151
|
Hu H, Yang Y, Lan X, Zhang Q, Pan C. Relationships between novel nucleotide variants within the colony-stimulating factor 1 receptor ( CSF1R) gene and mastitis indicators in sheep. Anim Biotechnol 2020; 33:731-738. [PMID: 33043858 DOI: 10.1080/10495398.2020.1830102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Colony-stimulating factor 1 receptor (CSF1R) plays an important role in the process of innate immunity and inflammation, thus it was hypothesized that the CSF1R gene might affect the occurrence of mammalian mastitis. The purpose of this study was to investigate the association between nucleotide variations of CSF1R gene and mastitis in Australian white sheep (AUWs). Two indel variants (Intron5-27 bp and Intron5-22 bp) within the CSF1R gene have been found in AUWs. The Chi-square test for different mastitis symptoms demonstrated that individuals without symptoms of mastitis had higher 'I' allele frequencies and 'II' genotype frequencies (p < 0.01). We found strong correlation between mastitis and lactation score through Pearson correlation analysis. Therefore, we also analyzed the relationship between the two indel loci and lactation, we found that the lactation ability of individuals with type II was stronger than that of DD genotype at the Intron5-22 bp (p < 0.05). Additionally, we found that the combined genotype of the two loci was significantly associated with mastitis (p < 0.01). These findings indicated that CSF1R mutations were significantly associated with mastitis, and could affect lactation performance, suggesting that two deletion sites could be used as the effective molecular markers against mastitis in sheep breeding.
Collapse
Affiliation(s)
- Huina Hu
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuta Yang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company, Tianjin, China
| | - Chuanying Pan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
152
|
Korentzelos D, Clark AM, Wells A. A Perspective on Therapeutic Pan-Resistance in Metastatic Cancer. Int J Mol Sci 2020; 21:E7304. [PMID: 33022920 PMCID: PMC7582598 DOI: 10.3390/ijms21197304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Metastatic spread represents the leading cause of disease-related mortality among cancer patients. Many cancer patients suffer from metastatic relapse years or even decades after radical surgery for the primary tumor. This clinical phenomenon is explained by the early dissemination of cancer cells followed by a long period of dormancy. Although dormancy could be viewed as a window of opportunity for therapeutic interventions, dormant disseminated cancer cells and micrometastases, as well as emergent outgrowing macrometastases, exhibit a generalized, innate resistance to chemotherapy and even immunotherapy. This therapeutic pan-resistance, on top of other adaptive responses to targeted agents such as acquired mutations and lineage plasticity, underpins the current difficulties in eradicating cancer. In the present review, we attempt to provide a framework to understand the underlying biology of this major issue.
Collapse
Affiliation(s)
- Dimitrios Korentzelos
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.K.); (A.C.)
| | - Amanda M. Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.K.); (A.C.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.K.); (A.C.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
153
|
Zhang B, Zhang J, Xia L, Luo J, Zhang L, Xu Y, Zhu X, Chen G. Inhibition of CDC42 reduces macrophage recruitment and suppresses lung tumorigenesis in vivo. J Recept Signal Transduct Res 2020; 41:504-510. [PMID: 32998602 DOI: 10.1080/10799893.2020.1828916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Cell division control (CDC) 42 has been involved in the regulation of diverse cancers. Macrophage recruitment plays an important role in the pathogenesis and development of tumor. However, it remains unclear whether CDC42 contributes to macrophage recruitment and lung tumorigenesis in vivo. METHODS Small interference RNA (siRNA) was used to knock down CDC42 in the Lewis lung carcinoma (LLC)1. The invasion capability of CDC42 knockdown LLC1 cells was evaluated. LLC1 cells with CDC42 targeted small hairpin RNA (shRNA) were inoculated into C57BL/6 mice to establish the tumor-bearing animal model Tumor size and metastasis related proteins were measured. In addition, the invasion of macrophages in the tumor site as well as macrophage chemokine were also determined in the model. RESULTS The capacity of invasion and metastasis of LLC1 cells significantly decreased when CDC42 was knocked down. When inoculated with CDC42 knockdown LLC1 cells in vivo, the tumor size and metastasis related proteins levels both decreased. The invasion capacity of macrophages and the associated macrophage chemokine were also significantly down-regulated. CONCLUSION Our data suggest that the inhibition of CDC42 expression in lung cancer cells can significantly prevent the pathogenesis and development of tumor in an allograft tumor model in vivo, which might provide a novel therapeutic target and potential strategy for lung cancer treatment in the future.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Thoracic Surgery, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
| | - Jian Zhang
- Department of Thoracic Surgery, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
| | - Lilong Xia
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Jing Luo
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Lei Zhang
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Yanhui Xu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Xinhai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Guoping Chen
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
154
|
Lucotti S, Muschel RJ. Platelets and Metastasis: New Implications of an Old Interplay. Front Oncol 2020; 10:1350. [PMID: 33042789 PMCID: PMC7530207 DOI: 10.3389/fonc.2020.01350] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
During the process of hematogenous metastasis, tumor cells interact with platelets and their precursors megakaryocytes, providing a selection driver for the metastatic phenotype. Cancer cells have evolved a plethora of mechanisms to engage platelet activation and aggregation. Platelet coating of tumor cells in the blood stream promotes the successful completion of multiple steps of the metastatic cascade. Along the same lines, clinical evidence suggests that anti-coagulant therapy might be associated with reduced risk of metastatic disease and better prognosis in cancer patients. Here, we review experimental and clinical literature concerning the contribution of platelets and megakaryocytes to cancer metastasis and provide insights into the clinical relevance of anti-coagulant therapy in cancer treatment.
Collapse
Affiliation(s)
- Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Ruth J Muschel
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
155
|
Pan X, Zheng L. Epigenetics in modulating immune functions of stromal and immune cells in the tumor microenvironment. Cell Mol Immunol 2020; 17:940-953. [PMID: 32699350 PMCID: PMC7609272 DOI: 10.1038/s41423-020-0505-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Epigenetic regulation of gene expression in cancer cells has been extensively studied in recent decades, resulting in the FDA approval of multiple epigenetic agents for treating different cancer types. Recent studies have revealed novel roles of epigenetic dysregulation in altering the phenotypes of immune cells and tumor-associated stromal cells, including fibroblasts and endothelial cells. As a result, epigenetic dysregulation of these cells reshapes the tumor microenvironment (TME), changing it from an antitumor environment to an immunosuppressive environment. Here, we review recent studies demonstrating how specific epigenetic mechanisms drive aspects of stromal and immune cell differentiation with implications for the development of solid tumor therapeutics, focusing on the pancreatic ductal adenocarcinoma (PDA) TME as a representative of solid tumors. Due to their unique ability to reprogram the TME into a more immunopermissive environment, epigenetic agents have great potential for sensitizing cancer immunotherapy to augment the antitumor response, as an immunopermissive TME is a prerequisite for the success of cancer immunotherapy but is often not developed with solid tumors. The idea of combining epigenetic agents with cancer immunotherapy has been tested both in preclinical settings and in multiple clinical trials. In this review, we highlight the basic biological mechanisms underlying the synergy between epigenetic therapy and immunotherapy and discuss current efforts to translate this knowledge into clinical benefits for patients.
Collapse
Affiliation(s)
- Xingyi Pan
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular & Molecular Medicine Graduate Training Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular & Molecular Medicine Graduate Training Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
156
|
Kamal Y, Schmit SL, Frost HR, Amos CI. The tumor microenvironment of colorectal cancer metastases: opportunities in cancer immunotherapy. Immunotherapy 2020; 12:1083-1100. [PMID: 32787587 DOI: 10.2217/imt-2020-0026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
About a fifth of individuals with colorectal cancer (CRC) present with disease metastasis at the time of diagnosis. While the role of the tumor microenvironment (TME) in governing CRC progression is undeniable, the role of the TME in either establishing or suppressing the formation of distant metastases of CRC is less well established. Despite advances in immunotherapy, many individuals with metastatic CRC do not respond to standard-of-care therapy. Therefore, understanding the role of the TME in establishing distant metastases is essential for developing new immunological agents. Here, we summarize our current understanding of the TME of CRC metastases, describe differences between the TME of primary tumors and their distant metastases, and discuss advances in the design and combinations of immunotherapeutic agents.
Collapse
Affiliation(s)
- Yasmin Kamal
- Department of Biomedical Data Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Stephanie L Schmit
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Hildreth Robert Frost
- Department of Biomedical Data Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Christopher I Amos
- Department of Biomedical Data Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Dan L Duncan Comprehensive Cancer Center at Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
157
|
Li S, Ji J, Zhang Z, Peng Q, Hao L, Guo Y, Zhou W, Cui Q, Shi X. Cisplatin promotes the expression level of PD-L1 in the microenvironment of hepatocellular carcinoma through YAP1. Mol Cell Biochem 2020; 475:79-91. [PMID: 32761300 DOI: 10.1007/s11010-020-03861-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/26/2020] [Indexed: 12/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. However, the immune tolerance limits the effect of chemotherapeutic drugs. Therefore, the mechanism of cisplatin in promoting PD-L1 expression by YAP1 was investigated in the present study, and we found that cisplatin increased the expression level of YAP1 in the mouse liver with H22 cells. Meanwhile, cisplatin improved the expression level of PD-L1, IL-1β and CCL2 in the tumor microenvironment. Further, cisplatin also enhanced the expression level of YAP1 in shYAP1 HepG2215 cells. The expression of PD-L1 was decreased by Verteporfin, YAP1 inhibitor, during the treatment of DEN/TCPOBOP-induced liver cancer in C57BL/6 mice. These results suggested that cisplatin could deteriorate the immunosuppressive microenvironment through increasing PD-L1, CCL2, IL-1β by upregulated YAP1 expression. Therefore, the study suggested that YAP1 blockade destroyed the immunosuppressive microenvironment of cancer to improve the effect of chemotherapy in HCC.
Collapse
Affiliation(s)
- Shenghao Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China.,Hebei Key Laboratory of Integrative Medicine On Liver Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Jingmin Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Zhiqin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Liyuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Yinglin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Wenhan Zhou
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Qingzhuo Cui
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China. .,Hebei Key Laboratory of Integrative Medicine On Liver Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| |
Collapse
|
158
|
Cha YJ, Koo JS. Role of Tumor-Associated Myeloid Cells in Breast Cancer. Cells 2020; 9:E1785. [PMID: 32726950 PMCID: PMC7464644 DOI: 10.3390/cells9081785] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Stromal immune cells constitute the tumor microenvironment. These immune cell subsets include myeloid cells, the so-called tumor-associated myeloid cells (TAMCs), which are of two types: tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). Breast tumors, particularly those in human epidermal growth factor receptor 2 (HER-2)-positive breast cancer and triple-negative breast cancer, are solid tumors containing immune cell stroma. TAMCs drive breast cancer progression via immune mediated, nonimmune-mediated, and metabolic interactions, thus serving as a potential therapeutic target for breast cancer. TAMC-associated breast cancer treatment approaches potentially involve the inhibition of TAM recruitment, modulation of TAM polarization/differentiation, reduction of TAM products, elimination of MDSCs, and reduction of MDSC products. Furthermore, TAMCs can enhance or restore immune responses during cancer immunotherapy. This review describes the role of TAMs and MDSCs in breast cancer and elucidates the clinical implications of TAMs and MDSCs as potential targets for breast cancer treatment.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Korea;
| |
Collapse
|
159
|
Xun Q, Wang Z, Hu X, Ding K, Lu X. Small-Molecule CSF1R Inhibitors as Anticancer Agents. Curr Med Chem 2020; 27:3944-3966. [PMID: 31215373 DOI: 10.2174/1573394715666190618121649] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
Persuasive evidence has been presented linking the infiltration of Tumor-Associated Macrophages (TAMs) with the driving force of tumorigenesis and in the suppression of antitumor immunity. In this context CSF1R, the cellular receptor for Colony Stimulating Factor-1 (CSF1) and Interleukin 34 (IL-34), occupies a central role in manipulating the behavior of TAMs and the dysregulation of CSF1R signaling has been implicated in cancer progression and immunosuppression in many specific cancers. Consequently, CSF1R kinase has been a target of great interest in cancer treatment and significant research efforts have focused on the development of smallmolecule CSF1R inhibitors. In this review, we highlight current progress on the development of these small molecule CSF1R inhibitors as anticancer agents. Special attention is paid to the compounds available in advanced clinical trials.
Collapse
Affiliation(s)
- Qiuju Xun
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhen Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xianglong Hu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
160
|
Marigo I, Trovato R, Hofer F, Ingangi V, Desantis G, Leone K, De Sanctis F, Ugel S, Canè S, Simonelli A, Lamolinara A, Iezzi M, Fassan M, Rugge M, Boschi F, Borile G, Eisenhaure T, Sarkizova S, Lieb D, Hacohen N, Azzolin L, Piccolo S, Lawlor R, Scarpa A, Carbognin L, Bria E, Bicciato S, Murray PJ, Bronte V. Disabled Homolog 2 Controls Prometastatic Activity of Tumor-Associated Macrophages. Cancer Discov 2020; 10:1758-1773. [PMID: 32651166 DOI: 10.1158/2159-8290.cd-20-0036] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022]
Abstract
Tumor-associated macrophages (TAM) are regulators of extracellular matrix (ECM) remodeling and metastatic progression, the main cause of cancer-associated death. We found that disabled homolog 2 mitogen-responsive phosphoprotein (DAB2) is highly expressed in tumor-infiltrating TAMs and that its genetic ablation significantly impairs lung metastasis formation. DAB2-expressing TAMs, mainly localized along the tumor-invasive front, participate in integrin recycling, ECM remodeling, and directional migration in a tridimensional matrix. DAB2+ macrophages escort the invasive dissemination of cancer cells by a mechanosensing pathway requiring the transcription factor YAP. In human lobular breast and gastric carcinomas, DAB2+ TAMs correlated with a poor clinical outcome, identifying DAB2 as potential prognostic biomarker for stratification of patients with cancer. DAB2 is therefore central for the prometastatic activity of TAMs. SIGNIFICANCE: DAB2 expression in macrophages is essential for metastasis formation but not primary tumor growth. Mechanosensing cues, activating the complex YAP-TAZ, regulate DAB2 in macrophages, which in turn controls integrin recycling and ECM remodeling in 3-D tissue matrix. The presence of DAB2+ TAMs in patients with cancer correlates with worse prognosis.This article is highlighted in the In This Issue feature, p. 1611.
Collapse
Affiliation(s)
- Ilaria Marigo
- Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.
| | - Rosalinda Trovato
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy.
| | - Francesca Hofer
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | | | | | - Kevin Leone
- Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefania Canè
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Anna Simonelli
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Alessia Lamolinara
- Department of Medicine and Aging Science, Center for Advanced Studies and Technology (CAST), University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Manuela Iezzi
- Department of Medicine and Aging Science, Center for Advanced Studies and Technology (CAST), University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Matteo Fassan
- Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Massimo Rugge
- Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Giulia Borile
- Department of Physics and Astronomy "G. Galilei," University of Padova, Padova, Italy.,Institute of Pediatric Research Città della Speranza, Padova, Italy
| | | | | | - David Lieb
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Luca Azzolin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padova, Padova, Italy.,IFOM, The FIRC Institute for Molecular Oncology, Padova, Italy
| | - Rita Lawlor
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy.,Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Luisa Carbognin
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Emilio Bria
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Silvio Bicciato
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Peter J Murray
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Vincenzo Bronte
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy.
| |
Collapse
|
161
|
Arnaud-Sampaio VF, Rabelo ILA, Bento CA, Glaser T, Bezerra J, Coutinho-Silva R, Ulrich H, Lameu C. Using Cytometry for Investigation of Purinergic Signaling in Tumor-Associated Macrophages. Cytometry A 2020; 97:1109-1126. [PMID: 32633884 DOI: 10.1002/cyto.a.24035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Tumor-associated macrophages are widely recognized for their importance in guiding pro-tumoral or antitumoral responses. Mediating inflammation or immunosuppression, these cells support many key events in cancer progression: cell growth, chemotaxis, invasiveness, angiogenesis and cell death. The communication between cells in the tumor microenvironment strongly relies on the secretion and recognition of several molecules, including damage-associated molecular patterns (DAMPs), such as adenosine triphosphate (ATP). Extracellular ATP (eATP) and its degradation products act as signaling molecules and have extensively described roles in immune response and inflammation, as well as in cancer biology. These multiple functions highlight the purinergic system as a promising target to investigate the interplay between macrophages and cancer cells. Here, we reviewed purinergic signaling pathways connecting cancer cells and macrophages, a yet poorly investigated field. Finally, we present a new tool for the characterization of macrophage phenotype within the tumor. Image cytometry emerges as a cutting-edge tool, capable of providing a broad set of information on cell morphology, expression of specific markers, and its cellular or subcellular localization, preserving cell-cell interactions within the tumor section and providing high statistical strength in small-sized experiments. Thus, image cytometry allows deeper investigation of tumor heterogeneity and interactions between these cells. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
| | - Izadora L A Rabelo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Carolina A Bento
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jean Bezerra
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
162
|
Giurisato E, Lonardi S, Telfer B, Lussoso S, Risa-Ebrí B, Zhang J, Russo I, Wang J, Santucci A, Finegan KG, Gray NS, Vermi W, Tournier C. Extracellular-Regulated Protein Kinase 5-Mediated Control of p21 Expression Promotes Macrophage Proliferation Associated with Tumor Growth and Metastasis. Cancer Res 2020; 80:3319-3330. [PMID: 32561530 DOI: 10.1158/0008-5472.can-19-2416] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/07/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
The presence of immunosuppressive macrophages that become activated in the tumor microenvironment constitutes a major factor responsible for tumor growth and malignancy. In line with this knowledge, we report here that macrophage proliferation is a significant feature of advanced stages of cancer. Moreover, we have found that a high proportion of proliferating macrophages in human tumors express ERK5. ERK5 was required for supporting the proliferation of macrophages in tumor grafts in mice. Furthermore, myeloid ERK5 deficiency negatively impacted the proliferation of both resident and infiltrated macrophages in metastatic lung nodules. ERK5 maintained the capacity of macrophages to proliferate by suppressing p21 expression to halt their differentiation program. Collectively, these data provide insight into the mechanism underpinning macrophage proliferation to support malignant tumor development, thereby strengthening the value of ERK5-targeted therapies to restore antitumor immunity through the blockade of protumorigenic macrophage activation. SIGNIFICANCE: These findings offer a new rationale for anti-ERK5 therapy to improve cancer patient outcomes by blocking the proliferative activity of tumor macrophages.
Collapse
Affiliation(s)
- Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy. .,Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Brian Telfer
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sarah Lussoso
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Blanca Risa-Ebrí
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jingwei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ilaria Russo
- School of Medicine, Keel University, Keel, United Kingdom.,Department of Medicine-Infectious Diseases, Washington University, Saint Louis, Missouri
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Annalisa Santucci
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Katherine G Finegan
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - William Vermi
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy.,Department of Pathology and Immunology, Washington University, Saint Louis, Missouri
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
163
|
Nasrollahzadeh E, Razi S, Keshavarz-Fathi M, Mazzone M, Rezaei N. Pro-tumorigenic functions of macrophages at the primary, invasive and metastatic tumor site. Cancer Immunol Immunother 2020; 69:1673-1697. [PMID: 32500231 DOI: 10.1007/s00262-020-02616-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment (TME) not only facilitates cancer progression from the early formation to distant metastasis, but also it differs itself from time to time alongside the tumor evolution. Tumor-associated macrophages (TAMs), whether as pre-existing tissue-resident macrophages or recruited monocytes, are an inseparable part of this microenvironment. As their parents are broadly classified into a dichotomic, simplistic M1 and M2 subtypes, TAMs also exert paradoxical and diverse phenotypes as they are settled in different regions of TME and receive different microenvironmental signals. Briefly, M1 macrophages induce an inflammatory precancerous niche and flame the early oncogenic mutations, whereas their M2 counterparts are reprogrammed to release various growth factors and providing an immunosuppressive state in TME as long as abetting hypoxic cancer cells to set up a new vasculature. Further, they mediate stromal micro-invasion and co-migrate with invasive cancer cells to invade the vascular wall and neural sheath, while another subtype of TAMs prepares suitable niches much earlier than metastatic cells arrive at the target tissues. Accordingly, at the neoplastic transformation, during the benign-to-malignant transition and through the metastatic cascade, macrophages are involved in shaping the primary, micro-invasive and pre-metastatic TMEs. Whether their behavioral plasticity is derived from distinct genotypes or is fueled by microenvironmental cues, it could define these cells as remarkably interesting therapeutic targets.
Collapse
Affiliation(s)
- Elaheh Nasrollahzadeh
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer Biology, VIB, KU Leuven, Louvain, B3000, Belgium
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
164
|
Iurca I, Tirpe A, Zimta AA, Moldovan C, Gulei D, Slabý O, Condorelli G, Berindan-Neagoe I. Macrophages Interaction and MicroRNA Interplay in the Modulation of Cancer Development and Metastasis. Front Immunol 2020; 11:870. [PMID: 32477352 PMCID: PMC7235377 DOI: 10.3389/fimmu.2020.00870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022] Open
Abstract
Advancement in cancer research has shown that the tumor microenvironment plays a crucial role in the installation, progression, and dissemination of cancer cells. Among the heterogeneous panel of cells within the malignant microenvironment are tumor-associated macrophages that are sustaining the malignant cells through strict feedback mechanisms and spatial distribution. Considering that the presence of metastasis is one of the main feature associated with decreased survival rates among patients, in the present article we briefly present the involvement of tumor-associated macrophages in the hallmarks of metastasis and their microRNA-related regulation with a focus on lung cancer in order to coordinate the vast information under one pathology. As shown, these cells have emerged as coordinators of immunosuppression, angiogenesis and lymphangiogenesis, vessel intravasation and extravasation of cancer cells, and premetastatic niche formation, transforming the macrophages in potential therapeutic targets and also prognostic markers according to their density within the tumor and polarization phenotype. An indirect therapeutic approach on tumor-associated macrophages can be also represented by regulation of microRNAs involved in their polarization and implicit oncogenic features. Examples of these microRNAs consist in the highly studied miR-21 and miR-155, but also other microRNA with less feedback in the literature: miR-1207-5p, miR-193b, miR-320a, and others.
Collapse
Affiliation(s)
- Ioana Iurca
- Tumor Biology Department, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Moldovan
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ondřej Slabý
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk Memorial Cancer Institute, Masaryk University, Brno, Czech Republic
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta," Cluj-Napoca, Romania
| |
Collapse
|
165
|
Van der Jeught K, Sun Y, Fang Y, Zhou Z, Jiang H, Yu T, Yang J, Kamocka MM, So KM, Li Y, Eyvani H, Sandusky GE, Frieden M, Braun H, Beyaert R, He X, Zhang X, Zhang C, Paczesny S, Lu X. ST2 as checkpoint target for colorectal cancer immunotherapy. JCI Insight 2020; 5:136073. [PMID: 32376804 PMCID: PMC7253019 DOI: 10.1172/jci.insight.136073] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint blockade immunotherapy delivers promising clinical results in colorectal cancer (CRC). However, only a fraction of cancer patients develop durable responses. The tumor microenvironment (TME) negatively impacts tumor immunity and subsequently clinical outcomes. Therefore, there is a need to identify other checkpoint targets associated with the TME. Early-onset factors secreted by stromal cells as well as tumor cells often help recruit immune cells to the TME, among which are alarmins such as IL-33. The only known receptor for IL-33 is stimulation 2 (ST2). Here we demonstrated that high ST2 expression is associated with poor survival and is correlated with low CD8+ T cell cytotoxicity in CRC patients. ST2 is particularly expressed in tumor-associated macrophages (TAMs). In preclinical models of CRC, we demonstrated that ST2-expressing TAMs (ST2+ TAMs) were recruited into the tumor via CXCR3 expression and exacerbated the immunosuppressive TME; and that combination of ST2 depletion using ST2-KO mice with anti-programmed death 1 treatment resulted in profound growth inhibition of CRC. Finally, using the IL-33trap fusion protein, we suppressed CRC tumor growth and decreased tumor-infiltrating ST2+ TAMs. Together, our findings suggest that ST2 could serve as a potential checkpoint target for CRC immunotherapy.
Collapse
Affiliation(s)
| | - Yifan Sun
- Department of Medical and Molecular Genetics
| | | | | | | | - Tao Yu
- Department of Medical and Molecular Genetics
| | | | | | - Ka Man So
- Center for Computational Biology and Bioinformatics
| | - Yujing Li
- Department of Medical and Molecular Genetics
| | | | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Harald Braun
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xiaoming He
- Fischell Department of Bioengineering and
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Xinna Zhang
- Department of Medical and Molecular Genetics
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics
- Center for Computational Biology and Bioinformatics
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sophie Paczesny
- Department of Pediatrics
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
166
|
Abstract
Metastatic disease is the leading cause of death in patients with solid cancers. The progression to metastasis is a multistep process that involves detachment of tumor cells from their constraining basement membrane at the primary site, migration and intravasation into the circulation, survival in the circulation, extravasation into the secondary organ, and survival and growth at the secondary site. During these steps, tumor and immune cells interact and influence each other both within the tumor microenvironment and systemically. In particular, myeloid cells such as monocytes, macrophages, neutrophils, and myeloid-derived suppressor cells (myeloid regulatory cells) have been shown to play important roles in the metastatic process. These interactions open new avenues for targeting cancer metastasis, especially given the increasing interest in development of cancer immunotherapies. In this review, we describe the currently reported pathways and mechanisms involved in myeloid cell enhancement of the metastatic cascade.
Collapse
Affiliation(s)
- Agnieszka Swierczak
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
167
|
Mendoza-Reinoso V, McCauley LK, Fournier PG. Contribution of Macrophages and T Cells in Skeletal Metastasis. Cancers (Basel) 2020; 12:E1014. [PMID: 32326073 PMCID: PMC7226332 DOI: 10.3390/cancers12041014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Bone is a common site for metastases with a local microenvironment that is highly conducive for tumor establishment and growth. The bone marrow is replete with myeloid and lymphoid linage cells that provide a fertile niche for metastatic cancer cells promoting their survival and growth. Here, we discuss the role of macrophages and T cells in pro- and anti-tumoral mechanisms, their interaction to support cancer cell growth, and their contribution to the development of skeletal metastases. Importantly, immunotherapeutic strategies targeting macrophages and T cells in cancer are also discussed in this review as they represent a great promise for patients suffering from incurable bone metastases.
Collapse
Affiliation(s)
- Veronica Mendoza-Reinoso
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (V.M.-R.); (L.K.M.)
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (V.M.-R.); (L.K.M.)
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pierrick G.J. Fournier
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC 22860, Mexico
| |
Collapse
|
168
|
Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020; 18:59. [PMID: 32264958 PMCID: PMC7140346 DOI: 10.1186/s12964-020-0530-4] [Citation(s) in RCA: 883] [Impact Index Per Article: 220.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
The dynamic interactions of cancer cells with their microenvironment consisting of stromal cells (cellular part) and extracellular matrix (ECM) components (non-cellular) is essential to stimulate the heterogeneity of cancer cell, clonal evolution and to increase the multidrug resistance ending in cancer cell progression and metastasis. The reciprocal cell-cell/ECM interaction and tumor cell hijacking of non-malignant cells force stromal cells to lose their function and acquire new phenotypes that promote development and invasion of tumor cells. Understanding the underlying cellular and molecular mechanisms governing these interactions can be used as a novel strategy to indirectly disrupt cancer cell interplay and contribute to the development of efficient and safe therapeutic strategies to fight cancer. Furthermore, the tumor-derived circulating materials can also be used as cancer diagnostic tools to precisely predict and monitor the outcome of therapy. This review evaluates such potentials in various advanced cancer models, with a focus on 3D systems as well as lab-on-chip devices. Video abstract.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committees, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognitive, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tuebingen, Tuebingen, Germany
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, USA
| | - Peyman Zare
- Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| |
Collapse
|
169
|
Moose DL, Krog BL, Kim TH, Zhao L, Williams-Perez S, Burke G, Rhodes L, Vanneste M, Breheny P, Milhem M, Stipp CS, Rowat AC, Henry MD. Cancer Cells Resist Mechanical Destruction in Circulation via RhoA/Actomyosin-Dependent Mechano-Adaptation. Cell Rep 2020; 30:3864-3874.e6. [PMID: 32187555 PMCID: PMC7219793 DOI: 10.1016/j.celrep.2020.02.080] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 12/27/2022] Open
Abstract
During metastasis, cancer cells are exposed to potentially destructive hemodynamic forces including fluid shear stress (FSS) while en route to distant sites. However, prior work indicates that cancer cells are more resistant to brief pulses of high-level FSS in vitro relative to non-transformed epithelial cells. Herein, we identify a mechano-adaptive mechanism of FSS resistance in cancer cells. Our findings demonstrate that cancer cells activate RhoA in response to FSS, which protects them from FSS-induced plasma membrane damage. We show that cancer cells freshly isolated from mouse and human tumors are resistant to FSS, that formin and myosin II activity protects circulating tumor cells (CTCs) from destruction, and that short-term inhibition of myosin II delays metastasis in mouse models. Collectively, our data indicate that viable CTCs actively resist destruction by hemodynamic forces and are likely to be more mechanically robust than is commonly thought.
Collapse
Affiliation(s)
- Devon L Moose
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Cancer Biology Program, Biomedical Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin L Krog
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Gretchen Burke
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lillian Rhodes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Marion Vanneste
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Patrick Breheny
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Mohammed Milhem
- Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Division of Hematology and Oncology, Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher S Stipp
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Cancer Biology Program, Biomedical Sciences, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Departments of Pathology, Urology and Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
170
|
Yu SJ, Greten TF. Deciphering and Reversing Immunosuppressive Cells in the Treatment of Hepatocellular Carcinoma. JOURNAL OF LIVER CANCER 2020; 20:1-16. [PMID: 37383056 PMCID: PMC10035699 DOI: 10.17998/jlc.20.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 06/30/2023]
Abstract
Use of immune checkpoint inhibitors (ICIs) in hepatocellular carcinoma (HCC) has been partially successful. However, most HCC patients do not respond to immunotherapy. HCC has been shown to induce several immune suppressor mechanisms in patients. These suppressor mechanisms include involvement of myeloid-derived suppressor cells, regulatory T-cells, functionally impaired dendritic cells (DCs), neutrophils, monocytes, and tumor associated macrophages. The accumulation of immunosuppressive cells may lead to an immunosuppressive tumor microenvironment as well as the dense fibrotic stroma which may contribute to immune tolerance. Our laboratory has been investigating different cellular mechanisms of immune suppression in HCC patients. In vitro as well as in vivo studies have demonstrated that abrogation of the suppressor cells enhances or unmasks tumor-specific antitumor immune responses. Two or three effective systemic therapies including ICIs and/or molecular targeted therapies and the addition of innovative combination therapies targeting immune suppressor cells may lead to increased immune recognition with a greater tumor response. We reviewed the literature for the latest research on immune suppressor cells in HCC, and here we provide a comprehensive summary of the recent studies in this field.
Collapse
Affiliation(s)
- Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Tim F. Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
- NCI CCR Liver Cancer Program, Bethesda, USA
| |
Collapse
|
171
|
Obesity Promotes Cooperation of Cancer Stem-Like Cells and Macrophages to Enhance Mammary Tumor Angiogenesis. Cancers (Basel) 2020; 12:cancers12020502. [PMID: 32098183 PMCID: PMC7072330 DOI: 10.3390/cancers12020502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is correlated with worsened prognosis and treatment resistance in breast cancer. Macrophage-targeted therapies are currently in clinical trials, however, little is known about how obesity may impact treatment efficacy. Within breast adipose tissue, obesity leads to chronic, macrophage-driven inflammation, suggesting that obese breast cancer patients may benefit from these therapies. Using a high fat diet model of obesity, we orthotopically transplanted cancer cell lines into the mammary glands of obese and lean mice. We quantified changes in tumor invasiveness, angiogenesis and metastasis, and examined the efficacy of macrophage depletion to diminish tumor progression in obese and lean mice. Mammary tumors from obese mice grew significantly faster, were enriched for cancer stem-like cells (CSCs) and were more locally invasive and metastatic. Tumor cells isolated from obese mice demonstrated enhanced expression of stem cell-related pathways including Sox2 and Notch2. Despite more rapid growth, mammary tumors from obese mice had reduced necrosis, higher blood vessel density, and greater macrophage recruitment. Depletion of macrophages in obese tumor-bearing mice resulted in increased tumor necrosis, reduced endothelial cells, and enhanced recruitment of CD8+ T cells compared to IgG-treated controls. Macrophages may be an important clinical target to improve treatment options for obese breast cancer patients.
Collapse
|
172
|
Trovato R, Canè S, Petrova V, Sartoris S, Ugel S, De Sanctis F. The Engagement Between MDSCs and Metastases: Partners in Crime. Front Oncol 2020; 10:165. [PMID: 32133298 PMCID: PMC7040035 DOI: 10.3389/fonc.2020.00165] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Tumor metastases represent the major cause of cancer-related mortality, confirming the urgent need to identify key molecular pathways and cell-associated networks during the early phases of the metastatic process to develop new strategies to either prevent or control distal cancer spread. Several data revealed the ability of cancer cells to establish a favorable microenvironment, before their arrival in distant organs, by manipulating the cell composition and function of the new host tissue where cancer cells can survive and outgrow. This predetermined environment is termed “pre-metastatic niche” (pMN). pMN development requires that tumor-derived soluble factors, like cytokines, growth-factors and extracellular vesicles, genetically and epigenetically re-program not only resident cells (i.e., fibroblasts) but also non-resident cells such as bone marrow-derived cells. Indeed, by promoting an “emergency” myelopoiesis, cancer cells switch the steady state production of blood cells toward the generation of pro-tumor circulating myeloid cells defined as myeloid-derived suppressor cells (MDSCs) able to sustain tumor growth and dissemination. MDSCs are a heterogeneous subset of myeloid cells with immunosuppressive properties that sustain metastatic process. In this review, we discuss current understandings of how MDSCs shape and promote metastatic dissemination acting in each fundamental steps of cancer progression from primary tumor to metastatic disease.
Collapse
Affiliation(s)
- Rosalinda Trovato
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefania Canè
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Varvara Petrova
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Silvia Sartoris
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Francesco De Sanctis
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
173
|
Zhou Z, Pan C, Wang N, Zhou L, Shan H, Gao Y, Yu X. A high-fat diet aggravates osteonecrosis through a macrophage-derived IL-6 pathway. Int Immunol 2020; 31:263-273. [PMID: 30779845 DOI: 10.1093/intimm/dxz002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 02/11/2019] [Indexed: 12/28/2022] Open
Abstract
Inflammation plays an important role in osteonecrosis. Obesity, a risk factor for osteonecrosis, leads to a chronic inflammatory status. We hypothesized that inflammation mediated the effects of obesity on osteonecrosis and tested our hypothesis in a mouse model of osteonecrosis. We fed mice with a high-fat diet (HFD) for 12 weeks before osteonecrosis induction by methylprednisolone and examined bone structure and IL-6 expression. Then we investigated the effects of IL-6 deletion in mice with osteonecrosis on the HFD. Next, we isolated bone marrow cells and determined the cell types responsible for HFD-induced IL-6 secretion. Finally, we investigated the roles of macrophages and macrophage-driven IL-6 in HFD-mediated effects on osteonecrosis and osteogenesis of bone marrow stromal cells (BMSCs). The HFD lead to exacerbated destruction of the femoral head in mice with osteonecrosis and increased IL-6 expression in macrophages. Il-6 knockout or macrophage depletion suppressed the effects of the HFD on bone damage. When co-cultured with macrophages isolated from HFD-fed mice with osteonecrosis, BMSCs showed reduced viability and suppressed osteogenic differentiation. Our results suggest that macrophage-driven IL-6 bridges obesity and osteonecrosis and inhibition of IL-6 or depletion of macrophage may represent a therapeutic strategy for obesity-associated osteonecrosis.
Collapse
Affiliation(s)
- Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenhao Pan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Nan Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lihui Zhou
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo, Zhejiang, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youshui Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
174
|
Models for Monocytic Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32036607 DOI: 10.1007/978-3-030-35723-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Monocytes (Mos) are immune cells that critically regulate cancer, enabling tumor growth and modulating metastasis. Mos can give rise to tumor-associated macrophages (TAMs) and Mo-derived dendritic cells (moDCs), all of which shape the tumor microenvironment (TME). Thus, understanding their roles in the TME is key for improved immunotherapy. Concurrently, various biological and mechanical factors including changes in local cytokines, extracellular matrix production, and metabolic changes in the TME affect the roles of monocytic cells. As such, relevant TME models are critical to achieve meaningful insight on the precise functions, mechanisms, and effects of monocytic cells. Notably, murine models have yielded significant insight into human Mo biology. However, many of these results have yet to be confirmed in humans, reinforcing the need for improved in vitro human TME models for the development of cancer interventions. Thus, this chapter (1) summarizes current insight on the tumor biology of Mos, TAMs, and moDCs, (2) highlights key therapeutic applications relevant to these cells, and (3) discusses various TME models to study their TME-related activity. We conclude with a perspective on the future research trajectory of this topic.
Collapse
|
175
|
Ma B, Wells A, Clark AM. The pan-therapeutic resistance of disseminated tumor cells: Role of phenotypic plasticity and the metastatic microenvironment. Semin Cancer Biol 2020; 60:138-147. [PMID: 31376430 PMCID: PMC6992520 DOI: 10.1016/j.semcancer.2019.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
Cancer metastasis is the leading cause of mortality in patients with solid tumors. The majority of these deaths are associated with metastatic disease that occurs after a period of clinical remission, anywhere from months to decades following removal of the primary mass. This dormancy is prominent in cancers of the breast and prostate among others, leaving the survivors uncertain about their longer-term prognosis. The most daunting aspect of this dormancy and re-emergence is that the micrometastases in particular, and even large lethal outgrowths are often show resistance to agents to which they have not been exposed. This suggests that in addition to specific mutations that target single agents, there also exist adaptive mechanisms that provide this pan-resistance. Potential molecular underpinnings of which are the topic of this review.
Collapse
Affiliation(s)
- Bo Ma
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA.
| |
Collapse
|
176
|
D’Alterio C, Scala S, Sozzi G, Roz L, Bertolini G. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Semin Cancer Biol 2020; 60:351-361. [DOI: 10.1016/j.semcancer.2019.08.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
|
177
|
Terashima Y, Toda E, Itakura M, Otsuji M, Yoshinaga S, Okumura K, Shand FHW, Komohara Y, Takeda M, Kokubo K, Chen MC, Yokoi S, Rokutan H, Kofuku Y, Ohnishi K, Ohira M, Iizasa T, Nakano H, Okabe T, Kojima H, Shimizu A, Kanegasaki S, Zhang MR, Shimada I, Nagase H, Terasawa H, Matsushima K. Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat Commun 2020; 11:609. [PMID: 32001710 PMCID: PMC6992764 DOI: 10.1038/s41467-020-14338-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor-associated macrophages affect tumor progression and resistance to immune checkpoint therapy. Here, we identify the chemokine signal regulator FROUNT as a target to control tumor-associated macrophages. The low level FROUNT expression in patients with cancer correlates with better clinical outcomes. Frount-deficiency markedly reduces tumor progression and decreases macrophage tumor-promoting activity. FROUNT is highly expressed in macrophages, and its myeloid-specific deletion impairs tumor growth. Further, the anti-alcoholism drug disulfiram (DSF) acts as a potent inhibitor of FROUNT. DSF interferes with FROUNT-chemokine receptor interactions via direct binding to a specific site of the chemokine receptor-binding domain of FROUNT, leading to inhibition of macrophage responses. DSF monotherapy reduces tumor progression and decreases macrophage tumor-promoting activity, as seen in the case of Frount-deficiency. Moreover, co-treatment with DSF and an immune checkpoint antibody synergistically inhibits tumor growth. Thus, inhibition of FROUNT by DSF represents a promising strategy for macrophage-targeted cancer therapy. The cytoplasmic protein FROUNT can bind to chemokine receptors and enhance chemokine signalling. Here, the authors show that inhibiting FROUNT in macrophages either by knockdown of the gene or using the anti-alcoholism drug disulfiram, results in a reduction in tumour growth.
Collapse
Affiliation(s)
- Yuya Terashima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan. .,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan.
| | - Etsuko Toda
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan.,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,Department of Analytic Human Pathology, Nippon Medical School, Tokyo, 113-8602, Japan.,Department of Analytic Human Pathology, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Meiji Itakura
- Department of Thoracic Disease, Chiba Cancer Center, Chiba, 260-8717, Japan.,Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan.,Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan
| | - Mikiya Otsuji
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,Department of Anesthesiology, Tokyo Teishin Hospital, Tokyo, 102-8798, Japan.,Department of Anesthesiology, Tokyo Teishin Hospital, Tokyo, 102-8798, Japan
| | - Sosuke Yoshinaga
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | | | - Francis H W Shand
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Mitsuhiro Takeda
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Kana Kokubo
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan.,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan
| | - Ming-Chen Chen
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan.,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan
| | - Sana Yokoi
- Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan
| | - Hirofumi Rokutan
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yutaka Kofuku
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Miki Ohira
- Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan
| | - Toshihiko Iizasa
- Department of Thoracic Disease, Chiba Cancer Center, Chiba, 260-8717, Japan
| | - Hirofumi Nakano
- Drug Discovery Initiative, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Shiro Kanegasaki
- Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceutics Development, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroki Nagase
- Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan
| | - Hiroaki Terasawa
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan.,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan
| |
Collapse
|
178
|
Raskov H, Orhan A, Salanti A, Gögenur I. Premetastatic niches, exosomes and circulating tumor cells: Early mechanisms of tumor dissemination and the relation to surgery. Int J Cancer 2020; 146:3244-3255. [PMID: 31808150 DOI: 10.1002/ijc.32820] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
The physiological stress response to surgery promotes wound healing and functional recovery and includes the activation of neural, inflammatory and proangiogenic signaling pathways. Paradoxically, the same pathways also promote metastatic spread and growth of residual cancer. Human and animal studies show that cancer surgery can increase survival, migration and proliferation of residual tumor cells. To secure the survival and growth of disseminated tumor cells, the formation of premetastatic niches in target organs involves a complex interplay between microenvironment, immune system, circulating tumor cells, as well as chemical mediators and exosomes secreted by the primary tumor. This review describes the current understanding of the early mechanisms of dissemination, as well as how surgery may facilitate disease progression.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
179
|
Khandia R, Munjal A. Interplay between inflammation and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 119:199-245. [DOI: 10.1016/bs.apcsb.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
180
|
Zins K, Abraham D. Cancer Immunotherapy: Targeting Tumor-Associated Macrophages by Gene Silencing. Methods Mol Biol 2020; 2115:289-325. [PMID: 32006408 DOI: 10.1007/978-1-0716-0290-4_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumor-associated macrophages (TAMs) are representing a major leukocyte population in solid tumors. Macrophages are very heterogeneous and plastic cells and can acquire distinct functional phenotypes ranging from antitumorigenic to immunosuppressive tumor-promoting M2-like TAMs, depending on the local tissue microenvironment (TME). TAMs express cytokines, chemokines, growth factors, and extracellular matrix (ECM) modifying factors, and the cross talk with the TME regulates pathways involved in the recruitment, polarization, and metabolism of TAMs during tumor progression. Due to their crucial role in tumor growth and metastasis, selective targeting of TAM for the treatment of cancer with therapeutic agents that promote phagocytosis or suppress survival, proliferation, trafficking, or polarization of TAMs may prove to be beneficial in cancer therapy. In this chapter, we will discuss TAM biology and current strategies for the targeting of TAMs using small interfering RNA (siRNA)-based drugs. In the past few years, advances in the field of nanomedicine pave the way for the development of siRNA-based drugs as an additional class of personalized cancer immuno-nanomedicines. Fundamental challenges associated with this group of therapeutics include the development process, delivery system, and clinical translation for siRNA-based drugs.
Collapse
Affiliation(s)
- Karin Zins
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Abraham
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
181
|
Fernandez A, Thompson EJ, Pollard JW, Kitamura T, Vendrell M. A Fluorescent Activatable AND‐Gate Chemokine CCL2 Enables In Vivo Detection of Metastasis‐Associated Macrophages. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Antonio Fernandez
- Centre for Inflammation ResearchThe University of Edinburgh 47 Little France Crescent EH16 4TJ Edinburgh UK
| | - Emily J. Thompson
- Centre for Inflammation ResearchThe University of Edinburgh 47 Little France Crescent EH16 4TJ Edinburgh UK
| | - Jeffrey W. Pollard
- MRC Centre for Reproductive HealthThe University of Edinburgh 47 Little France Crescent EH16 4TJ Edinburgh UK
| | - Takanori Kitamura
- MRC Centre for Reproductive HealthThe University of Edinburgh 47 Little France Crescent EH16 4TJ Edinburgh UK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of Edinburgh 47 Little France Crescent EH16 4TJ Edinburgh UK
| |
Collapse
|
182
|
Fernandez A, Thompson EJ, Pollard JW, Kitamura T, Vendrell M. A Fluorescent Activatable AND-Gate Chemokine CCL2 Enables In Vivo Detection of Metastasis-Associated Macrophages. Angew Chem Int Ed Engl 2019; 58:16894-16898. [PMID: 31535788 PMCID: PMC6900180 DOI: 10.1002/anie.201910955] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/14/2019] [Indexed: 12/28/2022]
Abstract
We report the novel chemical design of fluorescent activatable chemokines as highly specific functional probes for imaging subpopulations of immune cells in live tumours. Activatable chemokines behave as AND-gates since they emit only after receptor binding and intracellular activation, showing enhanced selectivity over existing agents. We have applied this strategy to produce mCCL2-MAF as the first probe for in vivo detection of metastasis-associated macrophages in a preclinical model of lung metastasis. This strategy will accelerate the preparation of new chemokine-based probes for imaging immune cell function in tumours.
Collapse
Affiliation(s)
- Antonio Fernandez
- Centre for Inflammation ResearchThe University of Edinburgh47 Little France CrescentEH16 4TJEdinburghUK
| | - Emily J. Thompson
- Centre for Inflammation ResearchThe University of Edinburgh47 Little France CrescentEH16 4TJEdinburghUK
| | - Jeffrey W. Pollard
- MRC Centre for Reproductive HealthThe University of Edinburgh47 Little France CrescentEH16 4TJEdinburghUK
| | - Takanori Kitamura
- MRC Centre for Reproductive HealthThe University of Edinburgh47 Little France CrescentEH16 4TJEdinburghUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of Edinburgh47 Little France CrescentEH16 4TJEdinburghUK
| |
Collapse
|
183
|
Tuit S, Salvagno C, Kapellos TS, Hau CS, Seep L, Oestreich M, Klee K, de Visser KE, Ulas T, Schultze JL. Transcriptional Signature Derived from Murine Tumor-Associated Macrophages Correlates with Poor Outcome in Breast Cancer Patients. Cell Rep 2019; 29:1221-1235.e5. [PMID: 31665635 PMCID: PMC7057267 DOI: 10.1016/j.celrep.2019.09.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/23/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are frequently the most abundant immune cells in cancers and are associated with poor survival. Here, we generated TAM molecular signatures from K14cre;Cdh1flox/flox;Trp53flox/flox (KEP) and MMTV-NeuT (NeuT) transgenic mice that resemble human invasive lobular carcinoma (ILC) and HER2+ tumors, respectively. Determination of TAM-specific signatures requires comparison with healthy mammary tissue macrophages to avoid overestimation of gene expression differences. TAMs from the two models feature a distinct transcriptomic profile, suggesting that the cancer subtype dictates their phenotype. The KEP-derived signature reliably correlates with poor overall survival in ILC but not in triple-negative breast cancer patients, indicating that translation of murine TAM signatures to patients is cancer subtype dependent. Collectively, we show that a transgenic mouse tumor model can yield a TAM signature relevant for human breast cancer outcome prognosis and provide a generalizable strategy for determining and applying immune cell signatures provided the murine model reflects the human disease.
Collapse
Affiliation(s)
- Sander Tuit
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, 53113 Bonn, Germany; Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Camilla Salvagno
- Division of Tumor Biology & Immunology, Oncode Institute, the Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Theodore S Kapellos
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, 53113 Bonn, Germany
| | - Cheei-Sing Hau
- Division of Tumor Biology & Immunology, Oncode Institute, the Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Lea Seep
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, 53113 Bonn, Germany
| | - Marie Oestreich
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, 53113 Bonn, Germany
| | - Kathrin Klee
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, 53113 Bonn, Germany
| | - Karin E de Visser
- Division of Tumor Biology & Immunology, Oncode Institute, the Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.
| | - Thomas Ulas
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, 53113 Bonn, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, 53113 Bonn, Germany; Platform for Single Cell Genomics and Epigenomics (PRECISE) at the German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
184
|
Yin M, Shen J, Yu S, Fei J, Zhu X, Zhao J, Zhai L, Sadhukhan A, Zhou J. Tumor-Associated Macrophages (TAMs): A Critical Activator In Ovarian Cancer Metastasis. Onco Targets Ther 2019; 12:8687-8699. [PMID: 31695427 PMCID: PMC6814357 DOI: 10.2147/ott.s216355] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) that appear in every stage of cancer progression are usually tumor-promoting cells and are present abundantly in the tumor-associated microenvironment. In ovarian cancer, the overall and intratumoral M1/M2 ratio is a relatively efficient TAM parameter for predicting the prognosis of patients, especially for serous tissue type cancer. TAMs exhibit immunological checkpoint modulators, such as the B7 family and programmed death-ligand 1 (PD-L1), and play a key role in the development, metastasis and invasion of ovarian cancer, but the underlying mechanism is barely understood. Ovarian cancer is a severe gynecological malignancy with high mortality. Ovarian cancer-associated death can primarily be attributed to cancer metastasis. The majority of patients are diagnosed with wide dissemination in the peritoneum and omentum, limiting the effectiveness of surgery and chemotherapy. In addition, unlike other well-documented cancers, metastasis through vasculature is not a usual dissemination pathway in ovarian cancer. This review sheds light on TAMs and the main process and mechanism of ovarian cancer metastasis.
Collapse
Affiliation(s)
- Meichen Yin
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiayu Shen
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Shuqian Yu
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Fei
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoqing Zhu
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiayao Zhao
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Lingyun Zhai
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Annapurna Sadhukhan
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
185
|
Kitamura T, Kato Y, Brownlie D, Soong DYH, Sugano G, Kippen N, Li J, Doughty-Shenton D, Carragher N, Pollard JW. Mammary Tumor Cells with High Metastatic Potential Are Hypersensitive to Macrophage-Derived HGF. Cancer Immunol Res 2019; 7:2052-2064. [PMID: 31615815 DOI: 10.1158/2326-6066.cir-19-0234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/21/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Metastasis-associated macrophages (MAM) promote persistent growth of breast cancer cells at the metastatic site and are, thus, an attractive therapeutic target to treat breast cancer metastasis, a leading cause of cancer-related death in women. However, the precise mechanisms behind MAM-mediated metastatic tumor outgrowth have not been fully elucidated. Using mouse models of metastatic breast cancer, we showed that MAMs uniquely expressed hepatocyte growth factor (HGF) in metastatic tumors. We also demonstrated that a selected population of cancer cells with high metastatic potential (cancer cells that can establish metastatic tumors in mice with higher number and incidence than parental cells) had higher expression of HGF receptor, MNNG HOS transforming gene (MET), and were more responsive to HGF released from macrophages compared with the parental cells. Blockade of MET signaling in cancer cells suppressed metastatic tumor expansion, in part, through activation of natural killer cells. Results from this study suggest an approach to prevent life-threatening metastatic tumor formation using blockade of MAM-induced MET signal activation in metastatic cancer cells.
Collapse
Affiliation(s)
- Takanori Kitamura
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom. .,MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Yu Kato
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Demi Brownlie
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Y H Soong
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gaël Sugano
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Nicolle Kippen
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jiufeng Li
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Dahlia Doughty-Shenton
- Edinburgh Phenotypic Assay Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Neil Carragher
- Edinburgh Phenotypic Assay Centre, The University of Edinburgh, Edinburgh, United Kingdom.,Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom. .,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
186
|
Lorenzo-Sanz L, Muñoz P. Tumor-Infiltrating Immunosuppressive Cells in Cancer-Cell Plasticity, Tumor Progression and Therapy Response. CANCER MICROENVIRONMENT 2019; 12:119-132. [PMID: 31583529 DOI: 10.1007/s12307-019-00232-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/01/2019] [Indexed: 12/16/2022]
Abstract
In most tumors, cancer cells show the ability to dynamically transit from a non-cancer stem-like cell to a cancer stem-like cell (CSC) state and vice versa. This cell plasticity has been associated with the epithelial-to-mesenchymal transition program (EMT) and can be regulated by tumor cell-intrinsic mechanisms and complex interactions with various tumor microenvironment (TME) components. These interactions favor the generation of a specific "CSC niche" that helps maintain the main properties, phenotypic plasticity and metastatic potential of this subset of tumor cells. For this reason, TME has been recognized as an important promoter of tumor progression and therapy resistance. Tumors have evolved a network of immunosuppressive mechanisms that limits the cytotoxic T cell response to cancer cells. Some key players in this network are tumor-associated macrophages, myeloid-derived suppressor cells and regulatory T cells, which not only favor a pro-tumoral and immunosuppressive environment that supports tumor growth and immune evasion, but also negatively influences immunotherapy. Here, we review the relevance of cytokines and growth factors provided by immunosuppressive immune cells in regulating cancer-cell plasticity. We also discuss how cancer cells remodel their own niche to promote proliferation, stemness and EMT, and escape immune surveillance. A better understanding of CSC-TME crosstalk signaling will enable the development of effective targeted or immune therapies that block tumor growth and metastasis.
Collapse
Affiliation(s)
- Laura Lorenzo-Sanz
- Aging and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Vía de L'Hospitalet 199-203, 08908, Barcelona, Spain
| | - Purificación Muñoz
- Aging and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Vía de L'Hospitalet 199-203, 08908, Barcelona, Spain.
| |
Collapse
|
187
|
Wang J, Meng F, Kim BK, Ke X, Yeo Y. In-vitro and in-vivo difference in gene delivery by lithocholic acid-polyethyleneimine conjugate. Biomaterials 2019; 217:119296. [PMID: 31254934 PMCID: PMC6670295 DOI: 10.1016/j.biomaterials.2019.119296] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/04/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
Polyethyleneimine (PEI) is widely used for the delivery of nucleic acids, but its clinical application is limited due to high cytotoxicity and instability in biological fluids. To overcome these challenges, linear PEI (2.5 kDa) was modified with lithocholic acid (LCA) to produce a LCA-PEI conjugate (lp), and its complex with plasmid DNA (pDNA) was covered with hyaluronic acid (HA). Ternary complexes of pDNA, lp, and HA ("DlpH") were prepared in different ratios and tested in cells and tumor-bearing mice for gene transfection efficiency. DlpH with a relatively high lp/pDNA ratio (Hi-DlpH) was more resistant to DNase and heparin treatment and showed more efficient gene transfection than DlpH with a lower lp/pDNA ratio (Lo-DlpH) in vitro. In contrast, Hi- and Lo-DlpH showed distinct transfection efficiency in vivo in a tumor-size dependent manner, where Hi-DlpH showed relatively high gene transfection in tumors of <300 mm3 but performed poorly in tumors of >500 mm3 and Lo-DlpH did the opposite. Tumor-associated macrophages, which increase with tumor growth and preferentially intercept Hi-DlpH, may account for the poor performance of Hi-DlpH in relatively large tumors. Accordingly, suggestions are made for future in vitro screening of new gene formulations to better predict their in vivo performances.
Collapse
Affiliation(s)
- Jianping Wang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA; Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Fanfei Meng
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA; Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Bieong-Kil Kim
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Xue Ke
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
188
|
Wettschureck N, Strilic B, Offermanns S. Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiol Rev 2019; 99:1467-1525. [PMID: 31140373 DOI: 10.1152/physrev.00037.2018] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A central function of the vascular endothelium is to serve as a barrier between the blood and the surrounding tissue of the body. At the same time, solutes and cells have to pass the endothelium to leave or to enter the bloodstream to maintain homeostasis. Under pathological conditions, for example, inflammation, permeability for fluid and cells is largely increased in the affected area, thereby facilitating host defense. To appropriately function as a regulated permeability filter, the endothelium uses various mechanisms to allow solutes and cells to pass the endothelial layer. These include transcellular and paracellular pathways of which the latter requires remodeling of intercellular junctions for its regulation. This review provides an overview on endothelial barrier regulation and focuses on the endothelial signaling mechanisms controlling the opening and closing of paracellular pathways for solutes and cells such as leukocytes and metastasizing tumor cells.
Collapse
Affiliation(s)
- Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| |
Collapse
|
189
|
Laplagne C, Domagala M, Le Naour A, Quemerais C, Hamel D, Fournié JJ, Couderc B, Bousquet C, Ferrand A, Poupot M. Latest Advances in Targeting the Tumor Microenvironment for Tumor Suppression. Int J Mol Sci 2019; 20:E4719. [PMID: 31547627 PMCID: PMC6801830 DOI: 10.3390/ijms20194719] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
The tumor bulk is composed of a highly heterogeneous population of cancer cells, as well as a large variety of resident and infiltrating host cells, extracellular matrix proteins, and secreted proteins, collectively known as the tumor microenvironment (TME). The TME is essential for driving tumor development by promoting cancer cell survival, migration, metastasis, chemoresistance, and the ability to evade the immune system responses. Therapeutically targeting tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), regulatory T-cells (T-regs), and mesenchymal stromal/stem cells (MSCs) is likely to have an impact in cancer treatment. In this review, we focus on describing the normal physiological functions of each of these cell types and their behavior in the cancer setting. Relying on the specific surface markers and secreted molecules in this context, we review the potential targeting of these cells inducing their depletion, reprogramming, or differentiation, or inhibiting their pro-tumor functions or recruitment. Different approaches were developed for this targeting, namely, immunotherapies, vaccines, small interfering RNA, or small molecules.
Collapse
Affiliation(s)
- Chloé Laplagne
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Marcin Domagala
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Augustin Le Naour
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut Claudius Regaud, IUCT-Oncopole, 31000 Toulouse, France.
| | - Christophe Quemerais
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Dimitri Hamel
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut de Recherche en Santé Digestive, Inserm U1220, INRA, ENVT, 31024 Toulouse, France.
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Bettina Couderc
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut Claudius Regaud, IUCT-Oncopole, 31000 Toulouse, France.
| | - Corinne Bousquet
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Audrey Ferrand
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut de Recherche en Santé Digestive, Inserm U1220, INRA, ENVT, 31024 Toulouse, France.
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| |
Collapse
|
190
|
Cathepsin L secretion by host and neoplastic cells potentiates invasion. Oncotarget 2019; 10:5560-5568. [PMID: 31565189 PMCID: PMC6756864 DOI: 10.18632/oncotarget.27182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/21/2019] [Indexed: 12/25/2022] Open
Abstract
The presence of macrophages within breast tumors correlates with metastatic potential. These tumor-associated macrophages often take on a pro-tumorigenic (M2-like) phenotype resulting in the secretion of growth factors and proteases, including the lysosomal protease cathepsin L. Since cathepsin L also is frequently secreted by breast cancer cells and contributes to tumor invasion, metastasis, and angiogenesis, we hypothesized that secretion of cathepsin L by both tumor-associated macrophages and neoplastic cells would facilitate the metastatic phenotype. Our results showed that the novel cathepsin L/K inhibitors KGP94 and KGP207 could inhibit in vitro M2 macrophage invasion and reduce the macrophage-stimulated invasion of 4T1 murine breast cancer cells. KGP94 and KGP207 treatment also reduced the expression of several M2-associated markers, suggesting that cathepsin L activity may be important for IL-4-driven M0 to M2 differentiation. In addition, cathepsin L shRNA knockdown studies revealed that cathepsin L from both the tumor cell and the macrophage population is important for tumor cell invasion. Thus our data suggest that tumor cells and macrophages may both contribute to the cathepsin L-driven metastatic phenotype of breast cancer. Taken together, these studies highlight the importance of cathepsin L in macrophage functions and suggest that cathepsin inhibition strategies may be therapeutically beneficial by impairing the progression of tumors with high infiltration of M2 macrophages.
Collapse
|
191
|
Saini M, Szczerba BM, Aceto N. Circulating Tumor Cell-Neutrophil Tango along the Metastatic Process. Cancer Res 2019; 79:6067-6073. [DOI: 10.1158/0008-5472.can-19-1972] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022]
|
192
|
Abstract
Macrophages are a heterogeneous group of cells that are capable of carrying out distinct functions in different tissues, as well as in different locations within a given tissue. Some of these tissue macrophages lie on, or close to, the outer (abluminal) surface of blood vessels and perform several crucial activities at this interface between the tissue and the blood. In steady-state tissues, these perivascular macrophages maintain tight junctions between endothelial cells and limit vessel permeability, phagocytose potential pathogens before they enter tissues from the blood and restrict inappropriate inflammation. They also have a multifaceted role in diseases such as cancer, Alzheimer disease, multiple sclerosis and type 1 diabetes. Here, we examine the important functions of perivascular macrophages in various adult tissues and describe how these functions are perturbed in a broad array of pathological conditions.
Collapse
|
193
|
Aldawsari HM, Gorain B, Alhakamy NA, Md S. Role of therapeutic agents on repolarisation of tumour-associated macrophage to halt lung cancer progression. J Drug Target 2019; 28:166-175. [DOI: 10.1080/1061186x.2019.1648478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
194
|
Low infiltration of tumor-associated macrophages in high c-Myb-expressing breast tumors. Sci Rep 2019; 9:11634. [PMID: 31406165 PMCID: PMC6690941 DOI: 10.1038/s41598-019-48051-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are prominent components of tumor stroma that promotes tumorigenesis. Many soluble factors participate in the deleterious cross-talk between TAMs and transformed cells; however mechanisms how tumors orchestrate their production remain relatively unexplored. c-Myb is a transcription factor recently described as a negative regulator of a specific immune signature involved in breast cancer (BC) metastasis. Here we studied whether c-Myb expression is associated with an increased presence of TAMs in human breast tumors. Tumors with high frequency of c-Myb-positive cells have lower density of CD68-positive macrophages. The negative association is reflected by inverse correlation between MYB and CD68/CD163 markers at the mRNA levels in evaluated cohorts of BC patients from public databases, which was found also within the molecular subtypes. In addition, we identified potential MYB-regulated TAMs recruiting factors that in combination with MYB and CD163 provided a valuable clinical multigene predictor for BC relapse. We propose that identified transcription program running in tumor cells with high MYB expression and preventing macrophage accumulation may open new venues towards TAMs targeting and BC therapy.
Collapse
|
195
|
Najberg M, Haji Mansor M, Boury F, Alvarez-Lorenzo C, Garcion E. Reversing the Tumor Target: Establishment of a Tumor Trap. Front Pharmacol 2019; 10:887. [PMID: 31456685 PMCID: PMC6699082 DOI: 10.3389/fphar.2019.00887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Despite the tremendous progress made in the field of cancer therapy in recent years, certain solid tumors still cannot be successfully treated. Alongside classical treatments in the form of chemotherapy and/or radiotherapy, targeted treatments such as immunotherapy that cause fewer side effects emerge as new options in the clinics. However, these alternative treatments may not be useful for treating all types of cancers, especially for killing infiltrative and circulating tumor cells (CTCs). Recent advances pursue the trapping of these cancer cells within a confined area to facilitate their removal for therapeutic and diagnostic purposes. A good understanding of the mechanisms behind tumor cell migration may drive the design of traps that mimic natural tumor niches and guide the movement of the cancer cells. To bring this trapping idea into reality, strong efforts are being made to create structured materials that imitate myelinated fibers, blood vessels, or pre-metastatic niches and incorporate chemical cues such as chemoattractants or adhesive proteins. In this review, the different strategies used (or could be used) to trap tumor cells are described, and relevant examples of their performance are analyzed.
Collapse
Affiliation(s)
- Mathie Najberg
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R + D Pharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Muhammad Haji Mansor
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- Center for Education and Research on Macromolecules (CERM), Université de Liège, Liège, Belgium
| | - Frank Boury
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R + D Pharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
| |
Collapse
|
196
|
Laviron M, Boissonnas A. Ontogeny of Tumor-Associated Macrophages. Front Immunol 2019; 10:1799. [PMID: 31417566 PMCID: PMC6684758 DOI: 10.3389/fimmu.2019.01799] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
Tumor-associated macrophages (TAM) represent the main immune cell population of the tumor microenvironment in most cancer. For decades, TAM have been the focus of intense investigation to understand how they modulate the tumor microenvironment and their implication in therapy failure. One consensus is that TAM are considered to exclusively originate from circulating monocyte precursors released from the bone marrow, fitting the original dogma of tissue-resident macrophage ontogeny. A second consensus proposed that TAM harbor either a classically activated M1 or alternatively activated M2 polarization profile, with almost opposite anti- and pro-tumoral activity respectively. These fundamental pillars are now revised in face of the latest discoveries on macrophage biology. Embryonic-derived macrophages were recently characterized as major contributors to the pool of tissue-resident macrophages in many tissues. Their turnover with macrophages derived from precursors of adult hematopoiesis seems to follow a regulation at the subtissular level. This has shed light on an ever more complex macrophage diversity in the tumor microenvironment than once thought and raise the question of their respective implication in tumor development compared to classical monocyte-derived macrophages. These recent advances highlight that TAM have actually not fully revealed their usefulness and deserve to be reconsidered. Understanding the link between TAM ontogeny and their various functions in tumor growth and interaction with the immune system represents one of the future challenges for cancer therapy.
Collapse
Affiliation(s)
- Marie Laviron
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses - CIMI, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses - CIMI, Paris, France
| |
Collapse
|
197
|
Yong SB, Chung JY, Song Y, Kim J, Ra S, Kim YH. Non-viral nano-immunotherapeutics targeting tumor microenvironmental immune cells. Biomaterials 2019; 219:119401. [PMID: 31398571 DOI: 10.1016/j.biomaterials.2019.119401] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
The tumor microenvironmental immune cells (TMICs) consists of myeloid cells (tumor-associated macrophages, dendritic cells, myeloid-derived suppressor cells, etc.) and lymphocytes (T cells and B cells), all of which could be immunologically suppressed through their interactions with cancer cells. Immunological understanding of the tumor microenvironment (TME) has led to great success in the development of clinical cancer immunotherapeutic. The most advanced cancer immunotherapies are chimeric antigen receptor-modified T cells (CAR-T cells) and checkpoint inhibiting antibodies blocking CTLA4, PD-1 and PD-L1. However, many hurdles remain that should be addressed for improved therapeutic efficacy and reduced side effects such as cytokine release syndrome and patient-death. In recent decades, nanoparticles have been demonstrated as an efficient drug delivery tool due to their ease of modification, biocompatibility and intrinsic tumor targeting effect, and also been applied for cancer immunotherapy. In this review, we briefly introduce the immunosuppressive functions of TMICs and review recent advances in the development of TMIC-targeted nanotherapeutics for cancer immunotherapy. Tumor-associated macrophage (TAM)-targeted systems have shown to deplete or repolarize macrophages to M1 state for anti-tumoral immune responses. Tumor-infiltrating T cell (TIT)-targeted strategies have provided the activation of effector T cells and suppression of regulatory T cells in tumor, overcoming the current hurdles of single regimen checkpoint inhibitors. Lastly, recent studies on dendritic cell-targeted mRNA vaccination are discussed and the future perspectives of nano-immunotherapeutic for next-generation of cancer immunotherapy is emphasized.
Collapse
Affiliation(s)
- Seok-Beom Yong
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791, Seoul, Republic of Korea
| | - Jee Young Chung
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791, Seoul, Republic of Korea
| | - Yoonsung Song
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791, Seoul, Republic of Korea
| | - Jaehyun Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791, Seoul, Republic of Korea
| | - Sehee Ra
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791, Seoul, Republic of Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791, Seoul, Republic of Korea.
| |
Collapse
|
198
|
Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 2019; 12:76. [PMID: 31300030 PMCID: PMC6626377 DOI: 10.1186/s13045-019-0760-3] [Citation(s) in RCA: 845] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a major contributor to the death of cancer patients. It is driven not only by the intrinsic alterations in tumor cells, but also by the implicated cross-talk between cancer cells and their altered microenvironment components. Tumor-associated macrophages (TAMs) are the key cells that create an immunosuppressive tumor microenvironment (TME) by producing cytokines, chemokines, growth factors, and triggering the inhibitory immune checkpoint proteins release in T cells. In doing so, TAMs exhibit important functions in facilitating a metastatic cascade of cancer cells and, meanwhile, provide multiple targets of certain checkpoint blockade immunotherapies for opposing tumor progression. In this article, we summarize the regulating networks of TAM polarization and the mechanisms underlying TAM-facilitated metastasis. Based on the overview of current experimental evidence dissecting the critical roles of TAMs in tumor metastasis, we discuss and prospect the potential applications of TAM-focused therapeutic strategies in clinical cancer treatment at present and in the future.
Collapse
|
199
|
Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 2019. [PMID: 31300030 DOI: 10.1186/s13045-019-0760-3.pmid:31300030;pmcid:pmc6626377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Tumor metastasis is a major contributor to the death of cancer patients. It is driven not only by the intrinsic alterations in tumor cells, but also by the implicated cross-talk between cancer cells and their altered microenvironment components. Tumor-associated macrophages (TAMs) are the key cells that create an immunosuppressive tumor microenvironment (TME) by producing cytokines, chemokines, growth factors, and triggering the inhibitory immune checkpoint proteins release in T cells. In doing so, TAMs exhibit important functions in facilitating a metastatic cascade of cancer cells and, meanwhile, provide multiple targets of certain checkpoint blockade immunotherapies for opposing tumor progression. In this article, we summarize the regulating networks of TAM polarization and the mechanisms underlying TAM-facilitated metastasis. Based on the overview of current experimental evidence dissecting the critical roles of TAMs in tumor metastasis, we discuss and prospect the potential applications of TAM-focused therapeutic strategies in clinical cancer treatment at present and in the future.
Collapse
Affiliation(s)
- Yuxin Lin
- Department of Oncology, Hospital of Chinese Medicine of Changxing County, Huzhou, 313100, China
| | - Jianxin Xu
- Department of Oncology, Hospital of Chinese Medicine of Changxing County, Huzhou, 313100, China.
| | - Huiyin Lan
- Department of Radiation Oncology, Zhejiang Key Lab of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China.
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, MS-1, 1301 Catherine Street, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
200
|
Innate immune cell infiltration in melanoma metastases affects survival and is associated with BRAFV600E mutation status. Melanoma Res 2019; 29:30-37. [PMID: 30299387 DOI: 10.1097/cmr.0000000000000515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Little is known about the infiltrative pattern of innate immune cells in primary melanoma compared with their paired metastases and in BRAF-mutated tumors. Therefore, our aim was to characterize the inflammatory microenvironment in primary ulcerated and nonulcerated melanomas and paired metastases, to investigate the relation between inflammation and BRAF mutation in primary melanoma and paired metastases, and to evaluate the effect of the analyzed biomarkers on melanoma-specific survival. A total of 385 primary tumors and 96 paired metastases were stained with immunohistochemistry for BRAF, CD163+ macrophages, CD123+ plasmacytoid dendritic cells, CD66b+ neutrophils, and E-cadherin and estimated using objective computer-assisted image analysis. BRAF was semiquantitatively scored as either present or absent. In metastases of nonulcerated melanomas, we observed higher neutrophil (P=0.02) and macrophage (P=0.01) numbers. In the metastases of ulcerated melanomas, we found a higher number of macrophages (P<0.0001). Increase in the neutrophil numbers in the metastases was associated with poor patient survival after first relapse (hazard ratio=1.19, 95% confidence interval: 1.03-1.38, P=0.02). BRAF-positive primary tumors (P=0.02) and metastases (P=0.01) exhibited increased plasmacytoid dendritic cell numbers compared with BRAF-negative tumors. Lastly, primary melanomas in men had higher neutrophil numbers than women (P≤0.0001), and men had worse melanoma-specific survival (hazard ratio=1.52, 95% confidence interval: 1.04-2.21, P=0.03). Our data show that melanoma metastases are densely infiltrated with neutrophils, which affects survival. Our results also highlight the importance of recognizing the presence of inflammatory cells in the metastases as a prognostic marker, and that they may potentially be used to improve the precision of immunotherapy and BRAF targeted therapy.
Collapse
|