151
|
Gouwy M, De Buck M, Abouelasrar Salama S, Vandooren J, Knoops S, Pörtner N, Vanbrabant L, Berghmans N, Opdenakker G, Proost P, Van Damme J, Struyf S. Matrix Metalloproteinase-9-Generated COOH-, but Not NH 2-Terminal Fragments of Serum Amyloid A1 Retain Potentiating Activity in Neutrophil Migration to CXCL8, With Loss of Direct Chemotactic and Cytokine-Inducing Capacity. Front Immunol 2018; 9:1081. [PMID: 29915572 PMCID: PMC5994419 DOI: 10.3389/fimmu.2018.01081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Serum amyloid A1 (SAA1) is a prototypic acute phase protein, induced to extremely high levels by physical insults, including inflammation and infection. Human SAA and its NH2-terminal part have been studied extensively in the context of amyloidosis. By contrast, little is known about COOH-terminal fragments of SAA. Intact SAA1 chemoattracts leukocytes via the G protein-coupled receptor formyl peptide receptor like 1/formyl peptide receptor 2 (FPR2). In addition to direct leukocyte activation, SAA1 induces chemokine production by signaling through toll-like receptor 2. We recently discovered that these induced chemokines synergize with intact SAA1 to chemoattract leukocytes in vitro and in vivo. Gelatinase B or matrix metalloproteinase-9 (MMP-9) is also induced by SAA1 during infection and inflammation and processes many substrates in the immune system. We demonstrate here that MMP-9 rapidly cleaves SAA1 at a known consensus sequence that is also present in gelatins. Processing of SAA1 by MMP-9 at an accessible loop between two alpha helices yielded predominantly three COOH-terminal fragments: SAA1(52–104), SAA1(57–104), and SAA1(58–104), with a relative molecular mass of 5,884.4, 5,327.3, and 5,256.3, respectively. To investigate the effect of proteolytic processing on the biological activity of SAA1, we chemically synthesized the COOH-terminal SAA fragments SAA1(52–104) and SAA1(58–104) and the complementary NH2-terminal peptide SAA1(1–51). In contrast to intact SAA1, the synthesized SAA1 peptides did not induce interleukin-8/CXCL8 in monocytes or fibroblasts. Moreover, these fragments possessed no direct chemotactic activity for neutrophils, as observed for intact SAA1. However, comparable to intact SAA1, SAA1(58–104) cooperated with CXCL8 in neutrophil activation and migration, whereas SAA1(1–51) lacked this potentiating activity. This cooperative interaction between the COOH-terminal SAA1 fragment and CXCL8 in neutrophil chemotaxis was mediated by FPR2. Hence, proteolytic cleavage of SAA1 by MMP-9 fine tunes the inflammatory capacity of this acute phase protein in that only the synergistic interactions with chemokines remain to prolong the duration of inflammation.
Collapse
Affiliation(s)
- Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke De Buck
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
152
|
The ectoenzyme-side of matrix metalloproteinases (MMPs) makes inflammation by serum amyloid A (SAA) and chemokines go round. Immunol Lett 2018; 205:1-8. [PMID: 29870759 DOI: 10.1016/j.imlet.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
During an inflammatory response, a large number of distinct mediators appears in the affected tissues or in the blood circulation. These include acute phase proteins such as serum amyloid A (SAA), cytokines and chemokines and proteolytic enzymes. Although these molecules are generated within a cascade sequence in specific body compartments allowing for independent action, their co-appearance in space and time during acute or chronic inflammation points toward important mutual interactions. Pathogen-associated molecular patterns lead to fast induction of the pro-inflammatory endogenous pyrogens, which are evoking the acute phase response. Interleukin-1, tumor necrosis factor-α and interferons simultaneously trigger different cell types, including leukocytes, endothelial cells and fibroblasts for tissue-specific or systemic production of chemokines and matrix metalloproteinases (MMPs). In addition, SAA induces chemokines and both stimulate secretion of MMPs from multiple cell types. As a consequence, these mediators may cooperate to enhance the inflammatory response. Indeed, SAA synergizes with chemokines to increase chemoattraction of monocytes and granulocytes. On the other hand, MMPs post-translationally modify chemokines and SAA to reduce their activity. Indeed, MMPs internally cleave SAA with loss of its cytokine-inducing and direct chemotactic potential whilst retaining its capacity to synergize with chemokines in leukocyte migration. Finally, MMPs truncate chemokines at their NH2- or COOH-terminal end, resulting in reduced or enhanced chemotactic activity. Therefore, the complex interactions between chemokines, SAA and MMPs either maintain or dampen the inflammatory response.
Collapse
|
153
|
Lönn J, Ljunggren S, Klarström-Engström K, Demirel I, Bengtsson T, Karlsson H. Lipoprotein modifications by gingipains of Porphyromonas gingivalis. J Periodontal Res 2018; 53:403-413. [PMID: 29341140 PMCID: PMC5969291 DOI: 10.1111/jre.12527] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Several studies have shown an association between periodontitis and cardiovascular disease (CVD). Atherosclerosis is the major cause of CVD, and a key event in the development of atherosclerosis is accumulation of lipoproteins within the arterial wall. Bacteria are the primary etiologic agents in periodontitis and Porphyromonas gingivalis is the major pathogen in the disease. Several studies support a role of modified low-density lipoprotein (LDL) in atherogenesis; however, the pathogenic stimuli that induce the changes and the mechanisms by which this occur are unknown. This study aims to identify alterations in plasma lipoproteins induced by the periodontopathic species of bacterium, P. gingivalis, in vitro. MATERIAL AND METHODS Plasma lipoproteins were isolated from whole blood treated with wild-type and gingipain-mutant (lacking either the Rgp- or Kgp gingipains) P. gingivalis by density/gradient-ultracentrifugation and were studied using 2-dimensional gel electrophoresis followed by matrix-assisted laser desorption/ionization mass spectrometry. Porphyromonas gingivalis-induced lipid peroxidation and antioxidant levels were measured by thiobarbituric acid-reactive substances and antioxidant assay kits, respectively, and lumiaggregometry was used for measurement of reactive oxygen species (ROS) and aggregation. RESULTS Porphyromonas gingivalis exerted substantial proteolytic effects on the lipoproteins. The Rgp gingipains were responsible for producing 2 apoE fragments, as well as 2 apoB-100 fragments, in LDL, and the Kgp gingipain produced an unidentified fragment in high-density lipoproteins. Porphyromonas gingivalis and its different gingipain variants induced ROS and consumed antioxidants. Both the Rgp and Kgp gingipains were involved in inducing lipid peroxidation. CONCLUSION Porphyromonas gingivalis has the potential to change the expression of lipoproteins in blood, which may represent a crucial link between periodontitis and CVD.
Collapse
MESH Headings
- Adhesins, Bacterial/blood
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/metabolism
- Antioxidants/analysis
- Apolipoprotein A-I/metabolism
- Apolipoprotein B-100/metabolism
- Cysteine Endopeptidases/blood
- Cysteine Endopeptidases/genetics
- Cysteine Endopeptidases/metabolism
- Cysteine Endopeptidases/pharmacokinetics
- Gingipain Cysteine Endopeptidases
- Humans
- Lipid Peroxidation
- Lipoproteins/blood
- Lipoproteins/drug effects
- Lipoproteins/metabolism
- Lipoproteins, HDL/blood
- Lipoproteins, HDL/metabolism
- Lipoproteins, LDL/blood
- Lipoproteins, LDL/drug effects
- Lipoproteins, LDL/metabolism
- Methionine/metabolism
- Periodontitis/metabolism
- Periodontitis/microbiology
- Porphyromonas gingivalis/metabolism
- Porphyromonas gingivalis/pathogenicity
- Reactive Oxygen Species/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- J Lönn
- Department of Oral Biology, Institute of Odontology, Malmö University, Malmö, Sweden
- PEAS Institute AB, Linköping, Sweden
| | - S Ljunggren
- Department of Clinical and Experimental Medicine, Occupational and Environmental Medicine Center, Linköping University, Linköping, Sweden
| | | | - I Demirel
- Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - T Bengtsson
- Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - H Karlsson
- Department of Clinical and Experimental Medicine, Occupational and Environmental Medicine Center, Linköping University, Linköping, Sweden
| |
Collapse
|
154
|
Kuret T, Lakota K, Mali P, Čučnik S, Praprotnik S, Tomšič M, Sodin-Semrl S. Naturally occurring antibodies against serum amyloid A reduce IL-6 release from peripheral blood mononuclear cells. PLoS One 2018; 13:e0195346. [PMID: 29617422 PMCID: PMC5884545 DOI: 10.1371/journal.pone.0195346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
Serum amyloid A (SAA) is a sensitive inflammatory marker rapidly increased in response to infection, injury or trauma during the acute phase. Resolution of the acute phase and SAA reduction are well documented, however the exact mechanism remains elusive. Two inducible SAA proteins, SAA1 and SAA2, with their variants could contribute to systemic inflammation. While unconjugated human variant SAA1α is already commercially available, the variants of SAA2 are not. Antibodies against SAA have been identified in apparently healthy blood donors (HBDs) in smaller, preliminary studies. So, our objective was to detect anti-SAA and anti-SAA1α autoantibodies in the sera of 300 HBDs using ELISA, characterize their specificity and avidity. Additionally, we aimed to determine the presence of anti-SAA and anti-SAA1α autoantibodies in intravenous immunoglobulin (IVIg) preparations and examine their effects on released IL-6 from SAA/SAA1α-treated peripheral blood mononuclear cells (PBMCs). Autoantibodies against SAA and SAA1α had a median (IQR) absorbance OD (A450) of 0.655 (0.262–1.293) and 0.493 (0.284–0.713), respectively. Both anti-SAA and anti-SAA1α exhibited heterogeneous to high avidity and reached peak levels between 41–50 years, then diminished with age in the oldest group (51–67 years). Women consistently exhibited significantly higher levels than men. Good positive correlation was observed between anti-SAA and anti-SAA1α. Both anti-SAA and anti-SAA1α were detected in IVIg, their fractions subsequently isolated, and shown to decrease IL-6 protein levels released from SAA/SAA1α-treated PBMCs. In conclusion, naturally occurring antibodies against SAA and anti-SAA1α could play a physiological role in down-regulating their antigen and proinflammatory cytokines leading to the resolution of the acute phase and could be an important therapeutic option in patients with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Tadeja Kuret
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technologies, University of Primorska, Koper, Slovenia
| | - Polonca Mali
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sonja Praprotnik
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Snezna Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technologies, University of Primorska, Koper, Slovenia
- * E-mail:
| |
Collapse
|
155
|
Servais L, Wéra O, Dibato Epoh J, Delierneux C, Bouznad N, Rahmouni S, Mazzucchelli G, Baiwir D, Delvenne P, Lancellotti P, Oury C. Platelets contribute to the initiation of colitis-associated cancer by promoting immunosuppression. J Thromb Haemost 2018; 16:762-777. [PMID: 29369476 DOI: 10.1111/jth.13959] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Indexed: 02/06/2023]
Abstract
Essentials Inflammation plays a key role in the development of colorectal cancer. Understanding mechanisms of cancer initiation might reveal new anticancer preventive strategy. Hyperactive platelets promote tumor formation by fostering immune evasion of cancer. Platelet inhibition by clopidogrel prevents carcinogenesis by restoring antitumor immunity. SUMMARY Background Clinical and experimental evidence support a role for inflammation in the development of colorectal cancer, although the mechanisms are not fully understood. Beyond thrombosis and hemostasis, platelets are key actors in inflammation; they have also been shown to be involved in cancer. However, whether platelets participate in the link between inflammation and cancer is unknown. Objective To investigate the contribution of platelets and platelet-derived proteins to inflammation-elicited colorectal tumor development. Methods We used a clinically relevant mouse model of colitis-associated cancer. Platelet secretion and platelet reactivity to thrombin were assessed at each stage of carcinogenesis. We conducted an unbiased proteomic analysis of releasates of platelets isolated at the pretumoral stage to identify soluble factors that might act on tumor development. Plasma levels of the identified proteins were measured during the course of carcinogenesis. We then treated the mice with clopidogrel to efficiently inhibit platelet release reaction. Results At the pretumoral stage, hyperactive platelets constituted a major source of circulating protumoral serum amyloid A (SAA) proteins. Clopidogrel prevented the early elevation of the plasma SAA protein level, decreased colitis severity, and delayed the formation of dysplastic lesions and adenocarcinoma. Platelet inhibition hindered the expansion and function of immunosuppressive myeloid cells, as well as their infiltration into tumors, but increased the number of tissue CD8+ T cells. Platelets and releasates of platelets from mice with cancer were both able to polarize myeloid cells towards an immunosuppressive phenotype. Conclusions Thus, platelets promote the initiation of colitis-associated cancer by enhancing myeloid cell-dependent immunosuppression. Antiplatelet agents may help to prevent inflammation-elicited carcinogenesis by restoring antitumor immunity.
Collapse
Affiliation(s)
- L Servais
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | - O Wéra
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | - J Dibato Epoh
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | - C Delierneux
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | - N Bouznad
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | - S Rahmouni
- Immunology and Infectious Diseases Unit, GIGA-R, University of Liège, Liège, Belgium
| | - G Mazzucchelli
- Laboratory of Mass Spectrometry, Chemistry Department, GIGA-R, CART, University of Liège, Liège, Belgium
| | - D Baiwir
- Laboratory of Mass Spectrometry, Chemistry Department, GIGA-R, CART, University of Liège, Liège, Belgium
| | - P Delvenne
- Department of Pathology, Laboratory of Experimental Pathology, University of Liège, Liège, Belgium
| | - P Lancellotti
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart-Tilman, Liège, Belgium
- Gruppo Villa Maria Care and Reseach, Anthea Hospital, Bari, Italy
| | - C Oury
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart-Tilman, Liège, Belgium
| |
Collapse
|
156
|
Grossi F, Genova C, Rijavec E, Barletta G, Biello F, Dal Bello MG, Meyer K, Roder J, Roder H, Grigorieva J. Prognostic role of the VeriStrat test in first line patients with non-small cell lung cancer treated with platinum-based chemotherapy. Lung Cancer 2018; 117:64-69. [DOI: 10.1016/j.lungcan.2017.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/23/2017] [Accepted: 12/12/2017] [Indexed: 01/29/2023]
|
157
|
Gao J, Meyer K, Borucki K, Ueland PM. Multiplex Immuno-MALDI-TOF MS for Targeted Quantification of Protein Biomarkers and Their Proteoforms Related to Inflammation and Renal Dysfunction. Anal Chem 2018; 90:3366-3373. [DOI: 10.1021/acs.analchem.7b04975] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Gao
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Klaus Meyer
- Bevital AS, Jonas Lies veg 87, Laboratory Building, Ninth Floor, 5021 Bergen, Norway
| | - Katrin Borucki
- Institute for Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44 , 39120 Magdeburg, Germany
| | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
158
|
Zhang J, Guo W, Shi C, Zhang Y, Zhang C, Zhang L, Wang R, Pan B. Copy Number Variations in Serum Amyloid A Play a Role in the Determination of its Individual Baseline Concentrations. Clin Chem 2018; 64:402-404. [PMID: 29046329 DOI: 10.1373/clinchem.2017.279372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Zhang
- Shanghai R&D Center DiaSys Diagnostic Systems (Shanghai) Co., Ltd. Shanghai, China
- Department of Biochemical Engineering School of Chemical Engineering and Technology Tianjin University, Tianjin, China
- Tianjin International Joint Academy of Biomedicine (TJAB) TEDA, Tianjin, China
| | - Wei Guo
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai, China
| | - Changgen Shi
- Shanghai R&D Center DiaSys Diagnostic Systems (Shanghai) Co., Ltd. Shanghai, China
- School of Life Sciences Fudan University, Shanghai, China
| | - Yan Zhang
- Shanghai R&D Center DiaSys Diagnostic Systems (Shanghai) Co., Ltd. Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai, China
| | - Lei Zhang
- Department of Biochemical Engineering School of Chemical Engineering and Technology Tianjin University, Tianjin, China
| | - Rongfang Wang
- Shanghai R&D Center DiaSys Diagnostic Systems (Shanghai) Co., Ltd. Shanghai, China
- Tianjin International Joint Academy of Biomedicine (TJAB) TEDA, Tianjin, China
| | - Baishen Pan
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai, China
| |
Collapse
|
159
|
Heine W, Beckstette M, Heroven AK, Thiemann S, Heise U, Nuss AM, Pisano F, Strowig T, Dersch P. Loss of CNFY toxin-induced inflammation drives Yersinia pseudotuberculosis into persistency. PLoS Pathog 2018; 14:e1006858. [PMID: 29390040 PMCID: PMC5811047 DOI: 10.1371/journal.ppat.1006858] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/13/2018] [Accepted: 01/05/2018] [Indexed: 12/16/2022] Open
Abstract
Gastrointestinal infections caused by enteric yersiniae can become persistent and complicated by relapsing enteritis and severe autoimmune disorders. To establish a persistent infection, the bacteria have to cope with hostile surroundings when they transmigrate through the intestinal epithelium and colonize underlying gut-associated lymphatic tissues. How the bacteria gain a foothold in the face of host immune responses is poorly understood. Here, we show that the CNFY toxin, which enhances translocation of the antiphagocytic Yop effectors, induces inflammatory responses. This results in extensive tissue destruction, alteration of the intestinal microbiota and bacterial clearance. Suppression of CNFY function, however, increases interferon-γ-mediated responses, comprising non-inflammatory antimicrobial activities and tolerogenesis. This process is accompanied by a preterm reprogramming of the pathogen's transcriptional response towards persistence, which gives the bacteria a fitness edge against host responses and facilitates establishment of a commensal-type life style.
Collapse
Affiliation(s)
- Wiebke Heine
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sophie Thiemann
- Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ulrike Heise
- Group Mouse Pathology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aaron Mischa Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Fabio Pisano
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till Strowig
- Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
160
|
Saa3 is a key mediator of the protumorigenic properties of cancer-associated fibroblasts in pancreatic tumors. Proc Natl Acad Sci U S A 2018; 115:E1147-E1156. [PMID: 29351990 DOI: 10.1073/pnas.1717802115] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by the presence of abundant desmoplastic stroma primarily composed of cancer-associated fibroblasts (CAFs). It is generally accepted that CAFs stimulate tumor progression and might be implicated in drug resistance and immunosuppression. Here, we have compared the transcriptional profile of PDGFRα+ CAFs isolated from genetically engineered mouse PDAC tumors with that of normal pancreatic fibroblasts to identify genes potentially implicated in their protumorigenic properties. We report that the most differentially expressed gene, Saa3, a member of the serum amyloid A (SAA) apolipoprotein family, is a key mediator of the protumorigenic activity of PDGFRα+ CAFs. Whereas Saa3-competent CAFs stimulate the growth of tumor cells in an orthotopic model, Saa3-null CAFs inhibit tumor growth. Saa3 also plays a role in the cross talk between CAFs and tumor cells. Ablation of Saa3 in pancreatic tumor cells makes them insensitive to the inhibitory effect of Saa3-null CAFs. As a consequence, germline ablation of Saa3 does not prevent PDAC development in mice. The protumorigenic activity of Saa3 in CAFs is mediated by Mpp6, a member of the palmitoylated membrane protein subfamily of the peripheral membrane-associated guanylate kinases (MAGUK). Finally, we interrogated whether these observations could be translated to a human scenario. Indeed, SAA1, the ortholog of murine Saa3, is overexpressed in human CAFs. Moreover, high levels of SAA1 in the stromal component correlate with worse survival. These findings support the concept that selective inhibition of SAA1 in CAFs may provide potential therapeutic benefit to PDAC patients.
Collapse
|
161
|
Tannock LR, De Beer MC, Ji A, Shridas P, Noffsinger VP, den Hartigh L, Chait A, De Beer FC, Webb NR. Serum amyloid A3 is a high density lipoprotein-associated acute-phase protein. J Lipid Res 2017; 59:339-347. [PMID: 29247043 DOI: 10.1194/jlr.m080887] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
Serum amyloid A (SAA) is a family of acute-phase reactants. Plasma levels of human SAA1/SAA2 (mouse SAA1.1/2.1) can increase ≥1,000-fold during an acute-phase response. Mice, but not humans, express a third relatively understudied SAA isoform, SAA3. We investigated whether mouse SAA3 is an HDL-associated acute-phase SAA. Quantitative RT-PCR with isoform-specific primers indicated that SAA3 and SAA1.1/2.1 are induced similarly in livers (∼2,500-fold vs. ∼6,000-fold, respectively) and fat (∼400-fold vs. ∼100-fold, respectively) of lipopolysaccharide (LPS)-injected mice. In situ hybridization demonstrated that all three SAAs are produced by hepatocytes. All three SAA isoforms were detected in plasma of LPS-injected mice, although SAA3 levels were ∼20% of SAA1.1/2.1 levels. Fast protein LC analyses indicated that virtually all of SAA1.1/2.1 eluted with HDL, whereas ∼15% of SAA3 was lipid poor/free. After density gradient ultracentrifugation, isoelectric focusing demonstrated that ∼100% of plasma SAA1.1 was recovered in HDL compared with only ∼50% of SAA2.1 and ∼10% of SAA3. Thus, SAA3 appears to be more loosely associated with HDL, resulting in lipid-poor/free SAA3. We conclude that SAA3 is a major hepatic acute-phase SAA in mice that may produce systemic effects during inflammation.
Collapse
Affiliation(s)
- Lisa R Tannock
- Departments of Internal Medicine, University of Kentucky, Lexington, KY.,Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY.,Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY.,Veterans Affairs Lexington, University of Kentucky, Lexington, KY
| | - Maria C De Beer
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY.,Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY.,Departments of Physiology, University of Kentucky, Lexington, KY
| | - Ailing Ji
- Departments of Internal Medicine, University of Kentucky, Lexington, KY.,Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Preetha Shridas
- Departments of Internal Medicine, University of Kentucky, Lexington, KY.,Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY.,Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY
| | - Victoria P Noffsinger
- Departments of Internal Medicine, University of Kentucky, Lexington, KY.,Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Laura den Hartigh
- Department of Medicine University of Washington, Seattle, WA.,University of Washington Diabetes Institute, University of Washington, Seattle, WA
| | - Alan Chait
- Department of Medicine University of Washington, Seattle, WA.,University of Washington Diabetes Institute, University of Washington, Seattle, WA
| | - Frederick C De Beer
- Departments of Internal Medicine, University of Kentucky, Lexington, KY.,Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY.,Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY
| | - Nancy R Webb
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY .,Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY.,Veterans Affairs Lexington, University of Kentucky, Lexington, KY.,Departments of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| |
Collapse
|
162
|
Serum amyloid A forms stable oligomers that disrupt vesicles at lysosomal pH and contribute to the pathogenesis of reactive amyloidosis. Proc Natl Acad Sci U S A 2017; 114:E6507-E6515. [PMID: 28743750 DOI: 10.1073/pnas.1707120114] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Serum amyloid A (SAA) is an acute-phase plasma protein that functions in innate immunity and lipid homeostasis. SAA is a protein precursor of reactive AA amyloidosis, the major complication of chronic inflammation and one of the most common human systemic amyloid diseases worldwide. Most circulating SAA is protected from proteolysis and misfolding by binding to plasma high-density lipoproteins. However, unbound soluble SAA is intrinsically disordered and is either rapidly degraded or forms amyloid in a lysosome-initiated process. Although acidic pH promotes amyloid fibril formation by this and many other proteins, the molecular underpinnings are unclear. We used an array of spectroscopic, biochemical, and structural methods to uncover that at pH 3.5-4.5, murine SAA1 forms stable soluble oligomers that are maximally folded at pH 4.3 with ∼35% α-helix and are unusually resistant to proteolysis. In solution, these oligomers neither readily convert into mature fibrils nor bind lipid surfaces via their amphipathic α-helices in a manner typical of apolipoproteins. Rather, these oligomers undergo an α-helix to β-sheet conversion catalyzed by lipid vesicles and disrupt these vesicles, suggesting a membranolytic potential. Our results provide an explanation for the lysosomal origin of AA amyloidosis. They suggest that high structural stability and resistance to proteolysis of SAA oligomers at pH 3.5-4.5 help them escape lysosomal degradation, promote SAA accumulation in lysosomes, and ultimately damage cellular membranes and liberate intracellular amyloid. We posit that these soluble prefibrillar oligomers provide a missing link in our understanding of the development of AA amyloidosis.
Collapse
|
163
|
Erickson MA, Jude J, Zhao H, Rhea EM, Salameh TS, Jester W, Pu S, Harrowitz J, Nguyen N, Banks WA, Panettieri RA, Jordan-Sciutto KL. Serum amyloid A: an ozone-induced circulating factor with potentially important functions in the lung-brain axis. FASEB J 2017; 31:3950-3965. [PMID: 28533327 DOI: 10.1096/fj.201600857rrr] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 05/01/2017] [Indexed: 01/24/2023]
Abstract
Accumulating evidence suggests that O3 exposure may contribute to CNS dysfunction. Here, we posit that inflammatory and acute-phase proteins in the circulation increase after O3 exposure and systemically convey signals of O3 exposure to the CNS. To model acute O3 exposure, female Balb/c mice were exposed to 3 ppm O3 or forced air for 2 h and were studied after 6 or 24 h. Of 23 cytokines and chemokines, only KC/CXCL1 was increased in blood 6 h after O3 exposure. The acute-phase protein serum amyloid A (A-SAA) was significantly increased by 24 h, whereas C-reactive protein was unchanged. A-SAA in blood correlated with total leukocytes, macrophages, and neutrophils in bronchoalveolar lavage from O3-exposed mice. A-SAA mRNA and protein were increased in the liver. We found that both isoforms of A-SAA completely crossed the intact blood-brain barrier, although the rate of SAA2.1 influx was approximately 5 times faster than that of SAA1.1. Finally, A-SAA protein, but not mRNA, was increased in the CNS 24 h post-O3 exposure. Our findings suggest that A-SAA is functionally linked to pulmonary inflammation in our O3 exposure model and that A-SAA could be an important systemic signal of O3 exposure to the CNS.-Erickson, M. A., Jude, J., Zhao, H., Rhea, E. M., Salameh, T. S., Jester, W., Pu, S., Harrowitz, J., Nguyen, N., Banks, W. A., Panettieri, R. A., Jr., Jordan-Sciutto, K. L. Serum amyloid A: an ozone-induced circulating factor with potentially important functions in the lung-brain axis.
Collapse
Affiliation(s)
- Michelle A Erickson
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; .,Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Joseph Jude
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey, USA.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hengjiang Zhao
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth M Rhea
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Therese S Salameh
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - William Jester
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey, USA.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shelley Pu
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jenna Harrowitz
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ngan Nguyen
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William A Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Reynold A Panettieri
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
164
|
Poulsen SS, Knudsen KB, Jackson P, Weydahl IEK, Saber AT, Wallin H, Vogel U. Multi-walled carbon nanotube-physicochemical properties predict the systemic acute phase response following pulmonary exposure in mice. PLoS One 2017; 12:e0174167. [PMID: 28380028 PMCID: PMC5381870 DOI: 10.1371/journal.pone.0174167] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/04/2017] [Indexed: 01/08/2023] Open
Abstract
Pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) has been linked to an increased risk of developing cardiovascular disease in addition to the well-documented physicochemical-dependent adverse lung effects. A proposed mechanism is through a strong and sustained pulmonary secretion of acute phase proteins to the blood. We identified physicochemical determinants of MWCNT-induced systemic acute phase response by analyzing effects of pulmonary exposure to 14 commercial, well-characterized MWCNTs in female C57BL/6J mice pulmonary exposed to 0, 6, 18 or 54 μg MWCNT/mouse. Plasma levels of acute phase response proteins serum amyloid A1/2 (SAA1/2) and SAA3 were determined on day 1, 28 or 92. Expression levels of hepatic Saa1 and pulmonary Saa3 mRNA levels were assessed to determine the origin of the acute phase response proteins. Pulmonary Saa3 mRNA expression levels were greater and lasted longer than hepatic Saa1 mRNA expression. Plasma SAA1/2 and SAA3 protein levels were related to time and physicochemical properties using adjusted, multiple regression analyses. SAA3 and SAA1/2 plasma protein levels were increased after exposure to almost all of the MWCNTs on day 1, whereas limited changes were observed on day 28 and 92. SAA1/2 and SAA3 protein levels did not correlate and only SAA3 protein levels correlated with neutrophil influx. The multiple regression analyses revealed a protective effect of MWCNT length on SAA1/2 protein level on day 1, such that a longer length resulted in lowered SAA1/2 plasma levels. Increased SAA3 protein levels were positively related to dose and content of Mn, Mg and Co on day 1, whereas oxidation and diameter of the MWCNTs were protective on day 28 and 92, respectively. The results of this study reveal very differently controlled pulmonary and hepatic acute phase responses after MWCNT exposure. As the responses were influenced by the physicochemical properties of the MWCNTs, this study provides the first step towards designing MWCNT that induce less SAA.
Collapse
Affiliation(s)
- Sarah S. Poulsen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- * E-mail:
| | | | - Petra Jackson
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | | | - Anne T. Saber
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Håkan Wallin
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- Institute of Public Health, Copenhagen University, Copenhagen K, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
165
|
Brown K, Zaytsoff SJM, Uwiera RRE, Inglis GD. Antimicrobial growth promoters modulate host responses in mice with a defined intestinal microbiota. Sci Rep 2016; 6:38377. [PMID: 27929072 PMCID: PMC5144068 DOI: 10.1038/srep38377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023] Open
Abstract
Antibiotics can promote growth in livestock (antimicrobial growth promoters, AGPs), however lack of knowledge regarding mechanisms has hampered the development of effective non-antibiotic alternatives. Antibiotics affect eukaryotic cells at therapeutic concentrations, yet effects of AGPs on host physiology are relatively understudied, partially due to the complexity of host-microorganism interactions within the gastrointestinal tract. To determine the direct effects of AGPs on the host, we generated Altered Schaedler Flora (ASF) mice, and administered chlortetracycline (CTC) and tylosin phosphate (TYL) in feed. Mice were challenged with Citrobacter rodentium to determine how AGPs alter host responses to physiological stress. Although CTC and TYL had inconsistent effects on the ASF taxa, AGPs protected mice from weight loss following C. rodentium inoculation. Mice treated with either CTC or TYL had lower expression of βd1 and Il17a in the intestine and had a robust induction of Il17a and Il10. Furthermore, AGP administration resulted in a lower hepatic expression of acute phase proteins (Saa1, Hp, and Cp) in liver tissue, and ameliorated C. rodentium-induced reductions in the expression of genes involved in lipogenesis (Hmgcl and Fabp1). Collectively, this indicates that AGPs directly affect host physiology, and highlights important considerations in the development of non-antibiotic alternatives.
Collapse
Affiliation(s)
- Kirsty Brown
- Agriculture and Agri-Food Canada, 5403-1st Avenue S, Lethbridge, AB, Canada
| | - Sarah J. M. Zaytsoff
- Agriculture and Agri-Food Canada, 5403-1st Avenue S, Lethbridge, AB, Canada
- Department of Agricultural Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB, Canada
| | - Richard R. E. Uwiera
- Department of Agricultural Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB, Canada
| | - G. Douglas Inglis
- Agriculture and Agri-Food Canada, 5403-1st Avenue S, Lethbridge, AB, Canada
| |
Collapse
|