151
|
Epigenetic regulation of cell life and death decisions and deregulation in cancer. Essays Biochem 2010; 48:121-46. [PMID: 20822491 DOI: 10.1042/bse0480121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For every cell, there is a time to live and a time to die. It is apparent that cell life and death decisions are taken by individual cells based on their interpretation of physiological or non-physiological stimuli, or their own self-assessment of internal damage or changes in their environment. Apoptosis or programmed cell death is a key regulator of physiological growth control and regulation of tissue homoeostasis. One of the most important advances in cancer research in recent years is the recognition that cell death, mostly by apoptosis, is crucially involved in the regulation of tumour formation and also critically determines treatment response. The initiation and progression of cancer, traditionally seen as a genetic disease, is now realized to involve epigenetic abnormalities along with genetic alterations. The study of epigenetic mechanisms in cancer, such as DNA methylation, histone modifications and microRNA expression, has revealed a plethora of events that contribute to the neoplastic phenotype through stable changes in the expression of genes critical to cell death pathways. A better understanding of the epigenetic molecular events that regulate apoptosis, together with the reversible nature of epigenetic aberrations, should contribute to the emergence of the promising field of epigenetic therapy.
Collapse
|
152
|
Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. J Biomed Biotechnol 2010; 2011:475641. [PMID: 21188171 PMCID: PMC3004414 DOI: 10.1155/2011/475641] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/12/2010] [Indexed: 12/18/2022] Open
Abstract
The human genome is epigenetically organized through a series of modifications to the histone proteins that interact with the DNA. In cancer, many of the proteins that regulate these modifications can be altered in both function and expression. One example of this is the family of histone deacetylases (HDACs), which as their name implies remove acetyl groups from the histone proteins, allowing for more condensed nucleosomal structure. HDACs have increased expression in cancer and are also believed to promote carcinogenesis through the acetylation and interaction with key transcriptional regulators. Given this, small molecule histone deacetylases inhibitors have been identified and developed, which not only inhibit HDACs, but can also lead to growth arrest, differentiation, and/or apoptosis in tumors both in vitro and in vivo. Here, we will discuss some of the recent developments in clinical trials utilizing HDACs inhibitors for the treatment of both hematological malignancies as well as solid tumors.
Collapse
|
153
|
Histone deacetylase inhibitors: the epigenetic therapeutics that repress hypoxia-inducible factors. J Biomed Biotechnol 2010; 2011:197946. [PMID: 21151670 PMCID: PMC2997513 DOI: 10.1155/2011/197946] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/25/2010] [Indexed: 11/21/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) have been actively explored as a new generation of chemotherapeutics for cancers, generally known as epigenetic therapeutics. Recent findings indicate that several types of HDACIs repress angiogenesis, a process essential for tumor metabolism and progression. Accumulating evidence supports that this repression is mediated by disrupting the function of hypoxia-inducible factors (HIF-1, HIF-2, and collectively, HIF), which are the master regulators of angiogenesis and cellular adaptation to hypoxia. Since HIF also regulate glucose metabolism, cell survival, microenvironment remodeling, and other alterations commonly required for tumor progression, they are considered as novel targets for cancer chemotherapy. Though the precise biochemical mechanism underlying the HDACI-triggered repression of HIF function remains unclear, potential cellular factors that may link the inhibition of deacetylase activity to the repression of HIF function have been proposed. Here we review published data that inhibitors of type I/II HDACs repress HIF function by either reducing functional HIF-1α levels, or repressing HIF-α transactivation activity. In addition, underlying mechanisms and potential proteins involved in the repression will be discussed. A thorough understanding of HDACI-induced repression of HIF function may facilitate the development of future therapies to either repress or promote angiogenesis for cancer or chronic ischemic disorders, respectively.
Collapse
|
154
|
Su JM, Li XN, Thompson P, Ou CN, Ingle AM, Russell H, Lau CC, Adamson PC, Blaney SM. Phase 1 study of valproic acid in pediatric patients with refractory solid or CNS tumors: a children's oncology group report. Clin Cancer Res 2010; 17:589-97. [PMID: 21115653 DOI: 10.1158/1078-0432.ccr-10-0738] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The primary purpose of this trial was to define and describe the toxicities of oral valproic acid (VPA) at doses required to maintain trough concentrations of 100 to 150 mcg/mL or 150 to 200 mcg/mL in children with refractory solid or central nervous system (CNS) tumors. Secondary objectives included assessment of free and total VPA pharmacokinetics (PKs) and histone acetylation in peripheral blood mononuclear cells (PBMC) at steady state. PATIENTS AND METHODS Oral VPA, initially administered twice daily and subsequently three times daily, was continued without interruption to maintain trough concentrations of 100 to 150 mcg/mL. First-dose and steady-state PKs were studied. Histone H3 and H4 acetylation in PBMCs was evaluated using an ELISA technique. RESULTS Twenty-six children, sixteen of whom were evaluable for toxicity, were enrolled. Dose-limiting somnolence and intratumoral hemorrhage were associated with VPA troughs of 100 to 150 mcg/mL. Therefore, the final cohort of six children received VPA to maintain troughs of 75 to 100 mcg/mL and did not experience any dose-limiting toxicity. First-dose and steady-state VPA PK parameters were similar to values previously reported in children with seizures. Increased PBMC histone acetylation was documented in 50% of patients studied. One confirmed partial response (glioblastoma multiforme) and one minor response (brainstem glioma) were observed. CONCLUSIONS VPA administered three times daily to maintain trough concentrations of 75 to 100 mcg/mL was well tolerated in children with refractory solid or CNS tumors. Histone hyperacetylation in PBMCs was observed in half of the patients at steady state. Future trials combining VPA with chemotherapy and/or radiation therapy should be considered, especially for CNS tumors.
Collapse
Affiliation(s)
- Jack M Su
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Fischer A, Sananbenesi F, Mungenast A, Tsai LH. Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 2010; 31:605-17. [PMID: 20980063 DOI: 10.1016/j.tips.2010.09.003] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 01/18/2023]
Abstract
Changes in gene expression in the brain may underlie cognitive deficits inherent to normal aging and neurodegenerative disease. However, the mechanisms underlying pathological alterations in the brain transcriptome are incompletely understood. Epigenetic mechanisms such as DNA methylation and histone acetylation have been shown to be important for memory processes in the adult brain. There is accumulating evidence that altered chromatin plasticity and histone acetylation are also involved in cognitive aging, neurodegeneration, and neuropsychiatric diseases. Inhibitors of histone deacetylase (HDAC) exhibit neuroprotective and neuroregenerative properties in animal models of various brain diseases. As such, targeting of HDACs seems to be a promising therapeutic strategy. In this review, we discuss the specific roles of each HDAC protein and the possible function of distinct histone modifications. We hope that this knowledge will aid in the development of diagnostic tools and in designing more potent and specific treatment for neurological disorders targeting selective HDAC proteins.
Collapse
Affiliation(s)
- André Fischer
- Laboratory for Aging and Cognitive Diseases, European Neuroscience Institute, Grisebach Str. 5, D-37077 Goettingen, Germany.
| | | | | | | |
Collapse
|
156
|
Yavropoulou MP, Papapoulos SE. Targeting the Wnt signaling pathway for the development of novel therapies for osteoporosis. Expert Rev Endocrinol Metab 2010; 5:711-722. [PMID: 30764023 DOI: 10.1586/eem.10.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A number of anti-osteoporotic drugs, predominantly inhibitors of bone resorption, are currently used in the management of patients with osteoporosis to reduce the risk of fractures. While the management of the disease has improved significantly, there are still unmet needs, mainly due to a lack of agents able to replace bone that has already been lost. Human and animal genetics have identified the pivotal role of the Wnt signaling pathway in the regulation of bone formation by the osteoblasts and have made it a very attractive target for the development of novel treatments for osteoporosis. In this article, we review evidence that supports the targeting of components of the Wnt signaling pathway for the design of bone-forming treatments for osteoporosis.
Collapse
Affiliation(s)
- Maria P Yavropoulou
- a Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Socrates E Papapoulos
- a Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- b
| |
Collapse
|
157
|
Design and synthesis of novel isoxazole-based HDAC inhibitors. Eur J Med Chem 2010; 45:4331-8. [DOI: 10.1016/j.ejmech.2010.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/11/2010] [Accepted: 06/25/2010] [Indexed: 11/23/2022]
|
158
|
Lassen U, Molife LR, Sorensen M, Engelholm SA, Vidal L, Sinha R, Penson RT, Buhl-Jensen P, Crowley E, Tjornelund J, Knoblauch P, de Bono JS. A phase I study of the safety and pharmacokinetics of the histone deacetylase inhibitor belinostat administered in combination with carboplatin and/or paclitaxel in patients with solid tumours. Br J Cancer 2010; 103:12-7. [PMID: 20588278 PMCID: PMC2905291 DOI: 10.1038/sj.bjc.6605726] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background: This phase I study assessed the maximum tolerated dose, dose-limiting toxicity (DLT) and pharmacokinetics of belinostat with carboplatin and paclitaxel and the anti-tumour activity of the combination in solid tumours. Methods: Cohorts of three to six patients were treated with escalating doses of belinostat administered intravenously once daily, days 1–5 q21 days; on day 3, carboplatin (area under the curve (AUC) 5) and/or paclitaxel (175 mg m−2) were administered 2–3 h after the end of the belinostat infusion. Results: In all 23 patients received 600–1000 mg m−2 per day of belinostat with carboplatin and/or paclitaxel. No DLT was observed. The maximal administered dose of belinostat was 1000 mg m−2 per day for days 1–5, with paclitaxel (175 mg m−2) and carboplatin AUC 5 administered on day 3. Grade III/IV adverse events were (n; %): leucopenia (5; 22%), neutropenia (7; 30%), thrombocytopenia (3; 13%) anaemia (1; 4%), peripheral sensory neuropathy (2; 9%), fatigue (1; 4%), vomiting (1; 4%) and myalgia (1; 4%). The pharmacokinetics of belinostat, paclitaxel and carboplatin were unaltered by the concurrent administration. There were two partial responses (one rectal cancer and one pancreatic cancer). A third patient (mixed mullerian tumour of ovarian origin) showed a complete CA-125 response. In addition, six patients showed a stable disease lasting ⩾6 months. Conclusion: The combination was well tolerated, with no evidence of pharmacokinetic interaction. Further evaluation of anti-tumour activity is warranted.
Collapse
Affiliation(s)
- U Lassen
- Department of Oncology, University Hospital, Rigshospitalet, Copenhagen 2100, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Identification of type-specific anticancer histone deacetylase inhibitors: road to success. Cancer Chemother Pharmacol 2010; 66:625-33. [DOI: 10.1007/s00280-010-1324-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
|
160
|
Sykora J, Meyer-Almes FJ. Mechanism of binding of the inhibitor (E)-3-(furan-2-yl)-N-hydroxyacrylamide to a histone deacetylase-like amidohydrolase. Biochemistry 2010; 49:1418-24. [PMID: 20082520 DOI: 10.1021/bi901617w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Histone deacetylases have proven to be attractive novel targets for the treatment of cancer. The first inhibitor of histone deacetylases was approved for the treatment of cutaneous T-cell lymphoma in 2006. The identification of new lead structures with improved effectiveness and fewer side effects is necessary. This report investigates the mechanism of inhibition of a histone deacetylase-like amidohydrolase by stopped-flow and equilibrium titration techniques. The interaction between the inhibitor (E)-3-(furan-2-yl)-N-hydroxyacrylamide and the enzyme generates a fluorescence resonance energy transfer from the intrinsic tryptophan residues of the enzyme to the chromophore of the inhibitor. The apparent equilibrium binding constant was determined to be 1.9 muM. Several independent experimental results provide evidence of the existence of solely one HDAH conformer. The association kinetics showed two phases representing two unimolecular processes. Kinetic arguments and accurate investigation of the very fast time range suggest a fast pre-equilibrium, in which the inhibitor binds to the surface of the enzyme. In the next step, the first complex undergoes a conformational change that allows the inhibitor to translocate into the active site. Finally, the intermediate complex is stabilized by another conformational rearrangement. All kinetic data are in agreement with a reversible three-step mechanism and analyzed using a global fit, yielding the association constant of the pre-equilibrium (K(1) = 0.28 x 10(6) M(-1)) and the forward and reverse rate constants of the consecutive conformational changes (k(2) = 6.6 s(-1), k(-2) = 1.5 s(-1), k(3) = 0.8 s(-1), and k(-3) = 0.3 s(-1)).
Collapse
Affiliation(s)
- Jaromir Sykora
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Schnittspahnstrasse 12, 64287 Darmstadt, Germany
| | | |
Collapse
|
161
|
Mercurio C, Minucci S, Pelicci PG. Histone deacetylases and epigenetic therapies of hematological malignancies. Pharmacol Res 2010; 62:18-34. [PMID: 20219679 DOI: 10.1016/j.phrs.2010.02.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 02/22/2010] [Indexed: 01/31/2023]
Abstract
Histone deacetylase inhibitors (HDACi) represent a novel class of targeted drugs which alter the acetylation status of several cellular proteins. These agents, modulating both chromatin structure through histone acetylation, and the activity of several non-histone substrates, are at the same time able to determine changes in gene transcription and to induce a plethora of biological effects ranging from cell death induction, to differentiation, angiogenesis inhibition or modulation of immune responses. The impressive anticancer activity observed in both in vitro and in vivo cancer models, together with their preferential effect on cancer cells, have led to a huge effort into the identification and development of HDACi with different characteristics. To date, several clinical trials of HDACi conducted in solid tumors and hematological malignancies have shown a preferential clinical efficacy of these drugs in hematological malignancies, and in particular in cutaneous T-cell lymphoma (CTCL), peripheral T-cell lymphoma (PTCL), Hodgkin lymphoma (HL) and myeloid malignancies. Several agents are also beginning to be tested in combination therapies, either as chemo sensitizing agents in association with standard chemotherapy drugs or in combination with DNA methyltransferase inhibitors (DNMTi) in the context of the so-called "epigenetic therapies", aimed to revert epigenetic alterations found in cancer cells. Herein, we will review HDACi data in hematological malignancies questioning the molecular basis of observed clinical responses, and highlighting some of the concerns raised on the use of these drugs for cancer therapy.
Collapse
Affiliation(s)
- Ciro Mercurio
- DAC-Genextra Group, Via Adamello 16, 20100 Milan, Italy; IFOM-IEO-Campus, Via Adamello 16, 20100 Milan, Italy
| | | | | |
Collapse
|
162
|
Pontiki E, Hadjipavlou-Litina D. Histone deacetylase inhibitors (HDACIs). Structure--activity relationships: history and new QSAR perspectives. Med Res Rev 2010; 32:1-165. [PMID: 20162725 DOI: 10.1002/med.20200] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Histone deacetylase (HDAC) inhibition is a recent, clinically validated therapeutic strategy for cancer treatment. HDAC inhibitors (HDACIs) block angiogenesis, arrest cell growth, and lead to differentiation and apoptosis in tumor cells. In this article, a survey of published quantitative structure-activity relationships (QSARs) studies are presented and discussed in the hope of identifying the structural determinants for anticancer activity. Secondly a two-dimensional QSAR study was carried out on biological results derived from various types of HDACIs and from different assays using the C-QSAR program of Biobyte. The QSAR analysis presented here is an attempt to organize the knowledge on the HDACIs with the purpose of designing new chemical entities with enhanced inhibitory potencies and to study the mechanism of action of the compounds. This study revealed that lipophilicity is one of the most important determinants of activity. Additionally, steric factors such as the overall molar refractivity (CMR), molar volume (MgVol), the substituent's molar refractivity (MR) (linear or parabola), or the sterimol parameters B(1) and L are important. Electronic parameters indicated as σ(p), are found to be present only in one case.
Collapse
Affiliation(s)
- Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki 54124, Greece.
| | | |
Collapse
|
163
|
Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol 2010; 3:5. [PMID: 20132536 PMCID: PMC2827364 DOI: 10.1186/1756-8722-3-5] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/04/2010] [Indexed: 12/25/2022] Open
Abstract
Histone deacetylases (HDACs) can regulate expression of tumor suppressor genes and activities of transcriptional factors involved in both cancer initiation and progression through alteration of either DNA or the structural components of chromatin. Recently, the role of gene repression through modulation such as acetylation in cancer patients has been clinically validated with several inhibitors of HDACs. One of the HDAC inhibitors, vorinostat, has been approved by FDA for treating cutaneous T-cell lymphoma (CTCL) for patients with progressive, persistent, or recurrent disease on or following two systemic therapies. Other inhibitors, for example, FK228, PXD101, PCI-24781, ITF2357, MGCD0103, MS-275, valproic acid and LBH589 have also demonstrated therapeutic potential as monotherapy or combination with other anti-tumor drugs in CTCL and other malignancies. At least 80 clinical trials are underway, testing more than eleven different HDAC inhibitory agents including both hematological and solid malignancies. This review focuses on recent development in clinical trials testing HDAC inhibitors as anti-tumor agents.
Collapse
|
164
|
Paoluzzi L, Scotto L, Marchi E, Zain J, Seshan VE, O'Connor OA. Romidepsin and belinostat synergize the antineoplastic effect of bortezomib in mantle cell lymphoma. Clin Cancer Res 2010; 16:554-65. [PMID: 20068080 DOI: 10.1158/1078-0432.ccr-09-1937] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Romidepsin and belinostat are inhibitors of histone deacetylases (HDACI). HDACIs are known to induce cell death in malignant cells through multiple mechanisms, including upregulation of death receptors and induction of cell cycle arrest. They are also known to be prodifferentiating. Mantle cell lymphoma (MCL) is an aggressive subtype of non-Hodgkin lymphoma characterized by the t(11;14)(q13;q32) translocation leading to the overexpression of cyclin D1. EXPERIMENTAL DESIGN Assays for cytotoxicty including mathematical analysis for synergism, flow-cytometry, immunoblottings, and a xenograft severe combined immunodeficient beige mouse model were used to explore the in vitro and in vivo activity of romidepsin and/or belinostat alone or in combination with the proteasome inhibitor bortezomib in MCL. RESULTS In vitro, romidepsin and belinostat exhibited concentration-dependent cytotoxicity against a panel of MCL cell lines. Both HDACI showed strong synergism when combined with the proteasome inhibitor bortezomib in MCL. An HDACI plus bortezomib also induced potent mitochondrial membrane depolarization and apoptosis, whereas no significant apoptosis was observed in peripheral blood mononuclear cells from healthy donors with the combination. These events were associated with a decrease in cyclin D1 and Bcl-X(L), and an increase in accumulation of acetylated histone H3, acetylated alpha-tubulin, and Noxa in cell lines. In a severe combined immunodeficient beige mouse model of MCL, the addition of belinostat to bortezomib enhanced efficacy compared with either drug alone. CONCLUSIONS Collectively, these data strongly suggest that HDACI such as romidepsin or belinostat in combination with a proteasome inhibitor could represent a novel and rationale platform for the treatment of MCL.
Collapse
Affiliation(s)
- Luca Paoluzzi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
165
|
Hutt DM, Herman D, Rodrigues APC, Noel S, Pilewski JM, Matteson J, Hoch B, Kellner W, Kelly JW, Schmidt A, Thomas PJ, Matsumura Y, Skach WR, Gentzsch M, Riordan JR, Sorscher EJ, Okiyoneda T, Lukacs GL, Frizzell RA, Manning G, Gottesfeld JM, Balch WE. Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis. Nat Chem Biol 2010; 6:25-33. [PMID: 19966789 PMCID: PMC2901172 DOI: 10.1038/nchembio.275] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/22/2009] [Indexed: 12/20/2022]
Abstract
Chemical modulation of histone deacetylase (HDAC) activity by HDAC inhibitors (HDACi) is an increasingly important approach for modifying the etiology of human disease. Loss-of-function diseases arise as a consequence of protein misfolding and degradation, which lead to system failures. The DeltaF508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) results in the absence of the cell surface chloride channel and a loss of airway hydration, leading to the premature lung failure and reduced lifespan responsible for cystic fibrosis. We now show that the HDACi suberoylanilide hydroxamic acid (SAHA) restores surface channel activity in human primary airway epithelia to levels that are 28% of those of wild-type CFTR. Biological silencing of all known class I and II HDACs reveals that HDAC7 plays a central role in restoration of DeltaF508 function. We suggest that the tunable capacity of HDACs can be manipulated by chemical biology to counter the onset of cystic fibrosis and other human misfolding disorders.
Collapse
Affiliation(s)
- Darren M. Hutt
- Departments of Cell Biology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
| | - David Herman
- Department of Molecular Biology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
| | - Ana P. C. Rodrigues
- Resave Newman Center for Bioinformatics, Salk Institute for Biological Studies, La Jolla, CA, 92037 USA
| | - Sabrina Noel
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Joseph M. Pilewski
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jeanne Matteson
- Departments of Cell Biology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
| | - Ben Hoch
- Department of Molecular Biology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
| | - Wendy Kellner
- Departments of Cell Biology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
| | - Jeffery W. Kelly
- Department of Chemistry at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
- Skaggs Institute of Chemical Biology at The Scripps Research Institute at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
| | - Andre Schmidt
- Molecular Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Lane, Dallas, TX 75390
| | - Philip J. Thomas
- Molecular Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Lane, Dallas, TX 75390
| | - Yoshihiro Matsumura
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, Portland, OR 97239
| | - William R. Skach
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, Portland, OR 97239
| | - Martina Gentzsch
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599
| | - John R. Riordan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27510
| | - Eric J. Sorscher
- Department of Cell Biology and Physiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tsukasa Okiyoneda
- Department of Physiology, McGill University, Montreal, QC, H3G1Y6 Canada
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montreal, QC, H3G1Y6 Canada
| | - Raymond A. Frizzell
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Gerard Manning
- Resave Newman Center for Bioinformatics, Salk Institute for Biological Studies, La Jolla, CA, 92037 USA
| | - Joel M. Gottesfeld
- Department of Molecular Biology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
| | - William E. Balch
- Departments of Cell Biology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
- Department of Molecular Biology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
- Department of Chemical Physiology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
- The Institute for Childhood and Neglected Diseases at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
| |
Collapse
|
166
|
Mani S, Herceg Z. DNA Demethylating Agents and Epigenetic Therapy of Cancer. EPIGENETICS AND CANCER, PART A 2010; 70:327-40. [DOI: 10.1016/b978-0-12-380866-0.60012-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
167
|
Patil V, Guerrant W, Chen PC, Gryder B, Benicewicz DB, Khan SI, Tekwani BL, Oyelere AK. Antimalarial and antileishmanial activities of histone deacetylase inhibitors with triazole-linked cap group. Bioorg Med Chem 2010; 18:415-25. [PMID: 19914074 PMCID: PMC2818366 DOI: 10.1016/j.bmc.2009.10.042] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/19/2009] [Accepted: 10/23/2009] [Indexed: 11/25/2022]
Abstract
Histone deacetylase inhibitors (HDACi) are endowed with plethora of biological functions including anti-proliferative, anti-inflammatory, anti-parasitic, and cognition-enhancing activities. Parsing the structure-activity relationship (SAR) for each disease condition is vital for long-term therapeutic applications of HDACi. We report in the present study specific cap group substitution patterns and spacer-group chain lengths that enhance the antimalarial and antileishmanial activity of aryltriazolylhydroxamates-based HDACi. We identified many compounds that are several folds selectively cytotoxic to the plasmodium parasites compared to standard HDACi. Also, a few of these compounds have antileishmanial activity that rivals that of miltefosine, the only currently available oral agent against visceral leishmaniasis. The anti-parasite properties of several of these compounds tracked well with their anti-HDAC activities. The results presented here provide further evidence on the suitability of HDAC inhibition as a viable therapeutic option to curb infections caused by apicomplexan protozoans and trypanosomatids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Babu L. Tekwani
- To whom the correspondence should be addressed. . Phone: 404-894-4047; fax: 404-894-2291; . Phone: (662) 915-7882; Fax: (662) 915-7062
| | - Adegboyega K. Oyelere
- To whom the correspondence should be addressed. . Phone: 404-894-4047; fax: 404-894-2291; . Phone: (662) 915-7882; Fax: (662) 915-7062
| |
Collapse
|
168
|
Kaiser M, Lamottke B, Mieth M, Jensen MR, Quadt C, Garcia-Echeverria C, Atadja P, Heider U, von Metzler I, Türkmen S, Sezer O. Synergistic action of the novel HSP90 inhibitor NVP-AUY922 with histone deacetylase inhibitors, melphalan, or doxorubicin in multiple myeloma. Eur J Haematol 2009; 84:337-44. [PMID: 20028416 DOI: 10.1111/j.1600-0609.2009.01403.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Heat shock protein 90 (HSP90) is a promising target for tumor therapy. The novel HSP90 inhibitor NVP-AUY922 has preclinical activity in multiple myeloma, however, little is known about effective combination partners to design clinical studies. Multiple myeloma cell lines, OPM-2, RPMI-8226, U-266, LP-1, MM1.S, and primary myeloma cells were exposed to NVP-AUY922 and one of the combination partners histone deacetylase inhibitor NVP-LBH589, suberoylanilide hydroxamic acid (SAHA), melphalan, or doxorubicin, either simultaneously or in sequential patterns. Effects on cell proliferation and apoptosis were determined. Synergistic effects were evaluated using the method of Chou and Talalay. Combined sequential incubation with NVP-AUY922 and SAHA showed that best synergistic effects were achieved with 24 h preincubation with SAHA followed by another 48 h of combination treatment. Combination of NVP-AUY922 with SAHA, NVP-LBH589, melphalan, or doxorubicin resulted in synergistic inhibition of viability, with strong synergy (combination index < 0.3) in the case of melphalan. Importantly, resistance of the RPMI-8226 cell line and relative resistance of some primary myeloma cells against NVP-AUY922 could be overcome by combination treatment. These data show impressive synergistic action of the novel HSP90 inhibitor NVP-AUY922 with melphalan, doxorubicin, NVP-LBH589, and SAHA in multiple myeloma and build the frame work for clinical trials.
Collapse
Affiliation(s)
- Martin Kaiser
- Department of Hematology and Oncology, Charité- Universitaetsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
van Rooij E, Fielitz J, Sutherland LB, Thijssen VL, Crijns HJ, Dimaio MJ, Shelton J, De Windt LJ, Hill JA, Olson EN. Myocyte enhancer factor 2 and class II histone deacetylases control a gender-specific pathway of cardioprotection mediated by the estrogen receptor. Circ Res 2009; 106:155-65. [PMID: 19893013 DOI: 10.1161/circresaha.109.207084] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RATIONALE Gender differences in cardiovascular disease have long been recognized and attributed to beneficial cardiovascular actions of estrogen. Class II histone deacetylases (HDACs) act as key modulators of heart disease by repressing the activity of the myocyte enhancer factor (MEF)2 transcription factor, which promotes pathological cardiac remodeling in response to stress. Although it is proposed that HDACs additionally influence nuclear receptor signaling, the effect of class II HDACs on gender differences in cardiovascular disease remains unstudied. OBJECTIVE We aimed to examine the effect of class II HDACs on post-myocardial infarction remodeling in male and female mice. METHODS AND RESULTS Here we show that the absence of HDAC5 or -9 in female mice protects against maladaptive remodeling following myocardial infarction, during which there is an upregulation of estrogen-responsive genes in the heart. This genetic reprogramming coincides with a pronounced increase in expression of the estrogen receptor (ER)alpha gene, which we show to be a direct MEF2 target gene. ERalpha also directly interacts with class II HDACs. Cardioprotection resulting from the absence of HDAC5 or -9 in female mice can be attributed, at least in part, to enhanced neoangiogenesis in the infarcted region via upregulation of the ER target gene vascular endothelial growth factor-a. CONCLUSIONS Our results reveal a novel gender-specific pathway of cardioprotection mediated by ERalpha and its regulation by MEF2 and class II HDACs.
Collapse
Affiliation(s)
- Eva van Rooij
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 2009; 32:591-601. [PMID: 19775759 PMCID: PMC2771446 DOI: 10.1016/j.tins.2009.06.002] [Citation(s) in RCA: 489] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/26/2009] [Accepted: 06/26/2009] [Indexed: 12/24/2022]
Abstract
Histone deacetylases (HDACs) play a key role in homeostasis of protein acetylation in histones and other proteins and in regulating fundamental cellular activities such as transcription. A wide range of brain disorders are associated with imbalances in protein acetylation levels and transcriptional dysfunctions. Treatment with various HDAC inhibitors can correct these deficiencies and has emerged as a promising new strategy for therapeutic intervention in neurodegenerative disease. Here, we review and discuss intriguing recent developments in the use of HDAC inhibitors to combat neurodegenerative conditions in cellular and disease models. HDAC inhibitors have neuroprotective, neurotrophic and anti-inflammatory properties; improvements in neurological performance, learning/memory and other disease phenotypes are frequently seen in these models. We discuss the targets and mechanisms underlying these effects of HDAC inhibition and comment on the potential for some HDAC inhibitors to prove clinically effective in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- De-Maw Chuang
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA.
| | | | | | | | | |
Collapse
|
171
|
Kozikowski AP, Chen Y, Subhasish T, Lewin NE, Blumberg PM, Zhong Z, D'Annibale MA, Wang WL, Shen Y, Langley B. Searching for disease modifiers-PKC activation and HDAC inhibition - a dual drug approach to Alzheimer's disease that decreases Abeta production while blocking oxidative stress. ChemMedChem 2009; 4:1095-105. [PMID: 19396896 DOI: 10.1002/cmdc.200900045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A series of benzolactam compounds were synthesized, some of which caused a concentration-dependent increase in sAPPalpha and decrease in Abeta production in the concentration range of 0.1-10 microM. Moreover, some compounds showed neuroprotective effects in the 10-20 microM range in the HCA cortical neuron model of oxidative stress and no toxicity in measurements of neuron viability by MTT assay, even at the highest concentrations tested (20 microM). Alzheimer's disease (AD) is a well-studied neurodegenerative process characterized by the presence of amyloid plaques and neurofibrillary tangles. In this study, a series of protein kinase C (PKC) activators were investigated, some of which also exhibit histone deacetylase (HDAC) inhibitory activity, under the hypothesis that such compounds might provide a new path forward in the discovery of drugs for the treatment of AD. The PKC-activating properties of these drugs were expected to enhance the alpha-secretase pathway in the processing of amyloid precursor protein (APP), while their HDAC inhibition was anticipated to confer neuroprotective activity. We found that benzolactams 9 and 11-14 caused a concentration-dependent increase in sAPPalpha and decrease in beta-amyloid (Abeta) production in the concentration range of 0.1-10 microM, consistent with a shift of APP metabolism toward the alpha-secretase-processing pathway. Moreover, compounds 9-14 showed neuroprotective effects in the 10-20 microM range in the homocysteate (HCA) cortical neuron model of oxidative stress. In parallel, we found that the most neuroprotective compounds caused increased levels of histone acetylation (H4), thus indicating their likely ability to inhibit HDAC activity. As the majority of the compounds studied also show nanomolar binding affinities for PKC, we conclude that it is possible to design, de novo, agents that combine both PKC-activating properties along with HDAC inhibitory properties. Such agents would be capable of modulating amyloid processing while showing neuroprotection. These findings may offer a new approach to therapies that exhibit disease-modifying effects, as opposed to symptomatic relief, in the treatment of AD.
Collapse
Affiliation(s)
- Alan P Kozikowski
- Drug Discovery Program, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Ozawa A, Tanji N, Kikugawa T, Sasaki T, Yanagihara Y, Miura N, Yokoyama M. Inhibition of bladder tumour growth by histone deacetylase inhibitor. BJU Int 2009; 105:1181-6. [PMID: 19681894 DOI: 10.1111/j.1464-410x.2009.08795.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To examine the expression profile of histone deacetylase (HDAC)-1 and explore its potential role in the development of bladder cancer, using valproic acid (VPA), a HDAC inhibitor, which reduces tumour growth and metastasis formation in animal models. MATERIALS AND METHODS The study comprised clinical samples from patients with urinary bladder cancer, mouse urinary bladder tissue specimens, and two human urinary bladder cancer cell lines (HT-1376 and 5637). HDAC1 mRNA and protein expression were examined using real-time reverse transcription-polymerase chain reaction and immunohistochemical methods. Female C3H/He mice were given VPA (0, 250, 500 and 750 mg/kg body weight, intraperitoneal, every day) from the start or 4 weeks after 0.05%N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) treatment, and were humanely killed and sampled at 8 and 12 weeks. RESULTS A significantly higher level of HDAC1 mRNA was expressed in human urinary bladder cancer specimens. The immunohistochemical study showed that HDAC1 was expressed in the cytoplasm and nucleus in the specimens. BBN treatment increased HDAC1 mRNA expression in the urinary bladder. VPA administration seemed to delay the incidences of BBN-induced mouse urinary bladder tumour, possibly through p21(WAF1) protein expression. CONCLUSION These results indicate that HDAC might be an effective molecular target for cancer therapy.
Collapse
Affiliation(s)
- Akira Ozawa
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | | | | | | | | | | | | |
Collapse
|
173
|
Restall C, Doherty J, Liu HB, Genovese R, Paiman L, Byron KA, Anderson RL, Dear AE. A novel histone deacetylase inhibitor augments tamoxifen-mediated attenuation of breast carcinoma growth. Int J Cancer 2009; 125:483-7. [PMID: 19330834 DOI: 10.1002/ijc.24350] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Earlier we generated novel derivatives of the hydroxamate-based histone deacetylase inhibitor (HDACi), Oxamflatin (Ox), which demonstrate considerable HDACi activity. Here the effects of one such derivative, Metacept-1 (MCT-1), alone or in combination with tamoxifen on mammary tumour growth have been assessed in a syngeneic orthotopic model. MCT-1 alone resulted in a trend towards inhibition of growth of 4T1.2 mammary tumours. Since the combination of MCT-1 and tamoxifen up-regulates estrogen receptor expression in 4T1.2 cells in vitro, we tested this combination and found a significant reduction in primary tumour growth over tamoxifen treatment alone. Taken together, these observations suggest that the novel HDACi MCT-1 may warrant further exploration in the treatment of estrogen receptor positive breast carcinoma, particularly when used in combination with conventional agents such as tamoxifen.
Collapse
Affiliation(s)
- Christina Restall
- Cancer Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Horiuchi M, Morinobu A, Chin T, Sakai Y, Kurosaka M, Kumagai S. Expression and function of histone deacetylases in rheumatoid arthritis synovial fibroblasts. J Rheumatol 2009; 36:1580-9. [PMID: 19531758 DOI: 10.3899/jrheum.081115] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To explore the effects of histone deacetylases (HDAC) on rheumatoid arthritis synovial fibroblasts (RA-SF). METHODS The expression of mRNA encoding HDAC1 through HDAC11 in RA-SF and osteoarthritis-SF (OA-SF) was determined using real-time polymerase chain reactions. The functions of HDAC1 and HDAC2 in RA-SF were assessed using small interfering RNA (siRNA) technology. Cell counts and proliferation were examined by MTT assays and BrDU ELISA, respectively, and apoptosis was determined using the TUNEL assay and annexin V staining. Levels of cell cycle-related molecules and matrix metalloproteinases (MMP) were tested by Western blotting and ELISA, respectively. RESULTS Messenger RNA expression of HDAC1 was significantly higher in RA-SF than in OA-SF. Knockdown of HDAC1 and HDAC2 by siRNA resulted in decreased cell counts and cell proliferation, and increased apoptosis in RA-SF. Expression of p16, p21, and p53 was increased by knockdown of both HDAC1 and HDAC2. On the other hand, knockdown of HDAC1, but not of HDAC2, upregulated tumor necrosis factor-alpha-induced MMP-1 production by RA-SF. CONCLUSION HDAC1 is overexpressed in RA-SF compared to OA-SF. HDAC1 supports cell proliferation and survival of RA-SF, but suppresses MMP-1 production. HDAC2 also plays an important role in cell proliferation and apoptosis of RA-SF. Our study provides useful information to develop new HDAC inhibitors for the treatment of RA.
Collapse
Affiliation(s)
- Marika Horiuchi
- Department of Clinical Pathology and Immunology, Kobe University School of Medicine, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
175
|
Cang S, Ma Y, Liu D. New clinical developments in histone deacetylase inhibitors for epigenetic therapy of cancer. J Hematol Oncol 2009; 2:22. [PMID: 19486511 PMCID: PMC2695818 DOI: 10.1186/1756-8722-2-22] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 06/01/2009] [Indexed: 02/08/2023] Open
Abstract
DNA methylation and histone acetylation are two well known epigenetic chromatin modifications. Epigenetic agents leading to DNA hypomethylation and histone hyperacetylation have been approved for treatment of hematological disorders. The first histone deacetylase inhibitor, vorinostat, has been licensed for cutaneous T cell lymphoma treatment. More than 11 new epigenetic agents are in various stages of clinical development for therapy of multiple cancer types. In this review we summarize novel histone deacetylase inhibitors and new regimens from clinical trials for epigenetic therapy of cancer.
Collapse
Affiliation(s)
- Shundong Cang
- Division of Hematology/Oncology, New York Medical College, Valhalla, NY 10595, USA
- Henan Province People's Hospital, Zhengzhou, PR China
| | - Yuehua Ma
- Division of Hematology/Oncology, New York Medical College, Valhalla, NY 10595, USA
- Henan Province People's Hospital, Zhengzhou, PR China
| | - Delong Liu
- Division of Hematology/Oncology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
176
|
Histone deacetylase inhibitor romidepsin enhances anti-tumor effect of erlotinib in non-small cell lung cancer (NSCLC) cell lines. J Thorac Oncol 2009; 4:161-6. [PMID: 19179890 DOI: 10.1097/jto.0b013e318194fae7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Most epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers (NSCLCs) are sensitive to EGFR tyrosine kinase inhibitors (TKIs) such as erlotinib or gefitinib, but many EGFR wild type NSCLCs are resistant to TKIs. In this study, we examined the effects of the histone deacetylase inhibitor, romidepsin, in combination with erlotinib, in NSCLC cell lines and xenografts. METHODS For in vitro studies, nine NSCLC cell lines with varying mutation status and histology were treated with erlotinib and romidepsin alone or in combination. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assays were performed to determine the concentration that inhibits 50% (IC50) value of each drug or the combination. For in vivo studies, NCI-H1299 xenografts were inoculated subcutaneously into athymic nude mice. Romidepsin and/or erlotinib were injected intraperitoneally after tumors developed and tumor sizes were measured. RESULTS We found that romidepsin increased the sensitivity of erlotinib synergistically in all nine NSCLC cell lines including EGFR and KRAS wild type cell lines, KRAS mutant cell lines, and TKI resistant EGFR mutant cell lines. This effect was partially due to enhanced apoptosis. Furthermore, cotreatment of erlotinib and romidepsin inhibited NCI-H1299 xenograft growth in athymic nude mice. CONCLUSIONS These observations support a role for the combination of a histone deacetylase inhibitor and a TKI in the treatment of NSCLCs.
Collapse
|
177
|
Kang MR, Kang JS, Han SB, Kim JH, Kim DM, Lee K, Lee CW, Lee KH, Lee CH, Han G, Kang JS, Kim HM, Park SK. A novel delta-lactam-based histone deacetylase inhibitor, KBH-A42, induces cell cycle arrest and apoptosis in colon cancer cells. Biochem Pharmacol 2009; 78:486-94. [PMID: 19445901 DOI: 10.1016/j.bcp.2009.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 12/17/2022]
Abstract
In this study, we investigated the anti-tumor activity of KBH-A42 [N-hydroxy-3-(2-oxo-1-(3-phenylpropyl)-1,2,5,6-tetrahydropyridin-3-yl)propanamide], a novel synthetic histone deacetylase (HDAC) inhibitor. KBH-A42 inhibited a variety of HDAC isoforms in enzyme assays and suppressed growth of various cancer cell lines. Among the cell lines examined, colon cancer cells, including SW620, SW480 and HCT-15, were the cell types most sensitive to KBH-A42. KBH-A42 inhibition of cancer cell growth was comparable to or stronger than that of suberoylanilide hydroxamic acid (SAHA), a well-known HDAC inhibitor approved by the FDA to treat cutaneous T cell lymphomas. In SW620 cells, KBH-A42 increased the acetylation of histones, mediated cell cycle arrest (G1 arrest at low doses and G2 arrest at high doses), and induced apoptosis. The cell cycle arrest and apoptosis induced by KBH-A42 might be mediated through up-regulation of p21(Waf1) and activation of caspases, respectively. In addition, KBH-A42 inhibited SW620 tumor growth in a human tumor xenograft model. Taken together, our results indicate that KBH-A42 exerts an anti-tumor activity in vitro and in vivo and is a promising therapeutic candidate to treat human cancers.
Collapse
Affiliation(s)
- Moo Rim Kang
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Yangcheong, Ochang, Cheongwon, Chungbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Chen Y, He R, Chen Y, D'Annibale M, Langley B, Kozikowski A. Studies of Benzamide- and Thiol-Based Histone Deacetylase Inhibitors in Models of Oxidative-Stress-Induced Neuronal Death: Identification of Some HDAC3-Selective Inhibitors. ChemMedChem 2009; 4:842-52. [DOI: 10.1002/cmdc.200800461] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
179
|
Chandra J. Oxidative stress by targeted agents promotes cytotoxicity in hematologic malignancies. Antioxid Redox Signal 2009; 11:1123-37. [PMID: 19018667 PMCID: PMC2842131 DOI: 10.1089/ars.2008.2302] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The past decade has seen an exponential increase in the number of cancer therapies with defined molecular targets. Interestingly, many of these new agents are also documented to raise levels of intracellular reactive oxygen species (ROS) in addition to inhibiting a biochemical target. In most cases, the exact link between the primary target of the drug and effects on cellular redox status is unknown. However, it is important to understand the role of oxidative stress in promoting cytotoxicity by these agents, because the design of multiregimen strategies could conceivably build on these redox alterations. Also, drug resistance mediated by antioxidant defenses could potentially be anticipated and circumvented with improved knowledge of the redox-related effects of these targeted agents. Given the large number of targeted chemotherapies, in this review, we focus on selected agents that have shown promise in hematologic malignancies: proteasome inhibitors, histone deacetylase inhibitors, Bcl-2-targeted agents, and a kinase inhibitor called adaphostin. Despite structural differences within classes of these compounds, a commonality of causing increased oxidative stress exists, which contributes to induction of cell death.
Collapse
Affiliation(s)
- Joya Chandra
- Department of Pediatrics Research, Unit 853, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.
| |
Collapse
|
180
|
Hydroxyurea and hydroxamic acid derivatives as antitumor drugs. Cancer Chemother Pharmacol 2009; 64:213-21. [DOI: 10.1007/s00280-009-0991-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 03/22/2009] [Indexed: 10/20/2022]
|
181
|
Graci JD, Colacino JM, Peltz SW, Dougherty JP, Gu Z. HIV Type-1 Latency: Targeted Induction of Proviral Reservoirs. ACTA ACUST UNITED AC 2009; 19:177-87. [DOI: 10.1177/095632020901900501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
HIV type-1 (HIV-1) can establish a state of latency in infected patients, most notably in resting CD4+ T-cells. This long-lived reservoir allows for rapid re-emergence of viraemia upon cessation of highly active antiretroviral therapy, even after extensive and seemingly effective treatment. Successful depletion of such latent reservoirs is probably essential to ‘cure’ HIV-1 infection and will require therapeutic agents that can specifically and efficiently act on cells harbouring latent HIV-1 provirus. The mechanisms underlying HIV-1 latency are not well characterized, and it is becoming clear that numerous factors, both cell- and virus-derived, are involved in the maintenance of proviral latency. The interplay of these various factors in the context of viral reactivation is still poorly understood. In this article, we review the current knowledge regarding the mechanisms underlying maintenance of HIV-1 latency, both transcriptional and post-transcriptional, with a focus on potential targets that might be exploited to therapeutically purge latent proviral reservoirs from infected patients.
Collapse
Affiliation(s)
| | | | | | - Joseph P Dougherty
- Department of Molecular Genetics, Microbiology, and Immunology, University of Medicine & Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Zhengxian Gu
- PTC Therapeutics, Inc., South Plainfield, NJ, USA
| |
Collapse
|
182
|
Novel inhibitor of Plasmodium histone deacetylase that cures P. berghei-infected mice. Antimicrob Agents Chemother 2009; 53:1727-34. [PMID: 19223622 DOI: 10.1128/aac.00729-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone deacetylases (HDAC) are potential targets for the development of new antimalarial drugs. The growth of Plasmodium falciparum and other apicomplexans can be suppressed in the presence of potent HDAC inhibitors in vitro and in vivo; however, in vivo parasite suppression is generally incomplete or reversible after the discontinuation of drug treatment. Furthermore, most established HDAC inhibitors concurrently show broad toxicities against parasites and human cells and high drug concentrations are required for effective antimalarial activity. Here, we report on HDAC inhibitors that are potent against P. falciparum at subnanomolar concentrations and that have high selectivities; the lead compounds have mean 50% inhibitory concentrations for the killing of the malaria parasite up to 950 times lower than those for the killing of mammalian cells. These potential drugs improved survival and completely and irreversibly suppressed parasitemia in P. berghei-infected mice.
Collapse
|
183
|
Sriwilaijaroen N, Boonma S, Attasart P, Pothikasikorn J, Panyim S, Noonpakdee W. Inhibition of Plasmodium falciparum proliferation in vitro by double-stranded RNA directed against malaria histone deacetylase. Biochem Biophys Res Commun 2009; 381:144-7. [PMID: 19338767 DOI: 10.1016/j.bbrc.2009.01.165] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
Acetylation and deacetylation of histones play important roles in transcription regulation, cell cycle progression and development events. The steady state status of histone acetylation is controlled by a dynamic equilibrium between competing histone acetylase and deacetylase (HDAC). We have used long PfHDAC-1 double-stranded (ds)RNA to interfere with its cognate mRNA expression and determined the effect on malaria parasite growth and development. Chloroquine- and pyrimethamine-resistant Plasmodium falciparum K1 strain was exposed to 1-25 microg of dsRNA/ml of culture for 48 h and growth was determined by [3H]-hypoxanthine incorporation and microscopic examination. Parasite culture treated with 10 microg/ml pfHDAC-1 dsRNA exhibited 47% growth inhibition when compared with either untreated control or culture treated with an unrelated dsRNA. PfHDAC-1 dsRNA specifically blocked maturation of trophozoite to schizont stages and decreased PfHDAC-1 transcript 44% in treated trophozoites. These results indicate the potential of HDAC-1 as a target for development of novel antimalarials.
Collapse
Affiliation(s)
- N Sriwilaijaroen
- Faculty of Medicine, Thammasat University (Rangsit Campus), Pathumthani 12120, Thailand
| | | | | | | | | | | |
Collapse
|
184
|
Kumagai T, Akagi T, Desmond JC, Kawamata N, Gery S, Imai Y, Song JH, Gui D, Said J, Koeffler HP. Epigenetic regulation and molecular characterization of C/EBPalpha in pancreatic cancer cells. Int J Cancer 2009; 124:827-33. [PMID: 19035457 DOI: 10.1002/ijc.23994] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular-targeted therapy is a hopeful approach for pancreatic cancer. Silencing of tumor suppressor genes can occur by histone deacetylation and/or DNA methylation in the promoter. Here, we identified epigenetically silenced genes in pancreatic cancer cells. Pancreatic cancer cell line, PANC-1 cells were treated either with or without 5Aza-dC (a DNA methyltransferase inhibitor) and suberoylanilide hydroxamic acid (SAHA, a histone deacetylase inhibitor), and mRNA was isolated from these cells. Oligonucleotide microarray analysis revealed that 30 genes including UCHL1, C/EBPalpha, TIMP2 and IRF7 were up-regulated after treatment with 5Aza-dC and SAHA in PANC-1. The induction of these 4 genes was validated by real-time PCR in several pancreatic cancer cell lines. Interestingly, expression of C/EBPalpha was significantly restored in 6 of 6 pancreatic cancer cell lines. Chromatin immunoprecipitation assay revealed that histone H3 of the promoter region of C/EBPalpha was acetylated in PANC-1 treated with SAHA; and bisulfate sequencing showed methylation of its promoter region in several pancreatic cancer cell lines. Forced expression of C/EBPalpha markedly suppressed clonal proliferation of PANC-1 cells. Co-immunoprecipitation assay showed the interaction of C/EBPalpha and E2F1; and the interaction caused the inhibition of E2F1 transcriptional activity. Immunohistochemical analysis revealed that C/EBPalpha localized in the cytoplasm in pancreatic adenocarcinoma cells, whereas it localized predominantly in the nucleus in normal pancreatic cells. Our data demonstrated that aberrant silencing, as well as, inappropriate cytoplasmic localization of C/EBPalpha causes dysregulation of its function, suggesting that C/EBPalpha is a novel candidate tumor suppressor gene in pancreatic cancer cells.
Collapse
Affiliation(s)
- Takashi Kumagai
- Division of Hematology and Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Martínez-Iglesias O, Ruiz-Llorente L, Sánchez-Martínez R, García L, Zambrano A, Aranda A. Histone deacetylase inhibitors: mechanism of action and therapeutic use in cancer. Clin Transl Oncol 2008; 10:395-8. [PMID: 18628067 DOI: 10.1007/s12094-008-0221-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Histone deacetylases (HDACs) remove the acetyl groups of lysine residues of histone tails leading to chromatin compaction and transcriptional repression. In addition, HDACs can also influence transcription-independent events such as mitosis or deoxyribonucleic acid (DNA) repair and deacetylate nonhistone proteins involved in cell proliferation and death, altering their function. Histone deacetylase inhibitors (HDACi) constitute a promising treatment for cancer therapy due to their low toxicity. HDACi have been shown to induce differentiation, cell-cycle arrest, and apoptosis and to inhibit migration, invasion, and angiogenesis in many cancer cell lines. In addition, these compounds inhibit tumor growth in animal models and show antitumor activity in patients. HDACi alone and in combination with a variety of anticancer drugs are being tested in clinical trials, showing significant anticancer activity both in hematological and solid tumors. SAHA (vorinostat, Zolinza) was the first HDACi approved by the US Food and Drug Administration to enter the clinical oncology market for treating cutaneous T-cell lymphoma (CTCL) and is being tested for other malignancies.
Collapse
|
186
|
Zheng YG, Wu J, Chen Z, Goodman M. Chemical regulation of epigenetic modifications: opportunities for new cancer therapy. Med Res Rev 2008; 28:645-87. [PMID: 18271058 DOI: 10.1002/med.20120] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetics is concerned about heritable changes in gene expression without alteration of the coding sequence. Epigenetic modification of chromatin includes methylation of genomic DNA as well as post-translational modification of chromatin-associated proteins, in particular, histones. The spectrum of histone and non-histone modifications ranges from the addition of relatively small groups such as methyl, acetyl and phosphoryl groups to the attachment of larger moieties such as poly(ADP-ribose) and small proteins ubiquitin or small ubiquitin-like modifier (SUMO). The combinatorial nature of DNA methylation and histone modifications constitutes a significant pathway of epigenetic regulation and considerably extends the information potential of the genetic code. Chromatin modification has emerged as a new fundamental mechanism for gene transcriptional activity control associated with many cellular processes like proliferation, growth, and differentiation. Also it is increasingly recognized that epigenetic modifications constitute important regulatory mechanisms for the pathogenesis of malignant transformations. We review here the recent progress in the development of chemical inhibitors/activators that target different chromatin modifying enzymes. Such potent natural or synthetic modulators can be utilized to establish the quantitative contributions of epigenetic modifications in DNA regulated pathways including transcription, replication, recombination and repair, as well as provide leads for developing new cancer therapeutics.
Collapse
Affiliation(s)
- Yujun George Zheng
- Department of Chemistry, Georgia State University, PO Box 4098, Atlanta, Georgia 30302-4098, USA.
| | | | | | | |
Collapse
|
187
|
Tavares TS, Nanus D, Yang XJ, Gudas LJ. Gene microarray analysis of human renal cell carcinoma: the effects of HDAC inhibition and retinoid treatment. Cancer Biol Ther 2008; 7:1607-18. [PMID: 18769122 DOI: 10.4161/cbt.7.10.6584] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitor treatments can augment the anti-tumor effects of retinoids in renal cancer cells. We studied the effects of the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) and 13-cis retinoic acid (cRA) on two human renal cell carcinoma (RCC) lines. Cells were cultured in the presence of each drug for six days to determine the responses to monotherapy and to combination therapy. The proliferation of SKRC06 was inhibited with cRA treatment; the proliferation of SKRC39 was not. However, both RCC lines were sensitive to growth inhibition by dibutyryl cyclic AMP, with or without 13-cis RA. SAHA alone also reduced cell proliferation in both cell lines. To identify the alterations in gene expression that correlate with the responsiveness to treatment, gene microarray analyses were performed. Several retinoid-regulated genes exhibited much higher mRNA levels in SKRC06 than in SKRC39, even in the absence of drugs; these included crabp2, rargamma and cyp26A1. Combination treatment of cells with both SAHA and cRA induced several transcripts with known anti-cancer/immunomodulatory effects, including dhrs9, gata3, il1beta, phlda1, txk and vhl. Immunostaining confirmed the decreased expression of gata3 in human RCC specimens compared to normal kidney. Together, our results show that treatment of RCC with cRA and/or SAHA increases the expression of several genes and gene families that result in reduced cell proliferation.
Collapse
Affiliation(s)
- Trisha S Tavares
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
188
|
Bowman MD, Schmink JR, McGowan CM, Kormos CM, Leadbeater NE. Scale-Up of Microwave-Promoted Reactions to the Multigram Level Using a Sealed-Vessel Microwave Apparatus. Org Process Res Dev 2008. [DOI: 10.1021/op8001239] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew D. Bowman
- Department of Chemistry, University of Connecticut, Unit 3060, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, U.S.A., and Department of Chemistry, Merrimack College, 315 Turnpike Street, North Andover, Massachusetts 01845, U.S.A
| | - Jason R. Schmink
- Department of Chemistry, University of Connecticut, Unit 3060, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, U.S.A., and Department of Chemistry, Merrimack College, 315 Turnpike Street, North Andover, Massachusetts 01845, U.S.A
| | - Cynthia M. McGowan
- Department of Chemistry, University of Connecticut, Unit 3060, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, U.S.A., and Department of Chemistry, Merrimack College, 315 Turnpike Street, North Andover, Massachusetts 01845, U.S.A
| | - Chad M. Kormos
- Department of Chemistry, University of Connecticut, Unit 3060, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, U.S.A., and Department of Chemistry, Merrimack College, 315 Turnpike Street, North Andover, Massachusetts 01845, U.S.A
| | - Nicholas E. Leadbeater
- Department of Chemistry, University of Connecticut, Unit 3060, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, U.S.A., and Department of Chemistry, Merrimack College, 315 Turnpike Street, North Andover, Massachusetts 01845, U.S.A
| |
Collapse
|
189
|
Chen Z, Yan B, Van Waes C. The Role of the NF-kappaB Transcriptome and Proteome as Biomarkers in Human Head and Neck Squamous Cell Carcinomas. Biomark Med 2008; 2:409-426. [PMID: 19444329 DOI: 10.2217/17520363.2.4.409] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NF-kappaB is a family of signal activated transcription factors comprised of hetero- or homo-dimers from 5 different subunits, NF-kappaB1, NF-kappaB2, RELA, cREL and RELB. NF-kappaBs normally are transiently activated in response to infection or injury, but in cancers are aberrantly activated, regulating a transcriptome of hundreds of genes and corresponding proteome that promote pathogenesis and therapeutic resistance. In head and neck squamous cell carcinomas, an important role of NF-kappaB in regulation of the altered transcriptome and proteome has been established, providing a catalog of activating and target genes and proteins that may be useful as biomarkers of alterations in this pathway for this and other cancers. An emerging appreciation that NF-kappaB and other signal pathways form an altered regulatory network highlights the need to use biomarkers and combine targeted agents for personalized therapy of cancer.
Collapse
Affiliation(s)
- Zhong Chen
- Head and Neck Surgery Branch, national Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA Tel: +1 301-402-4216
| | | | | |
Collapse
|
190
|
Antimalarial activity of phenylthiazolyl-bearing hydroxamate-based histone deacetylase inhibitors. Antimicrob Agents Chemother 2008; 52:3467-77. [PMID: 18644969 DOI: 10.1128/aac.00439-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antimalarial activity and pharmacology of a series of phenylthiazolyl-bearing hydroxamate-based histone deacetylase inhibitors (HDACIs) was evaluated. In in vitro growth inhibition assays approximately 50 analogs were evaluated against four drug resistant strains of Plasmodium falciparum. The range of 50% inhibitory concentrations (IC(50)s) was 0.0005 to >1 microM. Five analogs exhibited IC(50)s of <3 nM, and three of these exhibited selectivity indices of >600. The most potent compound, WR301801 (YC-2-88) was shown to cause hyperacetylation of P. falciparum histones, which is a marker for HDAC inhibition in eukaryotic cells. The compound also inhibited malarial and mammalian HDAC activity in functional assays at low nanomolar concentrations. WR301801 did not exhibit cures in P. berghei-infected mice at oral doses as high as 640 mg/kg/day for 3 days or in P. falciparum-infected Aotus lemurinus lemurinus monkeys at oral doses of 32 mg/kg/day for 3 days, despite high relative bioavailability. The failure of monotherapy in mice may be due to a short half-life, since the compound was rapidly hydrolyzed to an inactive acid metabolite by loss of its hydroxamate group in vitro (half-life of 11 min in mouse microsomes) and in vivo (half-life in mice of 3.5 h after a single oral dose of 50 mg/kg). However, WR301801 exhibited cures in P. berghei-infected mice when combined at doses of 52 mg/kg/day orally with subcurative doses of chloroquine. Next-generation HDACIs with greater metabolic stability than WR301801 may be useful as antimalarials if combined appropriately with conventional antimalarial drugs.
Collapse
|
191
|
Abstract
Epigenetics refers to the study of heritable changes in gene expression that occur without a change in the DNA sequence and constitute an important mechanism by which dietary components can selectively activate or inactivate gene expression. Alterations in histone acetylation and methylation are a common hallmark of human cancer. This review focuses on several histone-modifying enzymes that are associated with cancer development and their modification by bioactive food components.
Collapse
Affiliation(s)
- Cindy D Davis
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, 6130 Executive Boulevard, Suite 3159, Rockville, MD 20892-7328, USA.
| | | |
Collapse
|
192
|
Lee HH, Chang SS, Lin SJ, Chua HH, Tsai TJ, Tsai K, Lo YC, Chen HC, Tsai CH. Essential role of PKCdelta in histone deacetylase inhibitor-induced Epstein-Barr virus reactivation in nasopharyngeal carcinoma cells. J Gen Virol 2008; 89:878-883. [PMID: 18343827 DOI: 10.1099/vir.0.83533-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone deactylase inhibitors (HDACi) are common chemotherapeutic agents that stimulate Epstein-Barr virus (EBV) reactivation; the detailed mechanism remains obscure. In this study, it is demonstrated that PKCdelta is required for induction of the EBV lytic cycle by HDACi. Inhibition of PKCdelta abrogates HDACi-mediated transcriptional activation of the Zta promoter and downstream lytic gene expression. Nuclear translocation of PKCdelta is observed following HDACi stimulation and its overexpression leads to progression of the EBV lytic cycle. Our study suggests that PKCdelta is a crucial mediator of EBV reactivation and provides a novel insight to study the regulation of the EBV lytic cycle.
Collapse
Affiliation(s)
- Heng-Huan Lee
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Shih-Shin Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Sue-Jane Lin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Huey-Huey Chua
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Tze-Jiun Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Kevin Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - You-Chang Lo
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Hong-Chen Chen
- Department of Life Science and Graduate Institute of Biomedical Sciences, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, ROC
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| |
Collapse
|
193
|
Sargeant AM, Rengel RC, Kulp SK, Klein RD, Clinton SK, Wang YC, Chen CS. OSU-HDAC42, a histone deacetylase inhibitor, blocks prostate tumor progression in the transgenic adenocarcinoma of the mouse prostate model. Cancer Res 2008; 68:3999-4009. [PMID: 18483287 DOI: 10.1158/0008-5472.can-08-0203] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone deacetylase (HDAC) inhibitors suppress tumor cell growth via a broad spectrum of mechanisms, which should prove advantageous in the context of cancer prevention. Here, we examined the effect of dietary administration of OSU-HDAC42, a novel HDAC inhibitor, on prostate tumor progression in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Based on a series of pilot studies, an AIN-76A diet was formulated containing 208 ppm OSU-HDAC42, which was estimated to deliver approximately 25 mg/kg of drug per day to each mouse and found to cause a suppression of PC-3 xenograft tumor growth equivalent to that achieved by gavage administration of a similar dose. At 6 weeks of age, TRAMP mice received this drug-containing or control diet for 4 or 18 weeks and were evaluated for prostatic intraepithelial neoplasia (PIN) and carcinoma development, respectively. OSU-HDAC42 not only decreased the severity of PIN and completely prevented its progression to poorly differentiated carcinoma (74% incidence in controls versus none in drug-treated mice), but also shifted tumorigenesis to a more differentiated phenotype, suppressing absolute and relative urogenital tract weights by 86% and 85%, respectively, at 24 weeks of age. This tumor suppression was associated with the modulation of intraprostatic biomarkers, including those indicative of HDAC inhibition, increased apoptosis and differentiation, and decreased proliferation. With the exception of completely reversible hematologic alterations and testicular degeneration, no significant changes in body weight or other indicators of general health were observed in drug-treated mice. These results suggest that OSU-HDAC42 has value in prostate cancer prevention. [Cancer Res 2008;68(10):3999-4009].
Collapse
Affiliation(s)
- Aaron M Sargeant
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
Epigenetic modifications of chromatin, such as histone acetylation, are involved in repression of tumor antigens and multiple immune genes that are thought to facilitate tumor escape. The status of acetylation in a cell is determined by the balance of the activities of histone acetyltransferases and histone deacetylases. Inhibitors of histone deacetylase (HDACi) can enhance the expression of immunologically important molecules in tumor cells and HDACi treated tumor cells are able to induce immune responses in vitro and in vivo. Systemic HDACi are in clinical trails in cancer and also being used in several autoimmune disease models. To date, 18 HDACs have been reported in human cells and more than thirty HDACi identified, although only a few immune targets of these inhibitors have been identified. Here, we discuss the molecular pathways employed by HDACi and their potential role in inducing immune responses against tumors. We review data suggesting that selection of target specific HDACi and combinations with other agents and modalities, including those that activate stress pathways, may further enhance the efficacy of epigenetic therapies.
Collapse
|
195
|
Strickland FM, Richardson BC. Epigenetics in human autoimmunity. Epigenetics in autoimmunity - DNA methylation in systemic lupus erythematosus and beyond. Autoimmunity 2008; 41:278-86. [PMID: 18432408 DOI: 10.1080/08916930802024616] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epigenetic mechanisms are essential for normal development and function of the immune system. Similarly, a failure to maintain epigenetic homeostasis in the immune response due to factors including environmental influences, leads to aberrant gene expression, contributing to immune dysfunction and in some cases the development of autoimmunity in genetically predisposed individuals. This is exemplified by systemic lupus erythematosus, where environmentally induced epigenetic changes contribute to disease pathogenesis in those genetically predisposed. Similar interactions between genetically determined susceptibility and environmental factors are implicated in other systemic autoimmune diseases such as rheumatoid arthritis and scleroderma, as well as in organ specific autoimmunity. The skin is exposed to a wide variety of environmental agents, including UV radiation, and is prone to the development of autoimmune conditions such as atopic dermatitis, psoriasis and some forms of vitiligo, depending on environmental and genetic influences. Herein we review how disruption of epigenetic mechanisms can alter immune function using lupus as an example, and summarize how similar mechanisms may contribute to other human autoimmune rheumatic and skin diseases.
Collapse
Affiliation(s)
- Faith M Strickland
- The Department of Medicine, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| | | |
Collapse
|
196
|
Ji W, Yang L, Yu L, Yuan J, Hu D, Zhang W, Yang J, Pang Y, Li W, Lu J, Fu J, Chen J, Lin Z, Chen W, Zhuang Z. Epigenetic silencing of O6-methylguanine DNA methyltransferase gene in NiS-transformed cells. Carcinogenesis 2008; 29:1267-75. [PMID: 18204074 DOI: 10.1093/carcin/bgn012] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
Abstract
Nickel (Ni) compounds are potent carcinogens and can induce malignant transformation of rodent and human cells. To uncover the molecular mechanisms of nickel sulfide (NiS)-induced cell transformation, we investigated epigenetic alterations in a set of DNA repair genes. The silencing of the O(6)-methylguanine DNA methyltransferase (MGMT) gene locus and upregulation of DNA methyltransferase 1 (DNMT1) expression was specifically detected in NiS-transformed human bronchial epithelial (16HBE) cells. In addition, we noted epigenetic alterations including DNA hypermethylation, reduced histone H4 acetylation and a decrease in the ratio of Lys-9 acetylated/methylated histone H3 at the MGMT CpG island in NiS-transformed 16HBE cells. Meanwhile, we identified concurrent binding of methyl-CpG-binding protein 2, methylated DNA-binding domain protein 2 and DNMT1 to the CpG island of the MGMT promoter, demonstrating that these components collaborate to maintain MGMT methylation in NiS-transformed cells. Moreover, depletion of DNMT1 by introduction of a small hairpin RNA construct into NiS-transformed cells resulted in a 30% inhibition of cell proliferation and led to increased MGMT gene expression by reversion of the epigenetic modifications at the MGMT promoter region. MGMT suppression and hypermethylation at the CpG island of the MGMT promoter occurred 6 days after NiS treatment, indicating that epigenetic modifications of MGMT might be an early event in tumorigenesis. Taken together, these observations demonstrate that epigenetic silencing of MGMT is associated with DNA hypermethylation, histone modifications and DNMT1 upregulation, which contribute to NiS-induced malignant transformation.
Collapse
Affiliation(s)
- Weidong Ji
- Faculty of Preventive Medicine, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Chen Y, Lopez-Sanchez M, Savoy DN, Billadeau DD, Dow GS, Kozikowski AP. A Series of Potent and Selective, Triazolylphenyl-Based Histone Deacetylases Inhibitors with Activity against Pancreatic Cancer Cells and Plasmodium falciparum. J Med Chem 2008; 51:3437-48. [DOI: 10.1021/jm701606b] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yufeng Chen
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Springs, Maryland 20910, and Department of Immunology, Division of Oncology Research, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Miriam Lopez-Sanchez
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Springs, Maryland 20910, and Department of Immunology, Division of Oncology Research, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Doris N. Savoy
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Springs, Maryland 20910, and Department of Immunology, Division of Oncology Research, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Daniel D. Billadeau
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Springs, Maryland 20910, and Department of Immunology, Division of Oncology Research, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Geoffrey S. Dow
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Springs, Maryland 20910, and Department of Immunology, Division of Oncology Research, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Alan P. Kozikowski
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Springs, Maryland 20910, and Department of Immunology, Division of Oncology Research, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| |
Collapse
|
198
|
Dalgard CL, Van Quill KR, O'Brien JM. Evaluation of the In vitro and In vivo Antitumor Activity of Histone Deacetylase Inhibitors for the Therapy of Retinoblastoma. Clin Cancer Res 2008; 14:3113-23. [DOI: 10.1158/1078-0432.ccr-07-4836] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
199
|
Khan ANH, Gregorie CJ, Tomasi TB. Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells. Cancer Immunol Immunother 2008; 57:647-54. [PMID: 18046553 PMCID: PMC3146348 DOI: 10.1007/s00262-007-0402-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 08/29/2007] [Indexed: 12/14/2022]
Abstract
Histone deacetylase inhibitors (HDACi), including trichostatin A (TSA) and valproic acid, can alter the acetylation of histones in chromatin and enhance gene transcription. Previously we demonstrated that HDACi-treated tumor cells are capable of presenting antigen via the MHC class II pathway. In this study, we show that treatment with HDACi enhances the expression of molecules (TAP1, TAP2, LMP2, LMP7, Tapasin and MHC class I) involved in antigen processing and presentation via the MHC class I pathway in melanoma cells. HDACi treatment of B16F10 cells also enhanced cell surface expression of class I and costimulatory molecules CD40 and CD86. Enhanced transcription of these genes is associated with a significant increase in direct presentation of whole protein antigen and MHC class I-restricted peptides by TSA-treated B16F10 cells. Our data indicate that epigenetic modification can convert a tumor cell to an antigen presenting cell capable of activating IFN-gamma secreting T cells via the class I pathway. These findings suggest that the abnormalities, observed in some tumors in the expression of MHC class I antigen processing and presentation molecules, may result from epigenetic repression.
Collapse
Affiliation(s)
- A. Nazmul H. Khan
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263 USA
| | - Christopher J. Gregorie
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263 USA
| | - Thomas B. Tomasi
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263 USA
- Department of Medicine, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14214 USA
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14214 USA
| |
Collapse
|
200
|
Fantin VR, Richon VM. Mechanisms of resistance to histone deacetylase inhibitors and their therapeutic implications. Clin Cancer Res 2008; 13:7237-42. [PMID: 18094401 DOI: 10.1158/1078-0432.ccr-07-2114] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone deacetylase inhibitors (HDI) are a promising new approach to the treatment of cancer. HDIs have been shown to induce differentiation, cell cycle arrest, and apoptosis in a variety of transformed cell lines; inhibit tumor growth in animal models; and show antitumor activity in clinical trials. Vorinostat, which has shown clinical responses in approximately 30% of patients with advanced cutaneous T-cell lymphoma, is the first HDI approved for the treatment of cancer, and it is currently being evaluated in other indications. A better understanding of the molecular determinants of resistance to HDIs may provide the basis for therapeutic combinations with improved clinical efficacy. Poor response to treatment could be linked to systemic factors like pharmacokinetics or to tumor-specific factors both at the level of the malignant cells (tumor intrinsic) or the tumor microenvironment. This review focuses on the tumor intrinsic mechanisms of drug resistance (excluding mechanism of acquired resistance due to chronic exposure). In particular, attention is given to selected mechanisms that are relevant across chemical classes of HDIs and that can aid in the design of rational combination strategies.
Collapse
|