industry. PLoS One 2013; 8:e79018. [PMID: 24236084 PMCID: PMC3827320 DOI: 10.1371/journal.pone.0079018] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 09/17/2013] [Indexed: 11/18/2022] Open
Abstract
Over the last few years, many European and North American countries have reported a high rate of disorders (mortality, dwindling and disappearance) affecting honeybee colonies (Apis mellifera). Although beekeeping has become an increasingly professional activity in recent years, the beekeeping industry remains poorly documented in Europe. The European Union Reference Laboratory for Honeybee Health sent a detailed questionnaire to each Member State, in addition to Kosovo and Norway, to determine the demographics and state of their beekeeping industries. Based on data supplied by the National Reference Laboratory for honeybee diseases in each European country, a European database was created to describe the beekeeping industry including the number and types of beekeepers, operation size, industry production, and health (notifiable diseases, mortalities). The total number of beekeepers in Europe was estimated at 620,000. European honey production was evaluated at around 220,000 tons in 2010. The price of honey varied from 1.5 to 40 €/kg depending on the country and on the distribution network. The estimated colony winter mortality varied from 7 to 28% depending on the country and the origin of the data (institutional survey or beekeeping associations). This survey documents the high heterogeneity of the apicultural industry within the European Union. The high proportion of non-professional beekeepers and the small mean number of colonies per beekeeper were the only common characteristics at European level. The tremendous variation in European apicultural industries has implication for any comprehensive epidemiological or economic analysis of the industry. This variability needs to be taken into account for such analysis as well as for future policy development. The industry would be served if beekeeping registration was uniformly implemented across member states. Better information on the package bee and queen production would help in understanding the ability of the industry to replace lost honey bee stocks.
Collapse
Affiliation(s)
- Marie-Pierre Chauzat
- Honeybee Pathology Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), European Union and National Reference Laboratory for honeybee health, Sophia Antipolis, France
- Epidemiological Surveillance Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Scientific Affairs Department for Laboratories, Maisons-Alfort, France
- * E-mail:
| | - Laura Cauquil
- Honeybee Pathology Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), European Union and National Reference Laboratory for honeybee health, Sophia Antipolis, France
| | - Lise Roy
- Unit of Epidemiology, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Lyon, France
| | - Stéphanie Franco
- Honeybee Pathology Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), European Union and National Reference Laboratory for honeybee health, Sophia Antipolis, France
| | - Pascal Hendrikx
- Epidemiological Surveillance Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Scientific Affairs Department for Laboratories, Maisons-Alfort, France
| | - Magali Ribière-Chabert
- Honeybee Pathology Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), European Union and National Reference Laboratory for honeybee health, Sophia Antipolis, France
| |
Collapse
|
177
|
Miller TA. Delivery. PEST MANAGEMENT SCIENCE 2013; 69:1199-1204. [PMID: 23852646 PMCID: PMC4282364 DOI: 10.1002/ps.3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/13/2013] [Indexed: 06/02/2023]
Abstract
Enthusiasm greeted the development of synthetic organic insecticides in the mid-twentieth century, only to see this give way to dismay and eventually scepticism and outright opposition by some. Regardless of how anyone feels about this issue, insecticides and other pesticides have become indispensable, which creates something of a dilemma. Possibly as a result of the shift in public attitude towards insecticides, genetic engineering of microbes was first met with scepticism and caution among scientists. Later, the development of genetically modified crop plants was met with an attitude that hardened into both acceptance and hard-core resistance. Transgenic insects, which came along at the dawn of the twenty-first century, encountered an entrenched opposition. Those of us responsible for studying the protection of crops have been affected more or less by these protagonist and antagonistic positions, and the experiences have often left one thoughtfully mystified as decisions are made by non-participants. Most of the issues boil down to concerns over delivery mechanisms.
Collapse
Affiliation(s)
- Thomas A Miller
- Jefferson Science Fellow, Entomology Department, University of CaliforniaRiverside, CA, USA
| |
Collapse
|
178
|
Connolly CN. The risk of insecticides to pollinating insects. Commun Integr Biol 2013; 6:e25074. [PMID: 24265849 PMCID: PMC3829947 DOI: 10.4161/cib.25074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 01/12/2023] Open
Abstract
A key new risk to our pollinators has been identified as exposure to neonicotinoid insecticides. These discoveries have refuelled the debate over whether or not the neonicotinoid insecticides should be banned and conflicting evidence is used in this battle. However, the issue is not black or white, but gray. It is not an issue of whether the neonicotinoids are toxic to insects or not. Clearly, all insecticides were designed and optimized for this attribute. The real question is, or at least should be, which insecticide is the safest for use for a particular need.
Collapse
Affiliation(s)
- Christopher N Connolly
- Division of Neuroscience; Medical Research Institute; University of Dundee; Dundee, Scotland UK
| |
Collapse
|
179
|
Bryden J, Gill RJ, Mitton RAA, Raine NE, Jansen VAA. Chronic sublethal stress causes bee colony failure. Ecol Lett 2013; 16:1463-9. [PMID: 24112478 PMCID: PMC4299506 DOI: 10.1111/ele.12188] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/23/2013] [Accepted: 09/04/2013] [Indexed: 11/29/2022]
Abstract
Current bee population declines and colony failures are well documented yet poorly understood and no single factor has been identified as a leading cause. The evidence is equivocal and puzzling: for instance, many pathogens and parasites can be found in both failing and surviving colonies and field pesticide exposure is typically sublethal. Here, we investigate how these results can be due to sublethal stress impairing colony function. We mathematically modelled stress on individual bees which impairs colony function and found how positive density dependence can cause multiple dynamic outcomes: some colonies fail while others thrive. We then exposed bumblebee colonies to sublethal levels of a neonicotinoid pesticide. The dynamics of colony failure, which we observed, were most accurately described by our model. We argue that our model can explain the enigmatic aspects of bee colony failures, highlighting an important role for sublethal stress in colony declines.
Collapse
Affiliation(s)
- John Bryden
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | | | | | | | | |
Collapse
|
180
|
|