151
|
Rizzi A, Tartaglione L, Di Leo M, Alfieri S, Pitocco D. Advanced hybrid closed-loop system: first successful clinical case after total pancreatectomy. Acta Diabetol 2021; 58:967-969. [PMID: 33864123 PMCID: PMC8187211 DOI: 10.1007/s00592-021-01715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/30/2021] [Indexed: 11/10/2022]
Affiliation(s)
- A Rizzi
- Diabetes Care Unit, Catholic University, Universitario Agostino Gemelli, L.Go Agostino Gemelli, 800168, PoliclinicoRome, Italy
| | - L Tartaglione
- Diabetes Care Unit, Catholic University, Universitario Agostino Gemelli, L.Go Agostino Gemelli, 800168, PoliclinicoRome, Italy
| | - M Di Leo
- Diabetes Care Unit, Catholic University, Universitario Agostino Gemelli, L.Go Agostino Gemelli, 800168, PoliclinicoRome, Italy
| | - S Alfieri
- Surgery Department, Catholic University, Universitario Agostino Gemelli, PoliclinicoRome, Italy
| | - D Pitocco
- Diabetes Care Unit, Catholic University, Universitario Agostino Gemelli, L.Go Agostino Gemelli, 800168, PoliclinicoRome, Italy.
| |
Collapse
|
152
|
Grunberger G, Sherr J, Allende M, Blevins T, Bode B, Handelsman Y, Hellman R, Lajara R, Roberts VL, Rodbard D, Stec C, Unger J. American Association of Clinical Endocrinology Clinical Practice Guideline: The Use of Advanced Technology in the Management of Persons With Diabetes Mellitus. Endocr Pract 2021; 27:505-537. [PMID: 34116789 DOI: 10.1016/j.eprac.2021.04.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To provide evidence-based recommendations regarding the use of advanced technology in the management of persons with diabetes mellitus to clinicians, diabetes-care teams, health care professionals, and other stakeholders. METHODS The American Association of Clinical Endocrinology (AACE) conducted literature searches for relevant articles published from 2012 to 2021. A task force of medical experts developed evidence-based guideline recommendations based on a review of clinical evidence, expertise, and informal consensus, according to established AACE protocol for guideline development. MAIN OUTCOME MEASURES Primary outcomes of interest included hemoglobin A1C, rates and severity of hypoglycemia, time in range, time above range, and time below range. RESULTS This guideline includes 37 evidence-based clinical practice recommendations for advanced diabetes technology and contains 357 citations that inform the evidence base. RECOMMENDATIONS Evidence-based recommendations were developed regarding the efficacy and safety of devices for the management of persons with diabetes mellitus, metrics used to aide with the assessment of advanced diabetes technology, and standards for the implementation of this technology. CONCLUSIONS Advanced diabetes technology can assist persons with diabetes to safely and effectively achieve glycemic targets, improve quality of life, add greater convenience, potentially reduce burden of care, and offer a personalized approach to self-management. Furthermore, diabetes technology can improve the efficiency and effectiveness of clinical decision-making. Successful integration of these technologies into care requires knowledge about the functionality of devices in this rapidly changing field. This information will allow health care professionals to provide necessary education and training to persons accessing these treatments and have the required expertise to interpret data and make appropriate treatment adjustments.
Collapse
Affiliation(s)
| | - Jennifer Sherr
- Yale University School of Medicine, New Haven, Connecticut
| | - Myriam Allende
- University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | | | - Bruce Bode
- Atlanta Diabetes Associates, Atlanta, Georgia
| | | | - Richard Hellman
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | | | | | - David Rodbard
- Biomedical Informatics Consultants, LLC, Potomac, Maryland
| | - Carla Stec
- American Association of Clinical Endocrinology, Jacksonville, Florida
| | - Jeff Unger
- Unger Primary Care Concierge Medical Group, Rancho Cucamonga, California
| |
Collapse
|
153
|
Grosman B, Wu D, Parikh N, Roy A, Voskanyan G, Kurtz N, Sturis J, Cohen O, Ekelund M, Vigersky R. Fast-acting insulin aspart (Fiasp®) improves glycemic outcomes when used with MiniMed TM 670G hybrid closed-loop system in simulated trials compared to NovoLog®. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 205:106087. [PMID: 33873075 DOI: 10.1016/j.cmpb.2021.106087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Medtronic has developed a virtual patient simulator for modeling and predicting insulin therapy outcomes for people with type 1 diabetes (T1D). An enhanced simulator was created to estimate outcomes when using the MiniMedTM 670G system with standard NovoLog® (EU: NovoRapid, US: NovoLog) versus Fiasp ® by using clinical data. METHODS Sixty-seven participants' PK profiles were generated per type of insulin (Total of 134 PK profiles). 7,485 virtual patients' PK measurements was matched with one of the 67 NovoLog® PK Tmax values. These 7,485 virtual patients were then simulated using the Medtronic MiniMed™ 670G algorithm following an in-silico protocol of 90 days: 14 days in open loop (Manual Mode) followed by 76 days in closed loop (Auto Mode). Simulation study was repeated with each NovoLog® PK profile being replaced by its corresponding Fiasp® PK profile in the same virtual patient. To validate our in-silico analysis, we compared the results of "actual" 19 "real life" patients from a clinical study RESULTS: Simulated overall and postprandial glycemic outcomes improved in all age groups with Fiasp®. The percentage of time in the euglycemic range increased by about ~2.2% with Fiasp®, in all age groups (p < 0.01). The percentage of time spent at <70 mg/dL was reduced by about ~0.6% with insulin Fiasp® (p < 0.01) and the mean glucose was reduced by about 1.3 mg/dL (p < 0.01), excluding those age <7 years. The simulated mean postprandial SG was reduced by ~5 mg/dL, a significant difference for all age groups. A clinical study results showed similar improvements with MiniMedTM 670G system when switching from NovoLog® to Fiasp®. CONCLUSIONS The simulation studies indicate that using Fiasp® in place of NovoLog® with the MiniMedTM 670G system will significantly improve the time spent in the healthy, euglycemic range and reduce exposure to hyperglycemia and hypoglycemia in most patients.
Collapse
Affiliation(s)
| | - Di Wu
- Medtronic Diabetes, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
McVean J, Miller J. MiniMed TM780G Insulin pump system with smartphone connectivity for the treatment of type 1 diabetes: overview of its safety and efficacy. Expert Rev Med Devices 2021; 18:499-504. [PMID: 34014794 DOI: 10.1080/17434440.2021.1926984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Despite significant advances in diabetes care over the last three decades, the majority of people living with T1D are not meeting established metabolic goals. Automated insulin delivery can help achieve these metabolic goals (HbA1c and TIR).Areas covered: This review examines the new features and available data regarding safety and efficacy of the MiniMed™ 780 G, a second-generation advanced hybrid closed-loop system. Reported outcomes include time in, above and below range, HbA1c, diabetic ketoacidosis and severe hypoglycemia.Expert opinion: The initial pivotal trials of the MiniMed™ 780 G have demonstrated promising clinical and safety outcomes. Real-world data and longer-term studies are still needed. The success of AID devices moving forward hinges on their ease of use and ability to reduce and relieve the burden of living with T1D.
Collapse
Affiliation(s)
- Jennifer McVean
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Joshua Miller
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, NY, USA
| |
Collapse
|
155
|
Fuchs J, Hovorka R. Benefits and Challenges of Current Closed-Loop Technologies in Children and Young People With Type 1 Diabetes. Front Pediatr 2021; 9:679484. [PMID: 33996702 PMCID: PMC8119627 DOI: 10.3389/fped.2021.679484] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022] Open
Abstract
Recent advances in diabetes technology have led to the development of closed-loop insulin delivery systems for the management of type 1 diabetes. Several such systems are now commercially available for children and young people. While all available systems have been shown to improve glycaemic control and quality of life in this population, qualitative data also highlights the challenges in using closed-loop systems, which vary among different pediatric age-groups. Very young children require systems that are able to cope with low insulin doses and significant glycaemic variability due to their high insulin sensitivity and unpredictable eating and exercise patterns. Adolescents' compliance is often related to size and number of devices, usability of the systems, need for calibrations, and their ability to interact with the system. Given the speed of innovations, understanding the capabilities and key similarities and differences of current systems can be challenging for healthcare professionals, caregivers and young people with type 1 diabetes alike. The aim of this review is to summarize the key evidence on currently available closed-loop systems for children and young people with type 1 diabetes, as well as commenting on user experience, where real-world data are available. We present findings on a system-basis, as well as identifying specific challenges in different pediatric age-groups and commenting on how current systems might address these. Finally, we identify areas for future research with regards to closed-loop technology tailored for pediatric use and how these might inform reimbursement and alleviate disease burden.
Collapse
Affiliation(s)
- Julia Fuchs
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Roman Hovorka
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
156
|
1921-2021: From insulin discovery to islet transplantation in type 1 diabetes. ANNALES D'ENDOCRINOLOGIE 2021; 82:74-77. [PMID: 33839122 DOI: 10.1016/j.ando.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022]
Abstract
One century after the discovery of insulin, the French Health regulations have just authorized the reimbursement for islet transplantation. Intraportal islet allotransplantation from a pancreatic donor is indicated in patients with type 1 diabetes (T1D) complicated with lability or hypoglycemia unawareness, or in case of a functioning kidney graft; islet auto-transplantation may be indicated after pancreatic surgery.Compared with insulin even administered in closed-loop pumps, the specificity of islet allotransplantation is the restoration of C-peptide secretion. Long-term insulin-independence is observed when the engrafted islet mass is sufficient, at the cost of immunosuppression. Fewer low-glucose events and less glucose variability, are observed even with minimal functional islet graft, after islet transplantation as at onset of T1D, when a residual C-peptide secretion is maintained, an objective currently approached with less aggressive immuno-modulating therapies than in the past. Therefore, restoration or preservation of endogen insulin secretion is an important goal, allowing to maintain a long-term glucose balance with more than 70% of time in range 3.9-10mmol/L and less than 3% of time <3.9mmol/L, thus reducing the occurrence of diabetic complications. In the clinical setting, - the preservation of C-peptide at early stage of T1D, - the use of technological ressources (multi-injections, sensors, insulin pump, closed-loop systems) at later stages, - and islet transplantation when hypoglycemia awareness becomes impaired are complementary for a personalized care all along the life of T1D patients.
Collapse
|
157
|
Tornese G, Buzzurro F, Carletti C, Faleschini E, Barbi E. Six-Month Effectiveness of Advanced vs. Standard Hybrid Closed-Loop System in Children and Adolescents With Type 1 Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:766314. [PMID: 34858339 PMCID: PMC8630740 DOI: 10.3389/fendo.2021.766314] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION The purpose of this study was to assess the effectiveness of advanced- (a-HCL) vs. standard-hybrid closed-loop (s-HCL) systems use up to 6 months of treatment in a real-world setting of children and adolescents with T1DM. METHODS We retrospectively evaluated all T1DM pediatric users of MiniMed™ 670G system (s-HCL) and 780G system (a-HCL). HbA1c and BMI were collected at baseline and three and six months after HCL start. Data on glycemic control were extracted from reports generated with CareLink™ Personal Software in Manual Mode, at HCL start, after one, three, and six months after HCL beginning. RESULTS The study included 44 individuals with a median age of 13.3 years (range 2- 21 years), 20 on s-HCL, and 24 on a-HCL. a-HCL users had a significantly lower HbA1c compared to s-HCL after six months of HCL use (7.1 vs. 7.7%). Significant differences in HbA1c between a-HCL and s-HCL users were found in children aged 7-14 years (7.1 vs. 7.7% after six months) and in those with a worse (HbA1c >8%) glycemic control at the beginning (7.1 vs. 8.1% after six months). No significant changes in HbA1c were found in a-HCL users that previously used a s-HCL system. Nevertheless, only the use of a-HCL significantly predicted a lower HbA1c after six months. All sensor-specific measures of glycemic control improved from Manual to Auto mode, in both s-HCL and a-HCL, without increasing time spent in hypoglycemia. However, the percentage of individuals with TIR>70% increased significantly in a-HCL users, who attained this target earlier and more stably: younger age, a higher rate of auto-correction, and a lower amount of CHO inserted predicted a TIR>70%. BMI SDS did not significantly change throughout the study period. CONCLUSION This real-world study suggests that effectiveness might be greater in a-HCL than in s-HCL, with significant changes in HbA1c, and reaching earlier and more stably the target of TIR >70%, without increasing hypoglycemia or BMI. At the same time, previous users of s-HCL systems did not show any further improvement with a-HCL. Children under the age of 14 years of age, not represented in previous studies, seem to benefit the most from a-HCL pumps as well as individuals with the worst glycemic control.
Collapse
Affiliation(s)
- Gianluca Tornese
- Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
- *Correspondence: Gianluca Tornese,
| | | | - Claudia Carletti
- Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Elena Faleschini
- Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Egidio Barbi
- Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
- University of Trieste, Trieste, Italy
| |
Collapse
|
158
|
Bassi M, Teliti M, Lezzi M, Iosca A, Strati MF, Carmisciano L, d’Annunzio G, Minuto N, Maggi D. A Comparison of Two Hybrid Closed-Loop Systems in Italian Children and Adults With Type 1 Diabetes. Front Endocrinol (Lausanne) 2021; 12:802419. [PMID: 35116007 PMCID: PMC8805205 DOI: 10.3389/fendo.2021.802419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Tandem Control-IQ and Minimed 780G represent the most Advanced Hybrid Closed Loop (AHCL) systems currently available in pediatric and adult subjects with Type 1 Diabetes (T1D). We retrospectively compared clinical and continuous glucose monitoring data from 51 patients who upgraded to Minimed 780G system and have completed 1-month observation period with data from 39 patients who upgraded to Tandem Control-IQ. Inverse probability weighting was used to minimize the basal characteristics imbalances. Both AHCL systems showed a significant improvement in glycemic parameters. Minimed 780G group achieved higher TIR increase (p= 0.004) and greater reduction of blood glucose average (p= 0.001). Tandem Control-IQ system significantly reduced the occurrence of TBR (p= 0.010) and the Coefficient of Variation of glucose levels (p= 0.005). The use of ACHL systems led to a significant improvement of glycemic control substantially reaching the International recommended glycemic targets. Minimed 780G appears to be more effective in managing hyperglycemia, while Tandem Control-IQ seems to be more effective in reducing time in hypoglycemia.
Collapse
Affiliation(s)
- Marta Bassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Department of Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
| | - Marilea Lezzi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Department of Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Arianna Iosca
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
| | - Marina Francesca Strati
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Department of Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Luca Carmisciano
- Department of Helath Science (DiSSAL), University of Genoa, Genoa, Italy
| | - Giuseppe d’Annunzio
- Department of Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Nicola Minuto
- Department of Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
- *Correspondence: Nicola Minuto,
| | - Davide Maggi
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
- Department of Helath Science (DiSSAL), University of Genoa, Genoa, Italy
- Diabetes Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino Genoa, Genoa, Italy
| |
Collapse
|