151
|
Oishi Y, Lazarus M. The control of sleep and wakefulness by mesolimbic dopamine systems. Neurosci Res 2017; 118:66-73. [DOI: 10.1016/j.neures.2017.04.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/11/2017] [Accepted: 03/27/2017] [Indexed: 12/21/2022]
|
152
|
Kanda T, Ohyama K, Muramoto H, Kitajima N, Sekiya H. Promising techniques to illuminate neuromodulatory control of the cerebral cortex in sleeping and waking states. Neurosci Res 2017; 118:92-103. [PMID: 28434992 DOI: 10.1016/j.neures.2017.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 01/31/2023]
Abstract
Sleep, a common event in daily life, has clear benefits for brain function, but what goes on in the brain when we sleep remains unclear. Sleep was long regarded as a silent state of the brain because the brain seemingly lacks interaction with the surroundings during sleep. Since the discovery of electrical activities in the brain at rest, electrophysiological methods have revealed novel concepts in sleep research. During sleep, the brain generates oscillatory activities that represent characteristic states of sleep. In addition to electrophysiology, opto/chemogenetics and two-photon Ca2+ imaging methods have clarified that the sleep/wake states organized by neuronal and glial ensembles in the cerebral cortex are transitioned by neuromodulators. Even with these methods, however, it is extremely difficult to elucidate how and when neuromodulators spread, accumulate, and disappear in the extracellular space of the cortex. Thus, real-time monitoring of neuromodulator dynamics at high spatiotemporal resolution is required for further understanding of sleep. Toward direct detection of neuromodulator behavior during sleep and wakefulness, in this review, we discuss developing imaging techniques based on the activation of G-protein-coupled receptors that allow for visualization of neuromodulator dynamics.
Collapse
Affiliation(s)
- Takeshi Kanda
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.
| | - Kaoru Ohyama
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroki Muramoto
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Nami Kitajima
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroshi Sekiya
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
153
|
Jones BE. Principal cell types of sleep-wake regulatory circuits. Curr Opin Neurobiol 2017; 44:101-109. [PMID: 28433001 DOI: 10.1016/j.conb.2017.03.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
Abstract
Electrophysiological recordings indicate that neurons which discharge maximally in association with distinct sleep-wake states are distributed through the brain, albeit in differing proportions. As studied using juxtacellular recording and labeling within the basal forebrain, four functional principal cell types are distinguished as: wake/paradoxical sleep (W/PS)-, slow wave sleep (SWS)-, W- and PS-max active. They are each comprised by both GABA and glutamate neurons, in addition to acetylcholine neurons belonging to the W/PS group. By their discharge profiles and interactions, the GABA and glutamate neurons of different groups are proposed to have the capacity to generate sleep-wake states with associated EEG and EMG activities, though to also be importantly regulated by neuromodulatory systems, each of which belong to one functional cell group.
Collapse
Affiliation(s)
- Barbara E Jones
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada.
| |
Collapse
|
154
|
Soni N, Prabhala BK, Mehta V, Mirza O, Kohlmeier KA. Anandamide and 2-AG are endogenously present within the laterodorsal tegmental nucleus: Functional implications for a role of eCBs in arousal. Brain Res 2017; 1665:74-79. [PMID: 28404451 DOI: 10.1016/j.brainres.2017.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/27/2017] [Accepted: 04/06/2017] [Indexed: 12/29/2022]
Abstract
Previously, we presented electrophysiological evidence for presence in mice brain slices of functional cannabinoid type I receptors (CB1Rs) within the laterodorsal tegmentum (LDT), a brain stem nucleus critical in control of arousal and rapid eye movement (REM) sleep. Further, using pharmacological agents, we provided data suggestive of the endogenous presence of cannabinoids (CBs) acting at LDT CB1Rs. However, in those studies, identification of the type(s) of CB ligands endogenously present in the LDT remained outstanding, and this information has not been provided elsewhere. Accordingly, we used the highly-sensitive liquid chromatography/mass spectrometry (LC-MS) method to determine whether N-arachidonoylethanolamide (Anandamide or AEA) and 2-arachidonyl glycerol (2-AG), which are both endogenous CB ligands acting at CB1Rs, are present in the LDT. Mice brain tissue samples of the LDT were assayed using ion trap LC-MS in selected ion monitoring mode. Chromatographic analysis and product-ion MS scans identified presence of the CBs, AEA and 2-AG, from LDT mouse tissue. Data using the LC-MS method show that AEA and 2-AG are endogenously present within the LDT and when coupled with our electrophysiological findings, lead to the suggestion that AEA and 2-AG act at electropharmacologically-demonstrated CB1Rs in this nucleus. Accordingly, AEA and 2-AG likely play a role in processes governed by the LDT, including control of states of cortical gamma band activity seen in alert, aroused states, as well as cortical and motor activity characteristic of REM sleep.
Collapse
Affiliation(s)
- Neeraj Soni
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Bala Krishna Prabhala
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Ved Mehta
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Osman Mirza
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
155
|
Selective activation of a few limbic structures during paradoxical (REM) sleep by the claustrum and the supramammillary nucleus: evidence and function. Curr Opin Neurobiol 2017; 44:59-64. [PMID: 28347885 DOI: 10.1016/j.conb.2017.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/04/2017] [Indexed: 01/17/2023]
Abstract
We review here classical and recent knowledge on the state of the cortex during paradoxical (REM) sleep (PS). Recent data indicate that only a few limbic cortical structures including the anterior cingulate, retrosplenial and medial entorhinal cortices and the dentate gyrus are strongly activated during PS. In contrast, most of the other cortices including the somatosensory ones are rather deactivated during PS. Further, recent results suggest that tonic activation of limbic cortical neurons during PS is due to projections from glutamate neurons of the claustrum and GABA/glutamate neurons of the supramammillary nucleus while their pacing with theta is induced by projections from GABAergic neurons of the medial septum. The limbic structures activated during PS have all been implicated in spatial memory and it is therefore likely that such activation is crucial for memory consolidation.
Collapse
|
156
|
Homeostatic regulation through GABA and acetylcholine muscarinic receptors of motor trigeminal neurons following sleep deprivation. Brain Struct Funct 2017; 222:3163-3178. [PMID: 28299422 PMCID: PMC5585289 DOI: 10.1007/s00429-017-1392-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022]
Abstract
Muscle tone is regulated across sleep-wake states, being maximal in waking, reduced in slow wave sleep (SWS) and absent in paradoxical or REM sleep (PS or REMS). Such changes in tone have been recorded in the masseter muscles and shown to correspond to changes in activity and polarization of the trigeminal motor 5 (Mo5) neurons. The muscle hypotonia and atonia during sleep depend in part on GABA acting upon both GABAA and GABAB receptors (Rs) and acetylcholine (ACh) acting upon muscarinic 2 (AChM2) Rs. Here, we examined whether Mo5 neurons undergo homeostatic regulation through changes in these inhibitory receptors following prolonged activity with enforced waking. By immunofluorescence, we assessed that the proportion of Mo5 neurons positively stained for GABAARs was significantly higher after sleep deprivation (SD, ~65%) than sleep control (SC, ~32%) and that the luminance of the GABAAR fluorescence was significantly higher after SD than SC and sleep recovery (SR). Although, all Mo5 neurons were positively stained for GABABRs and AChM2Rs (100%) in all groups, the luminance of these receptors was significantly higher following SD as compared to SC and SR. We conclude that the density of GABAA, GABAB and AChM2 receptors increases on Mo5 neurons during SD. The increase in these receptors would be associated with increased inhibition in the presence of GABA and ACh and thus a homeostatic down-scaling in the excitability of the Mo5 neurons after prolonged waking and resulting increased susceptibility to muscle hypotonia or atonia along with sleep.
Collapse
|
157
|
The rostromedial zona incerta is involved in attentional processes while adjacent LHA responds to arousal: c-Fos and anatomical evidence. Brain Struct Funct 2017; 222:2507-2525. [DOI: 10.1007/s00429-016-1353-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 12/16/2016] [Indexed: 01/27/2023]
|
158
|
Role of the pedunculopontine nucleus in controlling gait and sleep in normal and parkinsonian monkeys. J Neural Transm (Vienna) 2017; 125:471-483. [PMID: 28084536 DOI: 10.1007/s00702-017-1678-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/07/2017] [Indexed: 12/20/2022]
Abstract
Patients with Parkinson's disease (PD) develop cardinal motor symptoms, including akinesia, rigidity, and tremor, that are alleviated by dopaminergic medication and/or subthalamic deep brain stimulation. Over the time course of the disease, gait and balance disorders worsen and become resistant to pharmacological and surgical treatments. These disorders generate debilitating motor symptoms leading to increased dependency, morbidity, and mortality. PD patients also experience sleep disturbance that raise the question of a common physiological basis. An extensive experimental and clinical body of work has highlighted the crucial role of the pedunculopontine nucleus (PPN) in the control of gait and sleep, and its potential major role in PD. Here, we summarise our investigations in the monkey PPN in the normal and parkinsonian states. We first examined the anatomy and connectivity of the PPN and the cuneiform nucleus which both belong to the mesencephalic locomotor region. Second, we conducted experiments to demonstrate the specific effects of PPN cholinergic lesions on locomotion in the normal and parkinsonian monkey. Third, we aimed to understand how PPN cholinergic lesions impair sleep in parkinsonian monkeys. Our final goal was to develop a novel model of advanced PD with gait and sleep disorders. We believe that this monkey model, even if it does not attempt to reproduce the exact human disease with all its complexities, represents a good biomedical model to characterise locomotion and sleep in the context of PD.
Collapse
|
159
|
D'Onofrio S, Mahaffey S, Garcia-Rill E. Role of calcium channels in bipolar disorder. CURRENT PSYCHOPHARMACOLOGY 2017; 6:122-135. [PMID: 29354402 PMCID: PMC5771645 DOI: 10.2174/2211556006666171024141949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bipolar disorder is characterized by a host of sleep-wake abnormalities that suggests that the reticular activating system (RAS) is involved in these symptoms. One of the signs of the disease is a decrease in high frequency gamma band activity, which accounts for a number of additional deficits. Bipolar disorder has also been found to overexpress neuronal calcium sensor protein 1 (NCS-1). Recent studies showed that elements in the RAS generate gamma band activity that is mediated by high threshold calcium (Ca2+) channels. This mini-review provides a description of recent findings on the role of Ca2+ and Ca2+ channels in bipolar disorder, emphasizing the involvement of arousal-related systems in the manifestation of many of the disease symptoms. This will hopefully bring attention to a much-needed area of research and provide novel avenues for therapeutic development.
Collapse
Affiliation(s)
- Stasia D'Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Susan Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
160
|
Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice. J Neurosci 2016; 37:1352-1366. [PMID: 28039375 DOI: 10.1523/jneurosci.1405-16.2016] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 12/10/2016] [Accepted: 12/21/2016] [Indexed: 01/15/2023] Open
Abstract
The pedunculopontine tegmental (PPT) nucleus has long been implicated in the regulation of cortical activity and behavioral states, including rapid eye-movement (REM) sleep. For example, electrical stimulation of the PPT region during sleep leads to rapid awakening, whereas lesions of the PPT in cats reduce REM sleep. Though these effects have been linked with the activity of cholinergic PPT neurons, the PPT also includes intermingled glutamatergic and GABAergic cell populations, and the precise roles of cholinergic, glutamatergic, and GABAergic PPT cell groups in regulating cortical activity and behavioral state remain unknown. Using a chemogenetic approach in three Cre-driver mouse lines, we found that selective activation of glutamatergic PPT neurons induced prolonged cortical activation and behavioral wakefulness, whereas inhibition reduced wakefulness and increased non-REM (NREM) sleep. Activation of cholinergic PPT neurons suppressed lower-frequency electroencephalogram rhythms during NREM sleep. Last, activation of GABAergic PPT neurons slightly reduced REM sleep. These findings reveal that glutamatergic, cholinergic, and GABAergic PPT neurons differentially influence cortical activity and sleep/wake states. SIGNIFICANCE STATEMENT More than 40 million Americans suffer from chronic sleep disruption, and the development of effective treatments requires a more detailed understanding of the neuronal mechanisms controlling sleep and arousal. The pedunculopontine tegmental (PPT) nucleus has long been considered a key site for regulating wakefulness and REM sleep. This is mainly because of the cholinergic neurons contained in the PPT nucleus. However, the PPT nucleus also contains glutamatergic and GABAergic neurons that likely contribute to the regulation of cortical activity and sleep-wake states. The chemogenetic experiments in the present study reveal that cholinergic, glutamatergic, and GABAergic PPT neurons each have distinct effects on sleep/wake behavior, improving our understanding of how the PPT nucleus regulates cortical activity and behavioral states.
Collapse
|
161
|
Lambert MØ, Ipsen TH, Kohlmeier KA. Acute cocaine exposure elicits rises in calcium in arousal-related laterodorsal tegmental neurons. Pharmacol Res Perspect 2016; 5:e00282. [PMID: 28596834 PMCID: PMC5461641 DOI: 10.1002/prp2.282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022] Open
Abstract
Cocaine has strong reinforcing properties, which underlie its high addiction potential. Reinforcement of use of addictive drugs is associated with rises in dopamine (DA) in mesoaccumbal circuitry. Excitatory afferent input to mesoaccumbal circuitry sources from the laterodorsal tegmental nucleus (LDT). Chronic, systemic cocaine exposure has been shown to have cellular effects on LDT cells, but acute actions of local application have never been demonstrated. Using calcium imaging, we show that acute application of cocaine to mouse brain slices induces calcium spiking in cells of the LDT. Spiking was attenuated by tetrodotoxin (TTX) and low calcium solutions, and abolished by prior exhaustion of intracellular calcium stores. Further, DA receptor antagonists reduced these transients, whereas DA induced rises with similar spiking kinetics. Amphetamine, which also results in elevated levels of synaptic DA, but via a different pharmacological action than cocaine, induced calcium spiking with similar profiles. Although large differences in spiking were not noted in an animal model associated with a heightened proclivity of acquiring addiction‐related behavior, the prenatal nicotine exposed mouse (PNE), subtle differences in cocaine's effect on calcium spiking were noted, indicative of a reduction in action of cocaine in the LDT associated with exposure to nicotine during gestation. When taken together, our data indicate that acute actions of cocaine do include effects on LDT cells. Considering the role of intracellular calcium in cellular excitability, and of the LDT in addiction circuitry, our data suggest that cocaine effects in this nucleus may contribute to the high addiction potential of this drug.
Collapse
Affiliation(s)
- Mads Ødum Lambert
- Department of Drug Design and Pharmacology Faculty of Health Sciences Universitetsparken 2 University of Copenhagen Copenhagen 2100 Denmark
| | - Theis Højland Ipsen
- Department of Drug Design and Pharmacology Faculty of Health Sciences Universitetsparken 2 University of Copenhagen Copenhagen 2100 Denmark
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology Faculty of Health Sciences Universitetsparken 2 University of Copenhagen Copenhagen 2100 Denmark
| |
Collapse
|
162
|
Valencia Garcia S, Libourel PA, Lazarus M, Grassi D, Luppi PH, Fort P. Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder. Brain 2016; 140:414-428. [PMID: 28007991 DOI: 10.1093/brain/aww310] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 11/14/2022] Open
Abstract
SEE SCHENCK AND MAHOWALD DOI101093/AWW329 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Idiopathic REM sleep behaviour disorder is characterized by the enactment of violent dreams during paradoxical (REM) sleep in the absence of normal muscle atonia. Accumulating clinical and experimental data suggest that REM sleep behaviour disorder might be due to the neurodegeneration of glutamate neurons involved in paradoxical sleep and located within the pontine sublaterodorsal tegmental nucleus. The purpose of the present work was thus to functionally determine first, the role of glutamate sublaterodorsal tegmental nucleus neurons in paradoxical sleep and second, whether their genetic inactivation is sufficient for recapitulating REM sleep behaviour disorder in rats. For this goal, we first injected two retrograde tracers in the intralaminar thalamus and ventral medulla to disentangle neuronal circuits in which sublaterodorsal tegmental nucleus is involved; second we infused bilaterally in sublaterodorsal tegmental nucleus adeno-associated viruses carrying short hairpin RNAs targeting Slc17a6 mRNA [which encodes vesicular glutamate transporter 2 (vGluT2)] to chronically impair glutamate synaptic transmission in sublaterodorsal tegmental nucleus neurons. At the neuroanatomical level, sublaterodorsal tegmental nucleus neurons specifically activated during paradoxical sleep hypersomnia send descending efferents to glycine/GABA neurons within the ventral medulla, but not ascending projections to the intralaminar thalamus. These data suggest a crucial role of sublaterodorsal tegmental nucleus neurons rather in muscle atonia than in paradoxical sleep generation. In line with this hypothesis, 30 days after adeno-associated virus injections into sublaterodorsal tegmental nucleus rats display a decrease of 30% of paradoxical sleep daily quantities, and a significant increase of muscle tone during paradoxical sleep concomitant to a tremendous increase of abnormal motor dream-enacting behaviours. These animals display symptoms and behaviours during paradoxical sleep that closely mimic human REM sleep behaviour disorder. Altogether, our data demonstrate that glutamate sublaterodorsal tegmental nucleus neurons generate muscle atonia during paradoxical sleep likely through descending projections to glycine/GABA premotor neurons in the ventral medulla. Although playing a role in paradoxical sleep regulation, they are, however, not necessary for inducing the state itself. The present work further validates a potent new preclinical REM sleep behaviour disorder model that opens avenues for studying and treating this disabling sleep disorder, and advances potential regions implicated in prodromal stages of synucleinopathies such as Parkinson's disease.
Collapse
Affiliation(s)
- Sara Valencia Garcia
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France.,Lyon1 Claude Bernard University, Lyon, France
| | - Paul-Antoine Libourel
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France.,Lyon1 Claude Bernard University, Lyon, France
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Daniela Grassi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Pierre-Hervé Luppi
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France.,Lyon1 Claude Bernard University, Lyon, France
| | - Patrice Fort
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France .,Lyon1 Claude Bernard University, Lyon, France
| |
Collapse
|
163
|
Boutin RCT, Alsahafi Z, Pagliardini S. Cholinergic modulation of the parafacial respiratory group. J Physiol 2016; 595:1377-1392. [PMID: 27808424 DOI: 10.1113/jp273012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/28/2016] [Indexed: 01/06/2023] Open
Abstract
KEY POINTS This study investigates the effects of cholinergic transmission on the expiratory oscillator, the parafacial respiratory group (pFRG) in urethane anaesthetized adult rats. Local inhibition of the acetyl cholinesterase enzyme induced activation of expiratory abdominal muscles and active expiration. Local application of the cholinomimetic carbachol elicited recruitment of late expiratory neurons, expiratory abdominal muscle activity and active expiration. This effect was antagonized by local application of the muscarinic antagonists scopolamine, J104129 and 4DAMP. We observed distinct physiological responses between the more medial chemosensitive region of the retrotrapezoid nucleus and the more lateral region of pFRG. These results support the hypothesis that pFRG is under cholinergic neuromodulation and the region surrounding the facial nucleus contains a group of neurons with distinct physiological roles. ABSTRACT Active inspiration and expiration are opposing respiratory phases generated by two separate oscillators in the brainstem: inspiration driven by a neuronal network located in the preBötzinger complex (preBötC) and expiration driven by a neuronal network located in the parafacial respiratory group (pFRG). While continuous activity of the preBötC is necessary for maintaining ventilation, the pFRG behaves as a conditional expiratory oscillator, being silent in resting conditions and becoming rhythmically active in the presence of increased respiratory drive (e.g. hypoxia, hypercapnia, exercise and through release of inhibition). Recent evidence from our laboratory suggests that expiratory activity in the principal expiratory pump muscles, the abdominals, is modulated in a state-dependent fashion, frequently occurring during periods of REM sleep. We hypothesized that acetylcholine, a neurotransmitter released in wakefulness and REM sleep by mesopontine structures, contributes to the activation of pFRG neurons and thus acts to promote the recruitment of expiratory abdominal muscle activity. We investigated the stimulatory effect of cholinergic neurotransmission on pFRG activity and recruitment of active expiration in vivo under anaesthesia. We demonstrate that local application of the acetylcholinesterase inhibitor physostigmine into the pFRG potentiated expiratory activity. Furthermore, local application of the cholinomimetic carbachol into the pFRG activated late expiratory neurons and induced long lasting rhythmic active expiration. This effect was completely abolished by pre-application of the muscarinic antagonist scopolamine, and more selective M3 antagonists 4DAMP and J104129. We conclude that cholinergic muscarinic transmission contributes to excitation of pFRG neurons and promotes both active recruitment of abdominal muscles and active expiratory flow.
Collapse
Affiliation(s)
- Rozlyn C T Boutin
- Department of Physiology, Women and Children's Health Research Institute & Neuroscience and Mental Health Institute, University of Alberta, 3020F Katz Group Centre, Edmonton, AB, T6G 2E1, Canada
| | - Zaki Alsahafi
- Department of Physiology, Women and Children's Health Research Institute & Neuroscience and Mental Health Institute, University of Alberta, 3020F Katz Group Centre, Edmonton, AB, T6G 2E1, Canada
| | - Silvia Pagliardini
- Department of Physiology, Women and Children's Health Research Institute & Neuroscience and Mental Health Institute, University of Alberta, 3020F Katz Group Centre, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
164
|
Chan A, Li S, Lee AR, Leung J, Yip A, Bird J, Godden KE, Martinez-Gonzalez D, Rattenborg NC, Balaban E, Pompeiano M. Activation of state-regulating neurochemical systems in newborn and embryonic chicks. Neuroscience 2016; 339:219-234. [DOI: 10.1016/j.neuroscience.2016.09.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/14/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
|
165
|
Okada KI, Kobayashi Y. Reward and Behavioral Factors Contributing to the Tonic Activity of Monkey Pedunculopontine Tegmental Nucleus Neurons during Saccade Tasks. Front Syst Neurosci 2016; 10:94. [PMID: 27891082 PMCID: PMC5104745 DOI: 10.3389/fnsys.2016.00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/03/2016] [Indexed: 01/24/2023] Open
Abstract
The pedunculopontine tegmental nucleus (PPTg) in the brainstem plays a role in controlling reinforcement learning and executing conditioned behavior. We previously examined the activity of PPTg neurons in monkeys during a reward-conditioned, visually guided saccade task, and reported that a population of these neurons exhibited tonic responses throughout the task period. These tonic responses might depend on prediction of the upcoming reward, successful execution of the task, or both. Here, we sought to further distinguish these factors and to investigate how each contributes to the tonic neuronal activity of the PPTg. In our normal visually guided saccade task, the monkey initially fixated on the central fixation target (FT), then made saccades to the peripheral saccade target and received a juice reward after the saccade target disappeared. Most of the tonic activity terminated shortly after the reward delivery, when the monkey broke fixation. To distinguish between reward and behavioral epochs, we then changed the task sequence for a block of trials, such that the saccade target remained visible after the reward delivery. Under these visible conditions, the monkeys tended to continue fixating on the saccade target even after the reward delivery. Therefore, the prediction of the upcoming reward and the end of an individual trial were separated in time. Regardless of the task conditions, half of the tonically active PPTg neurons terminated their activity around the time of the reward delivery, consistent with the view that PPTg neurons might send reward prediction signals until the time of reward delivery, which is essential for computing reward prediction error in reinforcement learning. On the other hand, the other half of the tonically active PPTg neurons changed their activity dependent on the task condition. In the normal condition, the tonic responses terminated around the time of the reward delivery, while in the visible condition, the activity continued until the disappearance of the saccade target (ST) after reward delivery. Thus, for these neurons, the tonic activity might be related to maintaining attention to complete fixation behavior. These results suggest that, in addition to the reward value information, some PPTg neurons might contribute to the execution of conditioned task behavior.
Collapse
Affiliation(s)
- Ken-Ichi Okada
- Laboratories for Neuroscience, Visual Neuroscience Group, Graduate School of Frontier Biosciences, Osaka UniversityOsaka, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka UniversityOsaka, Japan
| | - Yasushi Kobayashi
- Laboratories for Neuroscience, Visual Neuroscience Group, Graduate School of Frontier Biosciences, Osaka UniversityOsaka, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka UniversityOsaka, Japan; Research Center for Behavioral Economics, Osaka UniversityOsaka, Japan
| |
Collapse
|
166
|
Weber F, Dan Y. Circuit-based interrogation of sleep control. Nature 2016; 538:51-59. [PMID: 27708309 DOI: 10.1038/nature19773] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/17/2016] [Indexed: 12/20/2022]
Abstract
Sleep is a fundamental biological process observed widely in the animal kingdom, but the neural circuits generating sleep remain poorly understood. Understanding the brain mechanisms controlling sleep requires the identification of key neurons in the control circuits and mapping of their synaptic connections. Technical innovations over the past decade have greatly facilitated dissection of the sleep circuits. This has set the stage for understanding how a variety of environmental and physiological factors influence sleep. The ability to initiate and terminate sleep on command will also help us to elucidate its functions within and beyond the brain.
Collapse
Affiliation(s)
- Franz Weber
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
167
|
Garcia-Rill E, D’Onofrio S, Mahaffey S. Bottom-up Gamma: the Pedunculopontine Nucleus and Reticular Activating System. TRANSLATIONAL BRAIN RHYTHMICITY 2016; 1:49-53. [PMID: 28691105 PMCID: PMC5497760 DOI: 10.15761/tbr.1000109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gamma rhythms have been proposed to promote the feed forward or "bottom-up" flow of information from lower to higher regions in the brain during perception. On the other hand, beta rhythms have been proposed to represent feed back or "top-down" influence from higher regions to lower. The pedunculopontine nucleus (PPN) has been implicated in sleep-wake control and arousal, and is part of the reticular activating system (RAS). This review describes the properties of the cells in this nucleus. These properties are unique, and perhaps it is the particular characteristics of these cells that allow the PPN to be involved in a host of functions and disorders. The fact that all PPN neurons fire maximally at gamma band frequency regardless of electrophysiological or transmitter type, make this an unusual cell group. In other regions, for example in the cortex, cells with such a property represent only a sub-population. More importantly, the fact that this cell group's functions are related to the capacity to generate coherent activity at a preferred natural frequency, gamma band, speaks volumes about how the PPN functions. We propose that "bottom-up" gamma band influence arises in the RAS and contributes to the build-up of the background of activity necessary for preconscious awareness and gamma activity at cortical levels.
Collapse
Affiliation(s)
- E. Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology, University of Arkansas for Medical Sciences., Little Rock, AR
| | - S. D’Onofrio
- Center for Translational Neuroscience, Department of Neurobiology, University of Arkansas for Medical Sciences., Little Rock, AR
| | - S. Mahaffey
- Center for Translational Neuroscience, Department of Neurobiology, University of Arkansas for Medical Sciences., Little Rock, AR
| |
Collapse
|
168
|
Luster BR, Urbano FJ, Garcia-Rill E. Intracellular mechanisms modulating gamma band activity in the pedunculopontine nucleus (PPN). Physiol Rep 2016; 4:4/12/e12787. [PMID: 27354537 PMCID: PMC4923228 DOI: 10.14814/phy2.12787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/11/2016] [Indexed: 02/04/2023] Open
Abstract
The pedunculopontine nucleus is a part of the reticular activating system, and is active during waking and REM sleep. Previous results showed that all PPN cells tested fired maximally at gamma frequencies when depolarized. This intrinsic membrane property was shown to be mediated by high‐threshold N‐ and P/Q‐type Ca2+ channels. Recent studies show that the PPN contains three independent populations of neurons which can generate gamma band oscillations through only N‐type channels, only P/Q‐type channels, or both N‐ and P/Q‐type channels. This study investigated the intracellular mechanisms modulating gamma band activity in each population of neurons. We performed in vitro patch‐clamp recordings of PPN neurons from Sprague–Dawley rat pups, and applied 1‐sec ramps to induce intrinsic membrane oscillations. Our results show that there are two pathways modulating gamma band activity in PPN neurons. We describe populations of neurons mediating gamma band activity through only N‐type channels and the cAMP/PKA pathway (presumed “REM‐on” neurons), through only P/Q‐type channels and the CaMKII pathway (presumed “Wake‐on” neurons), and a third population which can mediate gamma activity through both N‐type channels and cAMP/PK and P/Q‐type channels and CaMKII (presumed “Wake/REM‐on” neurons). These novel results suggest that PPN gamma oscillations are modulated by two independent pathways related to different Ca2+ channel types.
Collapse
Affiliation(s)
- Brennon R Luster
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
169
|
Kubin L. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms. Compr Physiol 2016; 6:1801-1850. [PMID: 27783860 DOI: 10.1002/cphy.c160002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upper airway muscles subserve many essential for survival orofacial behaviors, including their important role as accessory respiratory muscles. In the face of certain predisposition of craniofacial anatomy, both tonic and phasic inspiratory activation of upper airway muscles is necessary to protect the upper airway against collapse. This protective action is adequate during wakefulness, but fails during sleep which results in recurrent episodes of hypopneas and apneas, a condition known as the obstructive sleep apnea syndrome (OSA). Although OSA is almost exclusively a human disorder, animal models help unveil the basic principles governing the impact of sleep on breathing and upper airway muscle activity. This article discusses the neuroanatomy, neurochemistry, and neurophysiology of the different neuronal systems whose activity changes with sleep-wake states, such as the noradrenergic, serotonergic, cholinergic, orexinergic, histaminergic, GABAergic and glycinergic, and their impact on central respiratory neurons and upper airway motoneurons. Observations of the interactions between sleep-wake states and upper airway muscles in healthy humans and OSA patients are related to findings from animal models with normal upper airway, and various animal models of OSA, including the chronic-intermittent hypoxia model. Using a framework of upper airway motoneurons being under concurrent influence of central respiratory, reflex and state-dependent inputs, different neurotransmitters, and neuropeptides are considered as either causing a sleep-dependent withdrawal of excitation from motoneurons or mediating an active, sleep-related inhibition of motoneurons. Information about the neurochemistry of state-dependent control of upper airway muscles accumulated to date reveals fundamental principles and may help understand and treat OSA. © 2016 American Physiological Society. Compr Physiol 6:1801-1850, 2016.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
170
|
Urbano FJ, Luster BR, D'Onofrio S, Mahaffey S, Garcia-Rill E. Recording Gamma Band Oscillations in Pedunculopontine Nucleus Neurons. J Vis Exp 2016. [PMID: 27684729 DOI: 10.3791/54685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Synaptic efferents from the PPN are known to modulate the neuronal activity of several intralaminar thalamic regions (e.g., the centrolateral/parafascicular; Cl/Pf nucleus). The activation of either the PPN or Cl/Pf nuclei in vivo has been described to induce the arousal of the animal and an increment in gamma band activity in the cortical electroencephalogram (EEG). The cellular mechanisms for the generation of gamma band oscillations in Reticular Activating System (RAS) neurons are the same as those found to generate gamma band oscillations in other brains nuclei. During current-clamp recordings of PPN neurons (from parasagittal slices from 9 - 25 day-old rats), the use of depolarizing square steps rapidly activated voltage-dependent potassium channels that prevented PPN neurons from being depolarized beyond -25 mV. Injecting 1 - 2 sec long depolarizing current ramps gradually depolarized PPN membrane potential resting values towards 0 mV. However, injecting depolarizing square pulses generated gamma-band oscillations of membrane potential that showed to be smaller in amplitude compared to the oscillations generated by ramps. All experiments were performed in the presence of voltage-gated sodium channels and fast synaptic receptors blockers. It has been shown that the activation of high-threshold voltage-dependent calcium channels underlie gamma-band oscillatory activity in PPN neurons. Specific methodological and pharmacological interventions are described here, providing the necessary tools to induce and sustain PPN subthreshold gamma band oscillation in vitro.
Collapse
Affiliation(s)
| | - Brennon R Luster
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences
| | - Stasia D'Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences
| | - Susan Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences;
| |
Collapse
|
171
|
Vetrivelan R, Kong D, Ferrari LL, Arrigoni E, Madara JC, Bandaru SS, Lowell BB, Lu J, Saper CB. Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 2016; 336:102-113. [PMID: 27595887 DOI: 10.1016/j.neuroscience.2016.08.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 12/30/2022]
Abstract
Currently available evidence indicates that neurons containing melanin-concentrating hormone (MCH) in the lateral hypothalamus are critical modulators of sleep-wakefulness, but their precise role in this function is not clear. Studies employing optogenetic stimulation of MCH neurons have yielded inconsistent results, presumably due to differences in the optogenetic stimulation protocols, which do not approximate normal patterns of cell firing. In order to resolve this discrepancy, we (1) selectively activated the MCH neurons using a chemogenetic approach (Cre-dependent hM3Dq expression) and (2) selectively destroyed MCH neurons using a genetically targeted diphtheria toxin deletion method, and studied the changes in sleep-wake in mice. Our results indicate that selective activation of MCH neurons causes specific increases in rapid eye movement (REM) sleep without altering wake or non-REM (NREM) sleep. On the other hand, selective deletions of MCH neurons altered the diurnal rhythm of wake and REM sleep without altering their total amounts. These results indicate that activation of MCH neurons primarily drives REM sleep and their presence may be necessary for normal expression of diurnal variation of REM sleep and wake.
Collapse
Affiliation(s)
- Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States.
| | - Dong Kong
- Department of Neuroscience, Tufts University School of Medicine, Programs of Neuroscience and Cellular, Molecular and Development Biology, Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, United States
| | - Loris L Ferrari
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
| | - Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Sathyajit S Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Jun Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
| | - Clifford B Saper
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
172
|
Arrigoni E, Chen MC, Fuller PM. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 2016; 594:5391-414. [PMID: 27060683 DOI: 10.1113/jp271324] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/02/2016] [Indexed: 01/14/2023] Open
Abstract
Rapid eye movement (REM) sleep is a recurring part of the sleep-wake cycle characterized by fast, desynchronized rhythms in the electroencephalogram (EEG), hippocampal theta activity, rapid eye movements, autonomic activation and loss of postural muscle tone (atonia). The brain circuitry governing REM sleep is located in the pontine and medullary brainstem and includes ascending and descending projections that regulate the EEG and motor components of REM sleep. The descending signal for postural muscle atonia during REM sleep is thought to originate from glutamatergic neurons of the sublaterodorsal nucleus (SLD), which in turn activate glycinergic pre-motor neurons in the spinal cord and/or ventromedial medulla to inhibit motor neurons. Despite work over the past two decades on many neurotransmitter systems that regulate the SLD, gaps remain in our knowledge of the synaptic basis by which SLD REM neurons are regulated and in turn produce REM sleep atonia. Elucidating the anatomical, cellular and synaptic basis of REM sleep atonia control is a critical step for treating many sleep-related disorders including obstructive sleep apnoea (apnea), REM sleep behaviour disorder (RBD) and narcolepsy with cataplexy.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Michael C Chen
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
173
|
Garcia-Rill E, Luster B, D'Onofrio S, Mahaffey S, Bisagno V, Urbano FJ. Implications of gamma band activity in the pedunculopontine nucleus. J Neural Transm (Vienna) 2016; 123:655-665. [PMID: 26597124 PMCID: PMC4877293 DOI: 10.1007/s00702-015-1485-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/10/2015] [Indexed: 01/07/2023]
Abstract
The fact that the pedunculopontine nucleus (PPN) is part of the reticular activating system places it in a unique position to modulate sensory input and fight-or-flight responses. Arousing stimuli simultaneously activate ascending projections of the PPN to the intralaminar thalamus to trigger cortical high-frequency activity and arousal, as well as descending projections to reticulospinal systems to alter posture and locomotion. As such, the PPN has become a target for deep brain stimulation for the treatment of Parkinson's disease, modulating gait, posture, and higher functions. This article describes the latest discoveries on PPN physiology and the role of the PPN in a number of disorders. It has now been determined that high-frequency activity during waking and REM sleep is controlled by two different intracellular pathways and two calcium channels in PPN cells. Moreover, there are three different PPN cell types that have one or both calcium channels and may be active during waking only, REM sleep only, or both. Based on the new discoveries, novel mechanisms are proposed for insomnia as a waking disorder. In addition, neuronal calcium sensor protein-1 (NCS-1), which is over expressed in schizophrenia and bipolar disorder, may be responsible for the dysregulation in gamma band activity in at least some patients with these diseases. Recent results suggest that NCS-1 modulates PPN gamma band activity and that lithium acts to reduce the effects of over expressed NCS-1, accounting for its effectiveness in bipolar disorder.
Collapse
Affiliation(s)
- E Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA.
| | - B Luster
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA
| | - S D'Onofrio
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA
| | - S Mahaffey
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA
| | - V Bisagno
- IFIBYNE-CONICET, ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - F J Urbano
- IFIBYNE-CONICET, ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
174
|
Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nat Neurosci 2016; 19:1025-33. [PMID: 27348215 DOI: 10.1038/nn.4335] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/27/2016] [Indexed: 02/08/2023]
Abstract
Dopamine neurons in the ventral tegmental area (VTA) receive cholinergic innervation from brainstem structures that are associated with either movement or reward. Whereas cholinergic neurons of the pedunculopontine nucleus (PPN) carry an associative/motor signal, those of the laterodorsal tegmental nucleus (LDT) convey limbic information. We used optogenetics and in vivo juxtacellular recording and labeling to examine the influence of brainstem cholinergic innervation of distinct neuronal subpopulations in the VTA. We found that LDT cholinergic axons selectively enhanced the bursting activity of mesolimbic dopamine neurons that were excited by aversive stimulation. In contrast, PPN cholinergic axons activated and changed the discharge properties of VTA neurons that were integrated in distinct functional circuits and were inhibited by aversive stimulation. Although both structures conveyed a reinforcing signal, they had opposite roles in locomotion. Our results demonstrate that two modes of cholinergic transmission operate in the VTA and segregate the neurons involved in different reward circuits.
Collapse
|
175
|
Boucetta S, Salimi A, Dadar M, Jones BE, Collins DL, Dang-Vu TT. Structural Brain Alterations Associated with Rapid Eye Movement Sleep Behavior Disorder in Parkinson's Disease. Sci Rep 2016; 6:26782. [PMID: 27245317 PMCID: PMC4887790 DOI: 10.1038/srep26782] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/09/2016] [Indexed: 01/20/2023] Open
Abstract
Characterized by dream-enactment motor manifestations arising from rapid eye movement (REM) sleep, REM sleep behavior disorder (RBD) is frequently encountered in Parkinson’s disease (PD). Yet the specific neurostructural changes associated with RBD in PD patients remain to be revealed by neuroimaging. Here we identified such neurostructural alterations by comparing large samples of magnetic resonance imaging (MRI) scans in 69 PD patients with probable RBD, 240 patients without RBD and 138 healthy controls, using deformation-based morphometry (p < 0.05 corrected for multiple comparisons). All data were extracted from the Parkinson’s Progression Markers Initiative. PD patients with probable RBD showed smaller volumes than patients without RBD and than healthy controls in the pontomesencephalic tegmentum, medullary reticular formation, hypothalamus, thalamus, putamen, amygdala and anterior cingulate cortex. These results demonstrate that RBD is associated with a prominent loss of volume in the pontomesencephalic tegmentum, where cholinergic, GABAergic and glutamatergic neurons are located and implicated in the promotion of REM sleep and muscle atonia. It is additionally associated with more widespread atrophy in other subcortical and cortical regions whose loss also likely contributes to the altered regulation of sleep-wake states and motor activity underlying RBD in PD patients.
Collapse
Affiliation(s)
- Soufiane Boucetta
- Center for Studies in Behavioural Neurobiology, PERFORM Center and Dpt of Exercise Science, Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6 Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal and Dpt of Neurosciences, Université de Montréal, 4545 Chemin Queen Mary, Montréal, Québec, H3W 1W4 Canada
| | - Ali Salimi
- Center for Studies in Behavioural Neurobiology, PERFORM Center and Dpt of Exercise Science, Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6 Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal and Dpt of Neurosciences, Université de Montréal, 4545 Chemin Queen Mary, Montréal, Québec, H3W 1W4 Canada
| | - Mahsa Dadar
- Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, Québec, H3A 2B4 Canada
| | - Barbara E Jones
- Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, Québec, H3A 2B4 Canada
| | - D Louis Collins
- Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, Québec, H3A 2B4 Canada
| | - Thien Thanh Dang-Vu
- Center for Studies in Behavioural Neurobiology, PERFORM Center and Dpt of Exercise Science, Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6 Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal and Dpt of Neurosciences, Université de Montréal, 4545 Chemin Queen Mary, Montréal, Québec, H3W 1W4 Canada
| |
Collapse
|
176
|
Goetz L, Piallat B, Bhattacharjee M, Mathieu H, David O, Chabardès S. The primate pedunculopontine nucleus region: towards a dual role in locomotion and waking state. J Neural Transm (Vienna) 2016; 123:667-678. [PMID: 27216823 DOI: 10.1007/s00702-016-1577-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
The mesencephalic reticular formation (MRF) mainly composed by the pedunculopontine and the cuneiform nuclei is involved in the control of several fundamental brain functions such as locomotion, rapid eye movement sleep and waking state. On the one hand, the role of MRF neurons in locomotion has been investigated for decades in different animal models, including in behaving nonhuman primate (NHP) using extracellular recordings. On the other hand, MRF neurons involved in the control of waking state have been consistently shown to constitute the cholinergic component of the reticular ascending system. However, a dual control of the locomotion and waking state by the same groups of neurons in NHP has never been demonstrated in NHP. Here, using microelectrode recordings in behaving NHP, we recorded 38 neurons in the MRF that were followed during transition between wakefulness (TWS) and sleep, i.e., until the emergence of sleep episodes characterized by typical cortical slow wave activity (SWA). We found that the MRF neurons, mainly located in the pedunculopontine nucleus region, modulated their activity during TWS with a decrease in firing rate during SWA. Of interest, we could follow some MRF neurons from locomotion to SWA and found that they also modulated their firing rate during locomotion and TWS. These new findings confirm the role of MRF neurons in both functions. They suggest that the MRF is an integration center that potentially allows to fine tune waking state and locomotor signals in order to establish an efficient locomotion.
Collapse
Affiliation(s)
- Laurent Goetz
- University of Grenoble Alpes, 38000, Grenoble, France.,INSERM, U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France
| | - Brigitte Piallat
- University of Grenoble Alpes, 38000, Grenoble, France.,INSERM, U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France
| | - Manik Bhattacharjee
- University of Grenoble Alpes, 38000, Grenoble, France.,INSERM, U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France
| | - Hervé Mathieu
- University of Grenoble Alpes, 38000, Grenoble, France.,INSERM, U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France.,Unité Mixte de Service IRMaGe, Grenoble Alpes Hospital, 38000, Grenoble, France.,Unité Mixte de Service 3552, CNRS, 38000, Grenoble, France
| | - Olivier David
- University of Grenoble Alpes, 38000, Grenoble, France.,INSERM, U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France
| | - Stéphan Chabardès
- University of Grenoble Alpes, 38000, Grenoble, France. .,INSERM, U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France. .,Clinique de neurochirurgie Pôle PALCROS, CHU Grenoble Alpes, 38000, Grenoble, France.
| |
Collapse
|
177
|
Abstract
How does the brain control dreams? New science shows that a small node of cells in the medulla - the most primitive part of the brain - may function to control REM sleep, the brain state that underlies dreaming.
Collapse
Affiliation(s)
- John Peever
- Departments of Cell and Systems Biology and Physiology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
178
|
Domonkos A, Nikitidou Ledri L, Laszlovszky T, Cserép C, Borhegyi Z, Papp E, Nyiri G, Freund TF, Varga V. Divergent in vivo activity of non-serotonergic and serotonergic VGluT3-neurones in the median raphe region. J Physiol 2016; 594:3775-90. [PMID: 27028801 PMCID: PMC4929318 DOI: 10.1113/jp272036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/22/2016] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS The median raphe is a key subcortical modulatory centre involved in several brain functions, such as regulation of the sleep-wake cycle, emotions and memory storage. A large proportion of median raphe neurones are glutamatergic and implement a radically different mode of communication compared to serotonergic cells, although their in vivo activity is unknown. We provide the first description of the in vivo, brain state-dependent firing properties of median raphe glutamatergic neurones identified by immunopositivity for the vesicular glutamate transporter type 3 (VGluT3) and serotonin (5-HT). Glutamatergic populations (VGluT3+/5-HT- and VGluT3+/5-HT+) were compared with the purely serotonergic (VGluT3-/5-HT+ and VGluT3-/5-HT-) neurones. VGluT3+/5-HT+ neurones fired similar to VGluT3-/5-HT+ cells, whereas they significantly diverged from the VGluT3+/5-HT- population. Activity of the latter subgroup resembled the spiking of VGluT3-/5-HT- cells, except for their diverging response to sensory stimulation. The VGluT3+ population of the median raphe may broadcast rapidly varying signals on top of a state-dependent, tonic modulation. ABSTRACT Subcortical modulation is crucial for information processing in the cerebral cortex. Besides the canonical neuromodulators, glutamate has recently been identified as a key cotransmitter of numerous monoaminergic projections. In the median raphe, a pure glutamatergic neurone population projecting to limbic areas was also discovered with a possibly novel, yet undetermined function. In the present study, we report the first functional description of the vesicular glutamate transporter type 3 (VGluT3)-expressing median raphe neurones. Because there is no appropriate genetic marker for the separation of serotonergic (5-HT+) and non-serotonergic (5-HT-) VGluT3+ neurones, we utilized immunohistochemistry after recording and juxtacellular labelling in anaesthetized rats. VGluT3+/5-HT- neurones fired faster, more variably and were permanently activated during sensory stimulation, as opposed to the transient response of the slow firing VGluT3-/5-HT+ subgroup. VGluT3+/5-HT- cells were also more active during hippocampal theta. In addition, the VGluT3-/5-HT- population, comprising putative GABAergic cells, resembled the firing of VGluT3+/5-HT- neurones but without any significant reaction to the sensory stimulus. Interestingly, the VGluT3+/5-HT+ group, spiking slower than the VGluT3+/5-HT- population, exhibited a mixed response (i.e. the initial transient activation was followed by a sustained elevation of firing). Phase coupling to hippocampal and prefrontal slow oscillations was found in VGluT3+/5-HT- neurones, also differentiating them from the VGluT3+/5-HT+ subpopulation. Taken together, glutamatergic neurones in the median raphe may implement multiple, highly divergent forms of modulation in parallel: a slow, tonic mode interrupted by sensory-evoked rapid transients, as well as a fast one capable of conveying complex patterns influenced by sensory inputs.
Collapse
Affiliation(s)
- Andor Domonkos
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Litsa Nikitidou Ledri
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás Laszlovszky
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Csaba Cserép
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Borhegyi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Present address: MTA-ELTE-NAP B-Opto-Neuropharmacology Group, Eötvös Loránd University, Budapest, Hungary
| | - Edit Papp
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Nyiri
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás F Freund
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Viktor Varga
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
179
|
Garzón M, Pickel VM. Electron microscopic localization of M2-muscarinic receptors in cholinergic and noncholinergic neurons of the laterodorsal tegmental and pedunculopontine nuclei of the rat mesopontine tegmentum. J Comp Neurol 2016; 524:3084-103. [PMID: 27038330 DOI: 10.1002/cne.24010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/02/2016] [Accepted: 03/28/2016] [Indexed: 01/01/2023]
Abstract
Muscarinic m2 receptors (M2Rs) are implicated in autoregulatory control of cholinergic output neurons located within the pedunculopontine (PPT) and laterodorsal tegmental (LTD) nuclei of the mesopontine tegmentum (MPT). However, these nuclei contain many noncholinergic neurons in which activation of M2R heteroceptors may contribute significantly to the decisive role of the LTD and PPT in sleep-wakefulness. We examined the electron microscopic dual immunolabeling of M2Rs and the vesicular acetylcholine transporter (VAchT) in the MPT of rat brain to identify the potential sites for M2R activation. M2R immunogold labeling was predominately seen in somatodendritic profiles throughout the PPT/LTD complex. In somata, M2R immunogold particles were often associated with Golgi lamellae and cytoplasmic endomembrannes, but were rarely in contact with the plasma membrane, as was commonly seen in dendrites. Approximately 36% of the M2R-labeled somata and 16% of the more numerous M2R-labeled dendrites coexpressed VAchT. M2R and M2R/VAchT-labeled dendritic profiles received synapses from inhibitory- and excitatory-type axon terminals, over 88% of which were unlabeled and others contained exclusively M2R or VAchT immunoreactivity. In axonal profiles M2R immunogold was localized to plasmalemmal and cytoplasmic regions and showed a similar distribution in many VAchT-negative glial profiles. These results provide ultrastructural evidence suggestive of somatic endomembrane trafficking of M2Rs, whose activation serves to regulate the postsynaptic excitatory and inhibitory responses in dendrites of cholinergic and noncholinergic neurons in the MPT. They also suggest the possibility that M2Rs in this brain region mediate the effects of acetylcholine on the release of other neurotransmitters and on glial signaling. J. Comp. Neurol. 524:3084-3103, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Miguel Garzón
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina UAM, Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Madrid, Spain.,Department of Neuroscience, Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Virginia M Pickel
- Department of Neuroscience, Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
180
|
Veleanu M, Axen TE, Kristensen MP, Kohlmeier KA. Comparison of bNOS and chat immunohistochemistry in the laterodorsal tegmentum (LDT) and the pedunculopontine tegmentum (PPT) of the mouse from brain slices prepared for electrophysiology. J Neurosci Methods 2016; 263:23-35. [DOI: 10.1016/j.jneumeth.2016.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/30/2015] [Accepted: 01/18/2016] [Indexed: 01/16/2023]
|
181
|
Garcia-Rill E, D’Onofrio S, Luster B, Mahaffey S, Urbano FJ, Phillips C. The 10 Hz Frequency: A Fulcrum For Transitional Brain States. TRANSLATIONAL BRAIN RHYTHMICITY 2016; 1:7-13. [PMID: 27547831 PMCID: PMC4990355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A 10 Hz rhythm is present in the occipital cortex when the eyes are closed (alpha waves), in the precentral cortex at rest (mu rhythm), in the superior and middle temporal lobe (tau rhythm), in the inferior olive (projection to cerebellar cortex), and in physiological tremor (underlying all voluntary movement). These are all considered resting rhythms in the waking brain which are "replaced" by higher frequency activity with sensorimotor stimulation. That is, the 10 Hz frequency fulcrum is replaced on the one hand by lower frequencies during sleep, or on the other hand by higher frequencies during volition and cognition. The 10 Hz frequency fulcrum is proposed as the natural frequency of the brain during quiet waking, but is replaced by higher frequencies capable of permitting more complex functions, or by lower frequencies during sleep and inactivity. At the center of the transition shifts to and from the resting rhythm is the reticular activating system, a phylogenetically preserved area of the brain essential for preconscious awareness.
Collapse
Affiliation(s)
- E. Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, US
| | - S. D’Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, US
| | - B. Luster
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, US
| | - S. Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, US
| | - F. J. Urbano
- IFIBYNE-CONICET, University of Buenos Aires, Argentina
| | - C. Phillips
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, US
- Department of Physical Therapy, Arkansas State University, Jonesboro, AR, 72401
| |
Collapse
|
182
|
Cox J, Pinto L, Dan Y. Calcium imaging of sleep-wake related neuronal activity in the dorsal pons. Nat Commun 2016; 7:10763. [PMID: 26911837 PMCID: PMC4773416 DOI: 10.1038/ncomms10763] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 01/19/2016] [Indexed: 11/13/2022] Open
Abstract
The dorsal pons has long been implicated in the generation of rapid eye movement (REM) sleep, but the underlying circuit mechanisms remain poorly understood. Using cell-type-specific microendoscopic Ca2+ imaging in and near the laterodorsal tegmental nucleus, we found that many glutamatergic neurons are maximally active during REM sleep (REM-max), while the majority of GABAergic neurons are maximally active during wakefulness (wake-max). Furthermore, the activity of glutamatergic neurons exhibits a medio-lateral spatial gradient, with medially located neurons more selectively active during REM sleep. Dreaming occurs in REM sleep, yet the neural mechanisms involved in generating it are not understood. Here Cox and colleagues show that glutamatergic neurons in the dorsal pons are activated most during transition to REM sleep while GABAergic neurons are more active during waking state.
Collapse
Affiliation(s)
- Julia Cox
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, 230 Li Ka Shing Center, Berkeley, California 94720, USA
| | - Lucas Pinto
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, 230 Li Ka Shing Center, Berkeley, California 94720, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, 230 Li Ka Shing Center, Berkeley, California 94720, USA
| |
Collapse
|
183
|
Yang H, Yang J, Xi W, Hao S, Luo B, He X, Zhu L, Lou H, Yu YQ, Xu F, Duan S, Wang H. Laterodorsal tegmentum interneuron subtypes oppositely regulate olfactory cue-induced innate fear. Nat Neurosci 2016; 19:283-9. [PMID: 26727549 DOI: 10.1038/nn.4208] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
Innate fear has a critical role in survival of animals. Unlike conditioned fear, the neuronal circuitry underlying innate fear is largely unknown. We found that the laterodorsal tegmentum (LDT) and lateral habenula (LHb) are specifically activated by the mouse predator odorant trimethylthiazoline (TMT). Using optogenetics to selectively stimulate GABAergic neurons in the LDT immediately produced fear-like responses (freezing, accelerated heart rate and increased serum corticosterone), whereas prolonged stimulation caused anxiety-like behaviors. Notably, although selective stimulation of parvalbumin (PV)-positive interneurons similarly induced fear-like responses, stimulation of somatostatin-positive interneurons or inhibition of PV neurons in the LDT suppressed TMT-induced fear-like responses without affecting conditioned fear. Finally, activation of LHb glutamatergic inputs to LDT interneurons was sufficient to generate fear-like responses. Thus, the LHb-LDT pathway is important for regulating olfactory cue-induced innate fear. Our results provide a potential target for therapeutic intervention for anxiety disorder.
Collapse
Affiliation(s)
- Hongbin Yang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| | - Junhua Yang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| | - Wang Xi
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| | - Sijia Hao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobin He
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan, China
| | - Liya Zhu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| | - Huifang Lou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| | - Yan-qin Yu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan, China.,Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Shumin Duan
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| | - Hao Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| |
Collapse
|
184
|
Garcia-Rill E, Virmani T, Hyde J, D’Onofrio S, Mahaffey S. Arousal and the control of perception and movement. CURRENT TRENDS IN NEUROLOGY 2016; 10:53-64. [PMID: 28690375 PMCID: PMC5501251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent discoveries on the nature of the activity generated by the reticular activating system (RAS) suggest that arousal is much more involved in perception and movement than previously thought. The RAS is not simply an amorphous, unspecific region but rather a distinct group of nuclei with specific cell and transmitter types that control waking and modulate such processes as perception and movement. Thus, disturbances in the RAS will affect a number of neurological disorders. The discovery of gamma band activity in the RAS determined that high threshold calcium channels are responsible for generating gamma band activity in the RAS. Results showing that waking is mediated by CaMKII modulation of P/Q-type channels and REM sleep is modulated by cAMP/PK modulation of N-type channels points to different intracellular pathways influencing each state. Few studies address these important breakthroughs. Novel findings also show that the same primate RAS neurons exhibiting activity in relation to arousal are also involved in locomotion. Moreover, deep brain stimulation of this region, specifically the pedunculopontine nucleus (PPN DBS), in Parkinson's disease has salutary effects on movement, sleep, and cognition. Gamma oscillations appear to participate in sensory perception, problem solving, and memory, and coherence at these frequencies may occur at cortical or thalamocortical levels. However, rather than participating in the temporal binding of sensory events, gamma band activity generated in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking, and relay such activation to the cortex. Continuous sensory input will thus induce gamma band activity in the RAS to participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our perceptions and actions. Such a role has received little attention but promises to help understand and treat a number of neurological disorders.
Collapse
Affiliation(s)
- E. Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| | - T. Virmani
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - J.R. Hyde
- Department of Psychiatry and Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA
| | - S. D’Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| | - S. Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
185
|
Bellesi M, Tononi G, Cirelli C, Serra PA. Region-Specific Dissociation between Cortical Noradrenaline Levels and the Sleep/Wake Cycle. Sleep 2016; 39:143-54. [PMID: 26237776 DOI: 10.5665/sleep.5336] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/28/2015] [Indexed: 12/20/2022] Open
Abstract
STUDY OBJECTIVES The activity of the noradrenergic system of the locus coeruleus (LC) is high in wake and low in sleep. LC promotes arousal and EEG activation, as well as attention, working memory, and cognitive flexibility. These functions rely on prefrontal cortex and are impaired by sleep deprivation, but the extent to which LC activity changes during wake remains unclear. Moreover, it is unknown whether noradrenergic neurons can sustain elevated firing during extended wake. Recent studies show that relative to LC neurons targeting primary motor cortex (M1), those projecting to medial prefrontal cortex (mPFC) have higher spontaneous firing rates and are more excitable. These results suggest that noradrenaline (NA) levels should be higher in mPFC than M1, and that during prolonged wake LC cells targeting mPFC may fatigue more, but direct evidence is lacking. METHODS We performed in vivo microdialysis experiments in adult (9-10 weeks old) C57BL/6 mice implanted for chronic electroencephalographic recordings. Cortical NA levels were measured during spontaneous sleep and wake (n = 8 mice), and in the course of sleep deprivation (n = 6). RESULTS We found that absolute NA levels are higher in mPFC than in M1. Moreover, in both areas they decline during sleep and increase during wake, but these changes are faster in M1 than mPFC. Finally, by the end of sleep deprivation NA levels decline only in mPFC. CONCLUSIONS Locus coeruleus (LC) neurons targeting prefrontal cortex may fatigue more markedly, or earlier, than other LC cells, suggesting one of the mechanisms underlying the cognitive impairment and the increased sleep presure associated with sleep deprivation. COMMENTARY A commentary on this article appears in this issue on page 11.
Collapse
Affiliation(s)
- Michele Bellesi
- Dept. of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Giulio Tononi
- Dept. of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Chiara Cirelli
- Dept. of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Pier Andrea Serra
- Dept. of Clinical and Experimental Medicine, University of Sassari, Italy
| |
Collapse
|
186
|
Abstract
Reduction in temperature depolarizes neurons by a partial closure of potassium channels but decreases the vesicle release probability within synapses. Compared with cooling, neuromodulators produce qualitatively similar effects on intrinsic neuronal properties and synapses in the cortex. We used this similarity of neuronal action in ketamine-xylazine-anesthetized mice and non-anesthetized mice to manipulate the thalamocortical activity. We recorded cortical electroencephalogram/local field potential (LFP) activity and intracellular activities from the somatosensory thalamus in control conditions, during cortical cooling and on rewarming. In the deeply anesthetized mice, moderate cortical cooling was characterized by reversible disruption of the thalamocortical slow-wave pattern rhythmicity and the appearance of fast LFP spikes, with frequencies ranging from 6 to 9 Hz. These LFP spikes were correlated with the rhythmic IPSP activities recorded within the thalamic ventral posterior medial neurons and with depolarizing events in the posterior nucleus neurons. Similar cooling of the cortex during light anesthesia rapidly and reversibly eliminated thalamocortical silent states and evoked thalamocortical persistent activity; conversely, mild heating increased thalamocortical slow-wave rhythmicity. In the non-anesthetized head-restrained mice, cooling also prevented the generation of thalamocortical silent states. We conclude that moderate cortical cooling might be used to manipulate slow-wave network activity and induce neuromodulator-independent transition to activated states. Significance statement: In this study, we demonstrate that moderate local cortical cooling of lightly anesthetized or naturally sleeping mice disrupts thalamocortical slow oscillation and induces the activated local field potential pattern. Mild heating has the opposite effect; it increases the rhythmicity of thalamocortical slow oscillation. Our results demonstrate that slow oscillation can be influenced by manipulations to the properties of cortical neurons without changes in neuromodulation.
Collapse
|
187
|
Torterolo P, Scorza C, Lagos P, Urbanavicius J, Benedetto L, Pascovich C, López-Hill X, Chase MH, Monti JM. Melanin-Concentrating Hormone (MCH): Role in REM Sleep and Depression. Front Neurosci 2015; 9:475. [PMID: 26733789 PMCID: PMC4681773 DOI: 10.3389/fnins.2015.00475] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/26/2015] [Indexed: 12/05/2022] Open
Abstract
The melanin-concentrating hormone (MCH) is a peptidergic neuromodulator synthesized by neurons of the lateral sector of the posterior hypothalamus and zona incerta. MCHergic neurons project throughout the central nervous system, including areas such as the dorsal (DR) and median (MR) raphe nuclei, which are involved in the control of sleep and mood. Major Depression (MD) is a prevalent psychiatric disease diagnosed on the basis of symptomatic criteria such as sadness or melancholia, guilt, irritability, and anhedonia. A short REM sleep latency (i.e., the interval between sleep onset and the first REM sleep period), as well as an increase in the duration of REM sleep and the density of rapid-eye movements during this state, are considered important biological markers of depression. The fact that the greatest firing rate of MCHergic neurons occurs during REM sleep and that optogenetic stimulation of these neurons induces sleep, tends to indicate that MCH plays a critical role in the generation and maintenance of sleep, especially REM sleep. In addition, the acute microinjection of MCH into the DR promotes REM sleep, while immunoneutralization of this peptide within the DR decreases the time spent in this state. Moreover, microinjections of MCH into either the DR or MR promote a depressive-like behavior. In the DR, this effect is prevented by the systemic administration of antidepressant drugs (either fluoxetine or nortriptyline) and blocked by the intra-DR microinjection of a specific MCH receptor antagonist. Using electrophysiological and microdialysis techniques we demonstrated also that MCH decreases the activity of serotonergic DR neurons. Therefore, there are substantive experimental data suggesting that the MCHergic system plays a role in the control of REM sleep and, in addition, in the pathophysiology of depression. Consequently, in the present report, we summarize and evaluate the current data and hypotheses related to the role of MCH in REM sleep and MD.
Collapse
Affiliation(s)
- Pablo Torterolo
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Cecilia Scorza
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Patricia Lagos
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Jessika Urbanavicius
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Luciana Benedetto
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Claudia Pascovich
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Ximena López-Hill
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Michael H Chase
- WebSciences International and University of California, Los Angeles School of Medicine Los Angeles, CA, USA
| | - Jaime M Monti
- Department of Pharmacology and Therapeutics, School of Medicine, Hospital de Clínicas, Universidad de la República Montevideo, Uruguay
| |
Collapse
|
188
|
Pedunculopontine Gamma Band Activity and Development. Brain Sci 2015; 5:546-67. [PMID: 26633526 PMCID: PMC4701027 DOI: 10.3390/brainsci5040546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/25/2022] Open
Abstract
This review highlights the most important discovery in the reticular activating system in the last 10 years, the manifestation of gamma band activity in cells of the reticular activating system (RAS), especially in the pedunculopontine nucleus, which is in charge of waking and rapid eye movement (REM) sleep. The identification of different cell groups manifesting P/Q-type Ca(2+) channels that control waking vs. those that manifest N-type channels that control REM sleep provides novel avenues for the differential control of waking vs. REM sleep. Recent discoveries on the development of this system can help explain the developmental decrease in REM sleep and the basic rest-activity cycle.
Collapse
|
189
|
Sakai K. Paradoxical (rapid eye movement) sleep-on neurons in the laterodorsal pontine tegmentum in mice. Neuroscience 2015; 310:455-71. [DOI: 10.1016/j.neuroscience.2015.09.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/06/2015] [Accepted: 09/23/2015] [Indexed: 11/17/2022]
|
190
|
Khanday M, Mallick B. REM sleep modulation by perifornical orexinergic inputs to the pedunculo-pontine tegmental neurons in rats. Neuroscience 2015; 308:125-33. [DOI: 10.1016/j.neuroscience.2015.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 12/27/2022]
|
191
|
Petzold A, Valencia M, Pál B, Mena-Segovia J. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms. Front Neural Circuits 2015; 9:68. [PMID: 26582977 PMCID: PMC4628121 DOI: 10.3389/fncir.2015.00068] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/15/2015] [Indexed: 02/03/2023] Open
Abstract
Cholinergic neurons of the pedunculopontine nucleus (PPN) are most active during the waking state. Their activation is deemed to cause a switch in the global brain activity from sleep to wakefulness, while their sustained discharge may contribute to upholding the waking state and enhancing arousal. Similarly, non-cholinergic PPN neurons are responsive to brain state transitions and their activation may influence some of the same targets of cholinergic neurons, suggesting that they operate in coordination. Yet, it is not clear how the discharge of distinct classes of PPN neurons organize during brain states. Here, we monitored the in vivo network activity of PPN neurons in the anesthetized rat across two distinct levels of cortical dynamics and their transitions. We identified a highly structured configuration in PPN network activity during slow-wave activity that was replaced by decorrelated activity during the activated state (AS). During the transition, neurons were predominantly excited (phasically or tonically), but some were inhibited. Identified cholinergic neurons displayed phasic and short latency responses to sensory stimulation, whereas the majority of non-cholinergic showed tonic responses and remained at high discharge rates beyond the state transition. In vitro recordings demonstrate that cholinergic neurons exhibit fast adaptation that prevents them from discharging at high rates over prolonged time periods. Our data shows that PPN neurons have distinct but complementary roles during brain state transitions, where cholinergic neurons provide a fast and transient response to sensory events that drive state transitions, whereas non-cholinergic neurons maintain an elevated firing rate during global activation.
Collapse
Affiliation(s)
- Anne Petzold
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford Oxford, UK
| | - Miguel Valencia
- Neurosciences Area, CIMA, Universidad de Navarra Pamplona, Spain ; IdiSNA, Navarra Institute for Health Research Pamplona, Spain
| | - Balázs Pál
- Department of Physiology, Faculty of Medicine University of Debrecen Debrecen, Hungary
| | - Juan Mena-Segovia
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford Oxford, UK ; Center for Molecular and Behavioral Neuroscience, Rutgers University Newark, NJ, USA
| |
Collapse
|
192
|
Grace KP, Horner RL. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation. Front Neurol 2015; 6:190. [PMID: 26388832 PMCID: PMC4555043 DOI: 10.3389/fneur.2015.00190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
Rapid eye movement (REM) sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the "pontine REM sleep generator" by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.
Collapse
Affiliation(s)
- Kevin P Grace
- Department of Medicine, University of Toronto , Toronto, ON , Canada
| | - Richard L Horner
- Department of Medicine, University of Toronto , Toronto, ON , Canada ; Department of Physiology, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
193
|
Luster B, D'Onofrio S, Urbano F, Garcia-Rill E. High-threshold Ca2+ channels behind gamma band activity in the pedunculopontine nucleus (PPN). Physiol Rep 2015; 3:3/6/e12431. [PMID: 26109189 PMCID: PMC4510632 DOI: 10.14814/phy2.12431] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is part of the Reticular Activating System, and active during waking and REM sleep. Previous results showed that all PPN cells plateau at gamma frequencies and intrinsic membrane oscillations in PPN neurons are mediated by high-threshold N- and P/Q-type Ca2+ channels. The present study was designed to determine whether some PPN cells have only N-, only P/Q-, or both N- and P/Q-type Ca2+ channels. We used patch-clamp recordings in PPN cells in slices from anesthetized rat pups in the presence of synaptic receptor blockers (SB) and Tetrodotoxin (TTX), and applied ramps to induce intrinsic membrane oscillations. We found that all PPN cell types showed gamma oscillations in the presence of SB+TTX when using current ramps. In 50% of cells, the N-type Ca2+ channel blocker ω-Conotoxin-GVIA (ω-CgTx) reduced gamma oscillation amplitude, while subsequent addition of the P/Q-type blocker ω-Agatoxin-IVA (ω-Aga) blocked the remaining oscillations. Another 20% manifested gamma oscillations that were not significantly affected by the addition of ω-CgTx, however, ω-Aga blocked the remaining oscillations. In 30% of cells, ω-Aga had no effect on gamma oscillations, while ω-CgTx blocked them. These novel results confirm the segregation of populations of PPN cells as a function of the calcium channels expressed, that is, the presence of cells in the PPN that manifest gamma band oscillations through only N-type, only P/Q-type, and both N-type and P/Q-type Ca2+ channels.
Collapse
Affiliation(s)
- Brennon Luster
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stasia D'Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Francisco Urbano
- IFIBYNE-CONICET University of Buenos Aires, Buenos Aires, Argentina
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
194
|
Ishibashi M, Gumenchuk I, Kang B, Steger C, Lynn E, Molina NE, Eisenberg LM, Leonard CS. Orexin Receptor Activation Generates Gamma Band Input to Cholinergic and Serotonergic Arousal System Neurons and Drives an Intrinsic Ca(2+)-Dependent Resonance in LDT and PPT Cholinergic Neurons. Front Neurol 2015; 6:120. [PMID: 26082752 PMCID: PMC4451588 DOI: 10.3389/fneur.2015.00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/11/2015] [Indexed: 01/29/2023] Open
Abstract
A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz) - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT) and pedunculopontine (PPT) tegmental neurons and serotonergic dorsal raphe (DR) neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca(2+)-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin) neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca(2+)-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca(2+)-dependent resonance that peaked in the theta and alpha frequency range (4-14 Hz) and extended up to 100 Hz. We propose that this orexin current noise and the Ca(2+) dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep, and intracortical gamma.
Collapse
Affiliation(s)
- Masaru Ishibashi
- Department of Physiology, New York Medical College , Valhalla, NY , USA
| | - Iryna Gumenchuk
- Department of Physiology, New York Medical College , Valhalla, NY , USA
| | - Bryan Kang
- Department of Physiology, New York Medical College , Valhalla, NY , USA
| | - Catherine Steger
- Department of Physiology, New York Medical College , Valhalla, NY , USA
| | - Elizabeth Lynn
- Department of Physiology, New York Medical College , Valhalla, NY , USA
| | - Nancy E Molina
- Department of Physiology, New York Medical College , Valhalla, NY , USA
| | - Leonard M Eisenberg
- Department of Physiology, New York Medical College , Valhalla, NY , USA ; Department of Medicine, New York Medical College , Valhalla, NY , USA
| | | |
Collapse
|
195
|
Rhythmic Firing of Pedunculopontine Tegmental Nucleus Neurons in Monkeys during Eye Movement Task. PLoS One 2015; 10:e0128147. [PMID: 26030664 PMCID: PMC4452564 DOI: 10.1371/journal.pone.0128147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/22/2015] [Indexed: 11/19/2022] Open
Abstract
The pedunculopontine tegmental nucleus (PPTN) has been thought to be involved in the control of behavioral state. Projections to the entire thalamus and reciprocal connections with the basal ganglia nuclei suggest a potential role for the PPTN in the control of various rhythmic behaviors, including waking/sleeping and locomotion. Recently, rhythmic activity in the local field potentials was recorded from the PPTN of patients with Parkinson's disease who were treated with levodopa, suggesting that rhythmic firing is a feature of the functioning PPTN and might change with the behaving conditions even within waking. However, it remains unclear whether and how single PPTN neurons exhibit rhythmic firing patterns during various behaving conditions, including executing conditioned eye movement behaviors, seeking reward, or during resting. We previously recorded from PPTN neurons in healthy monkeys during visually guided saccade tasks and reported task-related changes in firing rate, and in this paper, we reanalyzed these data and focused on their firing patterns. A population of PPTN neurons demonstrated a regular firing pattern in that the coefficient of variation of interspike intervals was lower than what would be expected of theoretical random and irregular spike trains. Furthermore, a group of PPTN neurons exhibited a clear periodic single spike firing that changed with the context of the behavioral task. Many of these neurons exhibited a periodic firing pattern during highly active conditions, either the fixation condition during the saccade task or the free-viewing condition during the intertrial interval. We speculate that these task context-related changes in rhythmic firing of PPTN neurons might regulate the monkey's attentional and vigilance state to perform the task.
Collapse
|
196
|
Elson JL, Yates A, Pienaar IS. Pedunculopontine cell loss and protein aggregation direct microglia activation in parkinsonian rats. Brain Struct Funct 2015; 221:2319-41. [PMID: 25989851 DOI: 10.1007/s00429-015-1045-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/11/2015] [Indexed: 01/06/2023]
Abstract
We previously reported a loss of cholinergic neurons within the pedunculopontine tegmental nucleus (PPTg) in rats that had been intra-nigrally lesioned with the proteasomal inhibitor lactacystin, with levels of neuronal loss corresponding to that seen in the post-mortem pedunculopontine nucleus (PPN) of advanced Parkinson's disease (PD) patients. Here we reveal lower expression values of the acetylcholine synthesising enzyme, choline acetyltransferase, within the remaining PPTg cholinergic neurons of lesioned rats compared to sham controls. We further characterise this animal model entailing dopaminergic- and non-dopaminergic neurodegeneration by reporting on stereological counts of non-cholinergic neurons, to determine whether the toxin is neuro-type specific. Cell counts between lesioned and sham-lesioned rats were analysed in terms of the topological distribution pattern across the rostro-caudal extent of the PPTg. The study also reports somatic hypotrophy in the remaining non-cholinergic neurons, particularly on the side closest to the nigral lesion. The cytotoxicity affecting the PPTg in this rat model of PD involves overexpression and accumulation of alpha-synuclein (αSYN), affecting cholinergic and non-cholinergic neurons as well as microglia on the lesioned hemispheric side. We ascertained that microglia within the PPTg become fully activated due to the extensive neuronal damage and neuronal death resulting from a lactacystin nigral lesion, displaying a distinct rostro-caudal distribution profile which correlates with PPTg neuronal loss, with the added implication that lactacystin-induced αSYN aggregation might trigger neuronophagia for promoting PPTg cell loss. The data provide critical insights into the mechanisms underlying the lactacystin rat model of PD, for studying the PPTg in health and when modelling neurodegenerative disease.
Collapse
Affiliation(s)
- Joanna L Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK.,Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa
| | - Abi Yates
- School of Biomedical Sciences, Guy's Campus, King's College London, London, SE13QD, UK
| | - Ilse S Pienaar
- Division of Brain Sciences, Department of Medicine, Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, W12 ONN, UK. .,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Ellison Place, Newcastle-upon-Tyne, NE1 8ST, UK.
| |
Collapse
|
197
|
Lim MM, Szymusiak R. Neurobiology of Arousal and Sleep: Updates and Insights Into Neurological Disorders. CURRENT SLEEP MEDICINE REPORTS 2015. [DOI: 10.1007/s40675-015-0013-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
198
|
Qiu MH, Chen MC, Lu J. Cortical neuronal activity does not regulate sleep homeostasis. Neuroscience 2015; 297:211-8. [PMID: 25864961 DOI: 10.1016/j.neuroscience.2015.03.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/08/2015] [Accepted: 03/12/2015] [Indexed: 11/29/2022]
Abstract
The neural substrate of sleep homeostasis is unclear, but both cortical and subcortical structures are thought to be involved in sleep regulation. To test whether prior neuronal activity in the cortex or in subcortical regions drives sleep rebound, we systemically administered atropine (100mg/kg) to rats, producing a dissociated state with slow-wave cortical electroencephalogram (EEG) but waking behavior (e.g. locomotion). Atropine injections during the light period produced 6h of slow-wave cortical EEG but also subcortical arousal. Afterward, rats showed a significant increase in non-rapid eye movement (NREM) sleep, compared to the same period on a baseline day. Consistent with the behavioral and cortical EEG state produced by systemic atropine, c-Fos expression was low in the cortex but high in multiple subcortical arousal systems. These data suggest that subcortical arousal and behavior are sufficient to drive sleep homeostasis, while a sleep-like pattern of cortical activity is not sufficient to satisfy sleep homeostasis.
Collapse
Affiliation(s)
- M-H Qiu
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology, School of Basic Medical Science, Fudan University, Shanghai 200032, China; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston 02115, USA.
| | - M C Chen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston 02115, USA
| | - J Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston 02115, USA.
| |
Collapse
|
199
|
Cholinergic and endocannabinoid neuromodulatory effects overlap on neurons of the pedunculopontine nucleus of mice. Neuroreport 2015; 26:273-8. [DOI: 10.1097/wnr.0000000000000342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
200
|
Hauberg K, Kohlmeier KA. The appetite-inducing peptide, ghrelin, induces intracellular store-mediated rises in calcium in addiction and arousal-related laterodorsal tegmental neurons in mouse brain slices. Peptides 2015; 65:34-45. [PMID: 25645492 DOI: 10.1016/j.peptides.2015.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 12/16/2022]
Abstract
Ghrelin, a gut and brain peptide, has recently been shown to be involved in motivated behavior and regulation of the sleep and wakefulness cycle. The laterodorsal tegmental nucleus (LDT) is involved in appetitive behavior and control of the arousal state of an organism, and accordingly, behavioral actions of ghrelin could be mediated by direct cellular actions within this nucleus. Consistent with this interpretation, postsynaptically mediated depolarizing membrane actions of ghrelin on LDT neurons have been reported. Direct actions were ascribed solely to closure of a potassium conductance however this peptide has been shown in other cell types to lead to rises in calcium via release of calcium from intracellular stores. To determine whether ghrelin induced intracellular calcium rises in mouse LDT neurons, we conducted calcium imaging studies in LDT brain slices loaded with the calcium binding dye, Fura-2AM. Ghrelin elicited TTX-insensitive changes in dF/F indicative of rises in calcium, and a portion of these rises were independent of membrane depolarization, as they persisted in conditions of high extracellular potassium solutions and were found to involve SERCA-pump mediated intracellular calcium stores. Involvement of the ghrelin receptor (GHR-S) in these actions was confirmed. Taken together with other studies, our data suggest that ghrelin has multiple cellular actions on LDT cells. Ghrelin's induction of calcium via intracellular release in the LDT could play a role in behavioral actions of this peptide as the LDT governs processes involved in stimulation of motivated behavior and control of cortical arousal.
Collapse
Affiliation(s)
- Katrine Hauberg
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, Universitetsparken 2, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, Universitetsparken 2, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|