151
|
Khatun S, Appidi T, Rengan AK. The role played by bacterial infections in the onset and metastasis of cancer. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100078. [PMID: 34841367 PMCID: PMC8610348 DOI: 10.1016/j.crmicr.2021.100078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 02/09/2023] Open
Abstract
Understanding various responses of cells towards change in their external environment, presence of other species and is important in identifying and correlating the mechanisms leading to malignant transformations and cancer development. Although uncovering and comprehending the association between bacteria and cancer is highly challenging, it promises excellent perspectives and approaches for successful cancer therapy. This review introduces various bacterial species, their virulence factors, and their role in cell transformations leading to cancer (particularly gastric, oral, colon, and breast cancer). Bacterial dysbiosis permutates host cells, causes inflammation, and results in tumorigenesis. This review explored bacterial-mediated host cell transformation causing chronic inflammation, immune receptor hyperactivation/absconding immune recognition, and genomic instability. Bacterial infections downregulate E-cadherin, leading to loosening of epithelial tight junction polarity and triggers metastasis. In addition to understanding the role of bacterial infections in cancer development, we have also reviewed the application of bacteria for cancer therapy. The emergence of bacteriotherapy combined with conventional therapies led to new and effective ways of overcoming challenges associated with available treatments. This review discusses the application of bacterial minicells, microswimmers, and outer cell membrane vesicles (OMV) for drug delivery applications.
Collapse
Affiliation(s)
- Sajmina Khatun
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Tejaswini Appidi
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
152
|
Abstract
El cuerpo humano está expuesto continuamente a microorganismos tanto fijos como transitorios, así como sus metabolitos tóxicos, lo cual puede conducir a la aparición y progresión del cáncer en sitios distantes al hábitat particular de cada microbio. Diversos estudios científicos han hecho posible entender la relación estrecha que existe entre microbioma y cáncer, ya que los componentes del primero, al tener la capacidad de migrar a diferentes zonas del cuerpo, pueden contribuir al desarrollo de diversas enfermedades crónicas. Los estudios de metagenómica sugieren que la disbiosis, en la microbiota comensal, está asociada con trastornos inflamatorios y varios tipos de cáncer, los cuales pueden ocurrir por sus efectos sobre el metabolismo, la proliferación celular y la inmunidad. La microbiota puede producir el cáncer cuando existen condiciones predisponentes, como en la etapa inicial de la progresión tumoral (iniciación), inestabilidad genética, susceptibilidad a la respuesta inmune del huésped, a la progresión y la respuesta a la terapia. La relación más estrecha, entre el microbioma y el cáncer, es a través de la desregulación del sistema inmune. En este trabajo revisamos las actuales evidencias sobre la asociación entre la microbiota y algunos tipos de cáncer como el cáncer gástrico, colorrectal, próstata, ovario, oral, pulmón y mama.
Collapse
Affiliation(s)
- Francisco Arvelo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela
| | - Felipe Sojo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela
| | - Carlos Cotte
- Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
153
|
Current Knowledge About the Implication of Bacterial Microbiota in Human Health and Disease. ACTA MEDICA BULGARICA 2021. [DOI: 10.2478/amb-2021-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Recent advances in molecular genetics and the invention of new technologies led to a development in our knowledge about human microbiota, specifically bacterial one. The microbiota plays a fundamental role in the immunologic, hormonal and metabolic homeostasis of the host. After the initiation of the Human Microbiome Project, it became clear that the human microbiota consists of the 10-100 trillion symbiotic microbial cells harbored by each person, primarily bacteria in the gut, but also in other spots as the skin, mouth, nose, and vagina. Despite of the differences in studying bacterial species, decreased bacterial diversity and persistence has been connected with several diverse human diseases primarily diabetes, IBD (inflammatory bowel disease) and others; attempts were made even to explain psychiatric pathology. Several species emerged as dominant and were clearly linked to certain disorders or accepted as biomarkers of others. The current review aims to discuss key issues of our current knowledge about bacteria in human, the difficulties and methods of its analysis, its contribution to human health and responsibility for human diseases.
Collapse
|
154
|
Al-Ansari MM, AlMalki RH, Dahabiyeh LA, Abdel Rahman AM. Metabolomics-Microbiome Crosstalk in the Breast Cancer Microenvironment. Metabolites 2021; 11:metabo11110758. [PMID: 34822416 PMCID: PMC8619468 DOI: 10.3390/metabo11110758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer, the most frequent cancer diagnosed among females, is associated with a high mortality rate worldwide. Alterations in the microbiota have been linked with breast cancer development, suggesting the possibility of discovering disease biomarkers. Metabolomics has emerged as an advanced promising analytical approach for profiling metabolic features associated with breast cancer subtypes, disease progression, and response to treatment. The microenvironment compromises non-cancerous cells such as fibroblasts and influences cancer progression with apparent phenotypes. This review discusses the role of metabolomics in studying metabolic dysregulation in breast cancer caused by the effect of the tumor microenvironment on multiple cells such as immune cells, fibroblasts, adipocytes, etc. Breast tumor cells have a unique metabolic profile through the elevation of glycolysis and the tricarboxylic acid cycle metabolism. This metabolic profile is highly sensitive to microbiota activity in the breast tissue microenvironment. Metabolomics shows great potential as a tool for monitoring metabolic dysregulation in tissue and associating the findings with microbiome expression.
Collapse
Affiliation(s)
- Mysoon M. Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.-A.); (R.H.A.)
- Department of Molecular Oncology, Cancer Biology & Experimental Therapeutics Section, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Reem H. AlMalki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.-A.); (R.H.A.)
- Department of Molecular Oncology, Cancer Biology & Experimental Therapeutics Section, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Lina A. Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
- Correspondence:
| |
Collapse
|
155
|
Spot-light on microbiota in obesity and cancer. Int J Obes (Lond) 2021; 45:2291-2299. [PMID: 34363002 DOI: 10.1038/s41366-021-00866-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/26/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Over the last few years, the complexity and diversity of gut microbiota within and across individuals has been detailed in relation to human health. Further, understanding of the bidirectional association between gut microbiota and metabolic disorders has highlighted a complimentary, yet crucial role for microbiota in the onset and progression of obesity-related cancers. While strategies for cancer prevention and cure are known to work efficiently when supported by healthy diet and lifestyle choices and physical activity, emerging evidence suggests that the complex interplay relating microbiota both to neoplastic and metabolic diseases could aid strategies for cancer treatment and outcomes. This review will explore the experimental and clinical grounds supporting the functional role of gut microbiota in the pathophysiology and progression of cancers in relation to obesity and its metabolic correlates. Therapeutic approaches aiding microbiota restoration in connection with cancer treatments will be discussed.
Collapse
|
156
|
Yang X, Guo Y, Chen C, Shao B, Zhao L, Zhou Q, Liu J, Wang G, Yuan W, Sun Z. Interaction between intestinal microbiota and tumour immunity in the tumour microenvironment. Immunology 2021; 164:476-493. [PMID: 34322877 PMCID: PMC8517597 DOI: 10.1111/imm.13397] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022] Open
Abstract
In recent years, an increasing number of studies have reported that intestinal microbiota have an important effect on tumour immunity by affecting the tumour microenvironment (TME). The intestinal microbiota are closely associated with various immune cells, such as T lymphocytes, natural killer cells (NK cells) and macrophages. Some bacteria, such as Akkermansia muciniphila (A. muciniphila) and Lactobacillus reuteri (L. reuteri), have been shown to improve the effect of tumour immunity. Furthermore, microbial imbalance, such as the increased abundance of Fusobacterium nucleatum (F. nucleatum) and Helicobacter hepaticus (H. hepaticus), generally causes tumour formation and progression. In addition, some microbiota also play important roles in tumour immunotherapy, especially PD-L1-related therapies. Therefore, what is the relationship between these processes and how do they affect each other? In this review, we summarize the interactions and corresponding mechanisms among the intestinal microbiota, immune system and TME to facilitate the research and development of new targeted drugs and provide new approaches to tumour therapy.
Collapse
Affiliation(s)
- Xiuxiu Yang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- School of MedicineZhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Yaxin Guo
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Department of Basic MedicalAcademy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Academy of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Chen Chen
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Bo Shao
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Luyang Zhao
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Department of Basic MedicalAcademy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Academy of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Quanbo Zhou
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jinbo Liu
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Guixian Wang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Weitang Yuan
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhenqiang Sun
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
157
|
Short- and Long-Term Implications of Human Milk Microbiota on Maternal and Child Health. Int J Mol Sci 2021; 22:ijms222111866. [PMID: 34769296 PMCID: PMC8584477 DOI: 10.3390/ijms222111866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Human milk (HM) is considered the most complete food for infants as its nutritional composition is specifically designed to meet infant nutritional requirements during early life. HM also provides numerous biologically active components, such as polyunsaturated fatty acids, milk fat globules, IgA, gangliosides or polyamines, among others; in addition, HM has a “bifidogenic effect”, a prebiotic effect, as a result of the low concentration of proteins and phosphates, as well as the presence of lactoferrin, lactose, nucleotides and oligosaccharides. Recently, has been a growing interest in HM as a potential source of probiotics and commensal bacteria to the infant gut, which might, in turn, influence both the gut colonization and maturation of infant immune system. Our review aims to address practical approaches to the detection of microbial communities in human breast milk samples, delving into their origin, composition and functions. Furthermore, we will summarize the current knowledge of how HM microbiota dysbiosis acts as a short- and long-term predictor of maternal and infant health. Finally, we also provide a critical view of the role of breast milk-related bacteria as a novel probiotic strategy in the prevention and treatment of maternal and offspring diseases.
Collapse
|
158
|
Characterizing the breast cancer lipidome and its interaction with the tissue microbiota. Commun Biol 2021; 4:1229. [PMID: 34707244 PMCID: PMC8551188 DOI: 10.1038/s42003-021-02710-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is the most diagnosed cancer amongst women worldwide. We have previously shown that there is a breast microbiota which differs between women who have breast cancer and those who are disease-free. To better understand the local biochemical perturbations occurring with disease and the potential contribution of the breast microbiome, lipid profiling was performed on non-tumor breast tissue collected from 19 healthy women and 42 with breast cancer. Here we identified unique lipid signatures between the two groups with greater amounts of lysophosphatidylcholines and oxidized cholesteryl esters in the tissue from women with breast cancer and lower amounts of ceramides, diacylglycerols, phosphatidylcholines, and phosphatidylethanolamines. By integrating these lipid signatures with the breast bacterial profiles, we observed that Gammaproteobacteria and those from the class Bacillus, were negatively correlated with ceramides, lipids with antiproliferative properties. In the healthy tissues, diacylglyerols were positively associated with Acinetobacter, Lactococcus, Corynebacterium, Prevotella and Streptococcus. These bacterial groups were found to possess the genetic potential to synthesize these lipids. The cause-effect relationships of these observations and their contribution to disease patho-mechanisms warrants further investigation for a disease afflicting millions of women around the world.
Collapse
|
159
|
Chic N, Brasó-Maristany F, Prat A. Biomarkers of immunotherapy response in breast cancer beyond PD-L1. Breast Cancer Res Treat 2021; 191:39-49. [PMID: 34676466 DOI: 10.1007/s10549-021-06421-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors have modified the treatment algorithm in a variety of cancer types, including breast cancer. Nevertheless, optimal selection of ideal candidates to these drugs remains an unmet need. Although PD-L1 expression by immunohistochemistry seems to be the most promising biomarker to date, its predictive ability is far from ideal. Thus, the development of new predictive biomarkers is essential for a better selection of patients. Here, we discuss potential biomarkers beyond PD-L1 that could play an important role in precision cancer immunotherapy.
Collapse
Affiliation(s)
- Nuria Chic
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, Hospital Clínic of Barcelona, Carrer de Villarroel, 170, 08036, Barcelona, Spain.,SOLTI Cooperative Group, Barcelona, Spain
| | - Fara Brasó-Maristany
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, Hospital Clínic of Barcelona, Carrer de Villarroel, 170, 08036, Barcelona, Spain.,SOLTI Cooperative Group, Barcelona, Spain
| | - Aleix Prat
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain. .,Department of Medical Oncology, Hospital Clínic of Barcelona, Carrer de Villarroel, 170, 08036, Barcelona, Spain. .,SOLTI Cooperative Group, Barcelona, Spain. .,Department of Medicine, University of Barcelona, Barcelona, Spain. .,Institute of Oncology (IOB)-Quiron, Barcelona, Spain.
| |
Collapse
|
160
|
Ma J, Huang L, Hu D, Zeng S, Han Y, Shen H. The role of the tumor microbe microenvironment in the tumor immune microenvironment: bystander, activator, or inhibitor? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:327. [PMID: 34656142 PMCID: PMC8520212 DOI: 10.1186/s13046-021-02128-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023]
Abstract
The efficacy of cancer immunotherapy largely depends on the tumor microenvironment, especially the tumor immune microenvironment. Emerging studies have claimed that microbes reside within tumor cells and immune cells, suggesting that these microbes can impact the state of the tumor immune microenvironment. For the first time, this review delineates the landscape of intra-tumoral microbes and their products, herein defined as the tumor microbe microenvironment. The role of the tumor microbe microenvironment in the tumor immune microenvironment is multifaceted: either as an immune activator, inhibitor, or bystander. The underlying mechanisms include: (I) the presentation of microbial antigens by cancer cells and immune cells, (II) microbial antigens mimicry shared with tumor antigens, (III) microbe-induced immunogenic cell death, (IV) microbial adjuvanticity mediated by pattern recognition receptors, (V) microbe-derived metabolites, and (VI) microbial stimulation of inhibitory checkpoints. The review further suggests the use of potential modulation strategies of the tumor microbe microenvironment to enhance the efficacy and reduce the adverse effects of checkpoint inhibitors. Lastly, the review highlights some critical questions awaiting to be answered in this field and provides possible solutions. Overall, the tumor microbe microenvironment modulates the tumor immune microenvironment, making it a potential target for improving immunotherapy. It is a novel field facing major challenges and deserves further exploration.
Collapse
Affiliation(s)
- Jiayao Ma
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lingjuan Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Die Hu
- Xiangya Medical College, Central South University, Changsha, 410013, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| |
Collapse
|
161
|
Cullin N, Azevedo Antunes C, Straussman R, Stein-Thoeringer CK, Elinav E. Microbiome and cancer. Cancer Cell 2021; 39:1317-1341. [PMID: 34506740 DOI: 10.1016/j.ccell.2021.08.006] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
The human microbiome constitutes a complex multikingdom community that symbiotically interacts with the host across multiple body sites. Host-microbiome interactions impact multiple physiological processes and a variety of multifactorial disease conditions. In the past decade, microbiome communities have been suggested to influence the development, progression, metastasis formation, and treatment response of multiple cancer types. While causal evidence of microbial impacts on cancer biology is only beginning to be unraveled, enhanced molecular understanding of such cancer-modulating interactions and impacts on cancer treatment are considered of major scientific importance and clinical relevance. In this review, we describe the molecular pathogenic mechanisms shared throughout microbial niches that contribute to the initiation and progression of cancer. We highlight advances, limitations, challenges, and prospects in understanding how the microbiome may causally impact cancer and its treatment responsiveness, and how microorganisms or their secreted bioactive metabolites may be potentially harnessed and targeted as precision cancer therapeutics.
Collapse
Affiliation(s)
- Nyssa Cullin
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Camila Azevedo Antunes
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, 7610001 Rehovot, Israel
| | - Christoph K Stein-Thoeringer
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 7610001 Rehovot, Israel.
| |
Collapse
|
162
|
Saud Hussein A, Ibraheem Salih N, Hashim Saadoon I. Effect of Microbiota in the Development of Breast Cancer. ARCHIVES OF RAZI INSTITUTE 2021; 76:761-768. [PMID: 35096312 PMCID: PMC8790982 DOI: 10.22092/ari.2021.355961.1750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 01/28/2023]
Abstract
Breast cancer is the most frequent cancer among women and causes the greatest number of cancer-related death among women all over the world. It approximately accounts for 15% of all cancer death. The human microbiota is the term applied to the aggregate of microbes that live in different habitats of living organisms 'bodies, including the gut, skin, vagina, and mouth, as well as nose, conjunctiva, pharynx, and urethra, among others. Increasing evidence is pointing to the role of the microbiome in the occurrence and development of a variety of cancers. Intestinal microbiome imbalance is related to the occurrence of gastrointestinal tumors, such as esophageal, gastric, colorectal, and gallbladder cancer. The present study aimed to identify the role of microbiota in the development of breast cancer. The women with breast cancer (n=130) in this study were in the age range of 25-75 years. The study was conducted in Kirkuk city of Iraq from September 10, 2019, to March 15, 2020. The control group included 20 women diagnosed with benign breast lesions in the age range 25-75 years, who matched the women in the patient group. Blood samples and breast tissue samples were taken from patients with breast cancer and benign breast lesions. Blood samples were examined through immunological methods, enzyme-linked immunosorbent assay (ELISA) was adopted for the detection of interleukin-19 (IL-19). Breast tissue samples were taken from breast cancer and benign breast lesions patients to isolate and identify bacteria. Based on the obtained results, only 6 out of 30 (20%) cultured breast tissue samples from women with breast cancer showed bacterial growth. In total, 4 (67%) and 2(33%) of these 6 positive cultures were Escherichia coli was and Staphylococcus aureus, respectively, and this relation was statistically significant. However, no bacterial growth was observed on the cultured breast tissue samples taken from women with benign breast lesions. Moreover, the difference between women with a positive and negative result of bacterial culture and stages of breast cancer was statistically non-significant. It is worth mentioning that 50 % of women with breast cancer and bacterial growth were within the age range of 40-49 year. The present study revealed that the difference between women with breast cancer and those with benign breast lesions was statistically highly significant according to the place of residence. In addition, the mean level of IL-19 among women with breast cancer was lower than that in women with benign breast lesions, and this relation was statistically highly significant.
Collapse
Affiliation(s)
- A Saud Hussein
- Department of Biology, College of Science, Kirkuk University, Kirkuk, Iraq
| | - N Ibraheem Salih
- Department of Microbiology, College of Medicine, Tikrit University, Tikrit, Iraq
| | - I Hashim Saadoon
- Department of Microbiology, College of Medicine, Tikrit University, Tikrit, Iraq
| |
Collapse
|
163
|
Le Noci V, Bernardo G, Bianchi F, Tagliabue E, Sommariva M, Sfondrini L. Toll Like Receptors as Sensors of the Tumor Microbial Dysbiosis: Implications in Cancer Progression. Front Cell Dev Biol 2021; 9:732192. [PMID: 34604233 PMCID: PMC8485072 DOI: 10.3389/fcell.2021.732192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023] Open
Abstract
The microbiota is a complex ecosystem of active microorganisms resident in the body of mammals. Although the majority of these microorganisms resides in the distal gastrointestinal tract, high-throughput DNA sequencing technology has made possible to understand that several other tissues of the human body host their own microbiota, even those once considered sterile, such as lung tissue. These bacterial communities have important functions in maintaining a healthy body state, preserving symbiosis with the host immune system, which generates protective responses against pathogens and regulatory pathways that sustain the tolerance to commensal microbes. Toll-like receptors (TLRs) are critical in sensing the microbiota, maintaining the tolerance or triggering an immune response through the direct recognition of ligands derived from commensal microbiota or pathogenic microbes. Lately, it has been highlighted that the resident microbiota influences the initiation and development of cancer and its response to therapies and that specific changes in the number and distribution of taxa correlate with the existence of cancers in various tissues. However, the knowledge of functional activity and the meaning of microbiome changes remain limited. This review summarizes the current findings on the function of TLRs as sensors of the microbiota and highlighted their modulation as a reflection of tumor-associated changes in commensal microbiota. The data available to date suggest that commensal "onco-microbes" might be able to break the tolerance of TLRs and become complicit in cancer by sustaining its growth.
Collapse
Affiliation(s)
- Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Francesca Bianchi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
164
|
Tariq H, Menon PD, Fan H, Vadlamudi KV, Pandeswara SL, Nazarullah AN, Mais DD. Detection of Corynebacterium kroppenstedtii in Granulomatous Lobular Mastitis Using Real-Time Polymerase Chain Reaction and Sanger Sequencing on Formalin-Fixed, Paraffin-Embedded Tissues. Arch Pathol Lab Med 2021; 146:749-754. [PMID: 34506619 DOI: 10.5858/arpa.2021-0061-oa] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Associations between granulomatous lobular mastitis (GLM) and Corynebacterium kroppenstedtii have been reported since 2002, but large scale studies to assess the actual prevalence of this bacterium in GLM have not been performed. OBJECTIVE.— To assess the prevalence of C kroppenstedtii in GLM using real-time polymerase chain reaction and Sanger sequencing. DESIGN.— We analyzed formalin-fixed, paraffin-embedded tissues from 67 cases of GLM by sequential DNA amplification and sequencing to assess the rate of C kroppenstedtii detection in GLM. A retrospective analysis including patient demographics, history of pregnancy and lactation, clinical signs and symptoms, radiographic findings, histologic pattern, Gram stain results, and microbial cultures was performed on 67 cases of GLM. In addition, 10 cases of nongranulomatous breast abscess were included as controls. RESULTS.— C kroppenstedtii 16S rRNA SYBR real-time polymerase chain reaction was positive on formalin-fixed, paraffin-embedded tissues from 46 of 67 (68.7%) GLM cases, while all control cases were negative. Among the positive cases, the majority showed features of cystic neutrophilic granulomatous mastitis. CONCLUSIONS.— C kroppenstedtii was highly prevalent in GLM cases and was not found to be associated with nongranulomatous breast abscess in our study (P < .001).
Collapse
Affiliation(s)
- Hamza Tariq
- Department of Pathology and Laboratory Medicine (Tariq, Menon, Fan, Nazarullah, Mais), University of Texas Health Science Center at San Antonio, San Antonio.,Tariq is currently in the Department of Pathology at Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Preethi D Menon
- Department of Pathology and Laboratory Medicine (Tariq, Menon, Fan, Nazarullah, Mais), University of Texas Health Science Center at San Antonio, San Antonio
| | - Hongxin Fan
- Department of Pathology and Laboratory Medicine (Tariq, Menon, Fan, Nazarullah, Mais), University of Texas Health Science Center at San Antonio, San Antonio
| | - Kumari V Vadlamudi
- Molecular Diagnostics Laboratory (Vadlamudi, Pandeswara), University of Texas Health Science Center at San Antonio, San Antonio
| | - Sri Lakshmi Pandeswara
- Molecular Diagnostics Laboratory (Vadlamudi, Pandeswara), University of Texas Health Science Center at San Antonio, San Antonio
| | - Alia N Nazarullah
- Department of Pathology and Laboratory Medicine (Tariq, Menon, Fan, Nazarullah, Mais), University of Texas Health Science Center at San Antonio, San Antonio
| | - Daniel D Mais
- Department of Pathology and Laboratory Medicine (Tariq, Menon, Fan, Nazarullah, Mais), University of Texas Health Science Center at San Antonio, San Antonio
| |
Collapse
|
165
|
Kabwe M, Dashper S, Bachrach G, Tucci J. Bacteriophage manipulation of the microbiome associated with tumour microenvironments-can this improve cancer therapeutic response? FEMS Microbiol Rev 2021; 45:6188389. [PMID: 33765142 DOI: 10.1093/femsre/fuab017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Some cancer treatment failures have been attributed to the tumour microbiota, with implications that microbiota manipulation may improve treatment efficacy. While antibiotics have been used to control bacterial growth, their dysbiotic effects on the microbiome, failure to penetrate biofilms and decreased efficacy due to increasing antimicrobial resistance by bacteria, suggest alternatives are needed. Bacteriophages may provide a precise means for targeting oncobacteria whose relative abundance is increased in tumour tissue microbiomes. Fusobacterium, Streptococcus, Peptostreptococcus, Prevotella, Parvimonas, and Treponema species are prevalent in tumour tissue microbiomes of some cancers. They may promote cancer growth by dampening immunity, stimulating release of proinflammatory cytokines, and directly interacting with cancer cells to stimulate proliferation. Lytic bacteriophages against some of these oncobacteria have been isolated and characterised. The search continues for others. The possibility exists for their testing as adjuncts to complement existing therapies. In this review, we highlight the role of oncobacteria, specifically those whose relative abundance in the intra-tumour microbiome is increased, and discuss the potential for bacteriophages against these micro-organisms to augment existing cancer therapies. The capacity for bacteriophages to modulate immunity and kill specific bacteria makes them suitable candidates to manipulate the tumour microbiome and negate the effects of these oncobacteria.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Sharon St. Bendigo, Victoria 3550, Australia
| | - Stuart Dashper
- Melbourne Dental School, University of Melbourne, 720 Swanston St, Parkville, Victoria 3010, Australia
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, PO Box 12272, Jerusalem 9112102, Israel
| | - Joseph Tucci
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Sharon St. Bendigo, Victoria 3550, Australia
| |
Collapse
|
166
|
Kossai M, Radosevic-Robin N, Penault-Llorca F. Refining patient selection for breast cancer immunotherapy: beyond PD-L1. ESMO Open 2021; 6:100257. [PMID: 34487970 PMCID: PMC8426207 DOI: 10.1016/j.esmoop.2021.100257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Therapies that modulate immune response to cancer, such as immune checkpoint inhibitors, began an intense development a few years ago; however, in breast cancer (BC), the results have been relatively disappointing so far. Finding biomarkers for better selection of BC patients for various immunotherapies remains a significant unmet medical need. At present, only tumour tissue programmed death-ligand 1 (PD-L1) and mismatch repair deficiency status are approved as theranostic biomarkers for programmed cell death-1 (PD-1)/PD-L1 inhibitors in BC. However, due to the complexity of tumour microenvironment (TME) and cancer response to immunomodulators, none of them is a perfect selector. Therefore, an intense quest is ongoing for complementary tumour- or host-related predictive biomarkers in breast immuno-oncology. Among the upcoming biomarkers, quantity, immunophenotype and spatial distribution of tumour-infiltrating lymphocytes and other TME cells as well as immune gene signatures emerge as most promising and are being increasingly tested in clinical trials. Biomarkers or strategies allowing dynamic assessment of BC response to immunotherapy, such as circulating/exosomal PD-L1, quantity of white/immune blood cell subpopulations and molecular imaging are particularly suitable for immunotreatment monitoring. Finally, host-related factors, such as microbiome and lifestyle, should also be taken into account when planning integration of immunomodulating therapies into BC management. As none of the biomarkers taken separately is accurate enough, the solution could come from composite biomarkers, which would combine clinical, molecular and immunological features of the disease, possibly powered by artificial intelligence. At present, immune checkpoint inhibitors (ICIs) are the only approved immunotherapy drugs in BC. Tumour PD-L1 and microsatellite status are current companion biomarkers for ICIs in BC; however, these need improvement. Evaluation of tumour immune contexture and the dynamics of circulating immune cell counts are promising novel approaches. Development of noninvasive monitoring and composite biomarkers will facilitate cancer immunotherapy, including in BC.
Collapse
Affiliation(s)
- M Kossai
- Department of Pathology, University Clermont Auvergne, INSERM U1240, Centre Jean Perrin, Clermont-Ferrand, France
| | - N Radosevic-Robin
- Department of Pathology, University Clermont Auvergne, INSERM U1240, Centre Jean Perrin, Clermont-Ferrand, France.
| | - F Penault-Llorca
- Department of Pathology, University Clermont Auvergne, INSERM U1240, Centre Jean Perrin, Clermont-Ferrand, France
| |
Collapse
|
167
|
Banerjee S, Wei Z, Tian T, Bose D, Shih NNC, Feldman MD, Khoury T, De Michele A, Robertson ES. Prognostic correlations with the microbiome of breast cancer subtypes. Cell Death Dis 2021; 12:831. [PMID: 34482363 PMCID: PMC8418604 DOI: 10.1038/s41419-021-04092-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
Alterations to the natural microbiome are linked to different diseases, and the presence or absence of specific microbes is directly related to disease outcomes. We performed a comprehensive analysis with unique cohorts of the four subtypes of breast cancer (BC) characterized by their microbial signatures, using a pan-pathogen microarray strategy. The signature (includes viruses, bacteria, fungi, and parasites) of each tumor subtype was correlated with clinical data to identify microbes with prognostic potential. The subtypes of BC had specific viromes and microbiomes, with ER+ and TN tumors showing the most and least diverse microbiome, respectively. The specific microbial signatures allowed discrimination between different BC subtypes. Furthermore, we demonstrated correlations between the presence and absence of specific microbes in BC subtypes with the clinical outcomes. This study provides a comprehensive map of the oncobiome of BC subtypes, with insights into disease prognosis that can be critical for precision therapeutic intervention strategies.
Collapse
Affiliation(s)
- Sagarika Banerjee
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Tian Tian
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Dipayan Bose
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Natalie N C Shih
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thaer Khoury
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Angela De Michele
- Division of Hematology Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
168
|
Zhang J, Xia Y, Sun J. Breast and gut microbiome in health and cancer. Genes Dis 2021; 8:581-589. [PMID: 34291130 PMCID: PMC8278537 DOI: 10.1016/j.gendis.2020.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/19/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
The microbiota plays essential roles in health and disease, in both the intestine and the extra-intestine. Dysbiosis of the gut microbiota causes dysfunction in the intestine, which leads to inflammatory, immune, and infectious diseases. Dysbiosis is also associated with diseases beyond the intestine via microbial translocation or metabolisms. The in situ breast microbiome, which may be sourced from the gut through lactation and sexual contact, could be altered and cause breast diseases. In this review, we summarize the recent progress in understanding the interactions among the gut microbiome, breast microbiome, and breast diseases. We discuss the intestinal microbiota, microbial metabolites, and roles of microbiota in immune system. We emphasize the novel roles and mechanisms of the microbiome (both in situ and gastrointestinal sourced) and bacterial products in the development and progression of breast cancer. The intestinal microbial translocation suggests that the gut microbiome is translocated to the skin and subsequently to the breast tissue. The gut bacterial translocation is also due to the increased intestinal permeability. The breast and intestinal microbiota are important factors in maintaining healthy breasts. Micronutrition queuine (Q) is derived from a de novo synthesized metabolite in bacteria. All human cells use queuine and incorporate it into the wobble anticodon position of specific transfer RNAs. We have demonstrated that Q modification regulates genes critical in tight junctions and migration in human breast cancer cells and a breast tumor model. We further discuss the challenges and future perspectives that can move the field forward for prevention, diagnosis, and treatment of breast diseases.
Collapse
Affiliation(s)
- Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
169
|
Radaic A, Ganther S, Kamarajan P, Grandis J, Yom SS, Kapila YL. Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontol 2000 2021; 87:76-93. [PMID: 34463982 PMCID: PMC8415008 DOI: 10.1111/prd.12388] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The oral microbiome is a community of microorganisms, comprised of bacteria, fungi, viruses, archaea, and protozoa, that form a complex ecosystem within the oral cavity. Although minor perturbations in the environment are frequent and compensable, major shifts in the oral microbiome can promote an unbalanced state, known as dysbiosis. Dysbiosis can promote oral diseases, including periodontitis. In addition, oral dysbiosis has been associated with other systemic diseases, including cancer. The objective of this review is to evaluate the epidemiologic evidence linking periodontitis to oral, gastrointestinal, lung, breast, prostate, and uterine cancers, as well as describe new evidence and insights into the role of oral dysbiosis in the etiology and pathogenesis of the cancer types discussed. Finally, we discuss how antimicrobials, antimicrobial peptides, and probiotics may be promising tools to prevent and treat these cancers, targeting both the microbes and associated carcinogenesis processes. These findings represent a novel paradigm in the pathogenesis and treatment of cancer focused on the oral microbiome and antimicrobial‐based therapies.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Jennifer Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
170
|
Hadzega D, Minarik G, Karaba M, Kalavska K, Benca J, Ciernikova S, Sedlackova T, Nemcova P, Bohac M, Pindak D, Klucar L, Mego M. Uncovering Microbial Composition in Human Breast Cancer Primary Tumour Tissue Using Transcriptomic RNA-seq. Int J Mol Sci 2021; 22:ijms22169058. [PMID: 34445764 PMCID: PMC8396677 DOI: 10.3390/ijms22169058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/04/2023] Open
Abstract
Recent research studies are showing breast tissues as a place where various species of microorganisms can thrive and cannot be considered sterile, as previously thought. We analysed the microbial composition of primary tumour tissue and normal breast tissue and found differences between them and between multiple breast cancer phenotypes. We sequenced the transcriptome of breast tumours and normal tissues (from cancer-free women) of 23 individuals from Slovakia and used bioinformatics tools to uncover differences in the microbial composition of tissues. To analyse our RNA-seq data (rRNA depleted), we used and tested Kraken2 and Metaphlan3 tools. Kraken2 has shown higher reliability for our data. Additionally, we analysed 91 samples obtained from SRA database, originated in China and submitted by Sichuan University. In breast tissue, the most enriched group were Proteobacteria, then Firmicutes and Actinobacteria for both datasets, in Slovak samples also Bacteroides, while in Chinese samples Cyanobacteria were more frequent. We have observed changes in the microbiome between cancerous and healthy tissues and also different phenotypes of diseases, based on the presence of circulating tumour cells and few other markers.
Collapse
Affiliation(s)
- Dominik Hadzega
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia;
| | - Gabriel Minarik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (G.M.); (M.M.)
| | - Marian Karaba
- Department of Oncosurgery, National Cancer Institute, 833 10 Bratislava, Slovakia; (M.K.); (J.B.); (M.B.); (D.P.)
| | - Katarina Kalavska
- Translational Research Unit, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
| | - Juraj Benca
- Department of Oncosurgery, National Cancer Institute, 833 10 Bratislava, Slovakia; (M.K.); (J.B.); (M.B.); (D.P.)
- Department of Medicine, St. Elizabeth University, 810 00 Bratislava, Slovakia
| | - Sona Ciernikova
- Biomedical Research Center of the Slovak Academy of Sciences, Department of Genetics, Cancer Research Institute, 845 05 Bratislava, Slovakia;
| | - Tatiana Sedlackova
- Comenius University Science Park, Comenius University, 842 15 Bratislava, Slovakia;
| | | | - Martin Bohac
- Department of Oncosurgery, National Cancer Institute, 833 10 Bratislava, Slovakia; (M.K.); (J.B.); (M.B.); (D.P.)
- Translational Research Unit, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
| | - Daniel Pindak
- Department of Oncosurgery, National Cancer Institute, 833 10 Bratislava, Slovakia; (M.K.); (J.B.); (M.B.); (D.P.)
| | - Lubos Klucar
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia;
- Correspondence:
| | - Michal Mego
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (G.M.); (M.M.)
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia
| |
Collapse
|
171
|
Microbiota and cancer: current understanding and mechanistic implications. Clin Transl Oncol 2021; 24:193-202. [PMID: 34387847 PMCID: PMC8360819 DOI: 10.1007/s12094-021-02690-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
During last few decades, role of microbiota and its importance in several diseases has been a hot topic for research. The microbiota is considered as an accessory organ for maintaining normal physiology of an individual. These microbiota organisms which normally colonize several epithelial surfaces are known to secrete several small molecules leading to local and systemic effects on normal biological processes. The role of microbiota is also established in carcinogenesis as per several recent findings. The effects of microbiota on cancer is not only limited to their contribution in oncogenesis, but the overall susceptibility for oncogenesis and its subsequent progression, development of coinfections, and response to anticancer therapy is also found to be affected by microbiota. The information about microbiota and subsequent contributions of microbes in anticancer response motivated researchers in development of microbes-based anticancer therapeutics. We provided current status of microbiota contribution in oncogenesis with special reference to their mechanistic implications in different aspects of oncogenesis. In addition, the mechanistic implications of bacteria in anticancer therapy are also discussed. We conclude that several mechanisms of microbiota-mediated regulation of oncogenesis is known, but approaches must be focused on understanding contribution of microbiota as a community rather than single organisms-mediated effects.
Collapse
|
172
|
Danforth DN. The Role of Chronic Inflammation in the Development of Breast Cancer. Cancers (Basel) 2021; 13:3918. [PMID: 34359821 PMCID: PMC8345713 DOI: 10.3390/cancers13153918] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation contributes to the malignant transformation of several malignancies and is an important component of breast cancer. The role of chronic inflammation in the initiation and development of breast cancer from normal breast tissue, however, is unclear and needs to be clarified. A review of the literature was conducted to define the chronic inflammatory processes in normal breast tissue at risk for breast cancer and in breast cancer, including the role of lymphocyte and macrophage infiltrates, chronic active adipocytes and fibroblasts, and processes that may promote chronic inflammation including the microbiome and factors related to genomic abnormalities and cellular injury. The findings indicate that in healthy normal breast tissue there is systemic evidence to suggest inflammatory changes are present and associated with breast cancer risk, and adipocytes and crown-like structures in normal breast tissue may be associated with chronic inflammatory changes. The microbiome, genomic abnormalities, and cellular changes are present in healthy normal breast tissue, with the potential to elicit inflammatory changes, while infiltrating lymphocytes are uncommon in these tissues. Chronic inflammatory changes occur prominently in breast cancer tissues, with important contributions from tumor-infiltrating lymphocytes and tumor-associated macrophages, cancer-associated adipocytes and crown-like structures, and cancer-associated fibroblasts, while the microbiome and DNA damage may serve to promote inflammatory events. Together, these findings suggest that chronic inflammation may play a role in influencing the initiation, development and conduct of breast cancer, although several chronic inflammatory processes in breast tissue may occur later in breast carcinogenesis.
Collapse
Affiliation(s)
- David N Danforth
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
173
|
Elaskandrany M, Patel R, Patel M, Miller G, Saxena D, Saxena A. Fungi, host immune response, and tumorigenesis. Am J Physiol Gastrointest Liver Physiol 2021; 321:G213-G222. [PMID: 34231392 PMCID: PMC8410104 DOI: 10.1152/ajpgi.00025.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Advances in -omics analyses have tremendously enhanced our understanding of the role of the microbiome in human health and disease. Most research is focused on the bacteriome, but scientists have now realized the significance of the virome and microbial dysbiosis as well, particularly in noninfectious diseases such as cancer. In this review, we summarize the role of mycobiome in tumorigenesis, with a dismal prognosis, and attention to pancreatic ductal adenocarcinoma (PDAC). We also discuss bacterial and mycobial interactions to the host's immune response that is prevalently responsible for resistance to cancer therapy, including immunotherapy. We reported that the Malassezia species associated with scalp and skin infections, colonize in human PDAC tumors and accelerate tumorigenesis via activating the C3 complement-mannose-binding lectin (MBL) pathway. PDAC tumors thrive in an immunosuppressive microenvironment with desmoplastic stroma and a dysbiotic microbiome. Host-microbiome interactions in the tumor milieu pose a significant threat in driving the indolent immune behavior of the tumor. Microbial intervention in multimodal cancer therapy is a promising novel approach to modify an immunotolerant ("cold") tumor microenvironment to an immunocompetent ("hot") milieu that is effective in eliminating tumorigenesis.
Collapse
Affiliation(s)
- Miar Elaskandrany
- 1Biology Department, Brooklyn College, City University of New York, New York, New York,2Macaulay Honors Academy, Brooklyn College, City University of New York, New York, New York
| | - Rohin Patel
- 1Biology Department, Brooklyn College, City University of New York, New York, New York
| | - Mintoo Patel
- 3Natural Sciences, South Florida State College, Avon Park, Florida
| | - George Miller
- 4New York City Health & Hospitals (Woodhull), New York, New York
| | - Deepak Saxena
- 5Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York,6Department of Surgery, New York University School of Medicine, New York, New York
| | - Anjana Saxena
- 1Biology Department, Brooklyn College, City University of New York, New York, New York,7Biology and Biochemistry Programs, Graduate Center, City
University of New York (CUNY), New York, New York
| |
Collapse
|
174
|
Wang K, Nakano K, Naderi N, Bajaj-Elliott M, Mosahebi A. Is the skin microbiota a modifiable risk factor for breast disease?: A systematic review. Breast 2021; 59:279-285. [PMID: 34329949 PMCID: PMC8335652 DOI: 10.1016/j.breast.2021.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/07/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE High prevalence, unreliable risk discrimination and poor clinical outcomes are observed in malignant and benign breast diseases (BD). The involvement of microbial communities in the development of BD has become topical, and distal influences of microbial dysregulation in the breast have been well established. Despite advances, the role of the breast skin microbiota in BD remains unclear. Interactions between the skin microbiota and the underlying mucosal immune system are complex. In homeostasis, the skin offers a physical barrier protecting underlying breast tissue from skin commensals and noxious environmental triggers. Our review aims to illuminate the role of the skin microbiota in the development of BD. METHODS Adhering to the PRISMA protocol, a systematic review was conducted utilising the Medline and Embase search engines. RESULTS Through a comprehensive search of the last ten years, twenty-two studies satisfied the inclusion criteria. Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were identified as the most prevalent phyla of both breast tissue and skin in healthy controls and BD. High abundance of skin commensals, specifically some species of Staphylococcus, have been linked in breast cancer and metastases. Similarly, dysregulated microbial abundance is also seen in inflammatory and implant-associated BD. These findings raise the hypothesis that the skin microbiota plays a role in tissue homeostasis and may contribute to a range of breast pathologies. Several mechanisms of microbial transfer to underlying tissue have been proposed, including retrograde transfer through ductal systems, breakdown of the skin barrier, and migration through nipple-aspirate fluid. CONCLUSION Our review provides preliminary insights into the skin microbiota as a modifiable risk factor for BD. This raises opportunities for future studies in antimicrobials/probiotics as an adjunct to, or replacement of surgery; a diagnostic and/or prognostic tool for BD; and the possibility of conditioning the microbiota to manage BD.
Collapse
Affiliation(s)
- Katie Wang
- Royal Perth Hospital, Western Australia, Australia.
| | - Kento Nakano
- University of Western Australia, Western Australia, Australia
| | - Naghmeh Naderi
- Department of Plastic and Reconstructive Surgery, Royal Free Hospital, London, UK
| | - Mona Bajaj-Elliott
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Afshin Mosahebi
- Department of Plastic and Reconstructive Surgery, Royal Free Hospital, London, UK
| |
Collapse
|
175
|
Wang N, Sun T, Xu J. Tumor-related Microbiome in the Breast Microenvironment and Breast Cancer. J Cancer 2021; 12:4841-4848. [PMID: 34234854 PMCID: PMC8247384 DOI: 10.7150/jca.58986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the significant progress in diagnosis and treatment over the past years in the understanding of breast cancer pathophysiology, it remains one of the leading causes of mortality worldwide among females. Novel technologies are needed to improve better diagnostic and therapeutic approaches, and to better understand the role of tumor-environment microbiome players involved in the progression of this disease. The gut environment is enriched with over 100 trillion microorganisms, which participate in metabolic diseases, obesity, and inflammation, and influence the response to therapy. In addition to the direct metabolic effects of the gut microbiome, accumulating evidence has revealed that a microbiome also exists in the breast and in breast cancer tissue. This microbiome enriched in the breast environment and the tumor microenvironment may modulate effects potentially associated with carcinogenesis and therapeutic interventions in breast tissue, which to date have not been properly acknowledged. Herein, we review the most recent works associated with the population dynamics of breast microbes and explore the significance of the microbiome on diagnosis, tumor development, response to chemotherapy, endocrine therapy, and immunotherapy. To overcome the low reproducibility of evaluations of tumor-related microbiome, sequencing technical escalation and machine deep learning algorithms may be valid for standardization of assessment for breast-related microbiome and their applications as powerful biomarkers for prognosis and predictive response in the future.
Collapse
Affiliation(s)
- Na Wang
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China, 110042
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China, 110042
| | - Tao Sun
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China, 110042
- Key Laboratory of Liaoning Breast Cancer Research, Shenyang, Liaoning, China
| | - Junnan Xu
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China, 110042
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China, 110042
| |
Collapse
|
176
|
Olvera-Rosales LB, Cruz-Guerrero AE, Ramírez-Moreno E, Quintero-Lira A, Contreras-López E, Jaimez-Ordaz J, Castañeda-Ovando A, Añorve-Morga J, Calderón-Ramos ZG, Arias-Rico J, González-Olivares LG. Impact of the Gut Microbiota Balance on the Health-Disease Relationship: The Importance of Consuming Probiotics and Prebiotics. Foods 2021; 10:1261. [PMID: 34199351 PMCID: PMC8230287 DOI: 10.3390/foods10061261] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota is a group of microorganisms that are deposited throughout the entire gastrointestinal tract. Currently, thanks to genomic tools, studies of gut microbiota have pointed towards the understanding of the metabolism of important bacteria that are not cultivable and their relationship with human homeostasis. Alterations in the composition of gut microbiota could explain, at least in part, some epidemics, such as diabetes and obesity. Likewise, dysbiosis has been associated with gastrointestinal disorders, neurodegenerative diseases, and even cancer. That is why several studies have recently been focused on the direct relationship that these types of conditions have with the specific composition of gut microbiota, as in the case of the microbiota-intestine-brain axis. In the same way, the control of microbiota is related to the diet. Therefore, this review highlights the importance of gut microbiota, from its composition to its relationship with the human health-disease condition, as well as emphasizes the effect of probiotic and prebiotic consumption on the balance of its composition.
Collapse
Affiliation(s)
- Laura-Berenice Olvera-Rosales
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Alma-Elizabeth Cruz-Guerrero
- Departamento de Biotecnología, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico
| | - Esther Ramírez-Moreno
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42060, Hidalgo, Mexico; (E.R.-M.); (Z.-G.C.-R.)
| | - Aurora Quintero-Lira
- Área Académica de Ingeniería Agroindustrial e Ingeniería en alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km. 1, Ex-Hacienda de Aquetzalpa, Tulancingo 43600, Hidalgo, Mexico;
| | - Elizabeth Contreras-López
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Judith Jaimez-Ordaz
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Javier Añorve-Morga
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Zuli-Guadalupe Calderón-Ramos
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42060, Hidalgo, Mexico; (E.R.-M.); (Z.-G.C.-R.)
| | - José Arias-Rico
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42060, Hidalgo, Mexico;
| | - Luis-Guillermo González-Olivares
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| |
Collapse
|
177
|
Borella F, Carosso AR, Cosma S, Preti M, Collemi G, Cassoni P, Bertero L, Benedetto C. Gut Microbiota and Gynecological Cancers: A Summary of Pathogenetic Mechanisms and Future Directions. ACS Infect Dis 2021; 7:987-1009. [PMID: 33848139 DOI: 10.1021/acsinfecdis.0c00839] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, important relationships between the microbiota and human health have emerged. A link between alterations of microbiota composition (dysbiosis) and cancer development has been recently demonstrated. In particular, the composition and the oncogenic role of intestinal bacterial flora has been extensively investigated in preclinical and clinical studies focusing on gastrointestinal tumors. Overall, the development of gastrointestinal tumors is favored by dysbiosis as it leads to depletion of antitumor substances (e.g., short-chain fatty acids) produced by healthy microbiota. Moreover, dysbiosis leads to alterations of the gut barrier, promotes a chronic inflammatory status through activation of toll-like receptors, and causes metabolic and hormonal dysregulations. However, the effects of these imbalances are not limited to the gastrointestinal tract and they can influence gynecological tumor carcinogenesis as well. The purpose of this Review is to provide a synthetic update about the mechanisms of interaction between gut microbiota and the female reproductive tract favoring the development of neoplasms. Furthermore, novel therapeutic approaches based on the modulation of microbiota and their role in gynecological oncology are discussed.
Collapse
Affiliation(s)
- Fulvio Borella
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Andrea Roberto Carosso
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Stefano Cosma
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Mario Preti
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Giammarco Collemi
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
178
|
Wilkie T, Verma AK, Zhao H, Charan M, Ahirwar DK, Kant S, Pancholi V, Mishra S, Ganju RK. Lipopolysaccharide from the commensal microbiota of the breast enhances cancer growth: role of S100A7 and TLR4. Mol Oncol 2021; 16:1508-1522. [PMID: 33969603 PMCID: PMC8978520 DOI: 10.1002/1878-0261.12975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 03/30/2021] [Accepted: 04/23/2021] [Indexed: 11/19/2022] Open
Abstract
The role of commensal bacterial microbiota in the pathogenesis of human malignancies has been a research field of incomparable progress in recent years. Although breast tissue is commonly assumed to be sterile, recent studies suggest that human breast tissue may contain a bacterial microbiota. In this study, we used an immune‐competent orthotopic breast cancer mouse model to explore the existence of a unique and independent bacterial microbiota in breast tumors. We observed some similarities in breast cancer microbiota with skin; however, breast tumor microbiota was mainly enriched with Gram‐negative bacteria, serving as a primary source of lipopolysaccharide (LPS). In addition, dextran sulfate sodium (DSS) treatment in late‐stage tumor lesions increased LPS levels in the breast tissue environment. We also discovered an increased expression of S100A7 and low level of TLR4 in late‐stage tumors with or without DSS as compared to early‐stage tumor lesions. The treatment of breast cancer cells with LPS increased the expression of S100A7 in breast cancer cells in vitro. Furthermore, S100A7 overexpression downregulated TLR4 and upregulated RAGE expression in breast cancer cells. Analysis of human breast cancer samples also highlighted the inverse correlation between S100A7 and TLR4 expression. Overall, these findings suggest that the commensal microbiota of breast tissue may enhance breast tumor burden through a novel LPS/S100A7/TLR4/RAGE signaling axis.
Collapse
Affiliation(s)
- Tasha Wilkie
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Ajeet K Verma
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Helong Zhao
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Manish Charan
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Dinesh K Ahirwar
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Sashi Kant
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Vijay Pancholi
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Sanjay Mishra
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University, Wexner Medical Center
| |
Collapse
|
179
|
An J, Kim JB, Yang EY, Kim HO, Lee WH, Yang J, Kwon H, Paik NS, Lim W, Kim YK, Moon BI. Bacterial extracellular vesicles affect endocrine therapy in MCF7 cells. Medicine (Baltimore) 2021; 100:e25835. [PMID: 33950995 PMCID: PMC8104188 DOI: 10.1097/md.0000000000025835] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 01/28/2021] [Accepted: 04/16/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND : The microbiome is important in the development and progression of breast cancer. This study investigated the effects of microbiome derived from Klebsiella on endocrine therapy of breast cancer using MCF7 cells. The bacterial extracellular vesicles (EVs) that affect endocrine therapy were established through experiments focused on tamoxifen efficacy. METHODS : The microbiomes of breast cancer patients and healthy controls were analyzed using next-generation sequencing. Among microbiome, Klebsiella was selected as the experimental material for the effect on endocrine therapy in MCF7 cells. MCF7 cells were incubated with tamoxifen in the absence/presence of bacterial EVs derived from Klebsiella pneumoniae and analyzed by quantitative real-time polymerase chain reaction and Western blot. RESULTS : Microbiome derived from Klebsiella is abundant in breast cancer patients especially luminal A subtype compared to healthy controls. The addition of EVs derived from K pneumoniae enhances the anti-hormonal effects of tamoxifen in MCF7 cells. The increased efficacy of tamoxifen is mediated via Cyclin E2 and p-ERK. CONCLUSION : Based on experiments, the EVs derived from K pneumoniae are important in hormone therapy on MCF7 cells. This result provides new insight into breast cancer mechanisms and hormone therapy using Klebsiella found in the microbiome.
Collapse
Affiliation(s)
- Jeongshin An
- Department of Surgery, Ewha Womans University School of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu
| | - Jong Bin Kim
- Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu
| | - Eun Yeol Yang
- Department of Surgery, Ewha Womans University School of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu
| | - Hye Ok Kim
- Department of Nuclear Medicine, Ewha Womans University School of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu
| | - Won-Hee Lee
- MD Healthcare, Room 1303, Woori Technology Inc. building, Sangam-dong, World Cup Buk-ro 56-gil, Mapo-gu, Seoul, Republic of Korea
| | - Jinho Yang
- MD Healthcare, Room 1303, Woori Technology Inc. building, Sangam-dong, World Cup Buk-ro 56-gil, Mapo-gu, Seoul, Republic of Korea
| | - Hyungju Kwon
- Department of Surgery, Ewha Womans University School of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu
| | - Nam Sun Paik
- Department of Surgery, Ewha Womans University School of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu
| | - Woosung Lim
- Department of Surgery, Ewha Womans University School of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu
| | - Yoon-Keun Kim
- MD Healthcare, Room 1303, Woori Technology Inc. building, Sangam-dong, World Cup Buk-ro 56-gil, Mapo-gu, Seoul, Republic of Korea
| | - Byung-In Moon
- Department of Surgery, Ewha Womans University School of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu
| |
Collapse
|
180
|
Rajasekaran K, Carey RM, Lin X, Seckar TD, Wei Z, Chorath K, Newman JG, O'Malley BW, Weinstein GS, Feldman MD, Robertson E. The microbiome of HPV-positive tonsil squamous cell carcinoma and neck metastasis. Oral Oncol 2021; 117:105305. [PMID: 33905914 DOI: 10.1016/j.oraloncology.2021.105305] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Oropharyngeal squamous cell carcinoma (OPSCC) has now surpassed cervical cancer as the most common site of HPV-related cancer in the United States. HPV-positive OPSCCs behave differently from HPV-negative tumors and often present with early lymph node involvement. The bacterial microbiome of HPV-associated OPSCC may contribute to carcinogenesis, and certain bacteria may influence the spread of cancer from the primary site to regional lymphatics. OBJECTIVE To determine the bacterial microbiome in patients with HPV-associated, early tonsil SCC and compare them to benign tonsil specimens. METHOD The microbiome of primary tumor specimens and lymph nodes was compared to benign tonsillectomy specimens with pan-pathogen microarray (PathoChip). RESULTS A total of 114 patients were enrolled in the study. Patients with OPSCC had a microbiome that shifted towards more gram-negative. Numerous signatures of bacterial family and species were associated with the primary tumors and lymph nodes of cancer patients, including the urogenital pathogens Proteus mirabilis and Chlamydia trachomatis, Neisseria gonorrhoeae, Shigella dysenteriae, and Orientia tsutsugamushi. CONCLUSION Our results suggest that detection of urogenital pathogens is associated with lymph node metastasis for patients with HPV-positive OPSCCs. Additional studies are necessary to determine the effects of the OPSCC microbiome on disease progression and clinical outcomes.
Collapse
Affiliation(s)
- Karthik Rajasekaran
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States; Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, United States.
| | - Ryan M Carey
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiang Lin
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States; Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Tyler D Seckar
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhi Wei
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States; Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Kevin Chorath
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Jason G Newman
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Bert W O'Malley
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Gregory S Weinstein
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Erle Robertson
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
181
|
Tzeng A, Sangwan N, Jia M, Liu CC, Keslar KS, Downs-Kelly E, Fairchild RL, Al-Hilli Z, Grobmyer SR, Eng C. Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer. Genome Med 2021; 13:60. [PMID: 33863341 PMCID: PMC8052771 DOI: 10.1186/s13073-021-00874-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Currently, over half of breast cancer cases are unrelated to known risk factors, highlighting the importance of discovering other cancer-promoting factors. Since crosstalk between gut microbes and host immunity contributes to many diseases, we hypothesized that similar interactions could occur between the recently described breast microbiome and local immune responses to influence breast cancer pathogenesis. METHODS Using 16S rRNA gene sequencing, we characterized the microbiome of human breast tissue in a total of 221 patients with breast cancer, 18 individuals predisposed to breast cancer, and 69 controls. We performed bioinformatic analyses using a DADA2-based pipeline and applied linear models with White's t or Kruskal-Wallis H-tests with Benjamini-Hochberg multiple testing correction to identify taxonomic groups associated with prognostic clinicopathologic features. We then used network analysis based on Spearman coefficients to correlate specific bacterial taxa with immunological data from NanoString gene expression and 65-plex cytokine assays. RESULTS Multiple bacterial genera exhibited significant differences in relative abundance when stratifying by breast tissue type (tumor, tumor adjacent normal, high-risk, healthy control), cancer stage, grade, histologic subtype, receptor status, lymphovascular invasion, or node-positive status, even after adjusting for confounding variables. Microbiome-immune networks within the breast tended to be bacteria-centric, with sparse structure in tumors and more interconnected structure in benign tissues. Notably, Anaerococcus, Caulobacter, and Streptococcus, which were major bacterial hubs in benign tissue networks, were absent from cancer-associated tissue networks. In addition, Propionibacterium and Staphylococcus, which were depleted in tumors, showed negative associations with oncogenic immune features; Streptococcus and Propionibacterium also correlated positively with T-cell activation-related genes. CONCLUSIONS This study, the largest to date comparing healthy versus cancer-associated breast microbiomes using fresh-frozen surgical specimens and immune correlates, provides insight into microbial profiles that correspond with prognostic clinicopathologic features in breast cancer. It additionally presents evidence for local microbial-immune interplay in breast cancer that merits further investigation and has preventative, diagnostic, and therapeutic potential.
Collapse
Affiliation(s)
- Alice Tzeng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Naseer Sangwan
- Microbiome Composition and Analytics Core, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Margaret Jia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chin-Chih Liu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Karen S Keslar
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Erinn Downs-Kelly
- Department of Anatomic Pathology, Cleveland Clinic, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland, OH, 44195, USA
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Zahraa Al-Hilli
- Department of General Surgery, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Stephen R Grobmyer
- Cleveland Clinic Abu Dhabi, Oncology Institute, Abu Dhabi, United Arab Emirates
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
- Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH, 44195, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Germline High Risk Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
182
|
Quinn CM, Porwal M, Meagher NS, Hettiaratchi A, Power C, Jonnaggadala J, McCullough S, Macmillan S, Tang K, Liauw W, Goldstein D, Zeps N, Crowe PJ. Moving with the Times: The Health Science Alliance (HSA) Biobank, Pathway to Sustainability. Biomark Insights 2021; 16:11772719211005745. [PMID: 35173407 PMCID: PMC8842439 DOI: 10.1177/11772719211005745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Human biobanks are recognised as vital components of translational research infrastructure. With the growth in personalised and precision medicine, and the associated expansion of biomarkers and novel therapeutics under development, it is critical that researchers can access a strong collection of patient biospecimens, annotated with clinical data. Biobanks globally are undertaking transformation of their operating models in response to changing research needs; transition from a ‘classic’ model representing a largely retrospective collection of pre-defined specimens to a more targeted, prospective collection model, although there remains a research need for both models to co-exist. Here we introduce the Health Science Alliance (HSA) Biobank, established in 2012 as a classic biobank, now transitioning to a hybrid operational model. Some of the past and current challenges encountered are discussed including clinical annotation, specimen utilisation and biobank sustainability, along with the measures the HSA Biobank is taking to address these challenges. We describe new directions being explored, going beyond traditional specimen collection into areas involving bioimages, microbiota and live cell culture. The HSA Biobank is working in collaboration with clinicians, pathologists and researchers, piloting a sustainable, robust platform with the potential to integrate future needs.
Collapse
Affiliation(s)
- Carmel M Quinn
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
| | - Mamta Porwal
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
| | - Nicola S Meagher
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
- School of Women’s and Children’s Health, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
| | - Anusha Hettiaratchi
- UNSW Biorepository, Mark Wainwright Analytical Centre, UNSW Sydney, Australia
| | - Carl Power
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Australia
| | - Jitendra Jonnaggadala
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
- School of Population Health, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
| | | | - Stephanie Macmillan
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
| | - Katrina Tang
- NSW Health Pathology, South-East Sydney Local Health District, NSW, Australia
| | - Winston Liauw
- Cancer Care Clinic, St George Hospital, NSW, Australia
| | - David Goldstein
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
- Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Nikolajs Zeps
- Epworth Healthcare, VIC, Australia
- Eastern Clinical School, Monash University, Clayton, VIC, Australia
| | - Philip J Crowe
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Department of Surgery, Prince of Wales Hospital, Randwick, NSW, Australia
| |
Collapse
|
183
|
Kim R, Kin T. Reconsidering the Meaning of Curing Primary Breast Cancer as a Systemic Disease. Front Oncol 2021; 11:639420. [PMID: 33816282 PMCID: PMC8012902 DOI: 10.3389/fonc.2021.639420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ryungsa Kim
- Department of Breast Surgery, Hiroshima Mark Clinic, Hiroshima, Japan
| | - Takanori Kin
- Department of Breast Surgery, Hiroshima City Hospital, Hiroshima, Japan
| |
Collapse
|
184
|
Dieleman S, Aarnoutse R, Ziemons J, Kooreman L, Boleij A, Smidt M. Exploring the Potential of Breast Microbiota as Biomarker for Breast Cancer and Therapeutic Response. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:968-982. [PMID: 33713687 DOI: 10.1016/j.ajpath.2021.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/26/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer tissue contains its own unique microbiota. Emerging preclinical data indicates that breast microbiota dysbiosis contributes to breast cancer initiation and progression. Furthermore, the breast microbiota may be a promising biomarker for treatment selection and prognosis. Differences in breast microbiota composition have been found between breast cancer subtypes and disease severities that may contribute to immunosuppression, enabling tumor cells to evade immune destruction. Interactions between breast microbiota, gut microbiota, and immune system are proposed, all forming potential targets to increase therapeutic efficacy. In addition, because the gut microbiota affects the host immune system and systemic availability of estrogen and bile acids known to influence tumor biology, gut microbiota modulation could be used to manipulate breast microbiota composition. Identifying breast and gut microbial compositions that respond positively to certain anticancer therapeutics could significantly reduce cancer burden. Additional research is needed to unravel the complexity of breast microbiota functioning and its interactions with the gut and the immune system. In this review, developments in the understanding of breast microbiota and its interaction with the immune system and the gut microbiota are discussed. Furthermore, the biomarker potential of breast microbiota is evaluated in conjunction with possible strategies to target microbiota in order to improve breast cancer treatment.
Collapse
Affiliation(s)
- Sabine Dieleman
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Romy Aarnoutse
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Janine Ziemons
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Loes Kooreman
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Pathology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Annemarie Boleij
- Department of Pathology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| | - Marjolein Smidt
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
185
|
Approaching precision medicine by tailoring the microbiota. Mamm Genome 2021; 32:206-222. [PMID: 33646347 DOI: 10.1007/s00335-021-09859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Accumulating evidence has revealed the link between the microbiota and various human diseases. Advances in high-throughput sequencing technologies have identified some consistent disease-associated microbial features, leading to the emerging concept of microbiome-based therapeutics. However, it is also becoming clear that there are considerable variations in the microbiota among patients with the same disease. Variations in the microbial composition and function contribute to substantial differences in metabolic status of the host via production of a myriad of biochemically and functionally different microbial metabolites. Indeed, compelling evidence indicates that individuality of the microbiome may result in individualized responses to microbiome-based therapeutics and other interventions. Mechanistic understanding of the role of the microbiota in diseases and drug metabolism would help us to identify causal relationships and thus guide the development of microbiome-based precision or personalized medicine. In this review, we provide an overview of current efforts to use microbiome-based interventions for the treatment of diseases such as cancer, neurological disorders, and diabetes to approach precision medicine.
Collapse
|
186
|
Shin DY, Park J, Yi DY. Comprehensive Analysis of the Effect of Probiotic Intake by the Mother on Human Breast Milk and Infant Fecal Microbiota. J Korean Med Sci 2021; 36:e58. [PMID: 33650336 PMCID: PMC7921370 DOI: 10.3346/jkms.2021.36.e58] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/20/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human breast milk (HBM) contains optimal nutrients for infant growth. Probiotics are used to prevent disease and, when taken by the mother, they may affect infant microbiome as well as HBM. However, few studies have specifically investigated the effect of probiotic intake by the mother on HBM and infant microbiota at genus/species level. Therefore, we present a comprehensive analysis of paired HBM and infant feces (IF) microbiome samples before and after probiotic intake by HBM-producing mothers. METHODS Lactating mothers were administered with Lactobacillus rhamnosus (n = 9) or Saccharomyces boulardii capsules (n = 9), for 2 months; or no probiotic (n = 7). Paired HBM and IF samples were collected before and after treatment and analyzed by next-generation sequencing. RESULTS Forty-three HBM and 49 IF samples were collected and sequenced. Overall, in 43 HBM samples, 1,190 microbial species belonging to 684 genera, 245 families, 117 orders, and 56 classes were detected. In 49 IF samples, 372 microbial species belonging to 195 genera, 79 families, 42 orders, and 18 classes were identified. Eight of 20 most abundant genera in both HBM and IF samples overlapped: Streptococcus (14.42%), Lactobacillus, Staphylococcus, and Veillonella, which were highly abundant in the HBM samples; and Bifidobacterium (27.397%), Bacteroides, and Faecalibacterium, which were highly abundant in the IF samples. Several major bacterial genera and species were detected in the HBM and IF samples after probiotic treatment, illustrating complex changes in the microbiomes upon treatment. CONCLUSION This is the first Korean microbiome study in which the effect of different probiotic intake by the mother on the microbiota in HBM and IF samples was investigated. This study provides a cornerstone to further the understanding of the effect of probiotics on the mother and infant microbiomes.
Collapse
Affiliation(s)
- Do Young Shin
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, Korea
| | | | - Dae Yong Yi
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, Korea
- Department of Pediatrics, College of Medicine, Chung-Ang University, Seoul, Korea.
| |
Collapse
|
187
|
Van der Merwe M, Van Niekerk G, Botha A, Engelbrecht AM. The onco-immunological implications of Fusobacterium nucleatum in breast cancer. Immunol Lett 2021; 232:60-66. [PMID: 33647328 DOI: 10.1016/j.imlet.2021.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/04/2023]
Abstract
Breast cancer is a leading cause of death worldwide and a better understanding of this disease is needed to improve treatment outcomes. Recent evidence indicates that bacterial dysbiosis is associated with breast cancer, but the bacteria involved remain poorly characterised. Furthermore, an association between periodontal disease, characterised by oral dysbiosis, and breast cancer have also been discovered, but the mechanisms responsible for this association remains to be elucidated. The oral bacterium involved in periodontal disease, Fusobacterium nucleatum, have recently been detected in human breast tumour tissue and it promoted tumour growth and metastatic progression in a mouse model. The mechanisms of how F. nucleatum might colonise breast tissue and how it might promote tumour progression has not been fully elucidated yet. Here we discuss the breast tumour microbiota, its colonisation by F. nucleatum, possible mechanisms by which F. nucleatum might promote breast cancer progression and how this might impact breast cancer treatment. Literature indicates that F. nucleatum might promote breast cancer progression through activating the Toll-like receptor 4 pathway and by supressing the immune system. This results in cell growth and treatment resistance through autophagy as well as immune evasion. Targeted treatment directed at F. nucleatum combined with immunotherapy and autophagy inhibitors might therefore be a feasible treatment strategy for breast cancer patients.
Collapse
Affiliation(s)
- Michelle Van der Merwe
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Gustav Van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Alf Botha
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
188
|
Alpuim Costa D, Nobre JG, Batista MV, Ribeiro C, Calle C, Cortes A, Marhold M, Negreiros I, Borralho P, Brito M, Cortes J, Braga SA, Costa L. Human Microbiota and Breast Cancer-Is There Any Relevant Link?-A Literature Review and New Horizons Toward Personalised Medicine. Front Microbiol 2021; 12:584332. [PMID: 33716996 PMCID: PMC7947609 DOI: 10.3389/fmicb.2021.584332] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy and the second cause of cancer-specific death in women from high-income countries. Recently, gut microbiota dysbiosis emerged as a key player that may directly and/or indirectly influence development, treatment, and prognosis of BC through diverse biological processes: host cell proliferation and death, immune system function, chronic inflammation, oncogenic signalling, hormonal and detoxification pathways. Gut colonisation occurs during the prenatal period and is later diversified over distinct phases throughout life. In newly diagnosed postmenopausal BC patients, an altered faecal microbiota composition has been observed compared with healthy controls. Particularly, β-glucuronidase bacteria seem to modulate the enterohepatic circulation of oestrogens and their resorption, increasing the risk of hormone-dependent BC. Moreover, active phytoestrogens, short-chain fatty acids, lithocholic acid, and cadaverine have been identified as bacterial metabolites influencing the risk and prognosis of BC. As in gut, links are also being made with local microbiota of tumoural and healthy breast tissues. In breast microbiota, different microbial signatures have been reported, with distinct patterns per stage and biological subtype. Total bacterial DNA load was lower in tumour tissue and advanced-stage BC when compared with healthy tissue and early stage BC, respectively. Hypothetically, these findings reflect local dysbiosis, potentially creating an environment that favours breast tumour carcinogenesis (oncogenic trigger), or the natural selection of microorganisms adapted to a specific microenvironment. In this review, we discuss the origin, composition, and dynamic evolution of human microbiota, the links between gut/breast microbiota and BC, and explore the potential implications of metabolomics and pharmacomicrobiomics that might impact BC development and treatment choices toward a more personalised medicine. Finally, we put in perspective the potential limitations and biases regarding the current microbiota research and provide new horizons for stronger accurate translational and clinical studies that are needed to better elucidate the complex network of interactions between host, microorganisms, and drugs in the field of BC.
Collapse
Affiliation(s)
- Diogo Alpuim Costa
- Breast Cancer Unit, CUF Oncologia, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, Lisbon Portugal
| | | | - Marta Vaz Batista
- Medical Oncology Department, Hospital Prof. Doutor Fernando Fonseca, Amadora, Portugal
| | - Catarina Ribeiro
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - Catarina Calle
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
- Pathology Department, CUF Oncologia, Lisbon, Portugal
| | - Alfonso Cortes
- Medical Oncology Department, Hospital Universitario Ramón Y Cajal, Madrid, Spain
| | - Maximilian Marhold
- Division of Oncology, Department for Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Paula Borralho
- Breast Cancer Unit, CUF Oncologia, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Pathology Department, CUF Oncologia, Lisbon, Portugal
- Health and Technology Research Center (H&TRC), Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Miguel Brito
- Health and Technology Research Center (H&TRC), Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Quiron Group, Barcelona, Spain
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medica Scientia Innovation Research, Valencia, Spain
| | - Sofia Azambuja Braga
- Breast Cancer Unit, CUF Oncologia, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, Lisbon Portugal
- Medical Oncology Department, Hospital Prof. Doutor Fernando Fonseca, Amadora, Portugal
| | - Luís Costa
- Breast Cancer Unit, CUF Oncologia, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar de Lisboa Norte, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
189
|
Yoon Y, Kim G, Jeon BN, Fang S, Park H. Bifidobacterium Strain-Specific Enhances the Efficacy of Cancer Therapeutics in Tumor-Bearing Mice. Cancers (Basel) 2021; 13:957. [PMID: 33668827 PMCID: PMC7956760 DOI: 10.3390/cancers13050957] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer-related death in the world. The development of CRC is associated with smoking, diet, and microbial exposure. Previous studies have shown that dysbiosis of the gut microbiome affects cancer development, because it leads to inflammation and genotoxicity. Supplementation with specific microbiota induces anti-tumor effects by enhancing of anti-tumor immunity. Here, we observed that supplementation with either of two B. breve strains reduces tumor growth in MC38 colon carcinoma-bearing mice. Interestingly, only one B. breve strain boosted the efficacy of cancer therapeutics, including oxaliplatin and PD-1 blockade. Extensive immune profiling and transcriptomic analysis revealed that the boosting B. breve strain augments lymphocyte-mediated anti-cancer immunity. Our results suggest that supplementation with B. breve strains could potentially be used as a strategy to enhance the efficacy of CRC therapeutics.
Collapse
Affiliation(s)
- Youngmin Yoon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.Y.); (G.K.)
| | - Gihyeon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.Y.); (G.K.)
| | - Bu-Nam Jeon
- Genome and Company, Pangyo-ro 255, Bundang-gu, Seoungnam 13486, Korea;
| | - Sungsoon Fang
- Severance Biomedical Science Institute, BK21 PLUS Project for Medical Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.Y.); (G.K.)
- Genome and Company, Pangyo-ro 255, Bundang-gu, Seoungnam 13486, Korea;
| |
Collapse
|
190
|
Sarhadi V, Mathew B, Kokkola A, Karla T, Tikkanen M, Rautelin H, Lahti L, Puolakkainen P, Knuutila S. Gut microbiota of patients with different subtypes of gastric cancer and gastrointestinal stromal tumors. Gut Pathog 2021; 13:11. [PMID: 33596997 PMCID: PMC7888145 DOI: 10.1186/s13099-021-00403-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gastric adenocarcinoma is associated with H. pylori infection and inflammation that can result in the dysbiosis of gastric microbiota. The association of intestinal microbiota with gastric adenocarcinoma subtypes or with gastric gastrointestinal stromal tumors (GIST) is however not well known. Therefore, we performed 16S rRNA gene sequencing on DNA isolated from stool samples of Finnish patients and controls to study differences in microbiota among different histological subtypes of gastric adenocarcinoma, gastric GIST and healthy controls. RESULTS We found that gut microbiota alpha diversity was lowest in diffuse adenocarcinoma patients, followed by intestinal type and GIST patients, although the differences were not significant compared to controls. Beta-diversity analysis however showed significant differences in microbiota composition for all subtypes compared to controls. Significantly higher abundance of Enterobacteriaceae was observed in both adenocarcinoma subtypes, whereas lower abundance of Bifidobacteriaceae was seen only in diffuse adenocarcinoma and of Oscillibacter in intestinal adenocarcinoma. Both GIST and adenocarcinoma patients had higher abundance of Enterobacteriaceae and lower abundance of Lactobacillaceae and Oscillibacter while lower abundance of Lachnoclostridium, Bifidobacterium, Parabacteroides and Barnesiella was seen only in the adenocarcinoma patients. CONCLUSIONS Our analysis shows association of higher Enterobacteriaceae abundance with all types of gastric tumors. Therefore it could be potentially useful as a marker of gastric malignancies. Lower gut microbiota diversity might be indicative of poorly differentiated, invasive, advanced or aggressive tumors and could possibly be a prognostic marker for gastric tumors.
Collapse
Affiliation(s)
- Virinder Sarhadi
- Faculty of Medicine, Department of Pathology, University of Helsinki, 00014, Helsinki, Finland
| | - Binu Mathew
- Department of Computing, University of Turku, Turku, Finland
| | - Arto Kokkola
- The HUCH Gastrointestinal Clinic, University Central Hospital of Helsinki, Helsinki, Finland
| | | | | | - Hilpi Rautelin
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Pauli Puolakkainen
- The HUCH Gastrointestinal Clinic, University Central Hospital of Helsinki, Helsinki, Finland
| | - Sakari Knuutila
- Faculty of Medicine, Department of Pathology, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
191
|
Parida S, Wu S, Siddharth S, Wang G, Muniraj N, Nagalingam A, Hum C, Mistriotis P, Hao H, Talbot CC, Konstantopoulos K, Gabrielson KL, Sears CL, Sharma D. A Procarcinogenic Colon Microbe Promotes Breast Tumorigenesis and Metastatic Progression and Concomitantly Activates Notch and β-Catenin Axes. Cancer Discov 2021; 11:1138-1157. [PMID: 33408241 DOI: 10.1158/2159-8290.cd-20-0537] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/03/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
The existence of distinct breast microbiota has been recently established, but their biological impact in breast cancer remains elusive. Focusing on the shift in microbial community composition in diseased breast compared with normal breast, we identified the presence of Bacteroides fragilis in cancerous breast. Mammary gland as well as gut colonization with enterotoxigenic Bacteroides fragilis (ETBF), which secretes B. fragilis toxin (BFT), rapidly induces epithelial hyperplasia in the mammary gland. Breast cancer cells exposed to BFT exhibit "BFT memory" from the initial exposure. Intriguingly, gut or breast duct colonization with ETBF strongly induces growth and metastatic progression of tumor cells implanted in mammary ducts, in contrast to nontoxigenic Bacteroides fragilis. This work sheds light on the oncogenic impact of a procarcinogenic colon bacterium ETBF on breast cancer progression, implicates the β-catenin and Notch1 axis as its functional mediators, and proposes the concept of "BFT memory" that can have far-reaching biological implications after initial exposure to ETBF. SIGNIFICANCE: B. fragilis is an inhabitant of breast tissue, and gut or mammary duct colonization with ETBF triggers epithelial hyperplasia and augments breast cancer growth and metastasis. Short-term exposure to BFT elicits a "BFT memory" with long-term implications, functionally mediated by the β-catenin and Notch1 pathways.This article is highlighted in the In This Issue feature, p. 995.
Collapse
Affiliation(s)
- Sheetal Parida
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shaoguang Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sumit Siddharth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guannan Wang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nethaji Muniraj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Arumugam Nagalingam
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christina Hum
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Haiping Hao
- Johns Hopkins Transcriptomics and Deep Sequencing Core, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - C Conover Talbot
- Johns Hopkins Transcriptomics and Deep Sequencing Core, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Konstantinos Konstantopoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen L Gabrielson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cynthia L Sears
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dipali Sharma
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
192
|
Bioinformatics Tools for Gene and Genome Annotation Analysis of Microbes for Synthetic Biology and Cancer Biology Applications. Adv Bioinformatics 2021. [DOI: 10.1007/978-981-33-6191-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
193
|
Rodriguez RM, Khadka VS, Menor M, Hernandez BY, Deng Y. Tissue-associated microbial detection in cancer using human sequencing data. BMC Bioinformatics 2020; 21:523. [PMID: 33272199 PMCID: PMC7713026 DOI: 10.1186/s12859-020-03831-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality in the globe. Microbiological infections account for up to 20% of the total global cancer burden. The human microbiota within each organ system is distinct, and their compositional variation and interactions with the human host have been known to attribute detrimental and beneficial effects on tumor progression. With the advent of next generation sequencing (NGS) technologies, data generated from NGS is being used for pathogen detection in cancer. Numerous bioinformatics computational frameworks have been developed to study viral information from host-sequencing data and can be adapted to bacterial studies. This review highlights existing popular computational frameworks that utilize NGS data as input to decipher microbial composition, which output can predict functional compositional differences with clinically relevant applicability in the development of treatment and prevention strategies.
Collapse
Affiliation(s)
- Rebecca M. Rodriguez
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Mānoa, Honolulu, HI USA
- Population Sciences in the Pacific Program-Cancer Epidemiology, Honolulu, HI USA
- NIDDK Central Repository, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, USA
| | - Vedbar S. Khadka
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Mānoa, Honolulu, HI USA
| | - Mark Menor
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Mānoa, Honolulu, HI USA
| | - Brenda Y. Hernandez
- Epidemiology, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI USA
- Population Sciences in the Pacific Program-Cancer Epidemiology, Honolulu, HI USA
| | - Youping Deng
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Mānoa, Honolulu, HI USA
| |
Collapse
|
194
|
Sampsell K, Hao D, Reimer RA. The Gut Microbiota: A Potential Gateway to Improved Health Outcomes in Breast Cancer Treatment and Survivorship. Int J Mol Sci 2020; 21:E9239. [PMID: 33287442 PMCID: PMC7731103 DOI: 10.3390/ijms21239239] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer in women worldwide. The disease and its treatments exert profound effects on an individual's physical and mental health. There are many factors that impact an individual's risk of developing breast cancer, their response to treatments, and their risk of recurrence. The community of microorganisms inhabiting the gastrointestinal tract, the gut microbiota, affects human health through metabolic, neural, and endocrine signaling, and immune activity. It is through these mechanisms that the gut microbiota appears to influence breast cancer risk, response to treatment, and recurrence. A disrupted gut microbiota or state of 'dysbiosis' can contribute to a biological environment associated with higher risk for cancer development as well as contribute to negative treatment side-effects. Many cancer treatments have been shown to shift the gut microbiota toward dysbiosis; however, the microbiota can also be positively manipulated through diet, prebiotic and probiotic supplementation, and exercise. The objective of this review is to provide an overview of the current understanding of the relationship between the gut microbiota and breast cancer and to highlight potential strategies for modulation of the gut microbiota that could lead to improved clinical outcomes and overall health in this population.
Collapse
Affiliation(s)
- Kara Sampsell
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Desirée Hao
- Department of Medical Oncology, Tom Baker Cancer Centre and Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
| | - Raylene A. Reimer
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
195
|
Jia M, Wu Z, Vogtmann E, O'Brien KM, Weinberg CR, Sandler DP, Gierach GL. The Association Between Periodontal Disease and Breast Cancer in a Prospective Cohort Study. Cancer Prev Res (Phila) 2020; 13:1007-1016. [PMID: 32727823 PMCID: PMC7718282 DOI: 10.1158/1940-6207.capr-20-0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/27/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
Periodontal disease may be associated with increased breast cancer risk, but studies have not considered invasive breast cancer and ductal carcinoma in situ (DCIS) separately in the same population. We assessed the relationship between periodontal disease and breast cancer in a large prospective cohort study. The Sister Study followed women without prior breast cancer ages 35 to 74 years from 2003 to 2017 (N = 49,968). Baseline periodontal disease was self-reported, and incident breast cancer was ascertained over a mean follow-up of 9.3 years. We estimated hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards regression, adjusting for multiple potential confounders, including smoking status. Heterogeneity in risk for invasive breast cancer versus DCIS was also estimated. About 22% of participants reported a history of periodontal disease at baseline. A total of 3,339 incident breast cancers (2,607 invasive breast cancer, 732 DCIS) were identified. There was no clear association between periodontal disease and overall breast cancer risk (HR = 1.02; 95% CI, 0.94-1.11). However, we observed a nonstatistically significant suggestive increased risk of invasive breast cancer (HR = 1.07; 95% CI, 0.97-1.17) and decreased risk of DCIS (HR = 0.86; 95% CI, 0.72-1.04) associated with periodontal disease, with evidence for heterogeneity in the risk associations (relative HR for invasive breast cancer versus DCIS = 1.24; 95% CI, 1.01-1.52). A case-only analysis for etiologic heterogeneity confirmed this difference. We observed no clear association between periodontal disease and overall breast cancer risk. The heterogeneity in risk associations for invasive breast cancer versus DCIS warrants further exploration.
Collapse
Affiliation(s)
- Mengmeng Jia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeni Wu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Emily Vogtmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Gretchen L Gierach
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
196
|
Jarman R, Ribeiro-Milograna S, Kalle W. Potential of the Microbiome as a Biomarker for Early Diagnosis and Prognosis of Breast Cancer. J Breast Cancer 2020; 23:579-587. [PMID: 33408884 PMCID: PMC7779729 DOI: 10.4048/jbc.2020.23.e60] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer affects 1 in 8 women globally, and is the leading cause of cancer-related deaths in female patients. The majority of breast cancer cases are of unknown cause; few are linked to genetic predisposition, and some arise sporadically. Finding the cause of these sporadic cases is an important area in cancer research. Investigations into the microbiome show links between microbiome dysbiosis and breast cancer, with possible mechanisms in the association of the microbiome and breast cancer, including estrogen metabolism and the 'oestrobolome,' immune regulation, propensity for obesity, and the regulation of the tumor microenvironment. This paper reviews the literature and discusses the potential implications of links between the microbiome and breast cancer, and concludes that the microbiome may have significant applications as a biomarker for breast cancer diagnosis, prognosis, and management. Further investigation is crucial, since modification of the microbiome can, at the most basic level, be achieved via dietary modification.
Collapse
Affiliation(s)
- Robyn Jarman
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, Australia
| | | | - Wouter Kalle
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, Australia
| |
Collapse
|
197
|
Masson AS, Ho Bich H, Simonin M, Nguyen Thi H, Czernic P, Moulin L, Bellafiore S. Deep modifications of the microbiome of rice roots infected by the parasitic nematode Meloidogyne graminicola in highly infested fields in Vietnam. FEMS Microbiol Ecol 2020; 96:5846042. [PMID: 32453398 DOI: 10.1093/femsec/fiaa099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/25/2020] [Indexed: 01/05/2023] Open
Abstract
Meloidogyne graminicola, also known as the rice root-knot nematode, is one of the most damaging plant-parasitic nematode, especially on rice. This obligate soilborne parasite induces the formation of galls that disturb the root morphology and physiology. Its impact on the root microbiome is still not well described. Here, we conducted a survey in Northern Vietnam where we collected infected (with galls) and non-infected root tips from the same plants in three naturally infested fields. Using a metabarcoding approach, we discovered that M. graminicola infection caused modifications of the root bacterial community composition and network structure. Interestingly, we observed in infected roots a higher diversity and species richness (+24% observed ESVs) as well as a denser and more complex co-occurrence network (+44% nodes and +136% links). We identified enriched taxa that include several hubs, which could serve as potential indicators or biocontrol agents of the nematode infection. Moreover, the community of infected roots is more specific suggesting changes in the functional capabilities to survive in the gall environment. We thus describe the signature of the gall microbiome (the 'gallobiome') with shifting abundances and enrichments that lead to a strong restructuration of the root microbiome.
Collapse
Affiliation(s)
| | - Hai Ho Bich
- Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Marie Simonin
- IRD, Cirad, Univ Montpellier, IPME, Montpellier, France.,IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Hue Nguyen Thi
- Laboratoire Mixte International RICE2, Agriculture Genetics Institute (AGI), Hanoi, Vietnam
| | | | - Lionel Moulin
- IRD, Cirad, Univ Montpellier, IPME, Montpellier, France
| | | |
Collapse
|
198
|
Fernández L, Pannaraj PS, Rautava S, Rodríguez JM. The Microbiota of the Human Mammary Ecosystem. Front Cell Infect Microbiol 2020; 10:586667. [PMID: 33330129 PMCID: PMC7718026 DOI: 10.3389/fcimb.2020.586667] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Human milk contains a dynamic and complex site-specific microbiome, which is not assembled in an aleatory way, formed by organized microbial consortia and networks. Presence of some genera, such as Staphylococcus, Streptococcus, Corynebacterium, Cutibacterium (formerly known as Propionibacterium), Lactobacillus, Lactococcus and Bifidobacterium, has been detected by both culture-dependent and culture-independent approaches. DNA from some gut-associated strict anaerobes has also been repeatedly found and some studies have revealed the presence of cells and/or nucleic acids from viruses, archaea, fungi and protozoa in human milk. Colostrum and milk microbes are transmitted to the infant and, therefore, they are among the first colonizers of the human gut. Still, the significance of human milk microbes in infant gut colonization remains an open question. Clinical studies trying to elucidate the question are confounded by the profound impact of non-microbial human milk components to intestinal microecology. Modifications in the microbiota of human milk may have biological consequences for infant colonization, metabolism, immune and neuroendocrine development, and for mammary health. However, the factors driving differences in the composition of the human milk microbiome remain poorly known. In addition to colostrum and milk, breast tissue in lactating and non-lactating women may also contain a microbiota, with implications in the pathogenesis of breast cancer and in some of the adverse outcomes associated with breast implants. This and other open issues, such as the origin of the human milk microbiome, and the current limitations and future prospects are addressed in this review.
Collapse
Affiliation(s)
- Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Pia S. Pannaraj
- Department of Pediatrics and Molecular Microbiology and Immunology, Keck School of Medicine and Children’s Hospital, Los Angeles, CA, United States
| | - Samuli Rautava
- University of Helsinki and Helsinki University Hospital, New Children’s Hospital, Pediatric Research Center, Helsinki, Finland
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
199
|
Dehhaghi M, Kazemi Shariat Panahi H, Heng B, Guillemin GJ. The Gut Microbiota, Kynurenine Pathway, and Immune System Interaction in the Development of Brain Cancer. Front Cell Dev Biol 2020; 8:562812. [PMID: 33330446 PMCID: PMC7710763 DOI: 10.3389/fcell.2020.562812] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Human gut microbiota contains a large, complex, dynamic microbial community of approximately 1014 microbes from more than 1,000 microbial species, i.e., equivalent to 4 × 106 genes. Numerous evidence links gut microbiota with human health and diseases. Importantly, gut microbiota is involved in the development and function of the brain through a bidirectional pathway termed as the gut-brain axis. Interaction between gut microbiota and immune responses can modulate the development of neuroinflammation and cancer diseases in the brain. With respect of brain cancer, gut microbiota could modify the levels of antioxidants, amyloid protein and lipopolysaccharides, arginase 1, arginine, cytochrome C, granulocyte-macrophage colony-stimulating factor signaling (GM-CSF), IL-4, IL-6, IL-13, IL-17A, interferon gamma (IFN-γ), reactive oxygen species (ROS), reactive nitrogen species (e.g., nitric oxide and peroxynitrite), short-chain fatty acids (SCFAs), tryptophan, and tumor necrosis factor-β (TGF-β). Through these modifications, gut microbiota can modulate apoptosis, the aryl hydrocarbon receptor (AhR), autophagy, caspases activation, DNA integrity, microglia dysbiosis, mitochondria permeability, T-cell proliferation and functions, the signal transducer and activator of transcription (STAT) pathways, and tumor cell proliferation and metastasis. The outcome of such interventions could be either oncolytic or oncogenic. This review scrutinizes the oncogenic and oncolytic effects of gut microbiota by classifying the modification mechanisms into (i) amino acid deprivation (arginine and tryptophan); (ii) kynurenine pathway; (iii) microglia dysbiosis; and (iv) myeloid-derived suppressor cells (MDSCs). By delineating the complexity of the gut-microbiota-brain-cancer axis, this review aims to help the research on the development of novel therapeutic strategies that may aid the efficient eradication of brain cancers.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Pandis Community, Sydney, NSW, Australia.,Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Pandis Community, Sydney, NSW, Australia
| |
Collapse
|
200
|
McKenzie ND, Hong H, Ahmad S, Holloway RW. The gut microbiome and cancer immunotherapeutics: A review of emerging data and implications for future gynecologic cancer research. Crit Rev Oncol Hematol 2020; 157:103165. [PMID: 33227575 DOI: 10.1016/j.critrevonc.2020.103165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/23/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
Investigation of the gynecologic tract microbial milieu has revealed potential new biomarkers. Simultaneously, immunotherapeutics are establishing their place in the treatment of gynecologic malignancies. The interplay between the microbiome, the tumor micro-environment and response to therapy is a burgeoning area of interest. There is evidence to support that microbes, through their genetic make-up, gene products, and metabolites affect human physiology, metabolism, immunity, disease susceptibility, response to pharmacotherapy, and the severity of disease-related side effects. Specifically, the richness and diversity of the gut microbiome appears to affect carcinogenesis, response to immunotherapy, and modulate severity of immune-mediated adverse effects. These effects have best been described in other tumor types and these have shown compelling results. This review summarizes the current understanding and scope of the interplay between the human microbiome, host factors, cancer, and response to treatments. These findings support further exploring whether these associations exist for gynecologic malignancies.
Collapse
Affiliation(s)
- Nathalie D McKenzie
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA
| | - Hannah Hong
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA; Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Sarfraz Ahmad
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA.
| | - Robert W Holloway
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA
| |
Collapse
|