151
|
Kodahl AR, Zeuthen P, Binder H, Knoop AS, Ditzel HJ. Alterations in circulating miRNA levels following early-stage estrogen receptor-positive breast cancer resection in post-menopausal women. PLoS One 2014; 9:e101950. [PMID: 25004125 PMCID: PMC4086980 DOI: 10.1371/journal.pone.0101950] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/12/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Circulating microRNAs (miRNAs) exhibit remarkable stability and may serve as biomarkers in several clinical cancer settings. The aim of this study was to investigate changes in the levels of specific circulating miRNA following breast cancer surgery and evaluate whether these alterations were also observed in an independent data set. Methods Global miRNA analysis was performed on prospectively collected serum samples from 24 post-menopausal women with estrogen receptor-positive early-stage breast cancer before surgery and 3 weeks after tumor resection using global LNA-based quantitative real-time PCR (qPCR). Results Numbers of specific miRNAs detected in the samples ranged from 142 to 161, with 107 miRNAs detectable in all samples. After correction for multiple comparisons, 3 circulating miRNAs (miR-338-3p, miR-223 and miR-148a) exhibited significantly lower, and 1 miRNA (miR-107) higher levels in post-operative vs. pre-operative samples (p<0.05). No miRNAs were consistently undetectable in the post-operative samples compared to the pre-operative samples. Subsequently, our findings were compared to a dataset from a comparable patient population analyzed using similar study design and the same qPCR profiling platform, resulting in limited agreement. Conclusions A panel of 4 circulating miRNAs exhibited significantly altered levels following radical resection of primary ER+ breast cancers in post-menopausal women. These specific miRNAs may be involved in tumorigenesis and could potentially be used to monitor whether all cancer cells have been removed at surgery and/or, subsequently, whether the patients develop recurrence.
Collapse
Affiliation(s)
- Annette R. Kodahl
- Department of Oncology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
- * E-mail:
| | - Pernille Zeuthen
- Department of Surgery Z, Odense University Hospital, Odense, Denmark
| | - Harald Binder
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Johannes Gutenberg University, Mainz, Germany
| | - Ann S. Knoop
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henrik J. Ditzel
- Department of Oncology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
152
|
Joosse SA, Müller V, Steinbach B, Pantel K, Schwarzenbach H. Circulating cell-free cancer-testis MAGE-A RNA, BORIS RNA, let-7b and miR-202 in the blood of patients with breast cancer and benign breast diseases. Br J Cancer 2014; 111:909-17. [PMID: 24983365 PMCID: PMC4150270 DOI: 10.1038/bjc.2014.360] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/19/2014] [Accepted: 05/29/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND MAGE-A (melanoma-associated antigen-A) are promising targets for specific immunotherapy and their expression may be induced by the epigenetic factor BORIS. METHODS To determine their relevance for breast cancer, we quantified the levels of MAGE-A1, -A2, -A3, -A12 and BORIS mRNA, as well as microRNAs let-7b and miR-202 in pre- and postoperative serum of 102 and 34 breast cancer patients, respectively, and in serum of 26 patients with benign breast diseases and 37 healthy women by real-time PCR. The mean follow-up time of the cancer patients was 6.2 years. RESULTS The serum levels of MAGE-A and BORIS mRNA, as well as let-7b were significantly higher in patients with invasive carcinomas than in patients with benign breast diseases or healthy women (P<0.001), whereas the levels of miR-202 were elevated in both patient cohorts (P<0.001). In uni- and multivariate analyses, high levels of miR-202 significantly correlated with poor overall survival (P=0.0001). Transfection of breast cancer cells with synthetic microRNAs and their inhibitors showed that let-7b and miR-202 did not affect the protein expression of MAGE-A1. CONCLUSIONS Based on their cancer-specific increase in breast cancer patients, circulating MAGE-A and BORIS mRNAs may be further explored for early detection of breast cancer and monitoring of MAGE-directed immunotherapies. Moreover, serum miR-202 is associated with prognosis.
Collapse
Affiliation(s)
- S A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - V Müller
- Clinic of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - B Steinbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - K Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - H Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
153
|
Altered expression of miR-202 in cerebellum of multiple-system atrophy. Mol Neurobiol 2014; 51:180-6. [PMID: 24981430 DOI: 10.1007/s12035-014-8788-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
Cerebellar degeneration is a devastating manifestation of cerebellar-type multiple-system atrophy (MSA), a rapidly progressive neurodegenerative disease, and the exact pathogenesis is unknown. Here, we examined the expression of micro-RNAs (miRNAs), which are short noncoding RNAs, in the cerebellum of MSA and the key target genes. miRNA microarray found 11 miRNAs with significantly different expression in MSA cerebellum compared to cerebellum from age-, sex-, and postmortem interval-matched controls. miR-202 was the most upregulated in the MSA samples. In silico analysis, followed by target gene luciferase assay, in vitro transfection, and Western blotting in human samples showed that miR-202 downregulates Oct1 (Pou2f1), a transcription factor expressed in cerebellar Purkinje cells. Transfection of Neuro-2a cells with miR-202 enhanced oxidative stress-induced cell death, and an antagomir to miR-202 inhibited this effect of miR-202. This study provides novel insight into the role of miRNA in cerebellar degeneration and suggests that miR-202 is a key miRNA mediating the pathogenesis of MSA.
Collapse
|
154
|
Traver S, Assou S, Scalici E, Haouzi D, Al-Edani T, Belloc S, Hamamah S. Cell-free nucleic acids as non-invasive biomarkers of gynecological cancers, ovarian, endometrial and obstetric disorders and fetal aneuploidy. Hum Reprod Update 2014; 20:905-23. [PMID: 24973359 DOI: 10.1093/humupd/dmu031] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Proper folliculogenesis is fundamental to obtain a competent oocyte that, once fertilized, can support the acquisition of embryo developmental competence and pregnancy. MicroRNAs (miRNAs) are crucial regulators of folliculogenesis, which are expressed in the cumulus-oocyte complex and in granulosa cells and some can also be found in the bloodstream. These circulating miRNAs are intensively studied and used as diagnostic/prognostic markers of many diseases, including gynecological and pregnancy disorders. In addition, serum contains small amounts of cell-free DNA (cfDNA), presumably resulting from the release of genetic material from apoptotic/necrotic cells. The quantification of nucleic acids in serum samples could be used as a diagnostic tool for female infertility. METHODS An overview of the published literature on miRNAs, and particularly on the use of circulating miRNAs and cfDNA as non-invasive biomarkers of gynecological diseases, was performed (up to January 2014). RESULTS In the past decade, cell-free nucleic acids have been studied for potential use as biomarkers in many diseases, particularly in gynecological cancers, ovarian and endometrial disorders, as well as in pregnancy-related pathologies and fetal aneuploidy. The data strongly suggest that the concentration of cell-free nucleic acids in serum from IVF patients or in embryo culture medium could be related to the ovarian hormone status and embryo quality, respectively, and be used as a non-invasive biomarker of IVF outcome. CONCLUSIONS The profiling of circulating nucleic acids, such as miRNAs and cfDNA, opens new perspectives for the diagnosis/prognosis of ovarian disorders and for the prediction of IVF outcomes, namely (embryo quality and pregnancy).
Collapse
Affiliation(s)
- S Traver
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France
| | - S Assou
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France Université Montpellier 1, UFR de Médecine, Montpellier, France
| | - E Scalici
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France Université Montpellier 1, UFR de Médecine, Montpellier, France
| | - D Haouzi
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France
| | - T Al-Edani
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France Université Montpellier 1, UFR de Médecine, Montpellier, France
| | - S Belloc
- Eylau-Unilabs Laboratory, Paris, France
| | - S Hamamah
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France Université Montpellier 1, UFR de Médecine, Montpellier, France ART-PGD Department, Hôpital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| |
Collapse
|
155
|
Wu J, Lu P, Yang T, Wang L. Meta-analysis of the differentially expressed breast cancer-related microRNA expression profiles. J OBSTET GYNAECOL 2014; 34:630-3. [PMID: 24922277 DOI: 10.3109/01443615.2014.920782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs), as non-coding RNA molecules, play an important role in regulating gene expression in cancer development. Meta-analysis was used to screen overlapping differentially expressed miRNAs (DEmiRNAs) in three studies. The miRanda was used to identify target genes related to overlapping DEmiRNAs. These Gene Ontology (GO) and Encyclopaedia of Genes and Genomes (KEGG) database were applied to further predict the function of these target genes. As a result, we obtained seven overlapping miRNAs and six significantly over-represented GO terms closely related to breast cancer. After KEGG pathways analysis, a total of seven key target genes were involved in the Wnt signalling pathway (p = 0.0002). Our findings from this study suggest that the altered levels of miRNAs might have great potential to serve as novel, non-invasive biomarkers for early detection of breast cancer.
Collapse
Affiliation(s)
- J Wu
- Breast Cancer Diagnosis and Treatment Center Henan
| | | | | | | |
Collapse
|
156
|
Zhu J, Zheng Z, Wang J, Sun J, Wang P, Cheng X, Fu L, Zhang L, Wang Z, Li Z. Different miRNA expression profiles between human breast cancer tumors and serum. Front Genet 2014; 5:149. [PMID: 24904649 PMCID: PMC4033838 DOI: 10.3389/fgene.2014.00149] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/07/2014] [Indexed: 01/31/2023] Open
Abstract
A bunch of microRNAs (miRNAs) have been demonstrated to be aberrantly expressed in cancer tumor tissue and serum. The miRNA signatures identified from the serum samples could serve as potential noninvasive diagnostic markers for breast cancer. The role of the miRNAs in cancerigenesis is unclear. In this study, we generated the expression profiles of miRNAs from the paired breast cancer tumors, normal, tissue, and serum samples from eight patients using small RNA-sequencing. Serum samples from eight healthy individuals were used as normal controls. We identified total 174 significantly differentially expressed miRNAs between tumors and the normal tissues, and 109 miRNAs between serum from patients and serum from healthy individuals. There are only 10 common miRNAs. This suggests that only a small portion of tumor miRNAs are released into serum selectively. Interestingly, the expression change pattern of 28 miRNAs is opposite between breast cancer tumors and serum. Functional analysis shows that the differentially expressed miRNAs and their target genes form a complex interaction network affecting many biological processes and involving in many types of cancer such as prostate cancer, basal cell carcinoma, acute myeloid leukemia, and more.
Collapse
Affiliation(s)
- Jie Zhu
- Clinical laboratory, Taizhou Central Hospital, Taizhou, Zhejiang, China Zhejiang, China
| | - Zhibao Zheng
- Department of Oncology, Taizhou Central Hospital, Taizhou Zhejiang, China
| | - Jia Wang
- Tumor Hospital of Zhejiang Province, Hangzhou Zhejiang, China
| | - Jinhua Sun
- JoinGenome Bioinformatics Company, Hangzhou Zhejiang, China
| | - Pan Wang
- Clinical laboratory, Taizhou Central Hospital, Taizhou, Zhejiang, China Zhejiang, China
| | - Xianying Cheng
- JoinGenome Bioinformatics Company, Hangzhou Zhejiang, China
| | - Lun Fu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou Zhejiang, China
| | - Liming Zhang
- Clinical laboratory, Taizhou Central Hospital, Taizhou, Zhejiang, China Zhejiang, China
| | - Zuojun Wang
- Clinical laboratory, Taizhou Central Hospital, Taizhou, Zhejiang, China Zhejiang, China
| | - Zhaoyun Li
- Clinical laboratory, Taizhou Central Hospital, Taizhou, Zhejiang, China Zhejiang, China ; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou Zhejiang, China
| |
Collapse
|
157
|
Zheng XH, Cui C, Ruan HL, Xue WQ, Zhang SD, Hu YZ, Zhou XX, Jia WH. Plasma microRNA profiling in nasopharyngeal carcinoma patients reveals miR-548q and miR-483-5p as potential biomarkers. CHINESE JOURNAL OF CANCER 2014; 33:330-8. [PMID: 24874644 PMCID: PMC4110465 DOI: 10.5732/cjc.013.10246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MicroRNAs (miRNAs), which play a role in tumorigenesis, may also serve as diagnostic or prognostic biomarkers. However, studies on human miRNA profiles in plasma from nasopharyngeal carcinoma (NPC) patients are in their infancy. Here, we used microarrays to perform systematic profiling of human miRNAs in plasma from NPC patients. We subsequently used real-time quantitative polymerase chain reaction (Q-PCR) to validate miRNAs with aberrant expression that could serve as potential biomarkers. By comparing the plasma miRNA profiles of 31 NPC patients and 19 controls, 39 of 887 human miRNAs were found to be aberrantly expressed. Considering the fold change and P value, miR-548q and miR-483-5p were validated in 132 samples from 82 NPC patients and 50 controls. Moreover, high expression of miR-548q and miR-483-5p was further found in 3 NPC cell lines and clinical biopsy tissues from 54 NPC patients and 22 controls. Our results revealed that miR-548q and miR-483-5p are potential biomarkers of NPC. Combining the receiver operating characteristic (ROC) analyses of these 2 miRNAs, an area under the ROC curve (AUC) of 0.737 with 67.1% sensitivity and 68.0% specificity were obtained, showing the preliminary diagnostic value of plasma miRNAs. Moreover, most NPC patients with a poor outcome exhibited high expression (> median) of miR-548q (70.6%) and miR-483-5p (64.7%) in tissue samples, indicating their prognostic value. The high expression levels of miR-548q and miR-483-5p in plasma, cell lines, and clinical tissues of NPC patients indicate that their roles in NPC should be explored in the future.
Collapse
Affiliation(s)
- Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Perry MM, Tsitsiou E, Austin PJ, Lindsay MA, Gibeon DS, Adcock IM, Chung KF. Role of non-coding RNAs in maintaining primary airway smooth muscle cells. Respir Res 2014; 15:58. [PMID: 24886442 PMCID: PMC4039655 DOI: 10.1186/1465-9921-15-58] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/28/2014] [Indexed: 12/16/2022] Open
Abstract
Background The airway smooth muscle (ASM) cell maintains its own proliferative rate and contributes to the inflammatory response in the airways, effects that are inhibited by corticosteroids, used in the treatment of airways diseases. Objective We determined the differential expression of mRNAs, microRNAs (miRNAs) and long noncoding RNA species (lncRNAs) in primary ASM cells following treatment with a corticosteroid, dexamethasone, and fetal calf serum (FCS). Methods mRNA, miRNA and lncRNA expression was measured by microarray and quantitative real-time PCR. Results A small number of miRNAs (including miR-150, −371-5p, −718, −940, −1181, −1207-5p, −1915, and −3663-3p) were decreased following exposure to dexamethasone and FCS. The mRNA targets of these miRNAs were increased in expression. The changes in mRNA expression were associated with regulation of ASM actin cytoskeleton. We also observed changes in expression of lncRNAs, including natural antisense, pseudogenes, intronic lncRNAs, and intergenic lncRNAs following dexamethasone and FCS. We confirmed the change in expression of three of these, LINC00882, LINC00883, PVT1, and its transcriptional activator, c-MYC. We propose that four of these lincRNAs (RP11-46A10.4, LINC00883, BCYRN1, and LINC00882) act as miRNA ‘sponges’ for 4 miRNAs (miR-150, −371-5p, −940, −1207-5p). Conclusion This in-vitro model of primary ASM cell phenotype was associated with the regulation of several ncRNAs. Their identification allows for in-vitro functional experimentation to establish causality with the primary ASM phenotype, and in airway diseases such as asthma and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Mark M Perry
- Experimental Studies, National Heart and Lung Institute, Imperial College, London & Royal Brompton NIHR Biomedical Research Unit, Dovehouse Street, London SW3 6LY, UK.
| | | | | | | | | | | | | |
Collapse
|
159
|
Abstract
More than two decades ago, microfluidics began to show its impact in biological research. Since then, the field of microfluidics has evolving rapidly. Cancer is one of the leading causes of death worldwide. Microfluidics holds great promise in cancer diagnosis and also serves as an emerging tool for understanding cancer biology. Microfluidics can be valuable for cancer investigation due to its high sensitivity, high throughput, less material-consumption, low cost, and enhanced spatio-temporal control. The physical laws on microscale offer an advantage enabling the control of physics, biology, chemistry and physiology at cellular level. Furthermore, microfluidic based platforms are portable and can be easily designed for point-of-care diagnostics. Developing and applying the state of the art microfluidic technologies to address the unmet challenges in cancer can expand the horizons of not only fundamental biology but also the management of disease and patient care. Despite the various microfluidic technologies available in the field, few have been tested clinically, which can be attributed to the various challenges existing in bridging the gap between the emerging technology and real world applications. We present a review of role of microfluidics in cancer research, including the history, recent advances and future directions to explore where the field stand currently in addressing complex clinical challenges and future of it. This review identifies four critical areas in cancer research, in which microfluidics can change the current paradigm. These include cancer cell isolation, molecular diagnostics, tumor biology and high-throughput screening for therapeutics. In addition, some of our lab's current research is presented in the corresponding sections.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
160
|
Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: a case control study. Mol Oncol 2014; 8:874-83. [PMID: 24694649 PMCID: PMC5528529 DOI: 10.1016/j.molonc.2014.03.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/06/2014] [Indexed: 12/04/2022] Open
Abstract
Introduction There are currently no highly sensitive and specific minimally invasive biomarkers for detection of early‐stage breast cancer. MicroRNAs (miRNAs) are present in the circulation and may be unique biomarkers for early diagnosis of human cancers. The aim of this study was to investigate the differential expression of miRNAs in the serum of breast cancer patients and healthy controls. Methods Global miRNA analysis was performed on serum from 48 patients with ER‐positive early‐stage breast cancer obtained at diagnosis (24 lymph node‐positive and 24 lymph node‐negative) and 24 age‐matched healthy controls using LNA‐based quantitative real‐time PCR (qRT‐PCR). A signature of miRNAs was subsequently validated in an independent set of 111 serum samples from 60 patients with early‐stage breast cancer and 51 healthy controls and further tested for reproducibility in 3 independent data sets from the GEO Database. Results A multivariable signature consisting of 9 miRNAs (miR‐15a, miR‐18a, miR‐107, miR‐133a, miR‐139‐5p, miR‐143, miR‐145, miR‐365, miR‐425) was identified that provided considerable discrimination between breast cancer patients and healthy controls. Further, the ability of the 9 miRNA signature to stratify samples from breast cancer patients and healthy controls was confirmed in the validation set (p = 0.012) with a corresponding AUC = 0.665 in the ROC‐curve analysis. No association between miRNA expression and tumor grade, tumor size, menopausal‐ or lymph node status was observed. The signature was also successfully validated in a previously published independent data set of circulating miRNAs in early‐stage breast cancer (p = 0.024). Conclusions We present herein a 9 miRNA signature capable of discriminating between ER‐positive breast cancer and healthy controls. Using a specific algorithm based on the 9 miRNA signature, the risk for future individuals can be predicted. Since microRNAs are highly stable in blood components, this signature might be useful in the development of a blood‐based multi‐marker test to improve early detection of breast cancer. Such a test could potentially be used as a screening tool to identify individuals who would benefit from further diagnostic assessment. Novel circulating miRNA signature in early‐stage breast cancer. May improve early detection of breast cancer. A risk score reflects the risk of breast cancer. Possible new screening tool in addition to mammography.
Collapse
|
161
|
He T, Qi F, Jia L, Wang S, Song N, Guo L, Fu Y, Luo Y. MicroRNA-542-3p inhibits tumour angiogenesis by targeting angiopoietin-2. J Pathol 2014; 232:499-508. [PMID: 24403060 DOI: 10.1002/path.4324] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/15/2013] [Accepted: 12/20/2013] [Indexed: 01/08/2023]
Abstract
Angiopoietin-2 (Angpt2) plays a critical role in angiogenesis and tumour progression. Therapeutic targeting of Angpt2 has been implicated as a promising strategy for cancer treatment. Whereas miRNAs are emerging as important modulators of angiogenesis, regulation of Angpt2 by miRNAs has not been established. Here we firstly report that Ang2 is targeted by a microRNA, miRNA-542-3p, which inhibits tumour progression by impairing Ang2's pro-angiogenic activity. In cultured endothelial cells, miR-542-3p inhibited translation of Angpt2 mRNA by binding to its 3' UTR, and addition of miR-542-3p to cultured endothelial cells attenuated angiogenesis. Administration of miR-542-3p to tumour-bearing mice reduced tumour growth, angiogenesis and metastasis. Furthermore, the level of miR-542-3p in primary breast carcinomas correlated inversely with clinical progression in primary tumour samples from stage III and IV patients. Together, these findings uncover a novel regulatory pathway whereby an anti-angiogenic miR-542-3p directly targets the key angiogenesis-promoting protein Angpt2, suggesting that miR-542-3p may represent a promising target for anti-angiogenic therapy and a potential marker for monitoring disease progression.
Collapse
Affiliation(s)
- Ting He
- National Engineering Laboratory for Anti-tumour Protein Therapeutics, Beijing Key Laboratory for Protein Therapeutics and Cancer Biology Laboratory, and School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Murata K, Ito H, Yoshitomi H, Yamamoto K, Fukuda A, Yoshikawa J, Furu M, Ishikawa M, Shibuya H, Matsuda S. Inhibition of miR-92a enhances fracture healing via promoting angiogenesis in a model of stabilized fracture in young mice. J Bone Miner Res 2014; 29:316-26. [PMID: 23857760 DOI: 10.1002/jbmr.2040] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 06/10/2013] [Accepted: 06/24/2013] [Indexed: 02/02/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small noncoding RNAs regulating the activities of target mRNAs and cellular processes. Although no miRNA has been reported to play an important role in the regulation of fracture healing, several miRNAs control key elements in tissue repair processes such as inflammation, hypoxia response, angiogenesis, stem cell differentiation, osteogenesis, and chondrogenesis. We compared the plasma concentrations of 134 miRNAs in 4 patients with trochanteric fractures and 4 healthy controls (HCs), and the levels of six miRNAs were dysregulated. Among these miRNAs, miR-92a levels were significantly decreased 24 hours after fracture, compared to HCs. In patients with a trochanteric fracture or a lumbar compression fracture, the plasma concentrations of miR-92a were lower on days 7 and 14, but had recovered on day 21 after the surgery or injury. To determine whether systemic downregulation of miR-92a can modulate fracture healing, we administered antimir-92a, designed using locked nucleic acid technology to inhibit miR-92a, to mice with a femoral fracture. Systemic administration of antimir-92a twice a week increased the callus volume and enhanced fracture healing. Enhancement of fracture healing was also observed after local administration of antimir-92a. Neovascularization was increased in mice treated with antimir-92a. These results suggest that plasma miR-92a plays a crucial role in bone fracture healing in human and that inhibition of miR-92a enhances fracture healing through angiogenesis and has therapeutic potential for bone repair.
Collapse
Affiliation(s)
- Koichi Murata
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Nöll G, Su Q, Heidel B, Yu Y. A reusable sensor for the label-free detection of specific oligonucleotides by surface plasmon fluorescence spectroscopy. Adv Healthc Mater 2014; 3:42-6. [PMID: 23788367 DOI: 10.1002/adhm.201300056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/19/2013] [Indexed: 01/07/2023]
Abstract
The development of a reusable molecular beacon (MB)-based sensor for the label-free detection of specific oligonucleotides using surface plasmon fluorescence spectroscopy (SPFS) as the readout method is described. The MBs are chemisorbed at planar gold surfaces serving as fluorescence quenching units. Target oligonucleotides of 24 bases can be detected within a few minutes at high single-mismatch discrimination rates.
Collapse
Affiliation(s)
- Gilbert Nöll
- Nöll Junior Research Group for Nanotechnology, Siegen University, Faculty IV, Department of Chemistry-Biology, Organic Chemistry, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | | | | | | |
Collapse
|
164
|
Abstract
microRNAs (miRNAs) are small, nonprotein-coding RNAs that function as posttranscriptional regulators of target genes. miRNAs are involved in multiple cell differentiation, proliferation, and apoptosis processes that are closely related to tumorigenesis. Circulating miRNAs are promising cancer biomarkers under development with great translational potential in personalized medicine. Here, we describe the origin and function of circulating miRNAs and compare the current new high-throughput technology applied to miRNA quantitation. The latest publications on circulating miRNAs were summarized, indicating that miRNAs are potential biomarkers of diagnosis, prognosis, and treatment response of major cancer types including prostate, breast, lung, colorectal, and hematological cancers. We addressed the strengths and limitations of applying circulating miRNAs in clinical laboratory and several issues associated with the accurate measurement of circulating miRNAs.
Collapse
Affiliation(s)
- Meng Chen
- Department of Laboratory Medicine, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George A Calin
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing H Meng
- Department of Laboratory Medicine, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
165
|
McDermott AM, Kerin MJ, Miller N. Identification and validation of miRNAs as endogenous controls for RQ-PCR in blood specimens for breast cancer studies. PLoS One 2013; 8:e83718. [PMID: 24391813 PMCID: PMC3877087 DOI: 10.1371/journal.pone.0083718] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/06/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction A prerequisite to accurate interpretation of RQ-PCR data is robust data normalization. A commonly used method is to compare the cycle threshold (CT) of target miRNAs with those of a stably expressed endogenous (EC) miRNA(s) from the same sample. Despite the large number of studies reporting miRNA expression patterns, comparatively few appropriate ECs have been reported thus far. The purpose of this study was to identify stably expressed miRNAs with which to normalize RQ-PCR data derived from human blood specimens. Methods MiRNA profiling of approximately 380 miRNAs was performed on RNA derived from blood specimens from 10 women with breast cancer and 10 matched controls. Analysis of mean expression values across the dataset (GME) identified stably expressed candidates. Additional candidates were selected from the literature and analyzed by the geNorm algorithm. Further validation of three candidate ECs by RQ-PCR was performed in a larger cohort (n = 40 cancer, n = 20 control) was performed, including analysis by geNorm and NormFinder algorithms. Results Microarray screening identified 10 candidate ECs with expression patterns closest to the global mean. Geometric averaging of candidate ECs from the literature using geNorm identified miR-425 as the most stably expressed miRNA. MiR-425 and miR-16 were the best combination, achieving the lowest V-value of 0.185. Further validation by RQ-PCR confirmed that miR-16 and miR-425 were the most stably expressed ECs overall. Their combined use to normalize expression data enabled the detection of altered target miRNA expression that reliably differentiated between cancers and controls in human blood specimens. Conclusion This study identified that the combined use of 2 miRNAs, (miR-16 and miR-425) to normalize RQ-PCR data generated more reliable results than using either miRNA alone, or use of U6. Further investigation into suitable ECs for use in miRNA RQ-PCR studies is warranted.
Collapse
Affiliation(s)
- Ailbhe M. McDermott
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
- * E-mail:
| | - Michael J. Kerin
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Nicola Miller
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| |
Collapse
|
166
|
Mookherjee N, El-Gabalawy HS. High degree of correlation between whole blood and PBMC expression levels of miR-155 and miR-146a in healthy controls and rheumatoid arthritis patients. J Immunol Methods 2013; 400-401:106-10. [DOI: 10.1016/j.jim.2013.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 02/09/2023]
|
167
|
Sohel MMH, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft C, Rings F, Uddin MJ, Spencer TE, Schellander K, Tesfaye D. Exosomal and Non-Exosomal Transport of Extra-Cellular microRNAs in Follicular Fluid: Implications for Bovine Oocyte Developmental Competence. PLoS One 2013; 8:e78505. [PMID: 24223816 PMCID: PMC3817212 DOI: 10.1371/journal.pone.0078505] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 09/14/2013] [Indexed: 12/22/2022] Open
Abstract
Cell-cell communication within the follicle involves many signaling molecules, and this process may be mediated by secretion and uptake of exosomes that contain several bioactive molecules including extra-cellular miRNAs. Follicular fluid and cells from individual follicles of cattle were grouped based on Brilliant Cresyl Blue (BCB) staining of the corresponding oocytes. Both Exoquick precipitation and differential ultracentrifugation were used to separate the exosome and non-exosomal fraction of follicular fluid. Following miRNA isolation from both fractions, the human miRCURY LNA™ Universal RT miRNA PCR array system was used to profile miRNA expression. This analysis found that miRNAs were present in both exosomal and non-exosomal fraction of bovine follicular fluid. We found 25 miRNAs differentially expressed (16 up and 9 down) in exosomes and 30 miRNAs differentially expressed (21 up and 9 down) in non-exosomal fraction of follicular fluid in comparison of BCB- versus BCB+ oocyte groups. Expression of selected miRNAs was detected in theca, granulosa and cumulus oocyte complex. To further explore the potential roles of these follicular fluid derived extra-cellular miRNAs, the potential target genes were predicted, and functional annotation and pathway analysis revealed most of these pathways are known regulators of follicular development and oocyte growth. In order to validate exosome mediated cell-cell communication within follicular microenvironment, we demonstrated uptake of exosomes and resulting increase of endogenous miRNA level and subsequent alteration of mRNA levels in follicular cells in vitro. This study demonstrates for the first time, the presence of exosome or non-exosome mediated transfer of miRNA in the bovine follicular fluid, and oocyte growth dependent variation in extra-cellular miRNA signatures in the follicular environment.
Collapse
Affiliation(s)
| | - Michael Hoelker
- Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | | | | | - Ernst Tholen
- Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Christian Looft
- Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Franca Rings
- Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | | | - Thomas E. Spencer
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Karl Schellander
- Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
168
|
Wang J, Webb-Robertson BJM, Matzke MM, Varnum SM, Brown JN, Riensche RM, Adkins JN, Jacobs JM, Hoidal JR, Scholand MB, Pounds JG, Blackburn MR, Rodland KD, McDermott JE. A semiautomated framework for integrating expert knowledge into disease marker identification. DISEASE MARKERS 2013; 35:513-23. [PMID: 24223463 PMCID: PMC3809975 DOI: 10.1155/2013/613529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/13/2013] [Indexed: 01/23/2023]
Abstract
BACKGROUND The availability of large complex data sets generated by high throughput technologies has enabled the recent proliferation of disease biomarker studies. However, a recurring problem in deriving biological information from large data sets is how to best incorporate expert knowledge into the biomarker selection process. OBJECTIVE To develop a generalizable framework that can incorporate expert knowledge into data-driven processes in a semiautomated way while providing a metric for optimization in a biomarker selection scheme. METHODS The framework was implemented as a pipeline consisting of five components for the identification of signatures from integrated clustering (ISIC). Expert knowledge was integrated into the biomarker identification process using the combination of two distinct approaches; a distance-based clustering approach and an expert knowledge-driven functional selection. RESULTS The utility of the developed framework ISIC was demonstrated on proteomics data from a study of chronic obstructive pulmonary disease (COPD). Biomarker candidates were identified in a mouse model using ISIC and validated in a study of a human cohort. CONCLUSIONS Expert knowledge can be introduced into a biomarker discovery process in different ways to enhance the robustness of selected marker candidates. Developing strategies for extracting orthogonal and robust features from large data sets increases the chances of success in biomarker identification.
Collapse
Affiliation(s)
- Jing Wang
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | - Melissa M. Matzke
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Susan M. Varnum
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Joseph N. Brown
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Roderick M. Riensche
- Knowledge Discovery and Informatics, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jon M. Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - John R. Hoidal
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Mary Beth Scholand
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Joel G. Pounds
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Michael R. Blackburn
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA
| | - Karin D. Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jason E. McDermott
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
169
|
Wang PY, Gong HT, Li BF, Lv CL, Wang HT, Zhou HH, Li XX, Xie SY, Jiang BF. Higher expression of circulating miR-182 as a novel biomarker for breast cancer. Oncol Lett 2013; 6:1681-1686. [PMID: 24260062 PMCID: PMC3834356 DOI: 10.3892/ol.2013.1593] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 09/09/2013] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs), present in the serum in a stable and reproducible manner, may be used as biomarkers for various diseases. Few studies have previously investigated circulating miRNAs in the peripheral blood of breast cancer (BC) patients. To identify the role of serum miR-182 levels in BC, the present study detected miR-182 levels in the serum of 46 BC patients and 58 controls, by quantitative PCR. The results showed that the serum miR-182 levels in BC patients were significantly higher compared with the serum of healthy controls (P<0.01). The miR-182 was also overexpressed in the BC tissues compared with the para-carcinoma tissues. Furthermore, the serum levels of miR-182 in the estrogen receptor (ER)-positive patients were considerably lower compared with those in the ER-negative patients. The serum levels of miR-182 in the progesterone receptor (PR)-positive patients were also found to be lower compared with those in the PR-negative patients. The current study highlights results consistent with miR-182 as a novel and valuable biomarker for the diagnosis of BC.
Collapse
Affiliation(s)
- Ping-Yu Wang
- School of Public Health, Shandong University, Jinan, Shandong 250012, P.R. China ; Key Laboratory of Tumour Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Paul S, Maji P. Rough sets for in silico identification of differentially expressed miRNAs. Int J Nanomedicine 2013; 8 Suppl 1:63-74. [PMID: 24098080 PMCID: PMC3790281 DOI: 10.2147/ijn.s40739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The microRNAs, also known as miRNAs, are the class of small noncoding RNAs. They repress the expression of a gene posttranscriptionally. In effect, they regulate expression of a gene or protein. It has been observed that they play an important role in various cellular processes and thus help in carrying out normal functioning of a cell. However, dysregulation of miRNAs is found to be a major cause of a disease. Various studies have also shown the role of miRNAs in cancer and the utility of miRNAs for the diagnosis of cancer and other diseases. Unlike with mRNAs, a modest number of miRNAs might be sufficient to classify human cancers. However, the absence of a robust method to identify differentially expressed miRNAs makes this an open problem. In this regard, this paper presents a novel approach for in silico identification of differentially expressed miRNAs from microarray expression data sets. It integrates judiciously the theory of rough sets and merit of the so-called B.632+ bootstrap error estimate. While rough sets select relevant and significant miRNAs from expression data, the B.632+ error rate minimizes the variability and bias of the derived results. The effectiveness of the proposed approach, along with a comparison with other related approaches, is demonstrated on several miRNA microarray expression data sets, using the support vector machine.
Collapse
Affiliation(s)
- Sushmita Paul
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
171
|
Surgucheva I, Gunewardena S, Rao HS, Surguchov A. Cell-specific post-transcriptional regulation of γ-synuclein gene by micro-RNAs. PLoS One 2013; 8:e73786. [PMID: 24040069 PMCID: PMC3770685 DOI: 10.1371/journal.pone.0073786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/28/2013] [Indexed: 11/18/2022] Open
Abstract
γ-Synuclein is a member of the synucleins family of small proteins, which consists of three members:α, β- and γ-synuclein. γ-Synuclein is abnormally expressed in a high percentage of advanced and metastatic tumors, but not in normal or benign tissues. Furthermore, γ-synuclein expression is strongly correlated with disease progression, and can stimulate proliferation, induce invasion and metastasis of cancer cells. γ-Synuclein transcription is regulated basically through the binding of AP-1 to specific sequences in intron 1. Here we show that γ-synuclein expression may be also regulated by micro RNAs (miRs) on post-transcriptional level. According to prediction by several methods, the 3′-untranslated region (UTR) of γ-synuclein gene contains targets for miRs. Insertion of γ-synuclein 3′-UTR downstream of the reporter luciferase (LUC) gene causes a 51% reduction of LUC activity after transfection into SKBR3 and Y79 cells, confirming the presence of efficient targets for miRs in this fragment. Expression of miR-4437 and miR-4674 for which putative targets in 3′-UTR were predicted caused a 61.2% and 60.1% reduction of endogenous γ-synuclein expression confirming their role in gene expression regulation. On the other hand, in cells overexpressing γ-synuclein no significant effect of miRs on γ-synuclein expression was found suggesting that miRs exert their regulatory effect only at low or moderate, but not at high level of γ-synuclein expression. Elevated level of γ-synuclein differentially changes the level of several miRs expression, upregulating the level of some miRs and downregulating the level of others. Three miRs upregulated as a result of γ-synuclein overexpression, i.e., miR-885-3p, miR-138 and miR-497 have putative targets in 3′-UTR of the γ-synuclein gene. Some of miRs differentially regulated by γ-synuclein may modulate signaling pathways and cancer related gene expression. This study demonstrates that miRs might provide cell-specific regulation of γ-synuclein expression and set the stage to further evaluate their role in pathophysiological processes.
Collapse
Affiliation(s)
- Irina Surgucheva
- Retinal Biology Research Laboratory, Veterans Administration Medical Center, Kansas City, Missouri, United States of America
- Department of Neurology, Kansas University Medical Center, Kansas City, Kansas, United States of America
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, Kansas, United States of America
| | - H. Shanker Rao
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, Kansas, United States of America
| | - Andrei Surguchov
- Retinal Biology Research Laboratory, Veterans Administration Medical Center, Kansas City, Missouri, United States of America
- Department of Neurology, Kansas University Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
172
|
μHEM for identification of differentially expressed miRNAs using hypercuboid equivalence partition matrix. BMC Bioinformatics 2013; 14:266. [PMID: 24006840 PMCID: PMC3844490 DOI: 10.1186/1471-2105-14-266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/30/2013] [Indexed: 11/25/2022] Open
Abstract
Background The miRNAs, a class of short approximately 22‐nucleotide non‐coding RNAs, often act post‐transcriptionally to inhibit mRNA expression. In effect, they control gene expression by targeting mRNA. They also help in carrying out normal functioning of a cell as they play an important role in various cellular processes. However, dysregulation of miRNAs is found to be a major cause of a disease. It has been demonstrated that miRNA expression is altered in many human cancers, suggesting that they may play an important role as disease biomarkers. Multiple reports have also noted the utility of miRNAs for the diagnosis of cancer. Among the large number of miRNAs present in a microarray data, a modest number might be sufficient to classify human cancers. Hence, the identification of differentially expressed miRNAs is an important problem particularly for the data sets with large number of miRNAs and small number of samples. Results In this regard, a new miRNA selection algorithm, called μHEM, is presented based on rough hypercuboid approach. It selects a set of miRNAs from a microarray data by maximizing both relevance and significance of the selected miRNAs. The degree of dependency of sample categories on miRNAs is defined, based on the concept of hypercuboid equivalence partition matrix, to measure both relevance and significance of miRNAs. The effectiveness of the new approach is demonstrated on six publicly available miRNA expression data sets using support vector machine. The.632+ bootstrap error estimate is used to minimize the variability and biasedness of the derived results. Conclusions An important finding is that the μHEM algorithm achieves lowest B.632+ error rate of support vector machine with a reduced set of differentially expressed miRNAs on four expression data sets compare to some existing machine learning and statistical methods, while for other two data sets, the error rate of the μHEM algorithm is comparable with the existing techniques. The results on several microarray data sets demonstrate that the proposed method can bring a remarkable improvement on miRNA selection problem. The method is a potentially useful tool for exploration of miRNA expression data and identification of differentially expressed miRNAs worth further investigation.
Collapse
|
173
|
Van Roosbroeck K, Pollet J, Calin GA. miRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev Mol Diagn 2013; 13:183-204. [PMID: 23477558 DOI: 10.1586/erm.12.134] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Noncoding RNAs (ncRNAs) are transcripts that have no apparent protein-coding capacity; however, many ncRNAs have been found to play a major biological role in human physiology. Their deregulation is implicated in many human diseases, but their exact roles are only beginning to be elucidated. Nevertheless, ncRNAs are extensively studied as a novel source of biomarkers, and the fact that they can be detected in body fluids makes them extremely suitable for this purpose. The authors mainly focus on ncRNAs as biomarkers in cancer, but also touch on other human diseases such as cardiovascular diseases, autoimmune diseases, neurological disorders and infectious diseases. The authors discuss the established methods and provide a selection of emerging new techniques that can be used to detect and quantify ncRNAs. Finally, the authors discuss ncRNAs as a new strategy for therapeutic interventions.
Collapse
Affiliation(s)
- Katrien Van Roosbroeck
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054, USA
| | | | | |
Collapse
|
174
|
Zhao Y, Li C, Wang M, Su L, Qu Y, Li J, Yu B, Yan M, Yu Y, Liu B, Zhu Z. Decrease of miR-202-3p expression, a novel tumor suppressor, in gastric cancer. PLoS One 2013; 8:e69756. [PMID: 23936094 PMCID: PMC3723650 DOI: 10.1371/journal.pone.0069756] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/11/2013] [Indexed: 01/02/2023] Open
Abstract
Emerging studies have indicated that microRNAs are involved in the development and progression of cancer. Here we found that miR-202-3p was frequently down-regulated in gastric cancer tissues. Overexpression of miR-202-3p in gastric cancer cells MKN-28 and BGC-823, markedly suppressed cell proliferation and induced cell apoptosis both in vitro and in vivo. Furthermore, Gli1 expression was frequently positive in gastric cancer tissues and inversely correlated with miR-133b expression. We demonstrate that the transcriptional factor Gli1 was a target of miR-202-3p and plays an essential role as a mediator of the biological effects of miR-202-3p in gastric cancer. MiR-202-3p also inhibited the expression of γ-catenin and BCL-2. Taken together, these findings suggest that miR-202-3p may function as a novel tumor suppressor in gastric cancer and its anti-tumor activity may attribute the direct targeting and inhibition of Gli1.
Collapse
Affiliation(s)
- Yu Zhao
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenglong Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Wang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Qu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Beiqin Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingyan Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (ZZ); (BL)
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (ZZ); (BL)
| |
Collapse
|
175
|
Murata K, Furu M, Yoshitomi H, Ishikawa M, Shibuya H, Hashimoto M, Imura Y, Fujii T, Ito H, Mimori T, Matsuda S. Comprehensive microRNA analysis identifies miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. PLoS One 2013; 8:e69118. [PMID: 23874885 PMCID: PMC3715465 DOI: 10.1371/journal.pone.0069118] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/03/2013] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are present in human plasma and known as a non-invasive biomarker for cancer detection. Our study was designed to identify plasma miRNAs specific for rheumatoid arthritis (RA) by a comprehensive array approach. We performed a systematic, array-based miRNA analysis on plasma samples from three RA patients and three healthy controls (HCs). Plasma miRNAs with more than four times change or with significant (P<0.05) change in expression, or detectable only in RA plasma, were confirmed with plasma from eight RA patients and eight HCs using real-time quantitative PCR. Consistently detectable miRNAs that were significantly different between RA patients and HCs were chosen for further validation with 102 RA patients and 104 HCs. The area under curves (AUC) were calculated after plotting the receiver operating characteristic (ROC) curves. To determine if these miRNAs are specific for RA, the concentrations of these miRNAs were analyzed in 24 patients with osteoarthritis (OA), and 11 patients with systemic lupus erythematosus (SLE). The array analysis and the subsequent confirmation in larger patient cohort identified significant alterations in plasma levels of seven miRNAs. The highest AUC was found for miR-125a-5p, followed in order by miR-24 and miR-26a. Multivariable logistic regression analysis showed that miR-24, miR-30a-5p, and miR-125a-5p were crucial factors for making detection model of RA and provided a formula for Estimated Probability of RA by plasma MiRNA (ePRAM), employing miR-24, miR-30a-5p and miR-125a-5p, which showed increased diagnostic accuracy (AUC: 0.89). The level of miR-24, miR-125a-5p, and ePRAM in OA and SLE patients were lower than that in RA. There was no significant difference in detection for anti-citrullinated protein antibody (ACPA)-positive and ACPA-negative RA patients. These results suggest that the plasma concentrations of miR-24 and miR-125a-5p, and ePRAM are potential diagnostic markers of RA even if patients were ACPA-negative.
Collapse
Affiliation(s)
- Koichi Murata
- Kyoto University Graduate School of Medicine, Department of Orthopaedic Surgery, Sakyo, Kyoto, Japan
| | - Moritoshi Furu
- Kyoto University Graduate School of Medicine, Department of Orthopaedic Surgery, Sakyo, Kyoto, Japan
- Kyoto University Graduate School of Medicine, Department of the Control for Rheumatic Diseases, Sakyo, Kyoto, Japan
| | - Hiroyuki Yoshitomi
- Kyoto University Graduate School of Medicine, Department of Orthopaedic Surgery, Sakyo, Kyoto, Japan
- Kyoto University Graduate School of Medicine, Center for Innovation in Immunoregulative Technology and Therapeutics, Sakyo, Kyoto, Japan
- * E-mail:
| | - Masahiro Ishikawa
- Kyoto University Graduate School of Medicine, Department of Orthopaedic Surgery, Sakyo, Kyoto, Japan
| | - Hideyuki Shibuya
- Kyoto University Graduate School of Medicine, Department of Orthopaedic Surgery, Sakyo, Kyoto, Japan
| | - Motomu Hashimoto
- Kyoto University Graduate School of Medicine, Department of the Control for Rheumatic Diseases, Sakyo, Kyoto, Japan
- Kyoto University Graduate School of Medicine, Department of Rheumatology and Clinical Immunology, Sakyo, Kyoto, Japan
| | - Yoshitaka Imura
- Kyoto University Graduate School of Medicine, Department of Rheumatology and Clinical Immunology, Sakyo, Kyoto, Japan
| | - Takao Fujii
- Kyoto University Graduate School of Medicine, Department of the Control for Rheumatic Diseases, Sakyo, Kyoto, Japan
- Kyoto University Graduate School of Medicine, Department of Rheumatology and Clinical Immunology, Sakyo, Kyoto, Japan
| | - Hiromu Ito
- Kyoto University Graduate School of Medicine, Department of Orthopaedic Surgery, Sakyo, Kyoto, Japan
- Kyoto University Graduate School of Medicine, Department of the Control for Rheumatic Diseases, Sakyo, Kyoto, Japan
| | - Tsuneyo Mimori
- Kyoto University Graduate School of Medicine, Department of the Control for Rheumatic Diseases, Sakyo, Kyoto, Japan
- Kyoto University Graduate School of Medicine, Department of Rheumatology and Clinical Immunology, Sakyo, Kyoto, Japan
| | - Shuichi Matsuda
- Kyoto University Graduate School of Medicine, Department of Orthopaedic Surgery, Sakyo, Kyoto, Japan
| |
Collapse
|
176
|
Sun Y, Zhang K, Fan G, Li J. Identification of circulating microRNAs as biomarkers in cancers: what have we got? Clin Chem Lab Med 2013; 50:2121-6. [PMID: 23087086 DOI: 10.1515/cclm-2012-0360] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/03/2012] [Indexed: 12/13/2022]
Abstract
During the past few years there has been great interest in the development of circulating microRNAs (miRNAs) as stable blood-based biomarkers for cancer detection. Deregulation of miRNAs in blood samples has shown considerable clinical utilities in cancers. Due to poorly characterized preanalytical and analytical variables and the lack of a standardized measurement protocol, the application of these miRNA fingerprints is hindered by conflicting results. In this review,we outline our current understanding of preanalytically and analytically confounding factors. We believe that great consideration should be taken in the development of circulating miRNA as tumor biomarkers.
Collapse
Affiliation(s)
- Yu Sun
- Beijing Hospital ofthe Ministry of Health, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
177
|
MicroRNAs: Are they indicators for prediction of response to radiotherapy in breast cancer? JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2013. [DOI: 10.1016/j.jmhi.2013.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
178
|
Pan X, Wang R, Wang ZX. The potential role of miR-451 in cancer diagnosis, prognosis, and therapy. Mol Cancer Ther 2013; 12:1153-62. [PMID: 23814177 DOI: 10.1158/1535-7163.mct-12-0802] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miRNA) are small noncoding RNAs that converge to maintain an intrinsic balance of various processes, including cell proliferation, differentiation, and apoptosis. Recent research efforts have been devoted to translating these basic discoveries into applications that could improve the early diagnosis and therapeutic outcome of patients with cancer. Early studies have shown that miRNA-451 (miR-451) is widely dysregulated in human cancers and plays a critical role in tumorigenesis and tumor progression. In this review, we summarize the potential use of miR-451 for cancer diagnosis, prognosis, and treatment. In addition, we discuss the possible mechanisms of miR-451 dysregulation and future challenges in development of miR-451 as a noninvasive biomarker and a potential therapeutic target in human cancers.
Collapse
Affiliation(s)
- Xuan Pan
- Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital of Jiangsu Province, Cancer Institution of Jiangsu Province, Nanjing 210009, Jiangsu, PR China.
| | | | | |
Collapse
|
179
|
Chan M, Liaw CS, Ji SM, Tan HH, Wong CY, Thike AA, Tan PH, Ho GH, Lee ASG. Identification of circulating microRNA signatures for breast cancer detection. Clin Cancer Res 2013; 19:4477-87. [PMID: 23797906 DOI: 10.1158/1078-0432.ccr-12-3401] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE There is a quest for novel noninvasive diagnostic markers for the detection of breast cancer. The goal of this study is to identify circulating microRNA (miRNA) signatures using a cohort of Asian Chinese patients with breast cancer, and to compare miRNA profiles between tumor and serum samples. EXPERIMENTAL DESIGN miRNA from paired breast cancer tumors, normal tissue, and serum samples derived from 32 patients were comprehensively profiled using microarrays or locked nucleic acid real-time PCR panels. Serum samples from healthy individuals (n = 22) were also used as normal controls. Significant serum miRNAs, identified by logistic regression, were validated in an independent set of serum samples from patients (n = 132) and healthy controls (n = 101). RESULTS The 20 most significant miRNAs differentially expressed in breast cancer tumors included miRNA (miR)-21, miR-10b, and miR-145, previously shown to be dysregulated in breast cancer. Only 7 miRNAs were overexpressed in both tumors and serum, suggesting that miRNAs may be released into the serum selectively. Interestingly, 16 of the 20 most significant miRNAs differentially expressed in serum samples were novel. MiR-1, miR-92a, miR-133a, and miR-133b were identified as the most important diagnostic markers, and were successfully validated; receiver operating characteristic curves derived from combinations of these miRNAs exhibited areas under the curves of 0.90 to 0.91. CONCLUSION The clinical use of miRNA signatures as a noninvasive diagnostic strategy is promising, but should be further validated for different subtypes of breast cancers.
Collapse
Affiliation(s)
- Maurice Chan
- Division of Medical Sciences, National Cancer Centre, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Yong FL, Law CW, Wang CW. Potentiality of a triple microRNA classifier: miR-193a-3p, miR-23a and miR-338-5p for early detection of colorectal cancer. BMC Cancer 2013; 13:280. [PMID: 23758639 PMCID: PMC3691634 DOI: 10.1186/1471-2407-13-280] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 05/14/2013] [Indexed: 02/06/2023] Open
Abstract
Background MicroRNAs (miRNAs) are short, non-coding RNA molecules that act as regulators of gene expression. Circulating blood miRNAs offer great potential as cancer biomarkers. The objective of this study was to correlate the differential expression of miRNAs in tissue and blood in the identification of biomarkers for early detection of colorectal cancer (CRC). Methods The study was divided into two phases: (I) Marker discovery by miRNA microarray using paired cancer tissues (n?=?30) and blood samples (CRC, n?=?42; control, n?=?18). (II) Marker validation by stem-loop reverse transcription real time PCR using an independent set of paired cancer tissues (n?=?30) and blood samples (CRC, n?=?70; control, n?=?32). Correlation analysis was determined by Pearson’s test. Logistic regression and receiver operating characteristics curve analyses were applied to obtain diagnostic utility of the miRNAs. Results Seven miRNAs (miR-150, miR-193a-3p, miR-23a, miR-23b, miR-338-5p, miR-342-3p and miR-483-3p) have been found to be differentially expressed in both tissue and blood samples. Significant positive correlations were observed in the tissue and blood levels of miR-193a-3p, miR-23a and miR-338-5p. Moreover, increased expressions of these miRNAs were detected in the more advanced stages. MiR-193a-3p, miR-23a and miR-338-5p were demonstrated as a classifier for CRC detection, yielding a receiver operating characteristic curve area of 0.887 (80.0% sensitivity, 84.4% specificity and 83.3% accuracy). Conclusion Dysregulations in circulating blood miRNAs are reflective of those in colorectal tissues. The triple miRNA classifier of miR-193a-3p, miR-23a and miR-338-5p appears to be a potential blood biomarker for early detection of CRC.
Collapse
Affiliation(s)
- Fung Lin Yong
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
181
|
Guttery DS, Blighe K, Page K, Marchese SD, Hills A, Coombes RC, Stebbing J, Shaw JA. Hide and seek: tell-tale signs of breast cancer lurking in the blood. Cancer Metastasis Rev 2013; 32:289-302. [PMID: 23108389 DOI: 10.1007/s10555-012-9414-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Breast cancer treatment is improving due to the introduction of new drugs, guided by molecular testing of the primary tumour for mutations/oncogenic drivers (e.g. HER2 gene amplification). However, tumour tissue is not always available for molecular analysis, intra-tumoural heterogeneity is common and the "cancer genome" is known to evolve with time, particularly following treatment as resistance develops. After resection, those patients with only residual micrometastases are likely to be cured but those with radiologically detectable overt disease are not. Thus, the discovery of blood test(s) that could (1) alert clinicians to early primary or recurrent disease and (2) monitor response to treatment could impact significantly on mortality. Towards this, we and others have focused on molecular profiling of circulating nucleic acids isolated from plasma, both cell-free DNA (cfDNA) and microRNAs, and the relationship of these to circulating tumour cells (CTCs). This review considers the utility of each as circulating biomarkers in breast cancer with particular emphasis on the bioinformatic tools available to support molecular profiling.
Collapse
Affiliation(s)
- David S Guttery
- Department of Cancer Studies and Molecular Medicine, Leicester Royal Infirmary, Leicester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Cheng X, Fu R, Gao M, Liu S, Li YQ, Song FH, Bruce I, Zhou LH, Wu W. Intrathecal application of short interfering RNA knocks down c-jun expression and augments spinal motoneuron death after root avulsion in adult rats. Neuroscience 2013; 241:268-79. [DOI: 10.1016/j.neuroscience.2013.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 03/07/2013] [Accepted: 03/07/2013] [Indexed: 12/21/2022]
|
183
|
Pinto R, Pilato B, Ottini L, Lambo R, Simone G, Paradiso A, Tommasi S. Different methylation and microRNA expression pattern in male and female familial breast cancer. J Cell Physiol 2013; 228:1264-9. [PMID: 23160909 DOI: 10.1002/jcp.24281] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/02/2012] [Indexed: 12/18/2022]
Abstract
Epigenetic regulation, has been very scarcely explored in familial breast cancer (BC). In the present study RASSF1A and RAR beta promoter methylation and miR17, miR21, miR 124, and let-7a expression were investigated to highlight possible differences of epigenetic regulation between male and female familial BC, also in comparison with sporadic BC. These epigenetic alterations were studied in 56 familial BC patients (27 males and 29 females) and in 16 female sporadic cases. RASSF1A resulted more frequently methylated in men than women (76% vs. 28%, respectively, P = 0.0001), while miR17 and let-7a expression frequency was higher in women than in men (miR17: 66% in women vs. 41% in men, P < 0.05; let-7a: 45% in women vs. 15% in men, P = 0.015). RASSF1A methylation affected 27.6% of familial BC while 83% of familial cases showed high expression of the gene (P = 0.025); on the contrary, only 17% of familial BC presented RAR beta methylation and 55% of familial cases overexpressed this gene (P = 0.005). Moreover, miR17, miR21, and let-7a resulted significantly overexpressed in familial compared to sporadic BC. RASSF1A overexpression (86% vs. 65%, P = 0.13) and RAR beta overexpression (57% vs. 32%, P = 0.11) were higher in BRCA1/2 carriers even if not statistical significance was reached. BRCA mutation carriers also demonstrated significant overexpression of: miR17 (93% vs. 35%, P = 0.0001), let-7a (64% vs. 16%, P = 0.002), and of miR21 (100% vs. 65%, P = 0.008). In conclusion, the present data suggest the involvement of RASSF1A in familial male BC, while miR17 and let-7a seem to be implied in familial female BC.
Collapse
Affiliation(s)
- Rosamaria Pinto
- Molecular Genetics Laboratory - NCRC Giovanni Paolo II, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
184
|
Cui C, Liu G, Huang Y, Lu X, Lu M, Huang X, Li W, Jiang M. MicroRNA profiling in great saphenous vein tissues of patients with chronic venous insufficiency. TOHOKU J EXP MED 2013; 228:341-50. [PMID: 23132275 DOI: 10.1620/tjem.228.341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chronic venous insufficiency (CVI) is a common disease characterized by structural and functional abnormalities of the venous system. Until recently, the pathogenesis of CVI remains largely unknown. MicroRNAs (miRNAs) are a family of endogenous small non-coding RNAs emerged as post-transcriptional gene repressors and play essential roles in diverse pathological processes including vascular disease. However, their roles in CVI have not been elucidated. In this study, we employed oligonucleotide microarrays to perform a genome-wide miRNAs profiling in the great saphenous vein (GSV) tissues of patients with CVI. Our results revealed a total of 14 miRNAs that are expressed differentially in GSV tissues. Among them nine miRNAs were found significantly up-regulated, while five miRNAs were down-regulated significantly. Real-time RT-PCR verified statistically consistent expression of three selected miRNAs (miR-34a, miR-155 and miR-202) with microarrays analysis. These three miRNAs, which were described as crucial regulators in many biological processes and vascular diseases, might also play important roles in CVI. Functional annotation of target genes of differentially expressed miRNAs via bioinformatics approaches revealed that these predicted targets were significantly enriched and involved in several key signaling pathways important for CVI, including mitogen-activated protein kinase pathways, pathways in cancer, apoptosis, and cell cycle, and p53 signaling pathways. In summary, miRNAs might involve in multiple signaling pathways contributing to the pathological processes of CVI. These data may provide fundamental insights into the molecular basis of CVI, which may aid in designing novel approaches for prevention and treatment of this complex disease.
Collapse
Affiliation(s)
- Chaoyi Cui
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Leidner RS, Li L, Thompson CL. Dampening enthusiasm for circulating microRNA in breast cancer. PLoS One 2013; 8:e57841. [PMID: 23472110 PMCID: PMC3589476 DOI: 10.1371/journal.pone.0057841] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/29/2013] [Indexed: 12/20/2022] Open
Abstract
Genome-wide platforms for high-throughput profiling of circulating miRNA (oligoarray or miR-Seq) offer enormous promise for agnostic discovery of circulating miRNA biomarkers as a pathway for development in breast cancer detection. By harmonizing data from 15 previous reports, we found widespread inconsistencies across prior studies. Whether this arises from differences in study design, such as sample source or profiling platform, is unclear. As a reproducibility experiment, we generated a genome-wide plasma miRNA dataset using the Illumina oligoarray and compared this to a publically available dataset generated using an identical sample size, substrate and profiling platform. Samples from 20 breast cancer patients, 20 mammography-screened controls, as well as 20 breast cancer patients after surgical resection and 10 female lung or colorectal cancer patients were included. After filtering for miRNAs derived from blood cells, and for low abundance miRNAs (non-detectable in over 10% of samples), a set of 522 plasma miRNAs remained, of which 46 were found to be differentially expressed between breast cancer patients and healthy controls (p<0.05), of which only 3 normalized to baseline levels in post-resection cases and were unique to breast cancer vs. lung or colorectal cancer (miR-708*, miR-92b* and miR-568, none previously reported). We were unable to demonstrate reproducibility by various measures between the two datasets. This finding, along with widespread inconsistencies across prior studies, highlight the need for better understanding of factors influencing circulating miRNA levels as prerequisites to progress in this area of translational research.
Collapse
Affiliation(s)
- Rom S. Leidner
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Li Li
- Department of Family Medicine and Community Health, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Cheryl L. Thompson
- Department of Family Medicine and Community Health, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
186
|
Kim T, Reitmair A. Non-Coding RNAs: Functional Aspects and Diagnostic Utility in Oncology. Int J Mol Sci 2013; 14:4934-68. [PMID: 23455466 PMCID: PMC3634484 DOI: 10.3390/ijms14034934] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/09/2013] [Accepted: 02/18/2013] [Indexed: 02/06/2023] Open
Abstract
Noncoding RNAs (ncRNAs) have been found to have roles in a large variety of biological processes. Recent studies indicate that ncRNAs are far more abundant and important than initially imagined, holding great promise for use in diagnostic, prognostic, and therapeutic applications. Within ncRNAs, microRNAs (miRNAs) are the most widely studied and characterized. They have been implicated in initiation and progression of a variety of human malignancies, including major pathologies such as cancers, arthritis, neurodegenerative disorders, and cardiovascular diseases. Their surprising stability in serum and other bodily fluids led to their rapid ascent as a novel class of biomarkers. For example, several properties of stable miRNAs, and perhaps other classes of ncRNAs, make them good candidate biomarkers for early cancer detection and for determining which preneoplastic lesions are likely to progress to cancer. Of particular interest is the identification of biomarker signatures, which may include traditional protein-based biomarkers, to improve risk assessment, detection, and prognosis. Here, we offer a comprehensive review of the ncRNA biomarker literature and discuss state-of-the-art technologies for their detection. Furthermore, we address the challenges present in miRNA detection and quantification, and outline future perspectives for development of next-generation biodetection assays employing multicolor alternating-laser excitation (ALEX) fluorescence spectroscopy.
Collapse
Affiliation(s)
- Taiho Kim
- Nesher Technologies, Inc., 2100 W. 3rd St. Los Angeles, CA 90057, USA.
| | | |
Collapse
|
187
|
Redova M, Sana J, Slaby O. Circulating miRNAs as new blood-based biomarkers for solid cancers. Future Oncol 2013; 9:387-402. [DOI: 10.2217/fon.12.192] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
188
|
Tang D, Zhang Q, Zhao S, Wang J, Lu K, Song Y, Zhao L, Kang X, Wang J, Xu S, Tian L. The expression and clinical significance of microRNA-1258 and heparanase in human breast cancer. Clin Biochem 2013; 46:926-32. [PMID: 23415719 DOI: 10.1016/j.clinbiochem.2013.01.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/13/2013] [Accepted: 01/30/2013] [Indexed: 01/15/2023]
Abstract
OBJECTIVES To investigate the expression profile of miR-1258 and heparanase (HPSE) in breast cancer and to assess their clinicopathological significance. DESIGN AND METHODS The expression levels of miR-1258 and HPSE were analyzed in normal, benign and malignant breast tissues. Their serum levels were evaluated in healthy women and in patients with benign and malignant breast disease. We studied the correlation between the expression of miR-1258 and HPSE and the clinical features presented by the patients. RESULTS MiR-1258 was down-regulated and HPSE was up-regulated in breast cancer, with a significant inverse correlation. A reduced miR-1258 expression and an elevated HPSE expression were associated with the lymph node status, late clinical stages, a short overall survival and a short relapse-free survival. In frozen fresh tissue samples, the miR-1258 levels in breast cancer with lymph node metastasis were significantly lower than that of breast cancer without lymph node metastasis and benign disease (BD). In contrast, the HPSE levels in breast cancer with lymph node metastasis were the highest. In serum samples, the miR-1258 levels in metastatic breast cancer (M1) were lower than that of primary breast cancer (M0) and BD. However, serum HPSE levels of M1 patients were significantly higher than that of M0 patients and BD patients. CONCLUSIONS MiR-1258 may play an important role in breast cancer development and progression by regulating the expression of HPSE, and they might be potential prognostic biomarkers for breast cancer.
Collapse
Affiliation(s)
- Dabei Tang
- Department of Medical Oncology, the Third Affiliated Hospital of Harbin Medical University, Harbin 150040, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Genomic and Epigenomic Cross-talks in the Regulatory Landscape of miRNAs in Breast Cancer. Mol Cancer Res 2013; 11:315-28. [DOI: 10.1158/1541-7786.mcr-12-0649] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
190
|
Suryawanshi S, Vlad AM, Lin HM, Mantia-Smaldone G, Laskey R, Lee M, Lin Y, Donnellan N, Klein-Patel M, Lee T, Mansuria S, Elishaev E, Budiu R, Edwards RP, Huang X. Plasma microRNAs as novel biomarkers for endometriosis and endometriosis-associated ovarian cancer. Clin Cancer Res 2013; 19:1213-24. [PMID: 23362326 DOI: 10.1158/1078-0432.ccr-12-2726] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Endometriosis, a largely benign, chronic inflammatory disease, is an independent risk factor for endometrioid and clear cell epithelial ovarian tumors. We aimed to identify plasma miRNAs that can be used to differentiate patients with endometriosis and ovarian cancer from healthy individuals. EXPERIMENTAL DESIGN We conducted a two-stage exploratory study to investigate the use of plasma miRNA profiling to differentiate between patients with endometriosis, patients with endometriosis-associated ovarian cancer (EAOC), and healthy individuals. In the first stage, using global profiling of more than 1,000 miRNAs via reverse transcriptase quantitative PCR (RT-qPCR) in a 20-patient initial screening cohort, we identified 23 candidate miRNAs, which are differentially expressed between healthy controls (n = 6), patients with endometriosis (n = 7), and patients with EAOC (n = 7) based on the fold changes. In the second stage, the 23 miRNAs were further tested in an expanded cohort (n = 88) of healthy individuals (n = 20), endometriosis (n = 33), EAOC (n = 14), and serous ovarian cancer cases (SOC; n = 21, included as controls). RESULTS We identified three distinct miRNA signatures with reliable differential expression between healthy individuals, patients with endometriosis, and patients with EAOC. When profiled against the control SOC category, our results revealed different miRNAs, suggesting that the identified signatures are reflective of disease-specific pathogenic mechanisms. This was further supported by the fact that the majority of miRNAs differentially expressed in human EAOCs were mirrored in a double transgenic mouse EAOC model. CONCLUSION Our study reports for the first time that distinct plasma miRNA expression patterns may serve as highly specific and sensitive diagnostic biomarkers to discriminate between healthy, endometriosis, and EAOC cases.
Collapse
Affiliation(s)
- Swati Suryawanshi
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Abstract
During tumor development, tumor cells release their nucleic acids into the blood circulation. This process occurs by apoptotic and necrotic cell deaths along with active cell secretion, resulting in high levels of circulating DNA, mRNA, and microRNA in the blood of patients with breast cancer. As circulating cell-free tumor nucleic acids may reflect the characteristics of the primary tumor and even of micrometastatic cells, they may be excellent blood biomarkers for screening breast cancer. Assays that allow the repetitive monitoring of patients by using blood samples as liquid biopsy may be efficient in assessing cancer progression in patients whose tumor tissue is not available. This review evaluates the recent data on the potential use of circulating cell-free nucleic acids as biomarkers for breast cancer.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraβe 52, 20246 Hamburg, Germany
| |
Collapse
|
192
|
Connolly R, Stearns V. Epigenetics as a therapeutic target in breast cancer. J Mammary Gland Biol Neoplasia 2012; 17:191-204. [PMID: 22836913 PMCID: PMC3515719 DOI: 10.1007/s10911-012-9263-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/04/2012] [Indexed: 02/06/2023] Open
Abstract
Epigenetics refers to alterations in gene expression due to modifications in histone acetylation and DNA methylation at the promoter regions of genes. Unlike genetic mutations, epigenetic alterations are not due to modifications in the gene primary nucleotide sequence. The importance of epigenetics in the initiation and progression of breast cancer has led many investigators to incorporate this novel and exciting field in breast cancer drug development. Several drugs that target epigenetic alterations, including inhibitors of histone deacetylase (HDAC) and DNA methyltransferase (DNMT), are currently approved for treatment of hematological malignancies and are available for clinical investigation in solid tumors. In this manuscript, we review the critical role of epigenetics in breast cancer including the potential for epigenetic alterations to serve as biomarkers determining breast cancer prognosis and response to therapy. We highlight initial promising results to date with use of epigenetic modifiers in patients with breast cancer and the ongoing challenges involved in the successful establishment of these agents for the treatment of breast cancer.
Collapse
Affiliation(s)
- Roisin Connolly
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 1650 Orleans Street, CRB I, Room 153, Baltimore, MD 21231-1000, USA,
| | - Vered Stearns
- Breast Cancer Research Chair in Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 1650 Orleans Street, CRB I, Room 145, Baltimore, MD 21231-1000, USA,
| |
Collapse
|
193
|
MicroRNA expression profiles of whole blood in lung adenocarcinoma. PLoS One 2012; 7:e46045. [PMID: 23029380 PMCID: PMC3460960 DOI: 10.1371/journal.pone.0046045] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/28/2012] [Indexed: 12/21/2022] Open
Abstract
The association of lung cancer with changes in microRNAs in plasma shown in multiple studies suggests a utility for circulating microRNA biomarkers in non-invasive detection of the disease. We examined if presence of lung cancer is reflected in whole blood microRNA expression as well, possibly because of a systemic response. Locked nucleic acid microarrays were used to quantify the global expression of microRNAs in whole blood of 22 patients with lung adenocarcinoma and 23 controls, ten of whom had a radiographically detected non-cancerous lung nodule and the other 13 were at high risk for developing lung cancer because of a smoking history of >20 pack-years. Cases and controls differed significantly for age with a mean difference of 10.7 years, but not for gender, race, smoking history, blood hemoglobin, platelet count, or white blood cell count. Of 1282 quantified human microRNAs, 395 (31%) were identified as expressed in the study’s subjects, with 96 (24%) differentially expressed between cases and controls. Classification analyses of microRNA expression data were performed using linear kernel support vector machines (SVM) and top-scoring pairs (TSP) methods, and classifiers to identify presence of lung adenocarcinoma were internally cross-validated. In leave-one-out cross-validation, the TSP classifiers had sensitivity and specificity of 91% and 100%, respectively. The values with SVM were both 91%. In a Monte Carlo cross-validation, average sensitivity and specificity values were 86% and 97%, respectively, with TSP, and 88% and 89%, respectively, with SVM. MicroRNAs miR-190b, miR-630, miR-942, and miR-1284 were the most frequent constituents of the classifiers generated during the analyses. These results suggest that whole blood microRNA expression profiles can be used to distinguish lung cancer cases from clinically relevant controls. Further studies are needed to validate this observation, including in non-adenocarcinomatous lung cancers, and to clarify upon the confounding effect of age.
Collapse
|
194
|
Wang Q, Huang Z, Ni S, Xiao X, Xu Q, Wang L, Huang D, Tan C, Sheng W, Du X. Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer. PLoS One 2012; 7:e44398. [PMID: 22970209 PMCID: PMC3435315 DOI: 10.1371/journal.pone.0044398] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 08/06/2012] [Indexed: 12/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is a major cause of death worldwide. Sensitive, non-invasive diagnostic screen methods are urgently needed to improve its survival rates. Stable circulating microRNA offers unique opportunities for the early diagnosis of several diseases, including cancers. Our aim has been to find new plasma miRNAs that can be used as biomarkers for the detection of CRC. Methodology/Principal Findings According to the results of miRNA profiling performed on pooling plasma samples form 10 CRC patients or 10 healthy controls, a panel of miRNAs (hsa-miR-10a, -19a, -22*, -24, -92a, 125a-5p, -141, -150, -188-3p, -192, -210, -221, -224*, -376a, -425*, -495, -572, -601, -720, -760 and hsa-let-7a, -7e) were deregulated in CRC plasma with fold changes >5. After large scale validation by qRT-PCR performed on another 191 independent individuals (90 CRC, 43 advanced adenoma and 58 healthy participants), we found that the levels of plasma miR-601 and miR-760 were significantly decreased in colorectal neoplasia (carcinomas and advanced adenomas) compared with healthy controls. ROC curve analysis showed that plasma miR-601 and miR-760 were of significant diagnostic value for advanced neoplasia. These two miRNAs together yield an AUC of 0.792 with 83.3% sensitivity and 69.1% specificity for separating CRC from normal controls, and yield an AUC of 0.683 with 72.1% sensitivity and 62.1% specificity in discriminating advanced adenomas from normal controls. Conclusions/Significance Plasma miR-601 and miR-760 can potentially serve as promising non-invasive biomarkers for the early detection of CRC.
Collapse
Affiliation(s)
- Qifeng Wang
- Department of Pathology, Cancer Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Wuxi Oncology Institute, the 4th Affiliated Hospital of Suzhou University, Wuxi, Jiangsu, China
| | - Zhaohui Huang
- Wuxi Oncology Institute, the 4th Affiliated Hospital of Suzhou University, Wuxi, Jiangsu, China
| | - Shujuan Ni
- Department of Pathology, Cancer Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiuying Xiao
- Department of Pathology, Cancer Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qinghua Xu
- Department of Pathology, Cancer Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Fudan University Shanghai Cancer Center - Institute Mérieux Laboratory, Shanghai, China
| | - Lisha Wang
- Department of Pathology, Cancer Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dan Huang
- Department of Pathology, Cancer Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Cong Tan
- Department of Pathology, Cancer Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Weiqi Sheng
- Department of Pathology, Cancer Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiang Du
- Department of Pathology, Cancer Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
195
|
McDermott JE, Wang J, Mitchell H, Webb-Robertson BJ, Hafen R, Ramey J, Rodland KD. Challenges in Biomarker Discovery: Combining Expert Insights with Statistical Analysis of Complex Omics Data. ACTA ACUST UNITED AC 2012; 7:37-51. [PMID: 23335946 DOI: 10.1517/17530059.2012.718329] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION: The advent of high throughput technologies capable of comprehensive analysis of genes, transcripts, proteins and other significant biological molecules has provided an unprecedented opportunity for the identification of molecular markers of disease processes. However, it has simultaneously complicated the problem of extracting meaningful molecular signatures of biological processes from these complex datasets. The process of biomarker discovery and characterization provides opportunities for more sophisticated approaches to integrating purely statistical and expert knowledge-based approaches. AREAS COVERED: In this review we will present examples of current practices for biomarker discovery from complex omic datasets and the challenges that have been encountered in deriving valid and useful signatures of disease. We will then present a high-level review of data-driven (statistical) and knowledge-based methods applied to biomarker discovery, highlighting some current efforts to combine the two distinct approaches. EXPERT OPINION: Effective, reproducible and objective tools for combining data-driven and knowledge-based approaches to identify predictive signatures of disease are key to future success in the biomarker field. We will describe our recommendations for possible approaches to this problem including metrics for the evaluation of biomarkers.
Collapse
|
196
|
Ma R, Jiang T, Kang X. Circulating microRNAs in cancer: origin, function and application. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:38. [PMID: 22546315 PMCID: PMC3431991 DOI: 10.1186/1756-9966-31-38] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/30/2012] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the posttranscriptional level. The dysregulation of miRNAs has been linked to a series of diseases, including various types of cancer. Since their discovery in the circulation of cancer patients, there has been a steady increase in the study of circulating miRNAs as stable, non-invasive biomarkers. However, the origin and function of circulating miRNAs has not been systematically elucidated. In this review, we summarize the discovery of circulating miRNAs and their potential as biomarkers. We further emphasize their possible origin and function. Finally, we discuss the application and existing questions surrounding circulating miRNAs in cancer diagnostics. Although several challenges remain to be concerned, circulating miRNAs could be useful, non-invasive biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- Ruimin Ma
- Laboratory Diagnosis Center, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
197
|
Wang IM, Stone DJ, Nickle D, Loboda A, Puig O, Roberts C. Systems biology approach for new target and biomarker identification. Curr Top Microbiol Immunol 2012; 363:169-99. [PMID: 22903568 DOI: 10.1007/82_2012_252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pharmaceutical industry is spending increasingly large amounts of money on the discovery and development of novel medicines, but this investment is not adequately paying off in an increased rate of newly approved drugs by the FDA. The post-genomic era has provided a wealth of novel approaches for generating large, high-dimensional genetic and transcriptomic data sets from large cohorts of preclinical species as well as normal and diseased individuals. This systems biology approach to understanding disease-related biology is revolutionizing our understanding of the cellular pathways and gene networks underlying the onset of disease, and the mechanisms of pharmacological treatments that ameliorate disease phenotypes. In this article, we review a number of approaches being used by pharmaceutical and biotechnology companies, e.g., high-throughput DNA genotyping, sequencing, and genome-wide gene expression profiling, to enable drug discovery and development through the identification of new drug targets and biomarkers of disease progression, drug pharmacodynamics, and predictive markers for selecting the patients most likely to respond to therapy.
Collapse
Affiliation(s)
- I-Ming Wang
- Informatics and Analysis, Merck Research Laboratory, West Point, PA 19486, USA.
| | | | | | | | | | | |
Collapse
|