151
|
Christiansen BA, Silva MJ. The Effect of Varying Magnitudes of Whole-Body Vibration on Several Skeletal Sites in Mice. Ann Biomed Eng 2006; 34:1149-56. [PMID: 16786394 DOI: 10.1007/s10439-006-9133-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 05/04/2006] [Indexed: 12/26/2022]
Abstract
It has been reported that whole-body vibration (WBV) is anabolic to trabecular bone in animal models and humans. It is likely that this anabolic response does not occur uniformly throughout the entire body. Two factors that may affect the observed anabolic response are vibration magnitude and skeletal site of interest. In this study, mice were loaded with WBV of varying magnitudes. After five weeks of loading, bone marrow was flushed from tibias in order to quantify osteoprogenitor cells. Staining with alizarin red (an indicator of mineralization) showed a significant decrease in percent stained area in the 0.3 g loaded group compared to the control group and the 1.0 g group. MicroCT analysis was performed at five skeletal sites: the proximal tibial metaphysis, femoral condyles, distal femoral metaphysis, proximal femur, and L5 vertebral body. Increasing magnitudes of WBV were associated with a non-dose-dependent increase in trabecular bone volume (BV/TV) at the proximal tibial metaphysis, although other sites were unresponsive. There were statistically significant increases in BV/TV in the 0.1 g group (32% increase) and 1.0 g group (43% increase) compared to control (p < 0.05). The 0.1 g and 1.0 g groups also had higher BV/TV than the 0.3 g loaded group. If this non-dose-dependent phenomenon is verified by future studies, it suggests that a range of magnitudes should be examined for each application of WBV.
Collapse
Affiliation(s)
- Blaine A Christiansen
- Department of Orthopaedic Surgery, University in St. Louis, 1 Barnes-Jewish Hospital Plaza Campus Box 8233, St. Louis, MO 63110, USA.
| | | |
Collapse
|
152
|
Maïmoun L, Fattal C, Micallef JP, Peruchon E, Rabischong P. Bone loss in spinal cord-injured patients: from physiopathology to therapy. Spinal Cord 2006; 44:203-10. [PMID: 16158075 DOI: 10.1038/sj.sc.3101832] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
STUDY DESIGN Review article on bone metabolism and therapeutic approach on bone loss in patients with spinal cord injury (SCI). OBJECTIVE The first part aims to describe the process of bone demineralization and its effects on bone mass in patients with SCI. The second part describes and discusses the therapeutic approaches to limiting the alteration in bone metabolism related to neurological lesions. SETTING Propara Rehabilitation Center, Montpellier, France. RESULTS During the first 24 months postinjury, demineralization occurs exclusively in the sublesional areas and predominantly in weight-bearing skeletal sites such as the distal femur and proximal tibia, both of which are trabecular-rich sites. Reduced bone mass, in association with a modified bone matrix property and composition, is very likely at the origin of pathological fractures after minor trauma to which these patients are frequently exposed. Since these fractures may be asymptomatic yet may lead to complications, preventing and managing 'neurological osteoporosis' remains a considerable challenge. Two main approaches are considered: the first consists in applying a mechanical stimulus to the bone tissue by standing, orthotically aided walking or functional electrical stimulation (FES). The second uses medications, particularly antiresorptive drugs such as calcitonin or diphosphonates. CONCLUSION To develop well-adapted treatments, a more precise understanding of bone loss etiology is needed. The current rehabilitation programs are based on the idea that the bone physiological changes observed in patients with SCI are due to immobility, but results indicate that alterations inherent to neurological damage may play an even greater role in inducing osteoporosis.
Collapse
Affiliation(s)
- L Maïmoun
- Centre Mutualiste Neurologique Propara, Montpellier, France
| | | | | | | | | |
Collapse
|
153
|
Extremely Low-Level, Short-Term Mechanical Stimulation Increases Cancellous and Cortical Bone Density and Muscle Mass of Children With Low Bone Density. ACTA ACUST UNITED AC 2006. [DOI: 10.1097/01.ten.0000217885.60398.27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
154
|
Clark JM, Jelbart M, Rischbieth H, Strayer J, Chatterton B, Schultz C, Marshall R. Physiological effects of lower extremity functional electrical stimulation in early spinal cord injury: lack of efficacy to prevent bone loss. Spinal Cord 2006; 45:78-85. [PMID: 16636686 DOI: 10.1038/sj.sc.3101929] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Controlled, repeat-measures study. OBJECTIVES To determine if functional electrical stimulation (FES) can affect bone atrophy in early spinal cord injury (SCI), and the safety, tolerance and feasibility of this modality in bone loss remediation. SETTING Spinal Injuries Units, Royal Adelaide Hospital and Hampstead Rehabilitation Centre, South Australia. METHODS Patients with acute SCI (ASIA A-D) were allocated to FES (n=23, 28+/-9 years, C4-T10, 13 Tetra) and control groups (CON, n=10, 31+/-11 years, C5-T12, four Tetra). The intervention group received discontinuous FES to lower limb muscles (15 min sessions to each leg twice daily, over a 5-day week, for 5 months). Dual energy X-ray absorptiometry (DEXA) measured total body bone mineral density (tbBMD), hip, spine BMD and fat mass (FM) within 3 weeks, and 3 and 6 months postinjury. RESULTS FES and CON groups' tbBMD differed significantly at 3 months postinjury (P<0.01), but not thereafter. Other DEXA measures (hip, spine BMD, FM) did not differ between groups at any time. No adverse events were identified. CONCLUSION Electrically stimulated muscle activation was elicited, and tetanic effects were reproducible; however, there were no convincing trends to suggest that FES can play a clinically relevant role in osteoporosis prevention (or subsequent fracture risk) in the recently injured patient. The lack of an osteogenic response in paralysed extremities to electrically evoked exercise during subacute and rehabilitation/recovery phases cannot be fully explained, and may warrant further evaluation.
Collapse
Affiliation(s)
- J M Clark
- Division of Orthopaedics and Trauma Service, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | | | | | | | | | | | | |
Collapse
|
155
|
Rubin J, Rubin C, Jacobs CR. Molecular pathways mediating mechanical signaling in bone. Gene 2006; 367:1-16. [PMID: 16361069 PMCID: PMC3687520 DOI: 10.1016/j.gene.2005.10.028] [Citation(s) in RCA: 309] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 10/03/2005] [Indexed: 12/26/2022]
Abstract
Bone tissue has the capacity to adapt to its functional environment such that its morphology is "optimized" for the mechanical demand. The adaptive nature of the skeleton poses an interesting set of biological questions (e.g., how does bone sense mechanical signals, what cells are the sensing system, what are the mechanical signals that drive the system, what receptors are responsible for transducing the mechanical signal, what are the molecular responses to the mechanical stimuli). Studies of the characteristics of the mechanical environment at the cellular level, the forces that bone cells recognize, and the integrated cellular responses are providing new information at an accelerating speed. This review first considers the mechanical factors that are generated by loading in the skeleton, including strain, stress and pressure. Mechanosensitive cells placed to recognize these forces in the skeleton, osteoblasts, osteoclasts, osteocytes and cells of the vasculature are reviewed. The identity of the mechanoreceptor(s) is approached, with consideration of ion channels, integrins, connexins, the lipid membrane including caveolar and non-caveolar lipid rafts and the possibility that altering cell shape at the membrane or cytoskeleton alters integral signaling protein associations. The distal intracellular signaling systems on-line after the mechanoreceptor is activated are reviewed, including those emanating from G-proteins (e.g., intracellular calcium shifts), MAPKs, and nitric oxide. The ability to harness mechanical signals to improve bone health through devices and exercise is broached. Increased appreciation of the importance of the mechanical environment in regulating and determining the structural efficacy of the skeleton makes this an exciting time for further exploration of this area.
Collapse
Affiliation(s)
- Janet Rubin
- Department of Medicine, VAMC and Emory University School of Medicine, Atlanta GA, VAMC-151, 1670 Clairmont Rd, Decatur, GA 30033, USA.
| | | | | |
Collapse
|
156
|
Abstract
It is now generally accepted that an adequate calcium intake is important for building and maintaining a skeleton that expresses quantitatively the full genetic program and reduces lifetime fracture risk. In this brief review we focus mainly on a new and growing body of evidence indicating a benefit of adequate calcium intake on qualitative features of the skeleton that, independent of the quantity of bone, themselves influence skeletal strength and fragility. Change in bone mass and size during growth are dependent on both calcium intake and exercise, with the largest differences being observed in prepubertal children who have both high exercise levels and high calcium intakes. Much of this benefit is expressed as increased bone diameter (and hence stiffness). Fracture risk peaks at about the time of puberty and is inversely related to bone mass. However, even prepubertally, children with low calcium intakes have been reported to have a fracture rate 2.7x that of their birth cohort. Bone remodeling triples from age 50 to 65 in typical women and is now recognized to have primarily a homeostatic basis. While remodeling improves bone strength by repairing acquired defects, homeostatic remodeling, while necessary to maintain blood calcium levels, contributes only structural weakness to bone. High calcium intakes in postmenopausal and older women reduce this homeostatic remodeling to approximately pre-menopausal values and improve bone strength immediately, well prior to any appreciable change in bone mass.
Collapse
Affiliation(s)
- Robert P Heaney
- Creighton University Medical Center, 601 N. 30th St., Suite 4841, Omaha, NE 68131, USA.
| | | |
Collapse
|
157
|
Sano S, Okawa A, Nakajima A, Tahara M, Fujita K, Wada Y, Yamazaki M, Moriya H, Sasho T. Identification of Pip4k2beta as a mechanical stimulus responsive gene and its expression during musculoskeletal tissue healing. Cell Tissue Res 2005; 323:245-52. [PMID: 16220274 DOI: 10.1007/s00441-005-0068-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 07/26/2005] [Indexed: 10/25/2022]
Abstract
To investigate the mechano-transduction system of cells, we identified genes responsive to a cyclic mechanical stimulus. MC3T3.E1 cells were cultured on a computer-controlled vacuum-pump-operated device designed to provide a cyclic mechanical stimulus. A maximum elongation of 15% of membrane at 10 cycles/min (3 s extension followed by 3 s relax per cycle) was repeated for 48 h. By means of a differential display, the gene expression pattern of cells exposed to the stimulus was compared with that of unexposed cells. As a result, a gene fragment that was exclusively expressed in mechanically stressed cells was identified. By using expressed sequence tag walking together with the oligo-capping method, this gene was identified as phosphatidylinositol 4-phosphate 5-kinase type II beta (initially known as Pip5k2beta but now reclassified as Pip4k2beta). The specific up-regulation of Pip4k2beta upon mechanical stimulus was also confirmed by using another apparatus, viz. a computer-controlled linearized-stepping motor system. To examine the involvement of the cyclic mechanical stimulus in the regulation of Pip4k2beta expression in musculoskeletal tissue, we created an Achilles tendon transection model in rabbits. The temporal expression of Pip4k2beta was assessed by means of a quantitative reverse-transcribed polymerase chain reaction. In the gastrocnemius muscle, expression of Pip4k2beta rapidly decreased 1 week after transection but was restored to normal levels at 4 weeks. In the Achilles tendon, however, expression remained decreased until 4 weeks after transection. We suggest that the expression of Pip4k2beta can be used as a marker for cells receiving a suitable mechanical stimulus.
Collapse
Affiliation(s)
- Sakae Sano
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Judex S, Zhong N, Squire ME, Ye K, Donahue LR, Hadjiargyrou M, Rubin CT. Mechanical modulation of molecular signals which regulate anabolic and catabolic activity in bone tissue. J Cell Biochem 2005; 94:982-94. [PMID: 15597385 DOI: 10.1002/jcb.20363] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Identifying the molecular mechanisms that regulate bone's adaptive response to alterations in load bearing may potentiate the discovery of interventions to curb osteoporosis. Adult female mice (BALB/cByJ) were subjected to catabolic (disuse) and anabolic (45 Hz, 0.3g vibration for 10 min/day) signals, and changes in the mRNA levels of thirteen genes were compared to altered indices of bone formation. Age-matched mice served as controls. Following 4 days of disuse, significant (P = 0.05) decreases in mRNA levels were measured for several genes, including collagen type I (-55%), osteonectin (-44%), osterix (-36%), and MMP-2 (-36%) all of which, after 21 days, had normalized to control levels. In contrast, expression of several genes in the vibrated group, which failed to show significant changes at 4 days, demonstrated significant increases after 21 days, including inducible nitric oxide synthase (iNOS) (39%, P = 0.07), MMP-2 (54%), and receptor activator of the nuclear factor kB ligand (RANKL) (32%). Correlations of gene expression patterns across experimental conditions and time points allowed the functional clustering of responsive genes into two distinct groups. Each cluster's specific regulatory role (formation vs. resorption) was reinforced by the 60% suppression of formation rates caused by disuse, and the 55% increase in formation rates stimulated by mechanical signals (P < 0.05). These data confirm the complexity of the bone remodeling process, both in terms of the number of genes involved, their interaction and coordination of resorptive and formative activity, and the temporal sensitivity of the processes. More detailed spatial and temporal correlations between altered mRNA levels and tissue plasticity may further delineate the molecules responsible for the control of bone mass and morphology.
Collapse
Affiliation(s)
- Stefan Judex
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2580, USA.
| | | | | | | | | | | | | |
Collapse
|
159
|
Lai YM, Qin L, Yeung HY, Lee KKH, Chan KM. Regional differences in trabecular BMD and micro-architecture of weight-bearing bone under habitual gait loading--a pQCT and microCT study in human cadavers. Bone 2005; 37:274-82. [PMID: 15961358 DOI: 10.1016/j.bone.2005.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 01/24/2005] [Accepted: 04/20/2005] [Indexed: 11/21/2022]
Abstract
This study used both multi-slice pQCT and microCT to investigate regional changes in bone mineral density and structural parameters in the ultradistal tibia and in the mid-femoral neck under habitual gait loading. Twenty cadavers with 2 females and 18 males aged 70.8 +/- 8.5 were used in this study. Seventy-two cylindrical bone cores with 5 mm in diameter and 10 mm in length from the anterior/posterior and superior/inferior regions were obtained from ultradistal tibia and mid-femur neck, respectively, so that their differences in terms of volumetric trabecular bone mineral density (tBMD) as well as micro-architectural parameters could be studied. The results showed that the mean volumetric tBMD at both the organ (including the bone marrow spaces) and tissue levels (excluding the bone marrow spaces) were a 49.2% and 28.3%, respectively, lower in the anterior bone cores than in the posterior bone cores from the ultradistal tibia (P < 0.01). MicroCT measurements on BV/TV, BS/TV, Tb.N, Tb.Th, and DA were found to be on average of 33.5%, 23.6%, 9.1%, 18.0%, and 14.6%, respectively, lower in the anterior trabecular bone cores (P < 0.001), while Tb.Sp and SMI were 12.5% and 29.3%, respectively, higher in the anterior trabecular bone cores (P < 0.01). No significant difference in micro-architectural parameters was found in the trabecular bone cores obtained from mid-femoral neck, except that the mean DA of the inferior bone cores was significantly higher by 30.1% than that of the superior bone cores (P = 0.01). A statistically significant linear relationship with the correlation coefficient, ranging from 0.37 to 0.94 and -0.62 to -0.85, respectively, was shown between the tBMD at the organ level and all of the micro-architectural parameters (P < 0.05). We suggest that dynamic loading changes during the striking of the heel in normal gait, as well as the peaks of the hip joint reaction force occur during the heel strike and before toe off positions in the lifetime of the subject may account for such regional differences in BMD and micro-architecture. The findings from the correlation study also suggest that, apart from BMD, the micro-architecture may exhibit adaptation in response to such excessive loading.
Collapse
Affiliation(s)
- Y M Lai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, PR China
| | | | | | | | | |
Collapse
|
160
|
Mittra E, Rubin C, Qin YX. Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone. J Biomech 2005; 38:1229-37. [PMID: 15863107 DOI: 10.1016/j.jbiomech.2004.06.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
The ability to evaluate fracture risk at an early time point is essential for improved prognostics as well as enhanced treatment in cases of bone loss such as from osteoporosis. Improving the diagnostic ability is inherent upon both high-resolution non-invasive imaging, and a thorough understanding of how the derived indices of structure and density relate to its true mechanical behavior. Using sheep femoral trabecular bone with a range of strength, the interrelationship of mechanical and microstructural parameters was analyzed using multi-directional mechanical testing and micro-computed tomography. Forty-five cubic trabecular bone samples were harvested from 23 adult female sheep, some of whom had received hind-limb vibratory stimuli over the course of 2 years with consequently enhanced mechanical properties. These samples were pooled into a low, medium, or high strength group for further analysis. The findings show that microCT indices that are structural in nature, e.g., structural model index (SMI) (r2=0.85, p<0.0001) is as good as more density oriented indices like bone volume/total volume (BV/TV) (r2=0.81, p<0.0001) in predicting the ultimate strength of a region of trabecular bone. Additionally, those indices more related to global changes in trabecular structure such as connectivity density (ConnD) or degree of anisotropy (DA) are less able to predict the mechanical properties of bone. Interrelationships of trabecular indices such as trabecular number (TbN), thickness (TbTh), and spacing (TbSp) provide clues as to how the trabecular bone will remodel to ultimately achieve differences in the apparent mechanical properties. For instance, the analysis showed that a loss of bone primarily affects the connectedness and overall number of trabeculae, while increased strength results in an increase of the overall thickness of trabeculae while not improving the connectedness. Certainly, the microCT indices studied are able to predict the bulk mechanical properties of a trabecular ROI well, leaving unaccounted only about 15-20% of its inherent variability. Diagnostically, this implies that future work on the early prediction of fracture risk should continue to explore the role of bone quality as the key factors or as an adjuvant to bone quantity (e.g., apparent density).
Collapse
Affiliation(s)
- Erik Mittra
- Department of Biomedical Engineering, Stony Brook University, Psychology-A Building, 3rd Floor, Stony Brook, NY 11794-2580, USA
| | | | | |
Collapse
|
161
|
Iwamoto J, Takeda T, Sato Y, Uzawa M. Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate. Aging Clin Exp Res 2005; 17:157-63. [PMID: 15977465 DOI: 10.1007/bf03324589] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS Exercise may enhance the effect of alendronate on bone mineral density (BMD) and reduce chronic back pain in elderly women with osteoporosis. The aim of this study was to determine whether whole-body vibration exercise would enhance the effect of alendronate on lumbar BMD and bone turnover, and reduce chronic back pain in postmenopausal women with osteoporosis. METHODS Fifty post-menopausal women with osteoporosis, 55-88 years of age, were randomly divided into two groups of 25 patients each: one taking alendronate (5 mg daily, ALN) and one taking alendronate plus exercise (ALN+EX). Exercise consisted of whole-body vibration using a Galileo machine (Novotec, Pforzheim, Germany), at an intensity of 20 Hz, frequency once a week, and duration of exercise 4 minutes. The study lasted 12 months. Lumbar BMD was measured by dual energy X-ray absorptiometry (Hologic QDR 1500W). Urinary cross-linked N-terminal telopeptides of type I collagen (NTX) and serum alkaline phosphatase (ALP) levels were measured by enzyme-linked immunosorbent assay and standard laboratory techniques, respectively. Chronic back pain was evaluated by face scale score at baseline and every 6 months. RESULTS There were no significant differences in baseline characteristics, including age, body mass index, years since menopause, lumbar BMD, urinary NTX and serum ALP levels, or face scale score between the two groups. The increase in lumbar BMD and the reduction in urinary NTX and serum ALP levels were similar in the ALN and ALN+EX groups. However, the reduction in chronic back pain was greater in the ALN+EX group than in the ALN group. CONCLUSIONS The results of this study suggest that whole-body vibration exercise using a Galileo machine appears to be useful in reducing chronic back pain, probably by relaxing the back muscles in post-menopausal osteoporotic women treated with alendronate.
Collapse
Affiliation(s)
- Jun Iwamoto
- Department of Sports Medicine, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
162
|
Slade JM, Bickel CS, Modlesky CM, Majumdar S, Dudley GA. Trabecular bone is more deteriorated in spinal cord injured versus estrogen-free postmenopausal women. Osteoporos Int 2005; 16:263-72. [PMID: 15338112 DOI: 10.1007/s00198-004-1665-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 05/15/2004] [Indexed: 10/26/2022]
Abstract
The prevalence of osteoporosis is high among postmenopausal women and individuals sustaining a spinal cord injury (SCI). We assessed the effects of estrogen loss and unloading on the trabecular bone of the knee in women. Pre- and postmenopausal ambulatory women (n=17) were compared to pre- and postmenopausal women with SCI (n=20). High-resolution magnetic resonance imaging was used to compare groups on apparent measures of trabecular bone volume, trabecular number, trabecular spacing, and trabecular thickness in the distal femur and proximal tibia, regions with a high proportion of trabecular bone and the most common fracture site for SCI patients. Trabecular bone was deteriorated in women with SCI compared to ambulatory women. SCI groups had fewer, (-19 and -26% less) and thinner trabeculae (-6%) that were spaced further apart (40% and 62% more space between structures) resulting in less trabecular bone volume (-22% and -33%) compared to the ambulatory groups (tibia and femur, respectively). Postmenopausal women with SCI also had 34% greater trabecular spacing in the tibia compared to the 40-year-old premenopausal women with SCI, showing an interaction between unloading and estrogen loss. Middle-aged postmenopausal, ambulatory women, not taking estrogen or medications that affect bone, did not show the deteriorated trabeculae that were evident in women with SCI, nor did they show differences in distal femur and proximal tibia trabeculae compared to a premenopausal group. We conclude that the effect of unloading on bone architecture is greater than that of estrogen loss in middle-aged women.
Collapse
Affiliation(s)
- Jill M Slade
- Department of Exercise Science, University of Georgia, 300 River Road, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
163
|
Bacabac RG, Smit TH, Cowin SC, Van Loon JJWA, Nieuwstadt FTM, Heethaar R, Klein-Nulend J. Dynamic shear stress in parallel-plate flow chambers. J Biomech 2005; 38:159-67. [PMID: 15519352 DOI: 10.1016/j.jbiomech.2004.03.020] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2004] [Indexed: 11/16/2022]
Abstract
An in vitro model using a parallel-plate fluid flow chamber is supposed to simulate in vivo fluid shear stresses on various cell types exposed to dynamic fluid flow in their physiological environment. The metabolic response of cells in vitro is associated with the wall shear stress. However, parallel-plate flow chambers have not been characterized for dynamic fluid flow experiments. We use a dimensionless ratio h / lambda(v), in determining the exact magnitude of the dynamic wall shear stress, with its oscillating components scaled by a shear factor T. It is shown that, in order to expose cells to predictable levels of dynamic fluid shear stress, two conditions have to be met: (1) h / lambda(v) < 2, where h is the distance between the plates and lambda(v) is the viscous penetration depth; and (2) f(0) < f(c) / m, where the critical frequency f(c) is the upper threshold for this flow regime, m is the highest harmonic mode of the flow, and f(0) is the fundamental frequency of fluid flow.
Collapse
Affiliation(s)
- Rommel G Bacabac
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam-Vrije Universiteit, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
164
|
Földhazy Z, Arndt A, Milgrom C, Finestone A, Ekenman I. Exercise-induced strain and strain rate in the distal radius. ACTA ACUST UNITED AC 2005; 87:261-6. [PMID: 15736754 DOI: 10.1302/0301-620x.87b2.14857] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Strains applied to bone can stimulate its development and adaptation. High strains and rates of strain are thought to be osteogenic, but the specific dose response relationship is not known. In vivo human strain measurements have been performed in the tibia to try to identify optimal bone strengthening exercises for this bone, but no measurements have been performed in the distal radial metaphysis, the most frequent site of osteoporotic fractures. Using a strain gauged bone staple, in vivo dorsal metaphyseal radial strains and rates of strain were measured in ten female patients during activities of daily living, standard exercises and falls on extended hands. Push-ups and falling resulted in the largest compression strains (median 1345 to 3146 με, equivalent to a 0.1345% to 0.3146% length change) and falling exercises in the largest strain rates (18 582 to 45 954 με/s). On the basis of their high strain and/or strain rates these or variations of these exercises may be appropriate for distal radial metaphyseal bone strengthening.
Collapse
Affiliation(s)
- Z Földhazy
- Huddinge University Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
165
|
Murfee WL, Hammett LA, Evans C, Xie L, Squire M, Rubin C, Judex S, Skalak TC. High-frequency, low-magnitude vibrations suppress the number of blood vessels per muscle fiber in mouse soleus muscle. J Appl Physiol (1985) 2005; 98:2376-80. [PMID: 15677735 DOI: 10.1152/japplphysiol.01135.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Extremely low-magnitude (0.3 g), high-frequency (30-90 Hz), whole body vibrations can stimulate bone formation and are hypothesized to provide a surrogate for the oscillations of muscle during contraction. Little is known, however, about the potential of these mechanical signals to stimulate adaptive responses in other tissues. The objective of this study was to determine whether low-level mechanical signals produce structural adaptations in the vasculature of skeletal muscle. Eight-week-old male BALB/cByJ (BALB) mice were divided into two experimental groups: mice subjected to low-level, whole body vibrations (45 Hz, 0.3 g) superimposed on normal cage activities for 15 min/day (n = 6), and age-matched controls (n = 7). After the 6-wk experimental protocol, sections from end and mid regions of the soleus muscles were stained with lectin from Bandeiraea Simplicifolia, an endothelial cell marker, and smooth muscle (SM) alpha-actin, a perivascular cell marker. Six weeks of this low-level vibration caused a 29% decrease in the number of lectin-positive vessels per muscle fiber in the end region of the soleus muscle, indicating a significant reduction in the number of capillaries per muscle fibers. Similarly, these vibrations caused a 36% reduction in SM alpha-actin-positive vessels per muscle fiber, indicating a reduction in the number of arterioles and venules. The decreases in lectin- and SM alpha-actin-positive vessels per muscle fiber ratios were not significant in the mid muscle sections. These results demonstrate the sensitivity of the vasculature in mouse skeletal muscle to whole body, low-level mechanical signals.
Collapse
Affiliation(s)
- Walter L Murfee
- Dept. of Biomedical Engineering, Box 800759, UVA Health System, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | |
Collapse
|
166
|
|
167
|
Hannan MT, Cheng DM, Green E, Swift C, Rubin CT, Kiel DP. Establishing the compliance in elderly women for use of a low level mechanical stress device in a clinical osteoporosis study. Osteoporos Int 2004; 15:918-26. [PMID: 15167985 DOI: 10.1007/s00198-004-1637-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 02/27/2004] [Indexed: 10/26/2022]
Abstract
Non-pharmacologic approaches to prevent bone loss are well suited for elderly patients to avoid polypharmacy and medication side effects. One potential treatment is a vibrating platform that delivers low-level mechanical loading stimulating bone remodeling. However, compliance is a major concern with any daily treatment, and is unknown for an elderly group using this device. Thus we assessed compliance with standing 10 min/day on a vibrating platform device in elderly women, the target population for osteoporosis therapy. We also assessed satisfaction with daily use of the device. We conducted a randomized, placebo-controlled, double-blinded 6-month study for daily use of a 10-min vibrating platform treatment in elderly women who were residents of a Continuing Care Retirement community. Compliance for each subject was calculated as the number of days attended divided by the 182 days in the 6-month trial. The 24 elderly women (mean age 86, range 79-92 years) had 83% compliance (95% CI: 70.5, 94.5) for daily treatment over 6 months. Excluding three study drop-outs, the 21 women had 93% compliance (95% CI: 89.8, 95.6), with no difference in compliance between active and placebo treatment. Main reasons for missing treatment days over the 6 months were vacation (54% of missed days) and illness (29%). Three adverse events occurred; one (syncope) was possibly related to device use, whereas the other two were not related to device use. Among participants, 95% reported overall satisfaction with daily use of the vibrating platform, and 57% preferred the platform versus daily oral medications for prevention of bone loss. Elderly women showed high compliance, high satisfaction and few adverse experiences with a daily non-pharmacological treatment designed to inhibit bone loss. Larger randomized controlled trials should evaluate the long-term efficacy of vibrating platform devices for treatment of low bone mass and osteoporosis in elderly individuals.
Collapse
Affiliation(s)
- Marian T Hannan
- Research & Training Institute, Hebrew Rehabilitation Center for Aged and Harvard Medical School Division on Aging, Boston, Mass., USA.
| | | | | | | | | | | |
Collapse
|
168
|
Johnell O, Eisman J. Whole lotta shakin' goin' on. J Bone Miner Res 2004; 19:1205-7. [PMID: 15231005 DOI: 10.1359/jbmr.0315011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 03/16/2004] [Accepted: 04/05/2004] [Indexed: 11/18/2022]
|
169
|
Abstract
The still-evolving mechanostat hypothesis for bones inserts tissue-level realities into the former knowledge gap between bone's organ-level and cell-level realities. It concerns load-bearing bones in postnatal free-living bony vertebrates, physiologic bone loading, and how bones adapt their strength to the mechanical loads on them. Voluntary mechanical usage determines most of the postnatal strength of healthy bones in ways that minimize nontraumatic fractures and create a bone-strength safety factor. The mechanostat hypothesis predicts 32 things that occur, including the gross anatomical bone abnormalities in osteogenesis imperfecta; it distinguishes postnatal situations from baseline conditions at birth; it distinguishes bones that carry typical voluntary loads from bones that have other chief functions; and it distinguishes traumatic from nontraumatic fractures. It provides functional definitions of mechanical bone competence, bone quality, osteopenias, and osteoporoses. It includes permissive hormonal and other effects on bones, a marrow mediator mechanism, some limitations of clinical densitometry, a cause of bone "mass" plateaus during treatment, an "adaptational lag" in some children, and some vibration effects on bones. The mechanostat hypothesis may have analogs in nonosseous skeletal organs as well.
Collapse
Affiliation(s)
- Harold M Frost
- Department of Orthopaedic Surgery, Southern Colorado Clinic, Pueblo, CO 81008, USA
| |
Collapse
|
170
|
Abstract
Achieving a long-term stable implant interface is a significant clinical issue when there is insufficient cortical bone stabilisation at implant placement. Clinical outcomes studies suggest that the higher risk implants are those placed in compromised cortical bone (thin, porous, etc.) in anatomical sites with minimal existing trabecular bone (characterised as type IV bone). In establishing and maintaining an implant interface in such an environment, one needs to consider the impact of masticatory forces, the response of bone to these forces and the impact of age on the adaptive capacity of bone. These forces, in turn, have the potential to create localised changes in interfacial stiffness through viscoelastic changes at the interface. Changes in bone as a function of age (e.g. localised hypermineralised osteopetrosis and localised areas of osteopenia) will alter the communication between osteocytes and osteoblasts creating the potential for differences in response of osteoblastic cells in the older population. A key to understanding the biomechanical and functional behaviour of implants in the older population is to control the anticipated modelling and remodelling behaviour through implant design that takes into account how tissues respond to the mechanically active environment.
Collapse
Affiliation(s)
- Clark M Stanford
- Dows Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|
171
|
Moon HS, Won YY, Kim KD, Ruprecht A, Kim HJ, Kook HK, Chung MK. The three-dimensional microstructure of the trabecular bone in the mandible. Surg Radiol Anat 2004; 26:466-73. [PMID: 15146293 DOI: 10.1007/s00276-004-0247-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study investigated the three dimensional (3D) trabecular microstructure of the alveolar and basal bone in the mandible using micro-CT and compared the morphometric values of the different sites. Ten specimens were prepared and scanned using a micro-CT system. Both the alveolar and basal trabecular bone of the premolar region in the mandible were measured for the structural analysis. Cross-sectional 1024x1024 pixel images were created. From the two-dimensional (2D) images produced, 3D structural images were reconstructed. After scanning the specimen, the volumes of interest (VOI) of the alveolar and basal bone regions were selected from the 3D reconstruction images, and the structural parameters such as bone volume fraction, bone surface density, trabecular thickness, trabecular separation, trabecular number and structural model index were analyzed. The trabecular structure showed a marked variation within the sites of the specimen, especially in the basal trabecular bone inferior to the mandibular canal. In both the alveolar and basal bone regions, a mixture of both plate-like and rod-like structures was observed. The alveolar region showed a more compact, plate-type trabecular structure than the basal regions. In parametric comparison with the basal bone, the alveolar bone generally had a higher bone volume fraction, bone trabecular thickness and trabecular number, and lower bone surface density, trabecular separation and structural model index. The alveolar bone consisted of a compact bone structure with a large amount of thick plate-type trabecular bone, which was effectively resistant to the masticatory forces. As the measurements were made closer to the basal bone, a loose structure was observed with lower bone volume and fewer, thin, rod-like trabeculae.
Collapse
Affiliation(s)
- H S Moon
- Department of Advanced Prosthodontics, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
172
|
Guldberg RE, Ballock RT, Boyan BD, Duvall CL, Lin AS, Nagaraja S, Oest M, Phillips J, Porter BD, Robertson G, Taylor WR. Analyzing bone, blood vessels, and biomaterials with microcomputed tomography. ACTA ACUST UNITED AC 2004; 22:77-83. [PMID: 14699940 DOI: 10.1109/memb.2003.1256276] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- R E Guldberg
- Woodruff School of Mechanical Engineering, Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 2004; 19:343-51. [PMID: 15040821 DOI: 10.1359/jbmr.0301251] [Citation(s) in RCA: 348] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 09/26/2003] [Accepted: 10/30/2003] [Indexed: 12/28/2022]
Abstract
UNLABELLED A 1-year prospective, randomized, double-blind, and placebo-controlled trial of 70 postmenopausal women demonstrated that brief periods (<20 minutes) of a low-level (0.2g, 30 Hz) vibration applied during quiet standing can effectively inhibit bone loss in the spine and femur, with efficacy increasing significantly with greater compliance, particularly in those subjects with lower body mass. INTRODUCTION Indicative of the anabolic potential of mechanical stimuli, animal models have demonstrated that short periods (<30 minutes) of low-magnitude vibration (<0.3g), applied at a relatively high frequency (20-90 Hz), will increase the number and width of trabeculae, as well as enhance stiffness and strength of cancellous bone. Here, a 1-year prospective, randomized, double-blind, and placebo-controlled clinical trial in 70 women, 3-8 years past the menopause, examined the ability of such high-frequency, low-magnitude mechanical signals to inhibit bone loss in the human. MATERIALS AND METHODS Each day, one-half of the subjects were exposed to short-duration (two 10-minute treatments/day), low-magnitude (2.0 m/s2 peak to peak), 30-Hz vertical accelerations (vibration), whereas the other half stood for the same duration on placebo devices. DXA was used to measure BMD at the spine, hip, and distal radius at baseline, and 3, 6, and 12 months. Fifty-six women completed the 1-year treatment. RESULTS AND CONCLUSIONS The detection threshold of the study design failed to show any changes in bone density using an intention-to-treat analysis for either the placebo or treatment group. Regression analysis on the a priori study group demonstrated a significant effect of compliance on efficacy of the intervention, particularly at the lumbar spine (p = 0.004). Posthoc testing was used to assist in identifying various subgroups that may have benefited from this treatment modality. Evaluating those in the highest quartile of compliance (86% compliant), placebo subjects lost 2.13% in the femoral neck over 1 year, whereas treatment was associated with a gain of 0.04%, reflecting a 2.17% relative benefit of treatment (p = 0.06). In the spine, the 1.6% decrease observed over 1 year in the placebo group was reduced to a 0.10% loss in the active group, indicating a 1.5% relative benefit of treatment (p = 0.09). Considering the interdependence of weight, the spine of lighter women (<65 kg), who were in the highest quartile of compliance, exhibited a relative benefit of active treatment of 3.35% greater BMD over 1 year (p = 0.009); for the mean compliance group, a 2.73% relative benefit in BMD was found (p = 0.02). These preliminary results indicate the potential for a noninvasive, mechanically mediated intervention for osteoporosis. This non-pharmacologic approach represents a physiologically based means of inhibiting the decline in BMD that follows menopause, perhaps most effectively in the spine of lighter women who are in the greatest need of intervention.
Collapse
Affiliation(s)
- Clinton Rubin
- Department of Biomedical Engineering, State University of New York, Stony Brook, New York, USA.
| | | | | | | | | | | |
Collapse
|
174
|
Verschueren SMP, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res 2004; 19:352-9. [PMID: 15040822 DOI: 10.1359/jbmr.0301245] [Citation(s) in RCA: 450] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 10/08/2003] [Accepted: 11/04/2003] [Indexed: 11/18/2022]
Abstract
UNLABELLED High-frequency mechanical strain seems to stimulate bone strength in animals. In this randomized controlled trial, hip BMD was measured in postmenopausal women after a 24-week whole body vibration (WBV) training program. Vibration training significantly increased BMD of the hip. These findings suggest that WBV training might be useful in the prevention of osteoporosis. INTRODUCTION High-frequency mechanical strain has been shown to stimulate bone strength in different animal models. However, the effects of vibration exercise on the human skeleton have rarely been studied. Particularly in postmenopausal women-who are most at risk of developing osteoporosis-randomized controlled data on the safety and efficacy of vibration loading are lacking. The aim of this randomized controlled trial was to assess the musculoskeletal effects of high-frequency loading by means of whole body vibration (WBV) in postmenopausal women. MATERIALS AND METHODS Seventy volunteers (age, 58-74 years) were randomly assigned to a whole body vibration training group (WBV, n = 25), a resistance training group (RES, n = 22), or a control group (CON, n = 23). The WBV group and the RES group trained three times weekly for 24 weeks. The WBV group performed static and dynamic knee-extensor exercises on a vibration platform (35-40 Hz, 2.28-5.09g), which mechanically loaded the bone and evoked reflexive muscle contractions. The RES group trained knee extensors by dynamic leg press and leg extension exercises, increasing from low (20 RM) to high (8 RM) resistance. The CON group did not participate in any training. Hip bone density was measured using DXA at baseline and after the 6-month intervention. Isometric and dynamic strength were measured by means of a motor-driven dynamometer. Data were analyzed by means of repeated measures ANOVA. RESULTS No vibration-related side effects were observed. Vibration training improved isometric and dynamic muscle strength (+15% and + 16%, respectively; p < 0.01) and also significantly increased BMD of the hip (+0.93%, p < 0.05). No changes in hip BMD were observed in women participating in resistance training or age-matched controls (-0.60% and -0.62%, respectively; not significant). Serum markers of bone turnover did not change in any of the groups. CONCLUSION These findings suggest that WBV training may be a feasible and effective way to modify well-recognized risk factors for falls and fractures in older women and support the need for further human studies.
Collapse
Affiliation(s)
- Sabine M P Verschueren
- Laboratory of Motor Control, Department of Kinesiology, Faculteit Lichamelijke Opvoeding en Kinesitherapie, Katholieke Universiteit, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
175
|
Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 2004; 19:360-9. [PMID: 15040823 DOI: 10.1359/jbmr.040129] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Revised: 09/16/2003] [Accepted: 10/15/2003] [Indexed: 01/28/2023]
Abstract
UNLABELLED The osteogenic potential of short durations of low-level mechanical stimuli was examined in children with disabling conditions. The mean change in tibia vTBMD was +6.3% in the intervention group compared with -11.9% in the control group. This pilot randomized controlled trial provides preliminary evidence that low-level mechanical stimuli represent a noninvasive, non-pharmacological treatment of low BMD in children with disabling conditions. INTRODUCTION Recent animal studies have demonstrated the anabolic potential of low-magnitude, high-frequency mechanical stimuli to the trabecular bone of weight-bearing regions of the skeleton. The main aim of this prospective, double-blind, randomized placebo-controlled pilot trial (RCT) was to examine whether these signals could effectively increase tibial and spinal volumetric trabecular BMD (vTBMD; mg/ml) in children with disabling conditions. MATERIALS AND METHODS Twenty pre-or postpubertal disabled, ambulant, children (14 males, 6 females; mean age, 9.1 +/- 4.3 years; range, 4-19 years) were randomized to standing on active (n = 10; 0.3g, 90 Hz) or placebo (n = 10) devices for 10 minutes/day, 5 days/week for 6 months. The primary outcomes of the trial were proximal tibial and spinal (L2) vTBMD (mg/ml), measured using 3-D QCT. Posthoc analyses were performed to determine whether the treatment had an effect on diaphyseal cortical bone and muscle parameters. RESULTS AND CONCLUSIONS Compliance was 44% (4.4 minutes per day), as determined by mean time on treatment (567.9 minutes) compared with expected time on treatment over the 6 months (1300 minutes). After 6 months, the mean change in proximal tibial vTBMD in children who stood on active devices was 6.27 mg/ml (+6.3%); in children who stood on placebo devices, vTBMD decreased by -9.45 mg/ml (-11.9%). Thus, the net benefit of treatment was +15.72 mg/ml (17.7%; p = 0.0033). In the spine, the net benefit of treatment, compared with placebo, was +6.72 mg/ml, (p = 0.14). Diaphyseal bone and muscle parameters did not show a response to treatment. The results of this pilot RCT have shown for the first time that low-magnitude, high-frequency mechanical stimuli are anabolic to trabecular bone in children, possibly by providing a surrogate for suppressed muscular activity in the disabled. Over the course of a longer treatment period, harnessing bone's sensitivity to these stimuli may provide a non-pharmacological treatment for bone fragility in children.
Collapse
Affiliation(s)
- Kate Ward
- Clinical Radiology, Imaging Science & Biomedical Engineering, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
176
|
Warden SJ, Turner CH. Mechanotransduction in the cortical bone is most efficient at loading frequencies of 5-10 Hz. Bone 2004; 34:261-70. [PMID: 14962804 DOI: 10.1016/j.bone.2003.11.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 11/04/2003] [Accepted: 11/07/2003] [Indexed: 11/24/2022]
Abstract
A dose-response relationship has been shown between loading frequency and cortical bone adaptation for frequencies of up to 10 Hz, and is presumed to persist with further increases in frequency. Studies herein aimed to investigate cortical bone adaptation to loading frequencies of 1, 5, 10, 20 and 30 Hz. Two studies were performed in adult C57BL/6 mice using the ulna axial compression-loading model. In the first study, the histomorphometric response of the ulna was studied when loaded for 120 cycles day(-1) for 3 days at one of the five frequencies and one of two load magnitudes (1.5 or 2.0 N). In the second study, the changes in ulna geometry and mechanical properties were studied following loading for 5 min day(-1), 3 days week(-1) for 4 weeks at one of the five frequencies and one of two load magnitudes (1.0 or 1.6 N). Preliminary strain gauge measurements showed that frequency had no effect on mechanical strain per unit load. In study 1, loading frequency significantly influenced bone adaptation when loading at 2.0 N, with loading at 10 Hz resulting in significantly greater adaptation than with loading at other frequencies. In study 2, loading frequency significantly influenced the change in geometry when loading at 1.6 N, with loading at 5, 10 or 30 Hz resulting in significantly greater change than with loading at 1 Hz. Loading at 5 Hz also resulted in significantly greater change than with loading at 20 Hz. No frequency effect was found on any of the mechanical properties at either load. Overall, we found cortical bone adaptation to mechanical loading to increase with increasing loading frequency up to 5-10 Hz and to plateau with frequencies beyond 10 Hz. The mechanism for this nonlinear frequency response is not known; however, based on strain gauge measurements, we do not believe it resulted from dampening associated with high frequency loading through the flexed carpal joint. The obtained findings may relate to the mechanism of mechanotransduction within the bone. This requires further investigation.
Collapse
Affiliation(s)
- S J Warden
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
177
|
Pearson OM, Lieberman DE. The aging of Wolff's ?law?: Ontogeny and responses to mechanical loading in cortical bone. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2004; Suppl 39:63-99. [PMID: 15605390 DOI: 10.1002/ajpa.20155] [Citation(s) in RCA: 375] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The premise that bones grow and remodel throughout life to adapt to their mechanical environment is often called Wolff's law. Wolff's law, however, is not always true, and in fact comprises a variety of different processes that are best considered separately. Here we review the molecular and physiological mechanisms by which bone senses, transduces, and responds to mechanical loads, and the effects of aging processes on the relationship (if any) between cortical bone form and mechanical function. Experimental and comparative evidence suggests that cortical bone is primarily responsive to strain prior to sexual maturity, both in terms of the rate of new bone growth (modeling) as well as rates of turnover (Haversian remodeling). Rates of modeling and Haversian remodeling, however, vary greatly at different skeletal sites. In addition, there is no simple relationship between the orientation of loads in long bone diaphyses and their cross-sectional geometry. In combination, these data caution against assuming without testing adaptationist views about form-function relationships in order to infer adult activity patterns from skeletal features such as cross-sectional geometry, cortical bones density, and musculo-skeletal stress markers. Efforts to infer function from shape in the human skeleton should be based on biomechanical and developmental models that are experimentally tested and validated.
Collapse
Affiliation(s)
- Osbjorn M Pearson
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico 87198-1086, USA.
| | | |
Collapse
|
178
|
Modlesky CM, Majumdar S, Narasimhan A, Dudley GA. Trabecular bone microarchitecture is deteriorated in men with spinal cord injury. J Bone Miner Res 2004; 19:48-55. [PMID: 14753736 DOI: 10.1359/jbmr.0301208] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED Using magnetic resonance imaging, men with spinal cord injury (n = 10) were found to have fewer trabeculae that were spaced further apart in the knee than able-bodied controls of similar age, height, and weight (n = 8). The deteriorated trabecular bone microarchitecture may contribute to the increased fracture incidence after injury. INTRODUCTION Spinal cord injury results in a dramatic decline in areal bone mineral density (aBMD) and a marked increase in lower extremity fracture; however, its effect on trabecular bone microarchitecture is unknown. The purpose of this study was to determine if trabecular bone microarchitecture is deteriorated in the knee of men with long-term, complete spinal cord injury. MATERIALS AND METHODS Apparent bone volume to total volume (appBV/TV), trabecular number, (appTb.N), trabecular thickness (appTb.Th), and trabecular separation (appTb.Sp), measures of trabecular bone microarchitecture, were assessed in the distal femur and proximal tibia of men with long-term (>2 years) complete spinal cord injury (SCI; n = 10) and able-bodied controls (CON; n = 8) using high-resolution magnetic resonance imaging. Proximal tibia and arm aBMD were determined using DXA. Independent t-tests were used to assess group differences in anthropometrics and bone parameters. Pearson correlation analysis was used to assess the relationships among trabecular bone microarchitecture, aBMD, and time since injury. RESULTS There were no group differences in age, height, or weight; however, the distal femur and proximal tibia of SCI had 27% and 20% lower appBV/TV, 21% and 20% lower appTb.N, and 44% and 33% higher appTb.Sp, respectively (p < 0.05). The distal femur of SCI also had 8% lower appTb.Th (p < 0.05). Whereas arm aBMD was not different in the two groups, proximal tibia aBMD was 43% lower in SCI. In SCI and CON combined, aBMD was correlated with appBV/TV (r = 0.62), appTb.N (r = 0.78), and appTb.Sp (r = -0.82) in the proximal tibia (p < 0.05). Time since injury was more strongly correlated with appTb.N (r = -0.54) and appTb.Sp (r = 0.56) than aBMD (r = -0.36) in the distal tibia, although none of the relationships were statistically significant (p > 0.05). CONCLUSION Men with complete spinal cord injury have markedly deteriorated trabecular bone microarchitecture in the knee, which may contribute to their increased fracture incidence.
Collapse
Affiliation(s)
- Christopher M Modlesky
- Department of Health, Nutrition and Exercise Sciences, University of Delaware, Newark, Delaware 19716, USA.
| | | | | | | |
Collapse
|
179
|
Russo CR, Lauretani F, Bandinelli S, Bartali B, Cavazzini C, Guralnik JM, Ferrucci L. High-frequency vibration training increases muscle power in postmenopausal women1,21Stratec Medizintechnik, Novotec, and Unitrem provided the peripheral quantitative computerized tomograph and the forceplates.2No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the author(s) is/are associated. Arch Phys Med Rehabil 2003; 84:1854-7. [PMID: 14669194 DOI: 10.1016/s0003-9993(03)00357-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To test whether training on a high-frequency (28Hz) vibrating platform improves muscle power and bone characteristics in postmenopausal women. DESIGN Randomized controlled trial with 6-month follow-up. SETTING Outpatient clinic in a general hospital in Italy. PARTICIPANTS Twenty-nine postmenopausal women (intervention group, n=14; matched controls, n=15). INTERVENTION Participants stood on a ground-based oscillating platform for three 2-minute sessions for a total of 6 minutes per training session, twice weekly for 6 months. The controls did not receive any training. Both groups were evaluated at baseline and after 6 months. MAIN OUTCOME MEASURES Muscle power, calculated from ground reaction forces produced by landing after jumping as high as possible on a forceplate, cortical bone density, and biomarkers of bone turnover. RESULTS Over 6 months, muscle power improved by about 5% in women who received the intervention, and it remained unchanged in controls (P=.004). Muscle force remained stable in both the intervention and control groups. No significant changes were observed in bone characteristics. CONCLUSION Reflex muscular contractions induced by vibration training improve muscle power in postmenopausal women.
Collapse
Affiliation(s)
- Cosimo Roberto Russo
- Laboratory of Clinical Epidemiology, INRCA Geriatric Department, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
180
|
Rubin C, Pope M, Fritton JC, Magnusson M, Hansson T, McLeod K. Transmissibility of 15-hertz to 35-hertz vibrations to the human hip and lumbar spine: determining the physiologic feasibility of delivering low-level anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of osteoporosis. Spine (Phila Pa 1976) 2003; 28:2621-7. [PMID: 14652479 DOI: 10.1097/01.brs.0000102682.61791.c9] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Experiments were undertaken to determine the degree to which high-frequency (15-35 Hz) ground-based, whole-body vibration are transmitted to the proximal femur and lumbar vertebrae of the standing human. OBJECTIVES To establish if extremely low-level (<1 g, where 1 g = earth's gravitational field, or 9.8 ms-2) mechanical stimuli can be efficiently delivered to the axial skeleton of a human. SUMMARY OF BACKGROUND DATA Vibration is most often considered an etiologic factor in low back pain as well as several other musculoskeletal and neurovestibular complications, but recent in vivo experiments in animals indicates that extremely low-level mechanical signals delivered to bone in the frequency range of 15 to 60 Hz can be strongly anabolic. If these mechanical signals can be effectively and noninvasively transmitted in the standing human to reach those sites of the skeleton at greatest risk of osteoporosis, such as the hip and lumbar spine, then vibration could be used as a unique, nonpharmacologic intervention to prevent or reverse bone loss. MATERIALS AND METHODS Under sterile conditions and local anesthesia, transcutaneous pins were placed in the spinous process of L4 and the greater trochanter of the femur of six volunteers. Each subject stood on an oscillating platform and data were collected from accelerometers fixed to the pins while a vibration platform provided sinusoidal loading at discrete frequencies from 15 to 35 Hz, with accelerations ranging up to 1 g(peak-peak). RESULTS With the subjects standing erect, transmissibility at the hip exceeded 100% for loading frequencies less than 20 Hz, indicating a resonance. However, at frequencies more than 25 Hz, transmissibility decreased to approximately 80% at the hip and spine. In relaxed stance, transmissibility decreased to 60%. With 20-degree knee flexion, transmissibility was reduced even further to approximately 30%. A phase-lag reached as high as 70 degrees in the hip and spine signals. CONCLUSIONS These data indicate that extremely low-level, high-frequency mechanical accelerations are readily transmitted into the lower appendicular and axial skeleton of the standing individual. Considering the anabolic potential of exceedingly low-level mechanical signals in this frequency range, this study represents a key step in the development of a biomechanically based treatment for osteoporosis.
Collapse
Affiliation(s)
- Clinton Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2580, USA.
| | | | | | | | | | | |
Collapse
|
181
|
Chen YJ, Kuo YR, Yang KD, Wang CJ, Huang HC, Wang FS. Shock wave application enhances pertussis toxin protein-sensitive bone formation of segmental femoral defect in rats. J Bone Miner Res 2003; 18:2169-79. [PMID: 14672352 DOI: 10.1359/jbmr.2003.18.12.2169] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Extracorporeal shock waves (ESWs) elicit a dose-dependent effect on the healing of segmental femoral defects in rats. After ESW treatment, the segmental defect underwent progressive mesenchymal aggregation, endochondral ossification, and hard callus formation. Along with the intensive bone formation, there was a persistent increase in TGF-beta1 and BMP-2 expression. Pretreatment with pertussis toxin reduced ESW-promoted callus formation and gap healing, which presumably suggests that Gi proteins mediate osteogenic signaling. INTRODUCTION Extracorporeal shock waves (ESWs) have previously been used to promote bone repair. In our previous report, we found that ESWs promoted osteogenic differentiation of mesenchymal cells through membrane perturbation and activation of Ras protein. In this report, we show that ESWs elicit a dose-dependent effect on the healing of segmental defects and that Gi proteins play an important role in mediating ESW stimulation. MATERIALS AND METHODS Rats with segmental femoral defects were subjected to ESW treatment at different energy flux densities (EFD) and impulses. Bone mass (mineral density and calcium content), osteogenic activities (bone alkaline phosphatase activity and osteocalcin content), and immunohistochemistry were assessed. RESULTS An optimal ESW energy (500 impulses at 0.16 mJ/mm2 EFD) stimulated complete bone healing without complications. ESW-augmented healing was characterized by significant increases (p < 0.01) in callus size, bone mineral density, and bone tissue formation. With exposure to ESW, alkaline phosphatase activity and osteocalcin production in calluses were found to be significantly enhanced (p < 0.05). After ESW treatment, the histological changes we noted included progressive mesenchymal aggregation, endochondral ossification, and hard callus formation. Intensive bone formation was associated with a persistent increase in transforming growth factor-beta 1 (TGF-beta1) and bone morphogenetic protein-2 (BMP-2) expression, suggesting both growth factors were active in ESW-promoted bone formation. We also found that pertussis toxin, an inhibitor of membrane-bound Gi proteins, significantly reduced (p < 0.01) ESW promotion of callus formation and fracture healing. CONCLUSION ESW treatments enhanced bone formation and the healing of segmental femoral defects in rats. It also seems likely that TGF-beta1 and BMP-2 are important osteogenic factors for ESW promotion of fracture healing, presumably through Gi protein-mediated osteogenic signaling.
Collapse
Affiliation(s)
- Yeung-Jen Chen
- Department of Orthopedic Trauma, Chang Gung University, Linkou, Taiwan
| | | | | | | | | | | |
Collapse
|
182
|
Barr AE, Safadi FF, Gorzelany I, Amin M, Popoff SN, Barbe MF. Repetitive, negligible force reaching in rats induces pathological overloading of upper extremity bones. J Bone Miner Res 2003; 18:2023-32. [PMID: 14606516 DOI: 10.1359/jbmr.2003.18.11.2023] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Work-related repetitive motion disorders are costly. Immunohistochemical changes in bones resulting from repetitive reaching and grasping in 17 rats were examined. After 3-6 weeks, numbers of ED1+ macrophages and osteoclasts increased at periosteal surfaces of sites of muscle and interosseous membrane attachment and metaphyses of reach and nonreach forelimbs. These findings indicate pathological overloading leading to inflammation and subsequent bone resorption. INTRODUCTION Sixty-five percent of all occupational illnesses in U.S. private industry are attributed to musculoskeletal disorders arising from the performance of repeated motion, yet the precise mechanisms of tissue pathophysiology have yet to be determined for work-related musculoskeletal disorders. This study investigates changes in upper extremity bone tissues resulting from performance of a voluntary highly repetitive, negligible force reaching and grasping task in rats. MATERIALS AND METHODS Seventeen rats reached an average of 8.3 times/minute for 45-mg food pellets for 2 h/day, 3 days/week for up to 12 weeks. Seven rats served as normal or trained controls. Radius, ulna, humerus, and scapula were collected bilaterally as follows: radius and ulna at 0, 3, 4, 5, 6, and 12 weeks and humerus and scapula at 0, 4, and 6 weeks. Bones were examined for ED1-immunoreactive mononuclear cells and osteoclasts. Double-labeling immunohistochemistry was performed for ED1 (monocyte/macrophage lineage cell marker) and TRACP (osteoclast marker) to confirm that ED1+ multinucleated cells were osteoclasts. Differences in the number of ED1+ cells over time were analyzed by ANOVA. RESULTS Between 3 and 6 weeks of task performance, the number of ED1+ mononuclear cells and osteoclasts increased significantly at the periosteal surfaces of the distal radius and ulna of the reach and nonreach limbs compared with control rats. These cells also increased at periosteal surfaces of humerus and scapula of both forelimbs by 4-6 weeks. These cellular increases were greatest at muscle attachments and metaphyseal regions, but they were also present at some interosseous membrane attachments. The number of ED1+ cells decreased to control levels in radius and ulna by 12 weeks. CONCLUSIONS Increases in ED1+ mononuclear cells and osteoclasts indicate that highly repetitive, negligible force reaching causes pathological overloading of bone leading to inflammation and osteolysis of periosteal bone tissues.
Collapse
Affiliation(s)
- Ann E Barr
- Department of Physical Therapy, College of Health Professions, Temple University, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | | | | | |
Collapse
|
183
|
Chen YJ, Wang CJ, Yang KD, Chang PR, Huang HC, Huang YT, Sun YC, Wang FS. Pertussis toxin-sensitive Gαi protein and ERK-dependent pathways mediate ultrasound promotion of osteogenic transcription in human osteoblasts1. FEBS Lett 2003; 554:154-8. [PMID: 14596931 DOI: 10.1016/s0014-5793(03)01157-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone cells respond to mechanical stimulation via mechanoreceptors and convert biophysical stimulation into biochemical signals that alter gene expression and cellular adaptation. Pulsed acoustic energy treatment raises membrane potential and induces osteogenic activity. How membrane-bound osteoblast mechanoreceptors convert physical ultrasound (US) stimuli into osteogenic responses is not fully understood. We demonstrated that low-intensity pulsed US treatment (200-micros pulse, 1 kHz, 30 mW/cm2) elevated Cbfa1/Runx2 mRNA expression and progressively promoted osteocalcin mRNA expression in human osteoblasts. Pretreatment with pertussis toxin (PTX), but not with cholera toxin, suppressed US-augmented osteogenic transcription. This indicated that Gi proteins, but not Gs proteins, were involved in US promotion of osteogenic transcription. Further studies demonstrated US treatment could rapidly increase PTX-sensitive Galphai protein levels and subsequently enhanced phosphorylation of extracellular signal-regulated kinase (ERK). PTX pretreatment significantly reduced US promotion of ERK activation. Moreover, inhibition of ERK activity by PD98059 suppressed US augmentation of Cbfa1/Runx2 and osteocalcin mRNA expression. Membranous Galphai proteins and cytosolic ERK pathways acted as potent mechanosensitive signals in the response of osteoblasts to pulsed US stimulation.
Collapse
Affiliation(s)
- Yeung-Jen Chen
- Department of Orthopedic Surgery, Chang Gung University, Linkou, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Campbell AW, Bain WE, McRae AF, Broad TE, Johnstone PD, Dodds KG, Veenvliet BA, Greer GJ, Glass BC, Beattie AE, Jopson NB, McEwan JC. Bone density in sheep: genetic variation and quantitative trait loci localisation. Bone 2003; 33:540-8. [PMID: 14555257 DOI: 10.1016/s8756-3282(03)00228-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bone density (BD) is an important factor in osteoporotic fracture risk in humans. However, BD is a complex trait confounded by environmental influences and polygenic inheritance. Sheep provide a potentially useful model for studying differences in BD, as they provide a means of circumventing complex environmental factors and are a similar weight to humans. The aims of this study were to establish whether there is genetic variation in BD in sheep and then to localise quantitative trait loci (QTLs) associated with this variation. We also aimed to evaluate the relationship between fat and muscle body components and BD in sheep. Results showed that there was significant (P < 0.01) genetic variation among Coopworth sheep sires for BD. This genetic difference was correlated (P < 0.01) with body weight and muscle mass. A number of QTLs exceeding the suggestive threshold were identified (nine in total). Of these, two (chromosomes 1, P < 0.05; chromosome 24, P < 0.01) were significant using genome-wide permutation significance thresholds (2000 iterations). The position of the QTL on chromosome 24 coincided with a number of other body composition QTLs, indicating possible pleiotropic effects or the presence of multiple genes affecting body composition at that site. This study shows that sheep are potentially a useful model for studying the genetics of BD.
Collapse
Affiliation(s)
- A W Campbell
- AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Qin YX, Kaplan T, Saldanha A, Rubin C. Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity. J Biomech 2003; 36:1427-37. [PMID: 14499292 DOI: 10.1016/s0021-9290(03)00127-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluid flow that arises from the functional loading of bone tissue has been proposed to be a critical regulator of skeletal mass and morphology. To test this hypothesis, the bone adaptive response to a physiological fluid stimulus, driven by low magnitude, high frequency oscillations of intramedullary pressure (ImP), were examined, in which fluid pressures were achieved without deforming the bone tissue. The ulnae of adult turkeys were functionally isolated via transverse epiphyseal osteotomies, and the adaptive response to four weeks of disuse (n=5) was compared to disuse plus 10 min per day of a physiological sinusoidal fluid pressure signal (60 mmHg, 20Hz). Disuse alone resulted in significant bone loss (5.7+/-1.9%, p< or =0.05), achieved by thinning the cortex via endosteal resorption and an increase in intracortical porosity. By also subjecting bone to oscillatory fluid flow, a significant increase in bone mass at the mid-diaphysis (18.3+/-7.6%, p<0.05), was achieved by both periosteal and endosteal new bone formation. The spatial distribution of the transcortical fluid pressure gradients (inverted Delta P(r)), a parameter closely related to fluid velocity and fluid shear stress, was quantified in 12 equal sectors across a section at the mid-diaphyses. A strong correlation was found between the inverted Delta P(r) and total new bone formation (r=0.75, p=0.01); and an inverse correlation (r=-0.75, p=0.01) observed between inverted Delta P(r) and the area of increased intracortical porosity, indicating that fluid flow signals were necessary to maintain bone mass and/or inhibit bone loss against the challenge of disuse. By generating this fluid flow in the absence of matrix strain, these data suggest that anabolic fluid movement plays a regulatory role in the modeling and remodeling process. While ImP increases uniformly in the marrow cavity, the distinct parameters of fluid flow vary substantially due to the geometry and ultrastructure of bone, which ultimately defines the spatial non-uniformity of the adaptive process.
Collapse
Affiliation(s)
- Yi Xian Qin
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2580, USA.
| | | | | | | |
Collapse
|
186
|
Judex S, Boyd S, Qin YX, Miller L, Müller R, Rubin C. Combining high-resolution micro-computed tomography with material composition to define the quality of bone tissue. Curr Osteoporos Rep 2003; 1:11-9. [PMID: 16036060 DOI: 10.1007/s11914-003-0003-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Atraumatic fractures of the skeleton in osteoporotic patients are directly related to a deterioration of bone strength. However, the failure of the bone tissue to withstand functional load bearing cannot be explained as a simple decrease in bone mineral density (quantity); strength is also significantly dependent upon bone quality. While a formal definition of bone quality is somewhat elusive, at the very least, it incorporates architectural, physical, and biologic factors that are critical to bone strength. Such factors include bone morphology (ie, trabecular connectivity, cross-sectional geometry, longitudinal curvature); the tissue's material properties (eg, stiffness, strength); its chemical composition and architecture (eg, ratio of calcium to other components of the organic and/or inorganic phase, collagen orientation, porosity, permeability); and the viability of the tissue (eg, responsivity of the bone cell population). Combining high-resolution structural indices of bone, as determined by micro-computed tomography; material properties determined by nanoindentation; and the chemical make-up of bone, as determined by infrared spectroscopy, helps to provide critical information toward a more comprehensive assessment of the interdependence of bone quality, quantity, and fracture risk.
Collapse
Affiliation(s)
- Stefan Judex
- Department of Biomedical Engineering, Psychology A Building, 3rd Floor, State University of New York at Stony Brook, Stony Brook, NY 11794-2580, USA.
| | | | | | | | | | | |
Collapse
|
187
|
Specker B, Binkley T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year-old children. J Bone Miner Res 2003; 18:885-92. [PMID: 12733728 DOI: 10.1359/jbmr.2003.18.5.885] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A meta-analysis of adult exercise studies and an infant activity trial show a possible interaction between physical activity and calcium intake on bone. This randomized trial of activity and calcium supplementation was conducted in 239 children aged 3-5 years (178 completed). Children were randomized to participate in either gross motor or fine motor activities for 30 minutes/day, 5 days per week for 12 months. Within each group, children received either calcium (1000 mg/day) or placebo. Total body and regional bone mineral content by DXA and 20% distal tibia measurements by peripheral quantitative computed tomography (pQCT) were obtained at 0 and 12 months. Three-day diet records and 48-h accelerometer readings were obtained at 0, 6, and 12 months. Higher activity levels were observed in gross motor versus fine motor activity groups, and calcium intake was greater in calcium versus placebo (1354 +/- 301 vs. 940 +/- 258 mg/day, p < 0.001). Main effects of activity and calcium group were not significant for total body bone mineral content or leg bone mineral content by DXA. However, the difference in leg bone mineral content gain between gross motor and fine motor was more pronounced in children receiving calcium versus placebo (interaction, p = 0.05). Children in the gross motor group had greater tibia periosteal and endosteal circumferences by pQCT compared with children in the fine motor group at study completion (p < 0.05). There was a significant interaction (both p < or = 0.02) between supplement and activity groups in both cortical thickness and cortical area: among children receiving placebo, thickness and area were smaller with gross motor activity compared with fine motor activity, but among children receiving calcium, thickness and area were larger with gross motor activity. These findings indicate that calcium intake modifies the bone response to activity in young children.
Collapse
Affiliation(s)
- Bonny Specker
- E.A. Martin Program in Human Nutrition, South Dakota State University, Brookings, South Dakota 57007, USA.
| | | |
Collapse
|
188
|
Torvinen S, Kannus P, Sievänen H, Järvinen TAH, Pasanen M, Kontulainen S, Nenonen A, Järvinen TLN, Paakkala T, Järvinen M, Vuori I. Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. J Bone Miner Res 2003; 18:876-84. [PMID: 12733727 DOI: 10.1359/jbmr.2003.18.5.876] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent animal studies have given evidence that vibration loading may be an efficient and safe way to improve mass and mechanical competence of bone, thus providing great potential for preventing and treating osteoporosis. Randomized controlled trials on the safety and efficacy of the vibration on human skeleton are, however, lacking. This randomized controlled intervention trial was designed to assess the effects of an 8-month whole body vibration intervention on bone, muscular performance, and body balance in young and healthy adults. Fifty-six volunteers (21 men and 35 women; age, 19-38 years) were randomly assigned to the vibration group or control group. The vibration intervention consisted of an 8-month whole body vibration (4 min/day, 3-5 times per week). During the 4-minute vibration program, the platform oscillated in an ascending order from 25 to 45 Hz, corresponding to estimated maximum vertical accelerations from 2 g to 8 g. Mass, structure, and estimated strength of bone at the distal tibia and tibial shaft were assessed by peripheral quantitative computed tomography (pQCT) at baseline and at 8 months. Bone mineral content was measured at the lumbar spine, femoral neck, trochanter, calcaneus, and distal radius using DXA at baseline and after the 8-month intervention. Serum markers of bone turnover were determined at baseline and 3, 6, and 8 months. Five performance tests (vertical jump, isometric extension strength of the lower extremities, grip strength, shuttle run, and postural sway) were performed at baseline and after the 8-month intervention. The 8-month vibration intervention succeeded well and was safe to perform but had no effect on mass, structure, or estimated strength of bone at any skeletal site. Serum markers of bone turnover did not change during the vibration intervention. However, at 8 months, a 7.8% net benefit in the vertical jump height was observed in the vibration group (95% CI, 2.8-13.1%; p = 0.003). On the other performance and balance tests, the vibration intervention had no effect. In conclusion, the studied whole body vibration program had no effect on bones of young, healthy adults, but instead, increased vertical jump height. Future human studies are needed before clinical recommendations for vibration exercise.
Collapse
|
189
|
Abstract
Stochastic resonance, in which noise enhances the response of a nonlinear system to a weak signal, has been observed in various biological sensory systems. We speculated that bone formation in response to mechanical loading could be enhanced by adding noise (vibration) to a standard exercise regimen. To test this hypothesis, three different loading regimens were applied to the ulnae of mice: (1) high amplitude, low frequency sinusoidal loading at 2 Hz with an amplitude of 3 N to simulate exercise; (2) low amplitude, broad frequency vibration with frequency components 0-50 Hz and 0.3 N of mean amplitude; (3) the sinusoidal wave combined with vibration (S+V) to invoke stochastic resonance. The simulated exercise regimen induced new bone formation on the periosteal surface of the ulna, however the addition of vibration noise with exercise enhanced the osteogenic response by almost 4-fold. Vibration by itself had no effect on bone formation. It was concluded that adding low magnitude vibration greatly enhanced bone formation in response to loading, suggesting a contribution of stochastic resonance in the osteogenic response.
Collapse
Affiliation(s)
- Shigeo M Tanaka
- Department of Orhopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
190
|
Gillespie KA, Dickey JP. Determination of the effectiveness of materials in attenuating high frequency shock during gait using filterbank analysis. Clin Biomech (Bristol, Avon) 2003; 18:50-9. [PMID: 12527247 DOI: 10.1016/s0268-0033(02)00171-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To develop an accurate method for quantifying the frequency content of the ground reaction force transient. DESIGN Repeated measures design comparing the impact severity during walking with different insole materials. BACKGROUND The body experiences a brief but sizeable impact upon heel strike during walking. This impact transient is believed to result in musculoskeletal injuries. It is important to accurately quantify this impact as a step towards decreasing the risk of injury. METHODS Seven subjects walked barefoot at their normal cadence across a force platform, while insole materials (Spenco, Microcel-puff, and Plastazote) were placed on the surface of the force platform. A filterbank program was developed to determine the percent root mean square in 10 Hz frequency bands from zero to 400 Hz. Analysis focused on the impact transient contained in a 20 ms window after heel contact. RESULTS The high frequency (>60 Hz) power was significantly larger in the barefoot condition compared to the insole conditions. The barefoot condition also resulted in significantly higher initial peak forces and force loading rates. CONCLUSIONS The frequency content of the ground reaction force can be effectively quantified using a filterbank approach. Shoe insole materials can reduce the initial peak force, force loading rate, and frequency content of the impact transient in walking. The frequency content of the initial ground reaction force extends up to 400 Hz in some footwear conditions. RELEVANCE The new filterbank procedure illustrates that the vertical ground reaction force in walking has a higher frequency content than previously thought. This signal requires high sampling rates to avoid aliasing, and appropriate signal processing algorithms, such as filter banks, for analysis.
Collapse
Affiliation(s)
- Kevin A Gillespie
- Department of Human Biology and Nutritional Sciences, University of Guelph, Ont., N1G 2W1, Guelph, Canada
| | | |
Collapse
|
191
|
Kacena MA, Todd P, Landis WJ. OSTEOBLASTS SUBJECTED TO SPACEFLIGHT AND SIMULATED SPACE SHUTTLE LAUNCH CONDITIONS. ACTA ACUST UNITED AC 2003; 39:454-9. [PMID: 15117230 DOI: 10.1290/1543-706x(2003)039<0454:ostsas>2.0.co;2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To understand further the effects of spaceflight on osteoblast-enriched cultures, normal chicken calvarial osteoblasts were flown aboard shuttle flight STS-77, and the total number of attached cells was determined. Spaceflight and control cultures were chemically fixed 3 h and 3 d after launch. These fixed cultures were processed for scanning electron microscopy (SEM). The SEM analysis showed that with just 3 d of exposure to spaceflight, coverslip cultures contained 300 +/- 100 cells/mm2, whereas 1G control samples contained a confluent monolayer of cells (2400 +/- 200 cells/mm2). Although the cultures flown in space experienced a drastic decline in cell number in just 3 d, without further experimentation it was impossible to determine whether the decline was a result of microgravity, the harsh launch environment, or some combination of these factors. Therefore, this research attempted to address the effect of launch by subjecting osteoblasts to conditions simulating shuttle launch accelerations, noise, and vibrations. No differences, compared with controls, were seen in the number of total or viable cells after exposure to these various launch conditions. Taken together, these data indicate that the magnitude of gravitational loading (3G maximum) and vibration (7.83G rms maximum) resulting from launch does not adversely affect osteoblasts in terms of total or viable cell number immediately, but launch conditions, or the microgravity environment itself, may start a cascade of events that over several d contributes to cell loss.
Collapse
Affiliation(s)
- Melissa A Kacena
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, P.O. Box 208071, New Haven, Connecticut 06520-8071, USA.
| | | | | |
Collapse
|
192
|
Oxlund BS, Ørtoft G, Andreassen TT, Oxlund H. Low-intensity, high-frequency vibration appears to prevent the decrease in strength of the femur and tibia associated with ovariectomy of adult rats. Bone 2003; 32:69-77. [PMID: 12584038 DOI: 10.1016/s8756-3282(02)00916-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of low-intensity, high-frequency vibration on bone mass, bone strength, and skeletal muscle mass was studied in an adult ovariectomized (OVX) rat model. One-year-old female rats were allocated randomly to the following groups: start control, sham OVX, OVX without vibration, OVX with vibration at 17 Hz (0.5g), OVX with vibration at 30 Hz (1.5g), OVX with vibration at 45 Hz (3.0g). Vibrations were given 30 min/day for 90 days. During vibration each group of rats was placed in a box on top of the vibration motor. The amplitude of the vibration motor was 1.0 mm. The animals were labeled with calcein at day 63 and with tetracycline at day 84. The tibia middiaphysis was studied by mechanical testing and dynamic histomorphometry and the femur distal metaphysis by mechanical compression. OVX without vibration increased the periosteal bone formation rate and increased the medullary cross-sectional area, i.e., increased the endocortical resorption and outward anteromedial and lateral drifts of cortical bone at the tibia middiaphysis. OVX also resulted in a reduced maximum bending stress of the tibia diaphysis and a reduced compressive stress of the femur distal metaphysis. Vibration at the highest intensity, i.e., 45 Hz, of OVX rats induced a further increase in periosteal bone formation rate and inhibited the endocortical resorption seen in OVX rats. Furthermore, vibration at 45 Hz inhibited the decline in maximum bending stress and compressive stress induced by OVX. Neither OVX nor OVX with vibration influenced skeletal muscle mass. In conclusion, the results support the idea of a possible beneficial effect of passive physical loading on the preservation of bone in OVX animals.
Collapse
Affiliation(s)
- B S Oxlund
- Department of Connective Tissue Biology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
193
|
Black DM, Bouillon R, Ducy P, Miller PD, Papapoulos SE, Ralston SH, Ross P, Schipani E, Seeman E, Strewler GJ, Teti A, Thakker RV, Vanderschueren D. Meeting report from the 24th annual meeting of the American society for bone and mineral research. ACTA ACUST UNITED AC 2002. [DOI: 10.1138/2002065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
194
|
Torvinen S, Kannus P, Sievänen H, Järvinen TAH, Pasanen M, Kontulainen S, Järvinen TLN, Järvinen M, Oja P, Vuori I. Effect of four-month vertical whole body vibration on performance and balance. Med Sci Sports Exerc 2002; 34:1523-8. [PMID: 12218749 DOI: 10.1097/00005768-200209000-00020] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This randomized controlled study was designed to investigate the effects of a 4-month whole body vibration-intervention on muscle performance and body balance in young, healthy, nonathletic adults. METHODS Fifty-six volunteers (21 men and 35 women, aged 19-38 yr) were randomized to either the vibration group or control group. The vibration-intervention consisted of a 4-month whole body vibration training (4 min.d(-1), 3-5 times a week) employed by standing on a vertically vibrating platform. Five performance tests (vertical jump, isometric extension strength of the lower extremities, grip strength, shuttle run, and postural sway on a stability platform) were performed initially and at 2 and 4 months. RESULTS Four-month vibration intervention induced an 8.5% (95% CI, 3.7-13.5%, P=0.001) net improvement in the jump height. Lower-limb extension strength increased after the 2-month vibration-intervention resulting in a 3.7% (95% CI, 0.3-7.2%, P=0.034) net benefit for the vibration. This benefit, however, diminished by the end of the 4-month intervention. In the grip strength, shuttle run, or balance tests, the vibration-intervention showed no effect. CONCLUSION The 4-month whole body vibration-intervention enhanced jumping power in young adults, suggesting neuromuscular adaptation to the vibration stimulus. On the other hand, the vibration-intervention showed no effect on dynamic or static balance of the subjects. Future studies should focus on comparing the performance-enhancing effects of a whole body vibration to those of conventional resistance training and, as a broader objective, on investigating the possible effects of vibration on structure and strength of bones, and perhaps, incidence of falls of elderly people.
Collapse
Affiliation(s)
- Saila Torvinen
- Bone Research Group, UKK Institute, Kaupinpuistonkatu 1, FIN-33500 Tampere, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Judex S, Donahue LR, Rubin C. Genetic predisposition to low bone mass is paralleled by an enhanced sensitivity to signals anabolic to the skeleton. FASEB J 2002; 16:1280-2. [PMID: 12153999 DOI: 10.1096/fj.01-0913fje] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The structure of the adult skeleton is determined, in large part, by its genome. Whether genetic variations may influence the effectiveness of interventions to combat skeletal diseases remains unknown. The differential response of trabecular bone to an anabolic (low-level mechanical vibration) and a catabolic (disuse) mechanical stimulus were evaluated in three strains of adult mice. In low bone-mineral-density C57BL/6J mice, the low-level mechanical signal caused significantly larger bone formation rates (BFR) in the proximal tibia, but the removal of functional weight bearing did not significantly alter BFR. In mid-density BALB/cByJ mice, mechanical stimulation also increased BFR, whereas disuse significantly decreased BFR. In contrast, neither anabolic nor catabolic mechanical signals influenced any index of bone formation in high-density C3H/HeJ mice. Together, data from this study indicate that the sensitivity of trabecular tissue to both anabolic and catabolic stimuli is influenced by the genome. Extrapolated to humans, these results may explain in part why prophylaxes for low bone mass are not universally effective, yet also indicate that there may be a genotypic indication of people who are at reduced risk of suffering from bone loss.
Collapse
Affiliation(s)
- Stefan Judex
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794-2580, USA.
| | | | | |
Collapse
|