151
|
Demetriou CA, Vineis P. Carcinogenicity of ambient air pollution: use of biomarkers, lessons learnt and future directions. J Thorac Dis 2015; 7:67-95. [PMID: 25694819 DOI: 10.3978/j.issn.2072-1439.2014.12.31] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/20/2014] [Indexed: 12/11/2022]
Abstract
The association between ambient air pollution (AAP) exposure and lung cancer risk has been investigated in prospective studies and the results are generally consistent, indicating that long-term exposure to air pollution can cause lung cancer. Biomarkers can enhance research on the health effects of air pollution by improving exposure assessment, increasing the understanding of mechanisms, and enabling the investigation of individual susceptibility. In this review, we assess DNA adducts as biomarkers of exposure to AAP and early biological effect, and DNA methylation as biomarker of early biological change and discuss critical issues arising from their incorporation in AAP health impact evaluations, such as confounding, individual susceptibilities, timing, intensity and duration of exposure, and investigated tissue. DNA adducts and DNA methylation are treated as paradigms. However, the lessons, learned from their use in the examination of AAP carcinogenicity, can be applied to investigations of other biomarkers involved in AAP carcinogenicity.
Collapse
Affiliation(s)
- Christiana A Demetriou
- 1 MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, UK ; 2 Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Paolo Vineis
- 1 MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, UK ; 2 Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
152
|
Jedrychowski WA, Perera FP, Majewska R, Mrozek-Budzyn D, Mroz E, Roen EL, Sowa A, Jacek R. Depressed height gain of children associated with intrauterine exposure to polycyclic aromatic hydrocarbons (PAH) and heavy metals: the cohort prospective study. ENVIRONMENTAL RESEARCH 2015; 136:141-7. [PMID: 25460630 PMCID: PMC4262637 DOI: 10.1016/j.envres.2014.08.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 05/20/2023]
Abstract
Fetal exposure to environmental toxicants may program the development of children and have long-lasting health impacts. The study tested the hypothesis that depressed height gain in childhood is associated with prenatal exposure to airborne polycyclic aromatic hydrocarbons (PAH) and heavy metals (lead and mercury). The study sample comprised 379 children born to non-smoking mothers among whom a total of 2011 height measurements were carried out over the 9-year follow-up period. Prenatal airborne PAH exposure was assessed by personal air monitoring of the mother in the second trimester of pregnancy and heavy metals were measured in cord blood. At the age of 3 residential air monitoring was done to evaluate the level of airborne PAH, and at the age 5 the levels of heavy metals were measured in capillary blood. The effect estimates of prenatal PAH exposure on height growth over the follow-up were adjusted in the General Estimated Equation (GEE) models for a wide set of relevant covariates. Prenatal exposure to airborne PAH showed a significant negative association with height growth, which was significantly decreased by 1.1cm at PAH level above 34.7 ng/m(3) (coeff.=-1.07, p=0.040). While prenatal lead exposure was not significantly associated with height restriction, the effect of mercury was inversely related to cord blood mercury concentration above 1.2 μg/L (coeff.=-1.21, p=0.020), The observed negative impact of prenatal PAH exposure on height gain in childhood was mainly mediated by shorter birth length related to maternal PAH exposure during pregnancy. The height gain deficit associated with prenatal mercury exposure was not seen at birth, but the height growth was significantly slower at later age.
Collapse
Affiliation(s)
| | - Frederica P Perera
- Columbia Center for Children's Environmental Health, Mailman School Public Health, Columbia University, NY, USA
| | | | | | - Elżbieta Mroz
- Jagiellonian University Medical College, Krakow, Poland
| | - Emily L Roen
- Columbia Center for Children's Environmental Health, Mailman School Public Health, Columbia University, NY, USA
| | - Agata Sowa
- Jagiellonian University Medical College, Krakow, Poland
| | - Ryszard Jacek
- Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
153
|
Gruzieva O, Merid SK, Melén E. An update on epigenetics and childhood respiratory diseases. Paediatr Respir Rev 2014; 15:348-54. [PMID: 25151612 DOI: 10.1016/j.prrv.2014.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 01/28/2023]
Abstract
Epigenetic mechanisms, defined as changes in phenotype or gene expression caused by mechanisms other than changes in the underlying DNA sequence, have been proposed to constitute a link between genetic and environmental factors that affect complex diseases. Recent studies show that DNA methylation, one of the key epigenetic mechanisms, is altered in children exposed to air pollutants and environmental tobacco smoke early in life. Several candidate gene studies on epigenetics have been published to date, but it is only recently that global methylation analyses have been performed for respiratory disorders such as asthma and chronic obstructive pulmonary disease. However, large-scale studies with adequate power are yet to be presented in children, and implications for clinical use remain to be evaluated. In this review, we summarize the recent advances in epigenetics and respiratory disorders in children, with a main focus on methodological challenges and analyses related to phenotype and exposure using global methylation approaches.
Collapse
Affiliation(s)
- Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Simon Kebede Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Sachs' Children's Hospital, Stockholm, Sweden.
| |
Collapse
|
154
|
Wagner M, Bolm-Audorff U, Hegewald J, Fishta A, Schlattmann P, Schmitt J, Seidler A. Occupational polycyclic aromatic hydrocarbon exposure and risk of larynx cancer: a systematic review and meta-analysis. Occup Environ Med 2014; 72:226-33. [DOI: 10.1136/oemed-2014-102317] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
155
|
Abstract
Early-life adversity increases the risk for psychopathology in later life. The underlying mechanism(s) is unknown, but epigenetic variation represents a plausible candidate. Early-life exposures can disrupt epigenetic programming in the brain, with lasting consequences for gene expression and behavior. This evidence is primarily derived from animal studies, with limited study in humans due to inaccessibility of the target brain tissue. In humans, although there is evidence for DNA methylation changes in the peripheral blood of psychiatric patients, a fundamental question remains as to whether epigenetic markers in the blood can predict epigenetic changes occurring in the brain. We used in utero bisphenol A (BPA) exposure as a model environmental exposure shown to disrupt neurodevelopment and exert long-term effects on behavior in animals and humans. We show that prenatal BPA induces lasting DNA methylation changes in the transcriptionally relevant region of the Bdnf gene in the hippocampus and blood of BALB/c mice and that these changes are consistent with BDNF changes in the cord blood of humans exposed to high maternal BPA levels in utero. Our data suggest that BDNF DNA methylation in the blood may be used as a predictor of brain BDNF DNA methylation and gene expression as well as behavioral vulnerability induced by early-life environmental exposure. Because BDNF expression and DNA methylation are altered in several psychiatric disorders that are associated with early-life adversity, including depression, schizophrenia, bipolar disorder, and autism, BDNF DNA methylation in the blood may represent a novel biomarker for the early detection of psychopathology.
Collapse
|
156
|
Ahn K. The role of air pollutants in atopic dermatitis. J Allergy Clin Immunol 2014; 134:993-9; discussion 1000. [PMID: 25439225 DOI: 10.1016/j.jaci.2014.09.023] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/12/2014] [Accepted: 09/18/2014] [Indexed: 01/01/2023]
Abstract
Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease and a growing health concern, especially in children, because of its high prevalence and associated low quality of life. Genetic predisposition, environmental triggers, or interactions between them contribute to the pathophysiology of AD. Therefore, it is very important to identify and control risk factors from the environment in susceptible subjects for successful treatment and prevention. Both indoor and outdoor air pollution, which are of increasing concern with urbanization, are well-known environmental risk factors for asthma, whereas there is relatively little evidence in AD. This review highlights epidemiologic and experimental data on the role of air pollution in patients with AD. Recent evidence suggests that a variety of air pollutants, such as environmental tobacco smoke, volatile organic compounds, formaldehyde, toluene, nitrogen dioxide, and particulate matter, act as risk factors for the development or aggravation of AD. These air pollutants probably induce oxidative stress in the skin, leading to skin barrier dysfunction or immune dysregulation. However, these results are still controversial because of the low number of studies, limitations in study design, inaccurate assessment of exposure and absorption, and many other issues. Further research about the adverse effects of air pollution on AD will help to expand our understanding and to establish a better strategy for the prevention and management of AD.
Collapse
Affiliation(s)
- Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
157
|
Dobrowolski SF, Lyons-Weiler J, Biery A, Spridik K, Vockley G, Kranik E, Skvorak K, Sultana T. Methylome repatterning in a mouse model of Maternal PKU Syndrome. Mol Genet Metab 2014; 113:194-9. [PMID: 25218179 DOI: 10.1016/j.ymgme.2014.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 12/29/2022]
Abstract
Maternal PKU Syndrome (MPKU) is an embryopathy resulting from in utero phenylalanine (PHE) toxicity secondary to maternal phenylalanine hydroxylase deficient phenylketonuria (PKU). Clinical phenotypes in MPKU include mental retardation, microcephaly, in utero growth restriction, and congenital heart defects. Numerous in utero toxic exposures alter DNA methylation in the fetus. The PAH(enu2) mouse is a model of classical PKU while offspring born of hyperphenylalaninemic dams model MPKU. We investigated offspring of PAH(enu2) dams to determine if altered patterns of DNA methylation occurred in response to in utero PHE exposure. As neurologic deficit is the most prominent MPKU phenotype, methylome patterns were assessed in brain tissue using methylated DNA immunoprecipitation and paired-end sequencing. Brain tissues were assessed in E18.5-19 fetuses of PHE unrestricted PAH(enu2) dams, PHE restricted PAH(enu2) dams, and heterozygous(wt/enu2) control dams. Extensive methylome repatterning was observed in offspring of hyperphenylalaninemic dams while the offspring of PHE restricted dams displayed attenuated methylome repatterning. Methylation within coding regions was dominated by noncoding RNA genes. Differential methylation of promoters targeted protein coding genes. To assess the impact of methylome repatterning on gene expression, brain tissue in experimental and control animals were queried with microarrays assessing expression of microRNAs and protein coding genes. Altered expression of methylome-modified microRNAs and protein coding genes was extensive in offspring of hyperphenylalaninemic dams while minimal changes were observed in offspring of PHE restricted dams. Several genes displaying significantly reduced expression have roles in neurological function or genetic disease with neurological phenotypes. These data indicate in utero PHE toxicity alters DNA methylation in the brain which has downstream impact upon gene expression. Altered gene expression may contribute to pathophysiology of neurologic presentation in MPKU.
Collapse
Affiliation(s)
- S F Dobrowolski
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - J Lyons-Weiler
- Genomics and Proteomics Core Laboratories, Bioinformatics Core, University of Pittsburgh, 3343 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - A Biery
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - K Spridik
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - G Vockley
- Division of Medical Genetics, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - E Kranik
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - K Skvorak
- Division of Medical Genetics, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - T Sultana
- Genomics and Proteomics Core Laboratories, Bioinformatics Core, University of Pittsburgh, 3343 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
158
|
Concurrent fetal exposure to multiple environmental chemicals along the U.S.-Mexico border: an exploratory study in Brownsville, Texas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:10165-81. [PMID: 25268511 PMCID: PMC4210973 DOI: 10.3390/ijerph111010165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/26/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022]
Abstract
There is mounting concern that cumulative exposure to diverse chemicals in the environment may contribute to observed adverse health outcomes in the Lower Rio Grande Valley of Texas. To investigate this situation, biomarker concentrations of organochlorine (OC) pesticides/metabolites, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) were measured in maternal and umbilical cord blood from pregnant Hispanic women in Brownsville, TX. Results show that both mothers and fetuses were exposed concurrently to a variety of relatively low-level, hazardous environmental chemicals. Approximately 10% of the blood specimens had comparatively high concentrations of specific OC pesticides, PCBs and PAHs. Because many pregnant women in Brownsville live in socioeconomically-disadvantaged and environmentally-challenging circumstances, there is appropriate concern that exposure to these exogenous substances, either individually or in combination, may contribute to endemic health problems in this population, including cardiovascular disease, obesity, and diabetes. The challenge is to identify individuals at highest comparative risk and then implement effective programs to either prevent or reduce cumulative exposures that pose significant health-related threats.
Collapse
|
159
|
Espín-Pérez A, Krauskopf J, de Kok TM, Kleinjans JC. ‘OMICS-based’ Biomarkers for Environmental Health Studies. Curr Environ Health Rep 2014. [DOI: 10.1007/s40572-014-0028-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
160
|
Lovasi GS, Eldred-Skemp N, Quinn JW, Chang HW, Rauh VA, Rundle A, Orjuela MA, Perera FP. Neighborhood Social Context and Individual Polycyclic Aromatic Hydrocarbon Exposures Associated with Child Cognitive Test Scores. JOURNAL OF CHILD AND FAMILY STUDIES 2014; 23:785-799. [PMID: 24994947 PMCID: PMC4075963 DOI: 10.1007/s10826-013-9731-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Childhood cognitive and test-taking abilities have long-term implications for educational achievement and health, and may be influenced by household environmental exposures and neighborhood contexts. This study evaluates whether age 5 scores on the Wechsler Preschool and Primary Scale of Intelligence-Revised (WPPSI-R, administered in English) are associated with polycyclic aromatic hydrocarbon (PAH) exposure and neighborhood context variables including poverty, low educational attainment, low English language proficiency, and inadequate plumbing. The Columbia Center for Children's Environmental Health enrolled African-American and Dominican-American New York City women during pregnancy, and conducted follow-up for subsequent childhood health outcomes including cognitive test scores. Individual outcomes were linked to data characterizing 1-km network buffers around prenatal addresses, home observations, interviews, and prenatal PAH exposure data from personal air monitors. Prenatal PAH exposure above the median predicted 3.5 point lower total WPPSI-R scores and 3.9 point lower verbal scores; the association was similar in magnitude across models with adjustments for neighborhood characteristics. Neighborhood-level low English proficiency was independently associated with 2.3 point lower mean total WPPSI-R score, 1.2 point lower verbal score, and 2.7 point lower performance score per standard deviation. Low neighborhood-level educational attainment was also associated with 2.0 point lower performance scores. In models examining effect modification, neighborhood associations were similar or diminished among the high PAH exposure group, as compared with the low PAH exposure group. Early life exposure to personal PAH exposure or selected neighborhood-level social contexts may predict lower cognitive test scores. However, these results may reflect limited geographic exposure variation and limited generalizability.
Collapse
Affiliation(s)
- Gina S. Lovasi
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 W 168th St, Room 804, New York, NY 10032, USA
| | - Nicolia Eldred-Skemp
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 W 168th St, Room 804, New York, NY 10032, USA
| | - James W. Quinn
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 W 168th St, Room 804, New York, NY 10032, USA
| | - Hsin-wen Chang
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Virginia A. Rauh
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Andrew Rundle
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 W 168th St, Room 804, New York, NY 10032, USA
| | - Manuela A. Orjuela
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Frederica P. Perera
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
161
|
Han J, Zhang N, Niu C, Han B, Bai Z. Personal Exposure of Children to Particle-Associated Polycyclic Aromatic Hydrocarbons in Tianjin, China. Polycycl Aromat Compd 2014. [DOI: 10.1080/10406638.2014.883416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
162
|
Wei L, Liu S, Su Z, Cheng R, Bai X, Li X. LINE-1 hypomethylation is associated with the risk of coronary heart disease in Chinese population. Arq Bras Cardiol 2014; 102:481-8. [PMID: 24918913 PMCID: PMC4051451 DOI: 10.5935/abc.20140054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Global methylation level in blood leukocyte DNA has been associated with the risk of coronary heart disease (CHD), with inconsistent results in various populations. Similar data are lacking in Chinese population where different genetic, lifestyle and environmental factors may affect DNA methylation and its risk relationship with CHD. OBJECTIVES To examine whether global methylation is associated with the risk of CHD in Chinese population. METHODS A total of 334 cases with CHD and 788 healthy controls were included. Global methylation in blood leukocyte DNA was estimated by analyzing LINE-1 repeats using bisulfite pyrosequencing. RESULTS In an initial analysis restricted to control subjects, LINE-1 level reduced significantly with aging, elevated total cholesterol, and diagnosis of diabetes. In the case-control analysis, reduced LINE-1 methylation was associated with increased risk of CHD; analysis by quartile revealed odds ratios (95%CI) of 0.9 (0.6-1.4), 1.9 (1.3-2.9) and 2.3 (1.6-3.5) for the third, second and first (lowest) quartile (Ptrend < 0.001), respectively, compared to the fourth (highest) quartile. Lower ( CONCLUSION LINE-1 hypomethylation is associated with the risk of CHD in Chinese population. Potential CHD risk factors such as older age, elevated total cholesterol, and diagnosis of diabetes may have impact on global DNA methylation, whereby exerting their effect on CHD risk.
Collapse
Affiliation(s)
- Li Wei
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin
Medical University, Harbin - China
| | - Shuchuan Liu
- Department of Hematology, The First Affiliated Hospital of Harbin
Medical University, Harbin - China
| | - Zhendong Su
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin
Medical University, Harbin - China
| | - Rongchao Cheng
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin
Medical University, Harbin - China
| | - Xiuping Bai
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin
Medical University, Harbin - China
| | - Xueqi Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin
Medical University, Harbin - China
| |
Collapse
|
163
|
Kleinjans J, van Ravenzwaay B. Epigenetics and chemical safety - concluding remarks. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 764-765:72-73. [PMID: 24674849 DOI: 10.1016/j.mrgentox.2014.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Affiliation(s)
- Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, The Netherlands
| | | |
Collapse
|
164
|
O’Hagan HM. Chromatin modifications during repair of environmental exposure-induced DNA damage: a potential mechanism for stable epigenetic alterations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:278-91. [PMID: 24259318 PMCID: PMC4020002 DOI: 10.1002/em.21830] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 05/22/2023]
Abstract
Exposures to environmental toxicants and toxins cause epigenetic changes that likely play a role in the development of diseases associated with exposure. The mechanism behind these exposure-induced epigenetic changes is currently unknown. One commonality between most environmental exposures is that they cause DNA damage either directly or through causing an increase in reactive oxygen species, which can damage DNA. Like transcription, DNA damage repair must occur in the context of chromatin requiring both histone modifications and ATP-dependent chromatin remodeling. These chromatin changes aid in DNA damage accessibility and signaling. Several proteins and complexes involved in epigenetic silencing during both development and cancer have been found to be localized to sites of DNA damage. The chromatin-based response to DNA damage is considered a transient event, with chromatin being restored to normal as DNA damage repair is completed. However, in individuals chronically exposed to environmental toxicants or with chronic inflammatory disease, repeated DNA damage-induced chromatin rearrangement may ultimately lead to permanent epigenetic alterations. Understanding the mechanism behind exposure-induced epigenetic changes will allow us to develop strategies to prevent or reverse these changes. This review focuses on epigenetic changes and DNA damage induced by environmental exposures, the chromatin changes that occur around sites of DNA damage, and how these transient chromatin changes may lead to heritable epigenetic alterations at sites of chronic exposure.
Collapse
Affiliation(s)
- Heather M. O’Hagan
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN
| |
Collapse
|
165
|
Cheng RYS, Shang Y, Limjunyawong N, Dao T, Das S, Rabold R, Sham JSK, Mitzner W, Tang WY. Alterations of the lung methylome in allergic airway hyper-responsiveness. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:244-255. [PMID: 24446183 PMCID: PMC4125208 DOI: 10.1002/em.21851] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/20/2013] [Accepted: 12/28/2013] [Indexed: 05/29/2023]
Abstract
Asthma is a chronic airway disorder characterized by recurrent attacks of breathlessness and wheezing, affecting 300 million people around the world (available at: www.who.int). To date, genetic factors associated with asthma susceptibility have been unable to explain the full etiology of asthma. Recent studies have demonstrated that the epigenetic disruption of gene expression plays an equally important role in the development of asthma through interaction with our environment. We sensitized 6-week-old C57BL/6J mice with house-dust-mite (HDM) extracts intraperitoneally followed by 5 weeks of exposure to HDM challenges (three times a week) intratracheally. HDM-exposed mice showed an increase in airway hyper-responsiveness (AHR) and inflammation together with structural remodeling of the airways. We applied methylated DNA immunoprecipitation-next generation sequencing (MeDIP-seq) for profiling of DNA methylation changes in the lungs in response to HDM. We observed about 20 million reads by a single-run of massive parallel sequencing. We performed bioinformatics and pathway analysis on the raw sequencing data to identify differentially methylated candidate genes in HDM-exposed mice. Specifically, we have revealed that the transforming growth factor beta signaling pathway is epigenetically modulated by chronic exposure to HDM. Here, we demonstrated that a specific allergen may play a role in AHR through an epigenetic mechanism by disrupting the expression of genes in lungs that might be involved in airway inflammation and remodeling. Our findings provide new insights into the potential mechanisms by which environmental allergens induce allergic asthma and such insights may assist in the development of novel preventive and therapeutic options for this debilitative disease.
Collapse
Affiliation(s)
- Robert YS Cheng
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Yan Shang
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
- Department of Respiratory Diseases, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Nathachit Limjunyawong
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Tyna Dao
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Sandhya Das
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Richard Rabold
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - James SK Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Wayne Mitzner
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Wan-Yee Tang
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| |
Collapse
|
166
|
Abstract
The heritable component of breast cancer accounts for only a small proportion of total incidences. Environmental and lifestyle factors are therefore considered to among the major influencing components increasing breast cancer risk. Endocrine-disrupting chemicals (EDCs) are ubiquitous in the environment. The estrogenic property of EDCs has thus shown many associations between ongoing exposures and the development of endocrine-related diseases, including breast cancer. The environment consists of a heterogenous population of EDCs and despite many identified modes of action, including that of altering the epigenome, drawing definitive correlations regarding breast cancer has been a point of much discussion. In this review, we describe in detail well-characterized EDCs and their actions in the environment, their ability to disrupt mammary gland formation in animal and human experimental models and their associations with exposure and breast cancer risk. We also highlight the susceptibility of early-life exposure to each EDC to mediate epigenetic alterations, and where possible describe how these epigenome changes influence breast cancer risk.
Collapse
Affiliation(s)
- Kevin C Knower
- Cancer Drug Discovery, MIMR-PHI Institute of Medical Research, PO BOX 5152, Clayton, Victoria 3168, Australia Department of Molecular Biology and Biochemistry, Monash University, Clayton, Victoria, Australia Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
167
|
Thakur VS, Liang YW, Lingappan K, Jiang W, Wang L, Barrios R, Zhou G, Guntupalli B, Shivanna B, Maturu P, Welty SE, Moorthy B, Couroucli XI. Increased susceptibility to hyperoxic lung injury and alveolar simplification in newborn rats by prenatal administration of benzo[a]pyrene. Toxicol Lett 2014; 230:322-32. [PMID: 24657529 DOI: 10.1016/j.toxlet.2014.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/11/2014] [Accepted: 03/11/2014] [Indexed: 12/27/2022]
Abstract
Maternal smoking is one of the risk factors for preterm birth and for the development of bronchopulmonary dysplasia (BPD). In this study, we tested the hypothesis that prenatal exposure of rats to benzo[a]pyrene (BP), a component of cigarette smoke, will result in increased susceptibility of newborns to oxygen-mediated lung injury and alveolar simplification, and that cytochrome P450 (CYP)1A and 1B1 enzymes and oxidative stress mechanistically contribute to this phenomenon. Timed pregnant Fisher 344 rats were administered BP (25 mg/kg) or the vehicle corn oil (CO) on gestational days 18, 19 and 20, and newborn rats were either maintained in room air or exposed to hyperoxia (85% O2) for 7 or 14 days. Hyperoxic newborn rats prenatally exposed to the vehicle CO showed lung injury and alveolar simplification, and inflammation, and these effects were potentiated in rats that were prenatally exposed to BP. Prenatal exposure to BP, followed by hyperoxia, also resulted in significant modulation of hepatic and pulmonary cytochrome P450 (CYP)1A and 1B1 enzymes at PND 7-14. These rats displayed significant oxidative stress in lungs at postnatal day (PND) 14, as evidenced by increased levels of the F2-isoprostane 8-iso-PGF2α. Furthermore, these animals showed BP-derived DNA adducts and oxidative DNA adducts in the lung. In conclusion, our results show increased susceptibility of newborns to oxygen-mediated lung injury and alveolar simplification following maternal exposure to BP, and our results suggest that modulation of CYP1A/1B1 enzymes, increases in oxidative stress, and BP-DNA adducts contributed to this phenomenon.
Collapse
Affiliation(s)
- Vijay S Thakur
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Yanhong W Liang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Lihua Wang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, The Methodist Hospital Physician Organization, 6565 Fannin Street, Suite M227, Houston, TX 77030, USA
| | - Guodong Zhou
- Institute of Biotechnology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Bharath Guntupalli
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Binoy Shivanna
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Paramahamsa Maturu
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Stephen E Welty
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Bhagavatula Moorthy
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Xanthi I Couroucli
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA.
| |
Collapse
|
168
|
Jedrychowski WA, Perera FP, Majewska R, Camman D, Spengler JD, Mroz E, Stigter L, Flak E, Jacek R. Separate and joint effects of tranplacental and postnatal inhalatory exposure to polycyclic aromatic hydrocarbons: prospective birth cohort study on wheezing events. Pediatr Pulmonol 2014; 49:162-72. [PMID: 24155203 PMCID: PMC4021044 DOI: 10.1002/ppul.22923] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 01/22/2023]
Abstract
The goal of this epidemiologic investigation was to analyze the associations between prenatal and postnatal exposure to airborne polycyclic aromatic hydrocarbons (PAH) and severity of wheeze and recurrent wheeze. The 257 children included in this analysis had a complete set of prenatal and postnatal PAH measurements and attended regular health checkups over a 4-year follow-up period since birth. Transplacental PAH exposure was measured by personal air monitoring of the mothers during the second trimester of pregnancy; postnatal exposure was estimated using the same instruments indoors at the children's residences at age 3. Chemical analysis tests were performed to determine airborne concentrations of nine PAH compounds. The results show that both prenatal and postnatal exposure were associated positively with the severity of wheezing days and recurrent wheezing reported in the follow-up. While the incidence rate ratio (IRR) for severity of wheeze and prenatal PAH exposure was 1.53 (95%CI: 1.43-1.64) that for postnatal PAH exposure was 1.13 (95%CI: 1.08-1.19). However, recurrent wheezing was more strongly associated with airborne PAH levels measured at age 3 (OR = 2.31, 95%CI: 1.26-4.22) than transplacental PAH exposure (OR = 1.40, 95% CI: 0.85-2.09), but the difference was statistically insignificant. In conclusion, it appears that prenatal PAH exposure may precipitate and intensify early onset of wheezing symptoms in childhood, resulting from the postnatal exposure and suggest that success in reducing the incidence of respiratory diseases in children would depend on reducing both fetal and childhood exposure to air pollution.
Collapse
Affiliation(s)
- Wiesław A Jedrychowski
- Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Kraków, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Tang D, Li TY, Chow JC, Kulkarni SU, Watson JG, Ho SSH, Quan ZY, Qu LR, Perera F. Air pollution effects on fetal and child development: a cohort comparison in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 185:90-96. [PMID: 24239591 DOI: 10.1016/j.envpol.2013.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/11/2013] [Accepted: 10/19/2013] [Indexed: 05/28/2023]
Abstract
In Tongliang, China, a coal-fired power plant was the major pollution source until its shutdown in 2004. We enrolled two cohorts of nonsmoking women and their newborns before and after the shutdown to examine the relationship between prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) and fetal and child growth and development. PAHs were used to measure exposure to air pollution generated by the power plant. Using PAH-DNA adduct levels as biomarkers for the biologically effective dose of PAH exposure, we examined whether PAH-DNA adduct levels were associated with birth outcome, growth rate, and neurodevelopment. Head circumference was greater in children of the second cohort, compared with the first (p = 0.001), consistent with significantly reduced levels of cord blood PAH-DNA adducts in cohort II (p < 0.001) and reduced levels of ambient PAHs (p = 0.01).
Collapse
Affiliation(s)
- Deliang Tang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 701 W. 168th Street, New York, NY 10027, USA, Columbia Center for Children's Environmental Health.
| | - Ting Yu Li
- Chongqing Medical University, Chongqing, China
| | - Judith C Chow
- Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Sanasi U Kulkarni
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 701 W. 168th Street, New York, NY 10027, USA, Columbia Center for Children's Environmental Health
| | - John G Watson
- Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA; Hong Kong Premium Services and Research Laboratory, Chai Wan, China
| | | | - L R Qu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 701 W. 168th Street, New York, NY 10027, USA, Columbia Center for Children's Environmental Health
| | - Frederica Perera
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 701 W. 168th Street, New York, NY 10027, USA, Columbia Center for Children's Environmental Health
| |
Collapse
|
170
|
Urinary polycyclic aromatic hydrocarbon metabolites and attention/deficit hyperactivity disorder, learning disability, and special education in U.S. children aged 6 to 15. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2014; 2014:628508. [PMID: 24624143 PMCID: PMC3929190 DOI: 10.1155/2014/628508] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) adversely affects child neurodevelopment, but little is known about the relationship between PAHs and clinically significant developmental disorders. We examined the relationship between childhood measures of PAH exposure and prevalence of attention deficit/hyperactivity disorder (ADHD), learning disability (LD), and special education (SE) in a nationally representative sample of 1,257 U.S. children 6-15 years of age. Data were obtained from the National Health and Nutrition Examination Survey (NHANES) 2001-2004. PAH exposure was measured by urinary metabolite concentrations. Outcomes were defined by parental report of (1) ever doctor-diagnosed ADHD, (2) ever doctor- or school representative-identified LD, and (3) receipt of SE or early intervention services. Multivariate logistic regression accounting for survey sampling was used to determine the associations between PAH metabolites and ADHD, LD, and SE. Children exposed to higher levels of fluorine metabolites had a 2-fold increased odds (95% C.I. 1.1, 3.8) of SE, and this association was more apparent in males (OR 2.3; 95% C.I. 1.2, 4.1) than in females (OR 1.8; 95% C.I. 0.6, 5.4). No other consistent pattern of developmental disorders was associated with urinary PAH metabolites. However, concurrent exposure to PAH fluorine metabolites may increase use of special education services among U.S. children.
Collapse
|
171
|
|
172
|
Persico AM, Merelli S. Environmental Factors in the Onset of Autism Spectrum Disorder. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2014. [DOI: 10.1007/s40474-013-0002-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
173
|
Marinković N, Pasalić D, Potocki S. Polymorphisms of genes involved in polycyclic aromatic hydrocarbons' biotransformation and atherosclerosis. Biochem Med (Zagreb) 2013; 23:255-65. [PMID: 24266295 PMCID: PMC3900076 DOI: 10.11613/bm.2013.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most prevalent environmental pollutants and result from the incomplete combustion of hydrocarbons (coal and gasoline, fossil fuel combustion, byproducts of industrial processing, natural emission, cigarette smoking, etc.). The first phase of xenobiotic biotransformation in the PAH metabolism includes activities of cytochrome P450 from the CYP1 family and microsomal epoxide hydrolase. The products of this biotransformation are reactive oxygen species that are transformed in the second phase through the formation of conjugates with glutathione, glucuronate or sulphates. PAH exposure may lead to PAH-DNA adduct formation or induce an inflammatory atherosclerotic plaque phenotype. Several genetic polymorphisms of genes encoded for enzymes involved in PAH biotransformation have been proven to lead to the development of diseases. Enzyme CYP P450 1A1, which is encoded by the CYP1A1 gene, is vital in the monooxygenation of lipofilic substrates, while GSTM1 and GSTT1 are the most abundant isophorms that conjugate and neutralize oxygen products. Some single nucleotide polymorphisms of the CYP1A1 gene as well as the deletion polymorphisms of GSTT1 and GSTM1 may alter the final specific cellular inflammatory respond. Occupational exposure or conditions from the living environment can contribute to the production of PAH metabolites with adverse effects on human health. The aim of this study was to obtain data on biotransformation and atherosclerosis, as well as data on the gene polymorphisms involved in biotransformation, in order to better study gene expression and further elucidate the interaction between genes and the environment.
Collapse
|
174
|
Predictors and consequences of global DNA methylation in cord blood and at three years. PLoS One 2013; 8:e72824. [PMID: 24023780 PMCID: PMC3762861 DOI: 10.1371/journal.pone.0072824] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/19/2013] [Indexed: 01/21/2023] Open
Abstract
DNA methylation changes have been implicated in many common chronic diseases leading to the hypothesis that environmental and age-related DNA methylation changes within individuals are involved in disease etiology. Few studies have examined DNA methylation changes within an individual over time and all of these studies have been conducted in adults. Here, we aim to characterize how global DNA methylation changes from birth to age three within a longitudinal birth cohort study and to determine whether there are consistent predictors of DNA methylation levels measured three years apart. We measured global DNA methylation in the same children at birth (cord blood) and again at three years of age among 165 children, using an immunoassay. We found that on average, DNA methylation was significantly higher in blood at age 3-years than in cord blood (p<0.01). However, for any individual child, the difference was less than would be expected by chance. We found that pre-pregnancy BMI was negatively predictive of both cord and three-year DNA methylation, even after statistical adjustment to account for the correlation between cord blood and three-year DNA methylation. The biologic implications of small changes in global DNA methylation are unknown. However, the observation that global DNA methylation levels persist within an individual from birth to age three supports the belief that factors that influence global DNA methylation, including pre-pregnancy BMI, may confer long-term effects.
Collapse
|
175
|
Fang X, Thornton C, Scheffler BE, Willett KL. Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:40-50. [PMID: 23542452 PMCID: PMC3654064 DOI: 10.1016/j.etap.2013.02.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/09/2013] [Indexed: 05/17/2023]
Abstract
DNA methylation is important for gene regulation and is vulnerable to early-life exposure to environmental contaminants. We found that direct waterborne benzo[a]pyrene (BaP) exposure at 24μg/L from 2.5 to 96hpf to zebrafish embryos significantly decreased global cytosine methylation by 44.8% and promoter methylation in vasa by 17%. Consequently, vasa expression was significantly increased by 33%. In contrast, BaP exposure at environmentally relevant concentrations did not change CpG island methylation or gene expression in cancer genes such as ras-association domain family member 1 (rassf1), telomerase reverse transcriptase (tert), c-jun, and c-myca. Similarly, BaP did not change gene expression of DNA methyltransferase 1 (dnmt1) and glycine N-methyltransferase (gnmt). While total DNMT activity was not affected, GNMT enzyme activity was moderately increased. In summary, BaP is an epigenetic modifier for global and gene specific DNA methylation status in zebrafish larvae.
Collapse
Affiliation(s)
- Xiefan Fang
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677
| | - Cammi Thornton
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677
| | - Brian E. Scheffler
- USDA-ARS Genomics and Bioinformatics Research Unit, Stoneville, MS 38776
| | - Kristine L. Willett
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677
- Corresponding author Box 1848, 303 Faser Hall Department of Pharmacology University of Mississippi University, MS, 38677 Tel: (662) 915-6691 Fax: (662) 915-5148
| |
Collapse
|
176
|
Kaur P, Shorey LE, Ho E, Dashwood RH, Williams DE. The epigenome as a potential mediator of cancer and disease prevention in prenatal development. Nutr Rev 2013; 71:441-57. [PMID: 23815143 DOI: 10.1111/nure.12030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epigenetic events establish a particular gene expression signature for each cell type during differentiation and fertilization. Disruption of these epigenetic programs in response to environmental stimuli during prenatal exposure dysregulates the fetal epigenome, potentially impacting susceptibility to disease later in life (the fetal basis of adult disease). Maternal dietary modifications during gestation and lactation play a pivotal role in the period of fetal (re)programming. Recently, many studies have demonstrated the impact of maternal nutrition on the fetal epigenome. This review discusses the complex interplay among various environmental factors and epigenetic mechanisms that have been found to affect offspring in human and animal models. Further, it summarizes the impact of various dietary phytochemicals capable of modulating the epigenome with regard to diverse human cancers and childhood cancer, specifically those with potential environmental etiology through maternal consumption during pregnancy and lactation. Other dietary agents that are still untested as to their effectiveness in transplacental studies are also discussed. The recent developments discussed herein enhance current understanding of how chemopreventive agents act and their potential to impact the prenatal epigenome; they may also aid efforts to identify dietary interventions that can be beneficial in treating and preventing disease.
Collapse
Affiliation(s)
- Pushpinder Kaur
- Linus Pauling Science Center, Oregon State University, Corvallis, Oregon 97331, USA.
| | | | | | | | | |
Collapse
|
177
|
Zhao W, Wu M, Lai Y, Deng W, Liu Y, Zhang Z. Involvement of DNA polymerase β overexpression in the malignant transformation induced by benzo[a]pyrene. Toxicology 2013; 309:73-80. [PMID: 23652152 DOI: 10.1016/j.tox.2013.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/27/2013] [Accepted: 04/27/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the relationship between DNA polymerase β (pol β) overexpression and benzo[a]pyrene (BaP) carcinogenesis. METHODS Firstly, mouse embryonic fibroblasts that express wild-type level of DNA polymerase β (pol β cell) and high level of pol β (pol β oe cell) were treated by various concentrations of BaP to determine genetic instability induced by BaP under differential expression levels of pol β. Secondly, malignant transformation of pol β cells by low concentration of BaP (20 μM) was determined by soft agar colony formation assay and transformation focus assay. Thirdly, the mRNA and protein levels of BaP-transformed pol β cells (named pol β-T cells) was measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and western blot, and the genetic instability of these cells were examined by HPRT gene mutation assay and random amplified polymorphic DNA (RAPD) assay. RESULTS Pol β cells were successfully transformed into malignant pol β-T cells by an exposure to low concentration of BaP for 6 months. Pol β-T cells exhibited increased levels of pol β gene expression, HPRT gene mutation frequency and polymorphisms of RAPD products that were comparable to those of pol β oe cells. CONCLUSION Pol β overexpression and its-associated genetic instability may play a key role in BaP carcinogenesis.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
178
|
Joss-Moore LA, Lane RH. Epigenetics and the developmental origins of disease: the key to unlocking the door of personalized medicine. Epigenomics 2013; 4:471-3. [PMID: 23130826 DOI: 10.2217/epi.12.53] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
179
|
Liu M, Chen L, Zhou R, Wang J. Association between GSTM1 polymorphism and DNA adduct concentration in the occupational workers exposed to PAHs: A meta-analysis. Gene 2013; 519:71-6. [DOI: 10.1016/j.gene.2013.01.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 12/16/2022]
|
180
|
Factors affecting the 27K DNA methylation pattern in asthmatic and healthy children from locations with various environments. Mutat Res 2013; 741-742:18-26. [PMID: 23458556 DOI: 10.1016/j.mrfmmm.2013.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/23/2022]
Abstract
Gene expression levels are significantly regulated by DNA methylation. Differences in gene expression profiles in the populations from various locations with different environmental conditions were repeatedly observed. In this study we compare the methylation profiles in 200 blood samples of children (aged 7-15 years) with and without bronchial asthma from two regions in the Czech Republic with different levels of air pollution (a highly polluted Ostrava region and a control Prachatice region). Samples were collected in March 2010 when the mean concentrations of benzo[a]pyrene (B[a]P) measured by stationary monitoring were 10.1±2.4ng/m(3) in Ostrava Bartovice (5.6 times higher than in the control region). Significantly higher concentrations of other pollutants (benzene, NO2, respirable air particles and metals) were also found in Ostrava. We applied the Infinium Methylation Assay, using the Human Methylation 27K BeadChip with 27,578 CpG loci for identification of the DNA methylation pattern in studied groups. Results demonstrate a significant impact of different environmental conditions on the DNA methylation patterns of children from the two regions. We found 9916 CpG sites with significantly different methylation (beta value) between children from Ostrava vs. Prachatice from which 58 CpG sites had differences >10%. The methylation of all these 58 CpG sites was lower in children from polluted Ostrava, which indicates a higher gene expression in comparison with the control Prachatice region. We did not find a difference in DNA methylation patterns between children with and without bronchial asthma in individual locations, but patterns in both asthmatics and healthy children differed between Ostrava and Prachatice. Further, we show differences in DNA methylation pattern depending on gender and urinary cotinine levels. Other factors including length of gestation, birth weight and length of full breastfeeding are suggested as possible factors that can impact the DNA methylation pattern in future life.
Collapse
|
181
|
Yuan Y, Jin L, Wang L, Li Z, Zhang L, Zhu H, Finnell RH, Zhou G, Ren A. Levels of PAH-DNA adducts in placental tissue and the risk of fetal neural tube defects in a Chinese population. Reprod Toxicol 2013; 37:70-5. [PMID: 23416326 DOI: 10.1016/j.reprotox.2013.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 01/09/2013] [Accepted: 01/26/2013] [Indexed: 12/17/2022]
Abstract
We examined the relationship between PAH-DNA adduct levels in the placental tissue, measured by a highly sensitive (32)P-postlabeling assay, and the risk of fetal neural tube defects (NTDs). We further explored the interaction between PAH-DNA adducts and placental PAHs with respect to NTD risk. Placental tissues from 80 NTD-affected pregnancies and 50 uncomplicated normal pregnancies were included in this case-control study. Levels of PAH-DNA adducts were lower in the NTD group (8.12 per 10(8) nucleotides) compared to controls (9.92 per 10(8) nucleotides). PAH-DNA adduct concentrations below the median was associated with a 3-fold increased NTD risk. Women with a low PAH-DNA adduct level in concert with a high placental PAH level resulted in a 10-fold elevated risk of having an NTD-complicated pregnancy. A low level of placental PAH-DNA adducts was associated with an increased risk of NTDs; this risk increased dramatically when a low adduct level was coupled with a high placental PAH concentration.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Peking University, Beijing 100191, China
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Jeng HA, Pan CH, Lin WY, Wu MT, Taylor S, Chang-Chien GP, Zhou G, Diawara N. Biomonitoring of polycyclic aromatic hydrocarbons from coke oven emissions and reproductive toxicity in nonsmoking workers. JOURNAL OF HAZARDOUS MATERIALS 2013; 244-245:436-43. [PMID: 23314003 DOI: 10.1016/j.jhazmat.2012.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 09/12/2012] [Accepted: 11/04/2012] [Indexed: 05/25/2023]
Abstract
The objective of the cross-sectional study was to assess whether exposure to polycyclic aromatic hydrocarbons (PAHs) from coke oven emissions contributed to alteration of semen quality and sperm DNA integrity in nonsmoking workers. Nonsmoking coke oven workers from a steel plant in Taiwan served as the exposure groups (topside-oven workers for the high exposure group and side-oven workers for the low exposure group), and administrators and security personnel in the plant served as the control. An exposure assessment was conducted to determine both particulate and gaseous phase of PAH levels and urinary 1-hydroxypyrene (1-OHP) levels. Semen quality was analyzed according to WHO guidelines. DNA fragmentation and bulky DNA adducts were measured to assess sperm DNA integrity. There was no significant difference in sperm concentrations, vitality, and DNA fragmentation between the exposed group and the control. The high exposure group experienced significantly lower percentages of normal morphology as compared with the control (p=0.0001). Bulky DNA adducts were detected in the exposed group that were significant higher than the control (p=0.04). Exposure to PAHs from coke-oven emissions could contribute to increased levels of bulky DNA adducts in sperm.
Collapse
Affiliation(s)
- Hueiwang Anna Jeng
- School of Community and Environmental Health, College of Health Sciences, Old Dominion University, Norfolk, VA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Peters S, Glass DC, Reid A, de Klerk N, Armstrong BK, Kellie S, Ashton LJ, Milne E, Fritschi L. Parental occupational exposure to engine exhausts and childhood brain tumors. Int J Cancer 2012. [PMID: 23184618 DOI: 10.1002/ijc.27972] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Childhood brain tumors (CBT) are the leading cause of cancer death in children; their risk factors are still largely unknown. Since most CBTs are diagnosed before five years of age, prenatal exposure and early postnatal factors may be involved in their etiology. We investigated the association between CBT and parental occupational exposure to engine exhausts in an Australian population-based case-control study. Parents of 306 cases and 950 controls completed detailed occupational histories. Odds ratios (OR) and 95% confidence intervals (CI) were estimated for both maternal and paternal exposure in key time periods. Increased risks were observed for maternal exposure to diesel exhaust any time before the child's birth (OR 2.03, 95% CI 1.09-3.81) and paternal exposure around the time of the child's conception (OR 1.62, 95% CI 1.12-2.34). No clear associations with other engine exhausts were found. Our results suggest that parental occupational exposure to diesel exhaust may increase the risk of CBT.
Collapse
Affiliation(s)
- Susan Peters
- Western Australian Institute for Medical Research, University of Western Australia, Perth, WA, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Liang J, Zhu H, Li C, Ding Y, Zhou Z, Wu Q. Neonatal exposure to benzo[a]pyrene decreases the levels of serum testosterone and histone H3K14 acetylation of the StAR promoter in the testes of SD rats. Toxicology 2012; 302:285-91. [DOI: 10.1016/j.tox.2012.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 01/11/2023]
|
185
|
Wang T, Garcia JG, Zhang W. Epigenetic Regulation in Particulate Matter-Mediated Cardiopulmonary Toxicities: A Systems Biology Perspective. ACTA ACUST UNITED AC 2012. [PMID: 23185213 DOI: 10.2174/187569212803901792] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Particulate matter (PM) air pollution exerts significant adverse health effects in global populations, particularly in developing countries with extensive air pollution. Understanding of the mechanisms of PM-induced health effects including the risk for cardiovascular diseases remains limited. In addition to the direct cellular physiological responses such as mitochondrial dysfunction and oxidative stress, PM mediates remarkable dysregulation of gene expression, especially in cardiovascular tissues. The PM-mediated gene dysregulation is likely to be a complex mechanism affected by various genetic and non-genetic factors. Notably, PM is known to alter epigenetic markers (e.g., DNA methylation and histone modifications), which may contribute to air pollution-mediated health consequences including the risk for cardiovascular diseases. Notably, epigenetic changes induced by ambient PM exposure have emerged to play a critical role in gene regulation. Though the underlying mechanism(s) are not completely clear, the available evidence suggests that the modulated activities of DNA methyltransferase (DNMT), histone acetylase (HAT) and histone deacetylase (HDAC) may contribute to the epigenetic changes induced by PM or PM-related chemicals. By employing genome-wide epigenomic and systems biology approaches, PM toxicogenomics could conceivably progress greatly with the potential identification of individual epigenetic loci associated with dysregulated gene expression after PM exposure, as well the interactions between epigenetic pathways and PM. Furthermore, novel therapeutic targets based on epigenetic markers could be identified through future epigenomic studies on PM-mediated cardiopulmonary toxicities. These considerations collectively inform the future population health applications of genomics in developing countries while benefiting global personalized medicine at the same time.
Collapse
Affiliation(s)
- Ting Wang
- Section of Pulmonary, Critical Care, Allergy & Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA ; Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
186
|
Prenatal and Perinatal Environmental Influences on the Human Fetal and Placental Epigenome. Clin Pharmacol Ther 2012; 92:716-26. [DOI: 10.1038/clpt.2012.141] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
187
|
Weinhold B. A steep learning curve: decoding epigenetic influence on behavior and mental health. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:a396-a401. [PMID: 23026389 PMCID: PMC3491936 DOI: 10.1289/ehp.120-a396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
188
|
Ng JWY, Barrett LM, Wong A, Kuh D, Smith GD, Relton CL. The role of longitudinal cohort studies in epigenetic epidemiology: challenges and opportunities. Genome Biol 2012; 13:246. [PMID: 22747597 PMCID: PMC3446311 DOI: 10.1186/gb-2012-13-6-246] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Longitudinal cohort studies are ideal for investigating how epigenetic patterns change over time and relate to changing exposure patterns and the development of disease. We highlight the challenges and opportunities in this approach.
Collapse
|
189
|
Ng JWY, Barrett LM, Wong A, Kuh D, Smith G, Relton CL. The role of longitudinal cohort studies in epigenetic epidemiology: challenges and opportunities. Genome Biol 2012. [DOI: 10.1186/gb4029] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|