151
|
Xie S, Wu Z, Zhou L, Liang Y, Wang X, Niu L, Xu K, Chen J, Zhang M. Iodine-125 seed implantation and allogenic natural killer cell immunotherapy for hepatocellular carcinoma after liver transplantation: a case report. Onco Targets Ther 2018; 11:7345-7352. [PMID: 30498359 PMCID: PMC6207256 DOI: 10.2147/ott.s166962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
For advanced hepatocellular carcinoma (HCC) patients, liver transplantation (LT) is an optimal treatment with limitation of high risk of tumor recurrence related to the immunosuppressive chemotherapy as usually recommended. In this study, a 29-year-old man suffered from HCC recurrence after LT. He underwent radiotherapy (total dose: 45 Gy) but had no significant response. Then, he received iodine-125 seed implantation combined with allogenic natural killer (NK) cell immunotherapy. Liver function, immune function, circulating tumor cell counts and computed tomography scans were evaluated to determine the clinical effect. We found that this combined treatment produced enhanced immune function of the patient and reduction in tumor size. This is the first report of an efficacy and safety study about clinical regimen comprising allogenic NK cell immunotherapy combined with iodine-125 seed implantation for the treatment of HCC recurrence after LT.
Collapse
Affiliation(s)
- Silun Xie
- Research and Development Department, Shenzhen Hank Bioengineering Institute, Shenzhen 518004, China,
| | - Zhengyi Wu
- Research and Development Department, Shenzhen Hank Bioengineering Institute, Shenzhen 518004, China,
| | - Liang Zhou
- Department of Central Laboratory, Fuda Cancer Hospital of Jinan University, Guangzhou 510665, China,
| | - Yingqing Liang
- Department of Central Laboratory, Fuda Cancer Hospital of Jinan University, Guangzhou 510665, China,
| | - Xiaohua Wang
- Department of Central Laboratory, Fuda Cancer Hospital of Jinan University, Guangzhou 510665, China,
| | - Lizhi Niu
- Department of Central Laboratory, Fuda Cancer Hospital of Jinan University, Guangzhou 510665, China,
| | - Kecheng Xu
- Department of Central Laboratory, Fuda Cancer Hospital of Jinan University, Guangzhou 510665, China,
| | - Jibing Chen
- Department of Central Laboratory, Fuda Cancer Hospital of Jinan University, Guangzhou 510665, China,
| | - Mingjie Zhang
- Research and Development Department, Shenzhen Hank Bioengineering Institute, Shenzhen 518004, China,
| |
Collapse
|
152
|
Suen WCW, Lee WYW, Leung KT, Pan XH, Li G. Natural Killer Cell-Based Cancer Immunotherapy: A Review on 10 Years Completed Clinical Trials. Cancer Invest 2018; 36:431-457. [PMID: 30325244 DOI: 10.1080/07357907.2018.1515315] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
NK cell cancer immunotherapy is an emerging anti-tumour therapeutic strategy that explores NK cell stimulation. In this review, we address strategies developed to circumvent limitations to clinical application of NK cell-based therapies, and comprehensively review the design and results of clinical trials conducted in the past 10 years (2008-2018) to test their therapeutic potential. NK cell-based immunotherapy of solid cancers remains controversial, but merit further detailed investigation.
Collapse
Affiliation(s)
- Wade Chun-Wai Suen
- a Department of Orthopaedics and Traumatology, Faculty of Medicine , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong.,b Department of Orthopaedics and Traumatology , Bao-An People's Hospital , Shenzhen , PR China.,c Department of Haematology , University of Cambridge , Cambridge , UK
| | - Wayne Yuk-Wai Lee
- a Department of Orthopaedics and Traumatology, Faculty of Medicine , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong.,d Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong
| | - Kam-Tong Leung
- e Department of Paediatrics, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong
| | - Xiao-Hua Pan
- b Department of Orthopaedics and Traumatology , Bao-An People's Hospital , Shenzhen , PR China
| | - Gang Li
- a Department of Orthopaedics and Traumatology, Faculty of Medicine , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong.,d Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong.,f The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System , The Chinese University of Hong Kong Shenzhen Research Institute , Shenzhen , PR China
| |
Collapse
|
153
|
Oyer JL, Gitto SB, Altomare DA, Copik AJ. PD-L1 blockade enhances anti-tumor efficacy of NK cells. Oncoimmunology 2018; 7:e1509819. [PMID: 30377572 PMCID: PMC6205063 DOI: 10.1080/2162402x.2018.1509819] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/01/2018] [Accepted: 08/04/2018] [Indexed: 12/31/2022] Open
Abstract
Anti-PD-1/anti-PD-L1 therapies have shown success in cancer treatment but responses are limited to ~ 15% of patients with lymphocyte infiltrated, PD-L1 positive tumors. Hence, strategies that increase PD-L1 expression and tumor infiltration should make more patients eligible for PD-1/PD-L1 blockade therapy, thus improving overall outcomes. PD-L1 expression on tumors is induced by IFNγ, a cytokine secreted by NK cells. Therefore, we tested if PM21-particle expanded NK cells (PM21-NK cells) induced expression of PD-L1 on tumors and if anti-PD-L1 treatment enhanced NK cell anti-tumor efficacy in an ovarian cancer model. Studies here showed that PM21-NK cells secrete high amounts of IFNγ and that adoptively transferred PM21-NK cells induce PD-L1 expression on SKOV-3 cells in vivo. The induction of PD-L1 expression on SKOV-3 cells coincided with the presence of regulatory T cells (Tregs) in the abdominal cavity and within tumors. In in vitro experiments, anti-PD-L1 treatment had no direct effect on cytotoxicity or cytokine secretion by predominantly PD-1 negative PM21-NK cells in response to PD-L1+ targets. However, significant improvement of NK cell anti-tumor efficacy was observed in vivo when combined with anti-PD-L1. PD-L1 blockade also resulted in increased in vivo NK cell persistence and retention of their cytotoxic phenotype. These results support the use of anti-PD-L1 in combination with NK cell therapy regardless of initial tumor PD-L1 status and indicate that NK cell therapy would likely augment the applicability of anti-PD-L1 treatment.
Collapse
Affiliation(s)
- Jeremiah L Oyer
- Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, FL, USA
| | - Sarah B Gitto
- Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, FL, USA
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, FL, USA
| | - Alicja J Copik
- Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, FL, USA
| |
Collapse
|
154
|
Lee SE, Lee JK. Sesamolin affects both natural killer cells and cancer cells in order to create an optimal environment for cancer cell sensitization. Int Immunopharmacol 2018; 64:16-23. [PMID: 30144640 DOI: 10.1016/j.intimp.2018.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022]
Abstract
In our previous study, we demonstrated that sesamolin can increase the level of cancer cell susceptibility to natural killer (NK) cell mediated cytolysis when it treats cancer cells. The present study attempted to demonstrate the direct influence of sesamolin on NK cells. To achieve the study goal, an NK cell (NK-92MI) or Raji cell was treated with sesamolin for use in the analysis of the cytolytic activity of NK cells. When NK-92MI cells were treated with sesamolin, the cytolysis activities of NK cells increased depending on the concentration of sesamolin. However, the highest cytolytic activity of NK cells was observed when Raji and NK-92MI cells were treated with sesamolin at 20 μg/mL and 40 μg/mL, respectively. Sesamolin also increased the expression of the degranulation marker, CD107a, on the surface of NK cells and the production of immune-activation cytokine, IFN-γ, from NK cells. The effects of sesamolin on NK cells were reproduced in the naïve NK cells. We found that sesamolin effects are triggered by the result of phosphorylation of the p38, ERK1/2 and JNK pathways in NK cells. Taken together, this study proved that NK cell activity can be increased by the stimulation of sesamolin on NK cells as well as cancer cells.
Collapse
Affiliation(s)
- Seo Eun Lee
- Department of Biology Education, College of Education, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Jae Kwon Lee
- Department of Biology Education, College of Education, Chungbuk National University, Chungbuk 361-763, Republic of Korea.
| |
Collapse
|
155
|
Min B, Choi H, Her JH, Jung MY, Kim HJ, Jung MY, Lee EK, Cho SY, Hwang YK, Shin EC. Optimization of Large-Scale Expansion and Cryopreservation of Human Natural Killer Cells for Anti-Tumor Therapy. Immune Netw 2018; 18:e31. [PMID: 30181919 PMCID: PMC6117513 DOI: 10.4110/in.2018.18.e31] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 12/01/2022] Open
Abstract
Allogeneic natural killer (NK) cell therapy is a potential therapeutic approach for a variety of solid tumors. We established an expansion method for large-scale production of highly purified and functionally active NK cells, as well as a freezing medium for the expanded NK cells. In the present study, we assessed the effect of cryopreservation on the expanded NK cells in regards to viability, phenotype, and anti-tumor activity. NK cells were enormously expanded (about 15,000-fold expansion) with high viability and purity by stimulating CD3+ T cell-depleted peripheral blood mononuclear cells (PBMCs) with irradiated autologous PBMCs in the presence of IL-2 and OKT3 for 3 weeks. Cell viability was slightly reduced after freezing and thawing, but cytotoxicity and cytokine secretion were not significantly different. In a xenograft mouse model of hepatocellular carcinoma cells, cryopreserved NK cells had slightly lower anti-tumor efficacy than freshly expanded NK cells, but this was overcome by a 2-fold increased dose of cryopreserved NK cells. In vivo antibody-dependent cell cytotoxicity (ADCC) activity of cryopreserved NK cells was also demonstrated in a SCID mouse model injected with Raji cells with rituximab co-administration. Therefore, we demonstrated that expanded/frozen NK cells maintain viability, phenotype, and anti-tumor activity immediately after thawing, indicating that expanded/frozen NK cells can provide ‘ready-to-use’ cell therapy for cancer patients.
Collapse
Affiliation(s)
- Bokyung Min
- BioMedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Korea.,Cell Therapy Research Center, GC LabCell, Yongin 16924, Korea
| | - Hana Choi
- Cell Therapy Research Center, GC LabCell, Yongin 16924, Korea
| | - Jung Hyun Her
- Cell Therapy Research Center, GC LabCell, Yongin 16924, Korea
| | - Mi Young Jung
- Cell Therapy Research Center, GC LabCell, Yongin 16924, Korea
| | - Hyo-Jin Kim
- Cell Therapy Research Center, GC LabCell, Yongin 16924, Korea
| | - Mi-Young Jung
- Cell Therapy Research Center, GC LabCell, Yongin 16924, Korea
| | | | - Sung Yoo Cho
- Cell Therapy Research Center, GC LabCell, Yongin 16924, Korea
| | - Yu Kyeong Hwang
- Cell Therapy Research Center, GC LabCell, Yongin 16924, Korea
| | - Eui-Cheol Shin
- BioMedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Korea.,Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
156
|
Al Absi A, Wurzer H, Guerin C, Hoffmann C, Moreau F, Mao X, Brown-Clay J, Petrolli R, Casellas CP, Dieterle M, Thiery JP, Chouaib S, Berchem G, Janji B, Thomas C. Actin Cytoskeleton Remodeling Drives Breast Cancer Cell Escape from Natural Killer-Mediated Cytotoxicity. Cancer Res 2018; 78:5631-5643. [PMID: 30104240 DOI: 10.1158/0008-5472.can-18-0441] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/14/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022]
Abstract
Elucidation of the underlying molecular mechanisms of immune evasion in cancer is critical for the development of immunotherapies aimed to restore and stimulate effective antitumor immunity. Here, we evaluate the role of the actin cytoskeleton in breast cancer cell resistance to cytotoxic natural killer (NK) cells. A significant fraction of breast cancer cells responded to NK-cell attack via a surprisingly rapid and massive accumulation of F-actin near the immunologic synapse, a process we termed "actin response." Live-cell imaging provided direct evidence that the actin response is associated with tumor cell resistance to NK-cell-mediated cell death. High-throughput imaging flow cytometry analyses showed that breast cancer cell lines highly resistant to NK cells were significantly enriched in actin response-competent cells as compared with susceptible cell lines. The actin response was not associated with a defect in NK-cell activation but correlated with reduced intracellular levels of the cytotoxic protease granzyme B and a lower rate of apoptosis in target cells. Inhibition of the actin response by knocking down CDC42 or N-WASP led to a significant increase in granzyme B levels in target cells and was sufficient to convert resistant breast cancer cell lines into a highly susceptible phenotype. The actin response and its protective effects were fully recapitulated using donor-derived primary NK cells as effector cells. Together, these findings establish the pivotal role of actin remodeling in breast cancer cell resistance to NK-cell-mediated killing.Significance: These findings establish the pivotal role of the actin cytoskeleton in driving breast cancer cell resistance to natural killer cells, a subset of cytotoxic lymphocytes with important roles in innate antitumor immunity. Cancer Res; 78(19); 5631-43. ©2018 AACR.
Collapse
Affiliation(s)
- Antoun Al Absi
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,University of Strasbourg, Strasbourg, France
| | - Hannah Wurzer
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Faculty of Science, Technology and Communication, University of Luxembourg, 2 avenue de l'Université, Esch-sur-Alzette, Luxembourg
| | - Coralie Guerin
- National Cytometry Platform, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Paris Descartes University, Paris, France
| | - Celine Hoffmann
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Flora Moreau
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Xianqing Mao
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Joshua Brown-Clay
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Rémi Petrolli
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Carla Pou Casellas
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Monika Dieterle
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Jean-Paul Thiery
- INSERM UMR1186, Immunologie Intégrative des Tumeurs, Equipe Labellisée Ligue contre le Cancer, Institut Gustave Roussy, Villejuif, France.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A-STAR, Singapore
| | - Salem Chouaib
- INSERM UMR1186, Immunologie Intégrative des Tumeurs, Equipe Labellisée Ligue contre le Cancer, Institut Gustave Roussy, Villejuif, France.,Thumbay Institute for Precision Medicine Gulf Medical University-Ajman-UAE
| | - Guy Berchem
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Bassam Janji
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Clément Thomas
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.
| |
Collapse
|
157
|
Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell 2018; 23:181-192.e5. [PMID: 30082067 PMCID: PMC6084450 DOI: 10.1016/j.stem.2018.06.002] [Citation(s) in RCA: 626] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/13/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022]
Abstract
Chimeric antigen receptors (CARs) significantly enhance the anti-tumor activity of immune effector cells. Although most studies have evaluated CAR expression in T cells, here we evaluate different CAR constructs that improve natural killer (NK) cell-mediated killing. We identified a CAR containing the transmembrane domain of NKG2D, the 2B4 co-stimulatory domain, and the CD3ζ signaling domain to mediate strong antigen-specific NK cell signaling. NK cells derived from human iPSCs that express this CAR (NK-CAR-iPSC-NK cells) have a typical NK cell phenotype and demonstrate improved anti-tumor activity compared with T-CAR-expressing iPSC-derived NK cells (T-CAR-iPSC-NK cells) and non-CAR-expressing cells. In an ovarian cancer xenograft model, NK-CAR-iPSC-NK cells significantly inhibited tumor growth and prolonged survival compared with PB-NK cells, iPSC-NK cells, or T-CAR-iPSC-NK cells. Additionally, NK-CAR-iPSC-NK cells demonstrate in vivo activity similar to that of T-CAR-expressing T cells, although with less toxicity. These NK-CAR-iPSC-NK cells now provide standardized, targeted "off-the-shelf" lymphocytes for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Ye Li
- Department of Medicine, Division of Regenerative Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - David L Hermanson
- Department of Medicine, University of Minnesota Minneapolis, Minneapolis, MN 55455, USA
| | - Branden S Moriarity
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dan S Kaufman
- Department of Medicine, Division of Regenerative Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
158
|
Fang F, Xiao W, Tian Z. Challenges of NK cell-based immunotherapy in the new era. Front Med 2018; 12:440-450. [PMID: 30047028 DOI: 10.1007/s11684-018-0653-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
Abstract
Natural killer cells (NKs) have a great potential for cancer immunotherapy because they can rapidly and directly kill transformed cells in the absence of antigen presensitization. Various cellular sources, including peripheral blood mononuclear cells (PBMCs), stem cells, and NK cell lines, have been used for producing NK cells. In particular, NK cells that expanded from allogeneic PBMCs exhibit better efficacy than those that did not. However, considering the safety, activities, and reliability of the cell products, researchers must develop an optimal protocol for producing NK cells from PBMCs in the manufacture setting and clinical therapeutic regimen. In this review, the challenges on NK cell-based therapeutic approaches and clinical outcomes are discussed.
Collapse
Affiliation(s)
- Fang Fang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230027, China
| | - Weihua Xiao
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230027, China.
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230027, China.
| |
Collapse
|
159
|
Pham T, Roth S, Kong J, Guerra G, Narasimhan V, Pereira L, Desai J, Heriot A, Ramsay R. An Update on Immunotherapy for Solid Tumors: A Review. Ann Surg Oncol 2018; 25:3404-3412. [DOI: 10.1245/s10434-018-6658-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 12/29/2022]
|
160
|
Liu P, Jin Y, Sattar H, Liu H, Xie W, Zhou F. Natural killer cell immunotherapy against multiple myeloma: Progress and possibilities. J Leukoc Biol 2018; 103:821-828. [PMID: 29733502 DOI: 10.1002/jlb.2ru0517-176rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 01/06/2018] [Accepted: 01/07/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Pan Liu
- Department of Hematology; Zhongnan Hospital; Wuhan University; Wuhan P.R. China
| | - Yanxia Jin
- Department of Hematology; Zhongnan Hospital; Wuhan University; Wuhan P.R. China
| | - Haseeb Sattar
- Department of Clinical Pharmacy; Wuhan Union Hospital; affiliated Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan P.R. China
| | - Hailing Liu
- Department of Clinical Hematology; Second Affiliated Hospital; Xi'an Jiao Tong University; Xi'an P.R. China
| | - Weiling Xie
- Department of Hematology; Zhongnan Hospital; Wuhan University; Wuhan P.R. China
| | - Fuling Zhou
- Department of Hematology; Zhongnan Hospital; Wuhan University; Wuhan P.R. China
- Hubei Key Laboratory of Tumor Biological Behavior; Wuhan P.R. China
| |
Collapse
|
161
|
Liang S, Lin M, Niu L, Xu K, Wang X, Liang Y, Zhang M, Du D, Chen J. Cetuximab combined with natural killer cells therapy: an alternative to chemoradiotherapy for patients with advanced non-small cell lung cancer (NSCLC). Am J Cancer Res 2018; 8:879-891. [PMID: 29888109 PMCID: PMC5992505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023] Open
Abstract
Natural killer (NK) cells therapy has the potential to prolong survival in patients with advanced non-small cell lung cancer (NSCLC). We conducted a clinical trial to investigate the safety and efficacy of cetuximab plus NK cells therapy in patients with advanced NSCLC. Between June 2015 and August 2016, 54 patients with advanced EGFR-expressing NSCLC were assigned randomly to the cetuximab plus NK cells therapy group (A; n = 27) or cetuximab alone group (B; n = 27). Patients in group A received two courses of NK cells therapy continuously. Cetuximab was administered intravenously and the weekly maintenance dose was continued until tumor progression. All adverse effects were manageable and no significant difference was noted between the two groups (P > 0.05). Levels of CEA, NSE and circulating tumor cells (CTCs) in group A were significantly lower than those before treatment (P < 0.05). Patients in group A had a significant improvement in immune function and quality of life (QOL) (P < 0.05). Patients in group A survived longer than those in group B (median PFS: 6 months vs 4.5 months; median OS: 9.5 months vs 7.5 months; P < 0.05). Combination therapy could be an alternative to chemoradiotherapy for patients with advanced NSCLC.
Collapse
Affiliation(s)
- Shuzhen Liang
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan UniversityGuangzhou, China
- Fuda Cancer InstituteGuangzhou, China
| | - Mao Lin
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan UniversityGuangzhou, China
- Fuda Cancer InstituteGuangzhou, China
| | - Lizhi Niu
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan UniversityGuangzhou, China
- Fuda Cancer InstituteGuangzhou, China
| | - Kecheng Xu
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan UniversityGuangzhou, China
- Fuda Cancer InstituteGuangzhou, China
| | - Xiaohua Wang
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan UniversityGuangzhou, China
| | | | | | - Duanming Du
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen UniversityShenzhen, China
| | - Jibing Chen
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan UniversityGuangzhou, China
- Fuda Cancer InstituteGuangzhou, China
| |
Collapse
|
162
|
Zhu L, Oh JM, Gangadaran P, Kalimuthu S, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. Targeting and Therapy of Glioblastoma in a Mouse Model Using Exosomes Derived From Natural Killer Cells. Front Immunol 2018; 9:824. [PMID: 29740437 PMCID: PMC5924812 DOI: 10.3389/fimmu.2018.00824] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
Objective Glioblastoma is a highly aggressive primary brain tumor that is resistant to radiotherapy and chemotherapy. Natural killer (NK) cells have been used to treat incurable cancers. Recent studies have investigated the effectiveness of NK-cell-derived exosomes (NK-Exo) for treating incurable cancers such as melanoma, leukemia, and neuroblastoma; however, NK-Exo have not been used to treat glioblastoma. In the present study, we investigated the antitumor effects of NK-Exo against aggressive glioblastoma both in vitro and in vivo and determined the tumor-targeting ability of NK-Exo by performing fluorescence imaging. Methods U87/MG cells were transfected with the enhanced firefly luciferase (effluc) and thy1.1 genes; thy1.1-positive cells were selected using microbeads. U87/MG/F cells were assessed by reverse transcription polymerase chain reaction (RT-PCR), western blotting, and luciferase-activity assays. NK-Exo were isolated by ultracentrifugation, purified by density gradient centrifugation, and characterized by transmission electron microscopy, dynamic light scattering (DLS), nanoparticle-tracking analysis (NTA), and western blotting. Cytokine levels in NK-Exo were compared to those in NK cells and NK-cell medium by performing an enzyme-linked immunosorbent assay (ELISA). NK-Exo-induced apoptosis of cancer cells was confirmed by flow cytometry and western blotting. In vivo therapeutic effects and specificity of NK-Exo against glioblastoma were assessed in a xenograft mouse model by fluorescence imaging. Xenograft mice were treated with NK-Exo, which was administered seven times through the tail vein. Tumor growth was monitored by bioluminescence imaging (BLI), and tumor volume was measured by ultrasound imaging. The mice were intraperitoneally injected with dextran sulfate 2 h before NK-Exo injection to decrease the liver uptake and increase the tumor specificity of NK-Exo. Results RT-PCR and western blotting confirmed the gene and protein expression of effluc in U87/MG/F cells, with the bioluminescence activity of U87/MG/F cells increasing with an increase in cell number. NTA and DLS results indicated that the size of NK-Exo was ~100 nm, and the western blot results confirmed that NK-Exo expressed exosome markers CD63 and Alix. We confirmed the in vitro cytotoxic effects of NK-Exo on U87/MG/F cells by performing BLI, and the killing effect on U87/MG and U87MG/F cells was measured by CCK-8 and MTT assays (p < 0.001). ELISA results indicated that NK-Exo contained tumor necrosis factor-α and granzyme B. In vivo NK-Exo treatment inhibited tumor growth compared to in control mice (p < 0.001), and pretreatment of xenograft mice with dextran sulfate 2 h before NK-Exo treatment increased the antitumor effect of NK-Exo (p < 0.01) compared to in control and NK-Exo-alone-treated mice. Conclusion NK-Exo targeted and exerted antitumor effects on glioblastoma cells both in vitro and in vivo, suggesting their utility in treating incurable glioblastoma.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
163
|
NK Cell-derived Exosomes From NK Cells Previously Exposed to Neuroblastoma Cells Augment the Antitumor Activity of Cytokine-activated NK Cells. J Immunother 2018. [PMID: 28622272 DOI: 10.1097/cji.0000000000000179] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune cell-derived exosomes can increase immunity against tumors. In contrast, tumor-derived exosomes can reduce the immunity and can change the tumor microenvironment to further develop and provide metastasis. These effects take place by an alteration in the innate and adaptive immune cell functions. In this experiment, we studied the natural killer (NK) cells' effectiveness on tumor cells after expansion and thereafter incubated it with exosomes. The exosomes were derived from 2 populations of NK cells: (1) naive NK cells and, (2) NK cells previously exposed to neuroblastoma (NB) cells. Moreover, we have studied the NB-derived exosomes on NK cell function. The molecular load of the characterized exosomes (by means of nanoparticle-tracking analysis, flow cytometry, scanning electron microscopy, and western blot) from NK cells exposed to the NB cell revealed their expression of natural killer cell receptors in addition to CD56, NKG2D, and KIR2DL2 receptors. These exosomes were used to treat NK cells and thereafter administered to NB tumor cells both in vitro and in vivo. Our results showed some kind of NK cells' education by the exosomes. This education from NK cells previously exposed to NB cell-derived exosomes caused efficient and greater cytotoxicity against NB tumors, but NB-derived exosomes act as tumor promoters by providing a tumor supporting niche. Hence, this method of preparing the exosomes has a dramatic effect on activation of anti-NK cells against NB cells.
Collapse
|
164
|
Clinical efficacy of percutaneous cryoablation combined with allogenic NK cell immunotherapy for advanced non-small cell lung cancer. Immunol Res 2018; 65:880-887. [PMID: 28508945 DOI: 10.1007/s12026-017-8927-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, the safety and clinical efficacy of cryosurgery combined with allogenic NK cell immunotherapy for the treatment of advanced non-small cell lung cancer (NSCLC) were evaluated. From July 2016 to March 2017, we enrolled 60 patients who met the enrollment criteria and divided them into two groups: (1) the simple cryoablation group (n = 30) and (2) the cryoablation combined with allogenic NK cell group (n = 30). The changes in immune function, quality of life, and clinical response were evaluated. We found that allogenic NK cells combined with cryosurgical treatment for advanced NSCLC have a synergistic effect, which not only enhancing the immune function of patients, improving the quality of life, and significantly increasing the response rate (RR) and disease control rate (DCR) compared to cryoablation group. This study is the first clinical trial of allogenic NK cells combined with cryosurgery for the treatment of advanced NSCLC and preliminaily its safety and efficacy.
Collapse
|
165
|
Schmidt S, Tramsen L, Rais B, Ullrich E, Lehrnbecher T. Natural killer cells as a therapeutic tool for infectious diseases - current status and future perspectives. Oncotarget 2018; 9:20891-20907. [PMID: 29755697 PMCID: PMC5945539 DOI: 10.18632/oncotarget.25058] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
Natural Killer (NK) cells are involved in the host immune response against infections due to viral, bacterial and fungal pathogens, all of which are a significant cause of morbidity and mortality in immunocompromised patients. Since the recovery of the immune system has a major impact on the outcome of an infectious complication, there is major interest in strengthening the host response in immunocompromised patients, either by using cytokines or growth factors or by adoptive cellular therapies transfusing immune cells such as granulocytes or pathogen-specific T-cells. To date, relatively little is known about the potential of adoptively transferring NK cells in immunocompromised patients with infectious complications, although the anti-cancer property of NK cells is already being investigated in the clinical setting. This review will focus on the antimicrobial properties of NK cells and the current standing and future perspectives of generating and using NK cells as immunotherapy in patients with infectious complications, an approach which is promising and might have an important clinical impact in the future.
Collapse
Affiliation(s)
- Stanislaw Schmidt
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Lars Tramsen
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Bushra Rais
- Division of Stem Cell Transplantation and Immunology, Laboratory for Cellular Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Evelyn Ullrich
- Division of Stem Cell Transplantation and Immunology, Laboratory for Cellular Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Thomas Lehrnbecher
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
166
|
Nham T, Poznanski SM, Fan IY, Shenouda MM, Chew MV, Lee AJ, Vahedi F, Karimi Y, Butcher M, Lee DA, Hirte H, Ashkar AA. Ex vivo-expanded NK cells from blood and ascites of ovarian cancer patients are cytotoxic against autologous primary ovarian cancer cells. Cancer Immunol Immunother 2018; 67:575-587. [PMID: 29299659 PMCID: PMC11028100 DOI: 10.1007/s00262-017-2112-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 12/25/2017] [Indexed: 12/20/2022]
Abstract
Ovarian cancer (OC) is the leading cause of gynecological cancer-related death in North America. Most ovarian cancer patients (OCPs) experience disease recurrence after first-line surgery and chemotherapy; thus, there is a need for novel second-line treatments to improve the prognosis of OC. Although peripheral blood-derived NK cells are known for their ability to spontaneously lyse tumour cells without prior sensitization, ascites-derived NK cells (ascites-NK cells) isolated from OCPs exhibit inhibitory phenotypes, impaired cytotoxicity and may play a pro-tumourigenic role in cancer progression. Therefore, it is of interest to improve the cytotoxic effector function of impaired OCP ascites-NK cells at the tumour environment. We investigated the efficacy of using an artificial APC-based ex vivo expansion technique to generate cytotoxic, expanded NK cells from previously impaired OCP ascites-NK cells, for use in an autologous model of NK cell immunotherapy. We are the first to obtain a log-scale expansion of OCP ascites-NK cells that upregulate the surface expression of activating receptors NKG2D, NKp30, NKp44, produce robust amounts of anti-tumour cytokines in the presence of OC cells and mediate direct tumour cytotoxicity against ascites-derived, primary OC cells obtained from autologous patients. Our findings demonstrate that it is possible to generate cytotoxic OCP ascites-NK cells from previously impaired OCP ascites-NK cells, which presents a promising immunotherapeutic target for the second-line treatment of OC. Future work should focus on evaluating the in vivo efficacy of autologous NK cell immunotherapy through the intraperitoneal delivery of NK cell expansion factors to a preclinical xenograft mouse model of human OC.
Collapse
Affiliation(s)
- Tina Nham
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Sophie M Poznanski
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Isabella Y Fan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Mira M Shenouda
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Marianne V Chew
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Amanda J Lee
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Fatemeh Vahedi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Yalda Karimi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Martin Butcher
- Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Dean A Lee
- The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Hal Hirte
- Division of Medical Oncology, Department of Oncology, Juravinski Cancer Centre, Hamilton, ON, Canada
| | - Ali A Ashkar
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
167
|
Adotevi O, Godet Y, Galaine J, Lakkis Z, Idirene I, Certoux JM, Jary M, Loyon R, Laheurte C, Kim S, Dormoy A, Pouthier F, Barisien C, Fein F, Tiberghien P, Pivot X, Valmary-Degano S, Ferrand C, Morel P, Delabrousse E, Borg C. In situ delivery of allogeneic natural killer cell (NK) combined with Cetuximab in liver metastases of gastrointestinal carcinoma: A phase I clinical trial. Oncoimmunology 2018; 7:e1424673. [PMID: 29721386 DOI: 10.1080/2162402x.2018.1424673] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/16/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023] Open
Abstract
Despite successful introduction of NK-based cellular therapy in the treatment of myeloid leukemia, the potential use of NK alloreactivity in solid malignancies is still elusive. We performed a phase I clinical trial to assess the safety and efficacy of in situ delivery of allogeneic NK cells combined with cetuximab in liver metastasis of gastrointestinal origin. The conditioning chemotherapy was administrated before the allogeneic NK cells injection via hepatic artery. Three escalating doses were tested (3.106, 8.106 and 12.106 NK cells/kg) following by a high-dose interleukin-2 (IL-2). Cetuximab was administered intravenously every week for 7 weeks. Nine patients with liver metastases of colorectal or pancreatic cancers were included, three per dose level. Hepatic artery injection was successfully performed in all patients with no report of dose-limiting toxicity. Two patients had febrile aplasia requiring a short-term antibiotherapy. Grade 3/4 anemia and thrombopenia were also observed related to the chemotherapy. Objective clinical responses were documented in 3 patients and among them 2 occurred in patients injected with cell products harboring two KIR ligand mismatches and one in a patient with one KIR ligand mismatch. Immune monitoring revealed that most patients presented an increase but transient of IL-15 and IL-7 cytokines levels one week after chemotherapy. Furthermore, a high expansion of FoxP3+regulatory T cells and PD-1+ T cells was observed in all patients, related to IL-2 administration. Our results demonstrated that combining allogeneic NK cells transfer via intra-hepatic artery, cetuximab and a high-dose IL-2 is feasible, well tolerated and may result in clinical responses.
Collapse
Affiliation(s)
- O Adotevi
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, F-25000 Besançon, France
| | - Y Godet
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - J Galaine
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Z Lakkis
- University Hospital of Besançon, Department of Gastrointestinal and liver surgery, F-25000 Besançon, France
| | - I Idirene
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - J M Certoux
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - M Jary
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, F-25000 Besançon, France
| | - R Loyon
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - C Laheurte
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,Etablissement Français du Sang Bourgogne Franche-Comté, plateforme de BioMonitoring, F-25000 Besançon, France.,INSERM CIC-1431, University Hospital of Besançon, Clinical Investigation Center in Biotherapy, F-25000, Besançon, France
| | - S Kim
- University Hospital of Besançon, Department of Medical Oncology, F-25000 Besançon, France
| | - A Dormoy
- Etablissement Français du Sang Bourgogne Franche-Comté, F-25000 Besançon, France
| | - F Pouthier
- Etablissement Français du Sang Bourgogne Franche-Comté, F-25000 Besançon, France
| | - C Barisien
- Etablissement Français du Sang Bourgogne Franche-Comté, F-25000 Besançon, France
| | - F Fein
- University Hospital of Besançon, Department of Gastroenterology, F-25000 Besançon, France
| | - P Tiberghien
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - X Pivot
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, F-25000 Besançon, France
| | - S Valmary-Degano
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,University Hospital of Besançon, Department of Pathology, F-25000 Besançon, France
| | - C Ferrand
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - P Morel
- Etablissement Français du Sang Bourgogne Franche-Comté, F-25000 Besançon, France
| | - E Delabrousse
- University Hospital of Besançon, Department of Radiology, F-25000, Besançon, France
| | - C Borg
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, F-25000 Besançon, France
| |
Collapse
|
168
|
Guo Y, Feng X, Jiang Y, Shi X, Xing X, Liu X, Li N, Fadeel B, Zheng C. PD1 blockade enhances cytotoxicity of in vitro expanded natural killer cells towards myeloma cells. Oncotarget 2018; 7:48360-48374. [PMID: 27356741 PMCID: PMC5217023 DOI: 10.18632/oncotarget.10235] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/03/2016] [Indexed: 01/12/2023] Open
Abstract
Aiming for an adoptive natural killer (NK) cell therapy, we have developed a novel protocol to expand NK cells from peripheral blood. With this protocol using anti-human CD16 antibody and interleukin (IL)-2, NK (CD3-CD56+) cells could be expanded about 4000-fold with over 70% purity during a 21-day culture. The expanded NK (exNK) cells were shown to be highly cytotoxic to multiple myeloma (MM) cells (RPMI8226) at low NK-target cell ratios. Furthermore, NK cells expanded in the presence of a blocking antibody (exNK+PD1-blockage) against programmed cell death protein-1 (PD1), a key counteracting molecule for NK and T cell activity, demonstrated more potent cytolytic activity against the RPMI8226 than the exNK cells without PD1 blocking. In parallel, the exNK cells showed significantly higher expression of NK activation receptors NKG2D, NKp44 and NKp30. In a murine model of MM, transfusion of exNK cells, exNK+PD1-blockage, and exNK plus intratumor injection of anti-PD-L2 antibody (exNK+PD-L2 blockage) all significantly suppressed tumor growth and prolonged survival of the myeloma mice. Importantly, exNK+PD1-blockage presented more efficient therapeutic effects. Our results suggest that the NK cell expansion protocol with PD1 blockade presented in this study has considerable potential for the clinical application of allo- and auto-NK cell-based therapies against malignancies.
Collapse
Affiliation(s)
- Yanan Guo
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoli Feng
- Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Clinical Laboratory Department of The Second Hospital, Shandong University, Jinan, China
| | - Yang Jiang
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoyun Shi
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China
| | - Xiangling Xing
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoli Liu
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China
| | - Nailin Li
- Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China.,Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Bengt Fadeel
- Karolinska Institutet, Institute of Environmental Medicine, Division of Molecular Toxicology, Stockholm, Sweden.,Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Chengyun Zheng
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China.,Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
169
|
Williams SM, Sumstad D, Kadidlo D, Curtsinger J, Luo X, Miller JS, McKenna DH. Clinical-scale production of cGMP compliant CD3/CD19 cell-depleted NK cells in the evolution of NK cell immunotherapy at a single institution. Transfusion 2018. [PMID: 29532488 DOI: 10.1111/trf.14564] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Allogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical-scale production of NK cells using immunomagnetic selection complies with current good manufacturing practices (cGMPs) and allows for closed-system, automated purification. We report our experience with CD3/CD19 cell-depleted (CD3/CD19dep ) NK cell production and compare to previous methods of CD3 cell depletion and CD3 cell depletion/CD56 cell enrichment. STUDY DESIGN AND METHODS Nonmobilized mononuclear cells collected by apheresis were incubated with anti-CD3/anti-CD19 microbeads and depleted in an automated cell selection system (CliniMACS, Miltenyi). The NK cell-enriched products were incubated overnight in interleukin (IL)-2 or IL-15, washed, and resuspended prior to lot release testing and infusion. RESULTS Since 2010, 94 freshly infusible CD3/CD19dep NK cell products were manufactured in support of eight clinical trials. Sixty-six products were incubated in IL-2 and 28 products in IL-15. Processing resulted in a mean NK cell recovery of 74% and viability of 95.8%; NK cells, T cells, B cells, and monocytes accounted for 47%, 0.2%, 0.08%, and 49% of the final products, respectively. Seven products required dose adjustments to meet lot release. The specification for purity changed throughout the evolution of manufacturing. IL-2 or IL-15 activation enhanced in vitro cytotoxicity compared to preactivated cells. There was no difference in final product composition or cytotoxicity between cytokine cohorts. CONCLUSION Clinical-scale/cGMP production of NK cells using CD3/CD19 cell-depletion effectively minimized T-cell and B-cell contamination in a single manipulation without compromise to NK-cell recovery. Cytokine activation increased in vitro cytotoxicity compared to column-depleted, preactivated NK cells.
Collapse
Affiliation(s)
- Shelly M Williams
- Department of Laboratory Medicine and Pathology, University of Minnesota, Saint Paul, Minnesota
| | - Darin Sumstad
- Molecular and Cellular Therapeutics, University of Minnesota, Saint Paul, Minnesota
| | - Diane Kadidlo
- Molecular and Cellular Therapeutics, University of Minnesota, Saint Paul, Minnesota
| | - Julie Curtsinger
- Masonic Cancer Center, University of Minnesota, Saint Paul, Minnesota
| | - Xianghua Luo
- Masonic Cancer Center, University of Minnesota, Saint Paul, Minnesota
| | - Jeffrey S Miller
- Masonic Cancer Center, University of Minnesota, Saint Paul, Minnesota.,Department of Medicine, University of Minnesota, Saint Paul, Minnesota
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Saint Paul, Minnesota.,Molecular and Cellular Therapeutics, University of Minnesota, Saint Paul, Minnesota
| |
Collapse
|
170
|
Mehta RS, Rezvani K. Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer. Front Immunol 2018; 9:283. [PMID: 29497427 PMCID: PMC5818392 DOI: 10.3389/fimmu.2018.00283] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Adoptive cell therapy has emerged as a powerful treatment for advanced cancers resistant to conventional agents. Most notable are the remarkable responses seen in patients receiving autologous CD19-redirected chimeric antigen receptor (CAR) T cells for the treatment of B lymphoid malignancies; however, the generation of autologous products for each patient is logistically cumbersome and has restricted widespread clinical use. A banked allogeneic product has the potential to overcome these limitations, yet allogeneic T-cells (even if human leukocyte antigen-matched) carry a major risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are bone marrow-derived innate lymphocytes that can eliminate tumors directly, with their activity governed by the integration of signals from activating and inhibitory receptors and from cytokines including IL-15, IL-12, and IL-18. NK cells do not cause GVHD or other alloimmune or autoimmune toxicities and thus, can provide a potential source of allogeneic “off-the-shelf” cellular therapy, mediating major anti-tumor effects without inducing potentially lethal alloreactivity such as GVHD. Given the multiple unique advantages of NK cells, researchers are now exploring the use of CAR-engineered NK cells for the treatment of various hematological and non-hematological malignancies. Herein, we review preclinical data on the development of CAR-NK cells, advantages, disadvantages, and current obstacles to their clinical use.
Collapse
|
171
|
Björklund AT, Carlsten M, Sohlberg E, Liu LL, Clancy T, Karimi M, Cooley S, Miller JS, Klimkowska M, Schaffer M, Watz E, Wikström K, Blomberg P, Wahlin BE, Palma M, Hansson L, Ljungman P, Hellström-Lindberg E, Ljunggren HG, Malmberg KJ. Complete Remission with Reduction of High-Risk Clones following Haploidentical NK-Cell Therapy against MDS and AML. Clin Cancer Res 2018; 24:1834-1844. [DOI: 10.1158/1078-0432.ccr-17-3196] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/08/2018] [Accepted: 01/30/2018] [Indexed: 11/16/2022]
|
172
|
Saudemont A, Jespers L, Clay T. Current Status of Gene Engineering Cell Therapeutics. Front Immunol 2018; 9:153. [PMID: 29459866 PMCID: PMC5807372 DOI: 10.3389/fimmu.2018.00153] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/17/2018] [Indexed: 12/27/2022] Open
Abstract
Ex vivo manipulations of autologous patient’s cells or gene-engineered cell therapeutics have allowed the development of cell and gene therapy approaches to treat otherwise incurable diseases. These modalities of personalized medicine have already shown great promises including product commercialization for some rare diseases. The transfer of a chimeric antigen receptor or T cell receptor genes into autologous T cells has led to very promising outcomes for some cancers, and particularly for hematological malignancies. In addition, gene-engineered cell therapeutics are also being explored to induce tolerance and regulate inflammation. Here, we review the latest gene-engineered cell therapeutic approaches being currently explored to induce an efficient immune response against cancer cells or viruses by engineering T cells, natural killer cells, gamma delta T cells, or cytokine-induced killer cells and to modulate inflammation using regulatory T cells.
Collapse
Affiliation(s)
| | | | - Timothy Clay
- GlaxoSmithKline, Collegeville, PA, United States
| |
Collapse
|
173
|
Zhu H, Lai YS, Li Y, Blum R, Kaufman D. Concise Review: Human Pluripotent Stem Cells to Produce Cell-Based Cancer Immunotherapy. Stem Cells 2018; 36:134-145. [PMID: 29235195 PMCID: PMC5914526 DOI: 10.1002/stem.2754] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/09/2017] [Accepted: 11/25/2017] [Indexed: 02/06/2023]
Abstract
Human pluripotent stem cells (PSCs) provide a promising resource to produce immune cells for adoptive cellular immunotherapy to better treat and potentially cure otherwise lethal cancers. Cytotoxic T cells and natural killer (NK) cells can now be routinely produced from human PSCs. These PSC-derived lymphocytes have phenotype and function similar to primary lymphocytes isolated from peripheral blood. PSC-derived T and NK cells have advantages compared with primary immune cells, as they can be precisely engineered to introduce improved anti-tumor activity and produced in essentially unlimited numbers. Stem Cells 2018;36:134-145.
Collapse
Affiliation(s)
- Huang Zhu
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| | - Yi-Shin Lai
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| | - Ye Li
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| | - Robert Blum
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| | - Dan Kaufman
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| |
Collapse
|
174
|
Deng W, Qiu J, Wang S, Yuan Z, Jia Y, Tan H, Lu J, Zheng R. Development of biocompatible and VEGF-targeted paclitaxel nanodrugs on albumin and graphene oxide dual-carrier for photothermal-triggered drug delivery in vitro and in vivo. Int J Nanomedicine 2018; 13:439-453. [PMID: 29403275 PMCID: PMC5777379 DOI: 10.2147/ijn.s150977] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this study, we performed the characterization and synthesis of biocompatible and targeted albumin and graphene oxide (GO) dual-carrier paclitaxel (PTX) nanoparticles for photothermal-triggered tumor therapy. PTX absorbed on GO nanosheets as cores were coated with human serum albumin (HSA), following surface conjugation with monoclonal antibodies (mAb) against vascular endothelial growth factor (VEGF; denoted as mAbVEGF) via polyethylene glycol linker to form targeted nanoparticles (PTX-GHP-VEGF). The spherical nanoparticles were 191±5 nm in size with good stability and biocompatibility. GO functioned as the first carrier and a near infrared absorber that can generate photothermal effects under 5-minute 808-nm laser irradiation to thermal trigger the release of PTX from the second carrier HSA nanoparticles. The mechanism of thermal-triggered drug release was also investigated preliminarily, in which the heat generated by GO induced swelling of PTX-GHP-VEGF nanoparticles which released the drugs. In vitro studies found that PTX-GHP-VEGF can efficiently target human SW-13 adrenocortical carcinoma cells as evaluated by confocal fluorescence microscopy as well as transmission electron microscopy, and showed an obvious thermal-triggered antitumor effect, mediated by apoptosis. Moreover, PTX-GHP-VEGF combined with near infrared irradiation showed specific tumor suppression effects with high survival rate after 100 days of treatment. PTX-GHP-VEGF also demonstrated high biosafety with no adverse effects on normal tissues and organs. These results highlight the remarkable potential of PTX-GHP-VEGF in photothermal controllable tumor treatment.
Collapse
Affiliation(s)
- Wentao Deng
- Department of Urinary Surgery, Dongying People’s Hospital, Dongying
| | - Juhui Qiu
- Department of Urinary Surgery, Dongying People’s Hospital, Dongying
| | - Shaoting Wang
- Department of Urinary Surgery, Dongying People’s Hospital, Dongying
| | - Zhi Yuan
- Department of Urinary Surgery, Dongying People’s Hospital, Dongying
| | - Yuefeng Jia
- Department of Urinary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hailin Tan
- Department of Urinary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jiru Lu
- Department of Urinary Surgery, Dongying People’s Hospital, Dongying
| | - Ruqiang Zheng
- Department of Urinary Surgery, Dongying People’s Hospital, Dongying
| |
Collapse
|
175
|
Uppendahl LD, Dahl CM, Miller JS, Felices M, Geller MA. Natural Killer Cell-Based Immunotherapy in Gynecologic Malignancy: A Review. Front Immunol 2018; 8:1825. [PMID: 29354116 PMCID: PMC5760535 DOI: 10.3389/fimmu.2017.01825] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022] Open
Abstract
Harnessing the immune system has proven an effective therapy in treating malignancies. Since the discovery of natural killer (NK) cells, strategies aimed to manipulate and augment their effector function against cancer have been the subject of intense research. Recent progress in the immunobiology of NK cells has led to the development of promising therapeutic approaches. In this review, we will focus on the recent advances in NK cell immunobiology and the clinical application of NK cell immunotherapy in ovarian, cervical, and uterine cancer.
Collapse
Affiliation(s)
- Locke D Uppendahl
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Carly M Dahl
- University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Melissa A Geller
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| |
Collapse
|
176
|
Abstract
Cancer immunotherapies, widely heralded as transformational for many adult cancer patients, are becoming viable options for selected subsets of pediatric cancer patients. Many therapies are currently being investigated, from immunomodulatory agents to adoptive cell therapy, bispecific T-cell engagers, oncolytic virotherapy, and checkpoint inhibition. One of the most exciting immunotherapies recently FDA approved is the use of CD19 chimeric antigen receptor T cells for pre-B-cell acute lymphoblastic leukemia. With this approval and others, immunotherapy for pediatric cancers is gaining traction. One of the caveats to many of these immunotherapies is the challenge of predictive biomarkers; determining which patients will respond to a given therapy is not yet possible. Much research is being focused on which biomarkers will be predictive and prognostic for these patients. Despite many benefits of immunotherapy, including less long-term side effects, some treatments are fraught with immediate side effects that range from mild to severe, although most are manageable. With few downsides and the potential for disease cures, immunotherapy in the pediatric population has the potential to move to the front-line of therapeutic options.
Collapse
Affiliation(s)
- Mary Frances Wedekind
- 0000 0001 2285 7943grid.261331.4Division of Pediatric Hematology/Oncology/Bone and Marrow Transplant, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA ,0000 0001 2285 7943grid.261331.4Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Research Bldg II, Columbus, OH 43205 USA
| | - Nicholas L. Denton
- 0000 0001 2285 7943grid.261331.4Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Research Bldg II, Columbus, OH 43205 USA
| | - Chun-Yu Chen
- 0000 0001 2285 7943grid.261331.4Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Research Bldg II, Columbus, OH 43205 USA
| | - Timothy P. Cripe
- 0000 0001 2285 7943grid.261331.4Division of Pediatric Hematology/Oncology/Bone and Marrow Transplant, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA ,0000 0001 2285 7943grid.261331.4Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Research Bldg II, Columbus, OH 43205 USA
| |
Collapse
|
177
|
Wang W, Xia X, Wu S, Guo M, Lie P, He J. Cancer immunotherapy: A need for peripheral immunodynamic monitoring. Am J Reprod Immunol 2017; 79:e12793. [PMID: 29288509 DOI: 10.1111/aji.12793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/07/2017] [Indexed: 01/08/2023] Open
Abstract
Immunotherapy has become an important approach for treating different tumours which has shown significant efficacy in numerous clinical trials, especially those using new checkpoint inhibitors and adoptive cell therapy, which have rapidly become widespread after being approved. However, analysis of peripheral immune biomarkers before and after immunotherapy and their relationship to clinical responses and disease prognosis have rarely been performed in clinical trials. In this review, we examine dynamic changes in the immune system before and after therapy by analyzing recent clinical trials of immunotherapy in patients with cancer that focused on checkpoint inhibitors and adoptive cell therapy. Our aim was to identify circulating biomarkers which can specifically predict clinical response and prognosis, as well as toxicities of immunotherapy. Through this approach, we hope to advance our understanding of the mechanisms of immunotherapy with the goal of developing individualized treatment for cancer patients.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojun Xia
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sipei Wu
- Academy of Medical Sciences of Guangdong Province, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Minzhang Guo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Puyi Lie
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
178
|
Engineering Hematopoietic Cells for Cancer Immunotherapy: Strategies to Address Safety and Toxicity Concerns. J Immunother 2017; 39:249-59. [PMID: 27488725 DOI: 10.1097/cji.0000000000000134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advances in cancer immunotherapies utilizing engineered hematopoietic cells have recently generated significant clinical successes. Of great promise are immunotherapies based on chimeric antigen receptor-engineered T (CAR-T) cells that are targeted toward malignant cells expressing defined tumor-associated antigens. CAR-T cells harness the effector function of the adaptive arm of the immune system and redirect it against cancer cells, overcoming the major challenges of immunotherapy, such as breaking tolerance to self-antigens and beating cancer immune system-evasion mechanisms. In early clinical trials, CAR-T cell-based therapies achieved complete and durable responses in a significant proportion of patients. Despite clinical successes and given the side effect profiles of immunotherapies based on engineered cells, potential concerns with the safety and toxicity of various therapeutic modalities remain. We discuss the concerns associated with the safety and stability of the gene delivery vehicles for cell engineering and with toxicities due to off-target and on-target, off-tumor effector functions of the engineered cells. We then overview the various strategies aimed at improving the safety of and resolving toxicities associated with cell-based immunotherapies. Integrating failsafe switches based on different suicide gene therapy systems into engineered cells engenders promising strategies toward ensuring the safety of cancer immunotherapies in the clinic.
Collapse
|
179
|
Li Q, Huang Q, Huyan T, Wang Y, Huang Q, Shi J. Bifacial effects of engineering tumour cell-derived exosomes on human natural killer cells. Exp Cell Res 2017; 363:141-150. [PMID: 29269076 DOI: 10.1016/j.yexcr.2017.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/03/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are nano vesicular structures that are secreted by almost all kinds of cells. Exosomes are small EVs derived from endosomes, with a diameter between 30-100nm. Tumour-derived exosomes carry many molecules and factors from tumour cells. These exosomes are recognized and taken up by immunocytes. However, tumour-derived exosomes can not only suppress immune cell functions but also help tumours escape immune surveillance in the tumour microenvironment. The present work investigated the effect of exosomes derived from genetical modified K562 cells (GMK cells), which express IL-15, IL-18 and 4-1BBL (TNFSF9) on their surface. The results showed that these GME exosomes, carrying IL-15, IL-18 and 4-1BBL proteins similar to their host cells, could activate NK cells, increase the cytotoxicity of NK cells on some tumour cells in a short treatment (4h) and promote NK cells proliferation. However, with an extended treatment time (48h), these exosomes could inhibite the cytotoxicity of NK cells by inhibiting activated receptor expression on NK cells. These results indicated the bifacial effects of GMK exosomes on NK cells, which will be helpful to explore the possibility of using transformed exosomes as an anti-tumour immune vaccine or a therapeutic tool in future.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China.
| | - Qiuping Huang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| | - Ting Huyan
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| | - Yilin Wang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| |
Collapse
|
180
|
Ewen EM, Pahl JHW, Miller M, Watzl C, Cerwenka A. KIR downregulation by IL-12/15/18 unleashes human NK cells from KIR/HLA-I inhibition and enhances killing of tumor cells. Eur J Immunol 2017; 48:355-365. [PMID: 29105756 DOI: 10.1002/eji.201747128] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/27/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
To exploit autologous NK cells for cancer immunotherapy, it is highly relevant to circumvent killer cell immunoglobulin-like receptor (KIR)-mediated self-inhibition of human NK cells by HLA-I-expressing tumor cells. Here, we show that stimulation of NK cells with IL-12/15/18 for two days led to downregulation of surface expression of the inhibitory KIR2DL2/L3, KIR2DL1 and KIR3DL1 receptors on peripheral blood NK cells. Downregulation of KIR expression was attributed to decreased KIR mRNA levels which could be re-induced already 3 days after re-culture in IL-2. Reduced KIR2DL2/L3 expression on IL-12/15/18-activated NK cells resulted in less inhibition upon antibody-mediated KIR engagement and increased CD16-dependent cytotoxicity in redirected lysis assays. Most importantly, downregulated KIR2DL2/L3 expression enabled enhanced cytotoxicity of IL-12/15/18-stimulated NK cells against tumor cells expressing cognate HLA-I molecules. NK cells pre-activated with IL-12/15/18 were previously shown to exert potent anti-tumor activity and memory-like long-lived functionality, mediating remission in a subset of acute myeloid leukemia (AML) patients in a clinical trial. Our study reveals a novel mechanism of IL-12/15/18 in improving the cytotoxicity of NK cells by reducing their sensitivity to inhibition by self-HLA-I due to decreased KIR expression, highlighting the potency of IL-12/15/18-activated NK cells for anti-tumor immunotherapy protocols.
Collapse
Affiliation(s)
- Eva-Maria Ewen
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens H W Pahl
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Immunobiochemistry, Medical Faculty Mannheim, University Heidelberg, Germany
| | - Matthias Miller
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carsten Watzl
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Germany
| | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Immunobiochemistry, Medical Faculty Mannheim, University Heidelberg, Germany
| |
Collapse
|
181
|
Hammerl D, Smid M, Timmermans AM, Sleijfer S, Martens JWM, Debets R. Breast cancer genomics and immuno-oncological markers to guide immune therapies. Semin Cancer Biol 2017; 52:178-188. [PMID: 29104025 DOI: 10.1016/j.semcancer.2017.11.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/28/2022]
Abstract
There is an increasing awareness of the importance of tumor - immune cell interactions to the evolution and therapy responses of breast cancer (BC). Not surprisingly, numerous studies are currently assessing the clinical value of immune modulation for BC patients. However, till now durable clinical responses are only rarely observed. It is important to realize that BC is a heterogeneous disease comprising several histological and molecular subtypes, which cannot be expected to be equally immunogenic and therefore not equally sensitive to single immune therapies. Here we review the characteristics of infiltrating leukocytes in healthy and malignant breast tissue, the prognostic and predictive values of immune cell subsets across different BC subtypes and the various existing immune evasive mechanisms. Furthermore, we describe the presence of certain groups of antigens as putative targets for treatment, evaluate the outcomes of current clinical immunotherapy trials, and finally, we propose a strategy to better implement immuno-oncological markers to guide future immune therapies in BC.
Collapse
Affiliation(s)
- D Hammerl
- Department of Medical Oncology, Erasmus MC - Cancer Institute, Rotterdam, the Netherlands
| | - M Smid
- Department of Medical Oncology, Erasmus MC - Cancer Institute, Rotterdam, the Netherlands
| | - A M Timmermans
- Department of Medical Oncology, Erasmus MC - Cancer Institute, Rotterdam, the Netherlands
| | - S Sleijfer
- Department of Medical Oncology, Erasmus MC - Cancer Institute, Rotterdam, the Netherlands
| | - J W M Martens
- Department of Medical Oncology, Erasmus MC - Cancer Institute, Rotterdam, the Netherlands
| | - R Debets
- Department of Medical Oncology, Erasmus MC - Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
182
|
Jounaidi Y, Cotten JF, Miller KW, Forman SA. Tethering IL2 to Its Receptor IL2Rβ Enhances Antitumor Activity and Expansion of Natural Killer NK92 Cells. Cancer Res 2017; 77:5938-5951. [PMID: 28916655 PMCID: PMC6204197 DOI: 10.1158/0008-5472.can-17-1007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/01/2017] [Accepted: 09/08/2017] [Indexed: 11/16/2022]
Abstract
IL2 is an immunostimulatory cytokine for key immune cells including T cells and natural killer (NK) cells. Systemic IL2 supplementation could enhance NK-mediated immunity in a variety of diseases ranging from neoplasms to viral infection. However, its systemic use is restricted by its serious side effects and limited efficacy due to activation of T regulatory cells (Tregs). IL2 signaling is mediated through interactions with a multi-subunit receptor complex containing IL2Rα, IL2Rβ, and IL2Rγ. Adult natural killer (NK) cells express only IL2Rβ and IL2Rγ subunits and are therefore relatively insensitive to IL2. To overcome these limitations, we created a novel chimeric IL2-IL2Rβ fusion protein of IL2 and its receptor IL2Rβ joined via a peptide linker (CIRB). NK92 cells expressing CIRB (NK92CIRB) were highly activated and expanded indefinitely without exogenous IL2. When compared with an IL2-secreting NK92 cell line, NK92CIRB were more activated, cytotoxic, and resistant to growth inhibition. Direct contact with cancer cells enhanced the cytotoxic character of NK92CIRB cells, which displayed superior in vivo antitumor effects in mice. Overall, our results showed how tethering IL2 to its receptor IL2Rβ eliminates the need for IL2Rα and IL2Rβ, offering a new tool to selectively activate and empower immune therapy. Cancer Res; 77(21); 5938-51. ©2017 AACR.
Collapse
Affiliation(s)
- Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Joseph F Cotten
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Keith W Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
183
|
Liang S, Niu L, Xu K, Wang X, Liang Y, Zhang M, Chen J, Lin M. Tumor cryoablation in combination with natural killer cells therapy and Herceptin in patients with HER2-overexpressing recurrent breast cancer. Mol Immunol 2017; 92:45-53. [PMID: 29040918 DOI: 10.1016/j.molimm.2017.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022]
Abstract
In this study, we investigated the clinical benefits of a combination of tumor cryoablation with natural killer (NK) cells therapy and Herceptin for human epidermal growth factor (HER) 2-overexpressing recurrent breast cancer. From May 2015 to May 2016, 48 patients who met the enrollment criteria were assigned to three groups (n=16): cryoablation group (group I), cryoablation-NK cells therapy group (group II) and cryoablation-NK cells therapy-Herceptin group (group III). Safety and short-term effects were evaluated. All the adverse effects were manageable and acceptable. The three-therapy combination treatment not only yielded good clinical efficacy, it also improved the quality of life; reduced levels of circulating tumor cells (CTCs); reduced carcino-embryonic antigen (CEA) and cancer antigen 15-3 (CA15-3) expression; enhanced immune function significantly. Furthermore, it can resulte in significant prolongation of progression free survival (PFS). This is the first clinical study to demonstrate the benefit of the three-therapy combination of tumor cryoablation, NK cells therapy, and Herceptin for HER2-overexpressing recurrent breast cancer.
Collapse
Affiliation(s)
- Shuzhen Liang
- Department of Biological Treatment Center, Fuda Cancer Hospital, Jinan University School of Medicine, No 2, Tangde Xi Road, Tianhe District, Guangzhou, China; Fuda Cancer Institute, No 2,Tangde Xi Road, Tianhe District, Guangzhou, China
| | - Lizhi Niu
- Department of Biological Treatment Center, Fuda Cancer Hospital, Jinan University School of Medicine, No 2, Tangde Xi Road, Tianhe District, Guangzhou, China; Fuda Cancer Institute, No 2,Tangde Xi Road, Tianhe District, Guangzhou, China
| | - Kecheng Xu
- Department of Biological Treatment Center, Fuda Cancer Hospital, Jinan University School of Medicine, No 2, Tangde Xi Road, Tianhe District, Guangzhou, China; Fuda Cancer Institute, No 2,Tangde Xi Road, Tianhe District, Guangzhou, China
| | - Xiaohua Wang
- Department of Biological Treatment Center, Fuda Cancer Hospital, Jinan University School of Medicine, No 2, Tangde Xi Road, Tianhe District, Guangzhou, China
| | - Yingqing Liang
- Department of Biological Treatment Center, Fuda Cancer Hospital, Jinan University School of Medicine, No 2, Tangde Xi Road, Tianhe District, Guangzhou, China
| | - Mingjie Zhang
- Hank Bioengineering Co., Ltd, Shenzhen, No 72, Guowei Road, Luohu District, Shenzhen, China
| | - Jibing Chen
- Department of Biological Treatment Center, Fuda Cancer Hospital, Jinan University School of Medicine, No 2, Tangde Xi Road, Tianhe District, Guangzhou, China; Fuda Cancer Institute, No 2,Tangde Xi Road, Tianhe District, Guangzhou, China.
| | - Mao Lin
- Department of Biological Treatment Center, Fuda Cancer Hospital, Jinan University School of Medicine, No 2, Tangde Xi Road, Tianhe District, Guangzhou, China; Fuda Cancer Institute, No 2,Tangde Xi Road, Tianhe District, Guangzhou, China.
| |
Collapse
|
184
|
Kremer V, Ligtenberg MA, Zendehdel R, Seitz C, Duivenvoorden A, Wennerberg E, Colón E, Scherman-Plogell AH, Lundqvist A. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma. J Immunother Cancer 2017; 5:73. [PMID: 28923105 PMCID: PMC5604543 DOI: 10.1186/s40425-017-0275-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/14/2017] [Indexed: 11/15/2022] Open
Abstract
Background Adoptive natural killer (NK) cell transfer is being increasingly used as cancer treatment. However, clinical responses have so far been limited to patients with hematological malignancies. A potential limiting factor in patients with solid tumors is defective homing of the infused NK cells to the tumor site. Chemokines regulate the migration of leukocytes expressing corresponding chemokine receptors. Various solid tumors, including renal cell carcinoma (RCC), readily secrete ligands for the chemokine receptor CXCR2. We hypothesize that infusion of NK cells expressing high levels of the CXCR2 chemokine receptor will result in increased influx of the transferred NK cells into tumors, and improved clinical outcome in patients with cancer. Methods Blood and tumor biopsies from 14 primary RCC patients were assessed by flow cytometry and chemokine analysis. Primary NK cells were transduced with human CXCR2 using a retroviral system. CXCR2 receptor functionality was determined by Calcium flux and NK cell migration was evaluated in transwell assays. Results We detected higher concentrations of CXCR2 ligands in tumors compared with plasma of RCC patients. In addition, CXCL5 levels correlated with the intratumoral infiltration of CXCR2-positive NK cells. However, tumor-infiltrating NK cells from RCC patients expressed lower CXCR2 compared with peripheral blood NK cells. Moreover, healthy donor NK cells rapidly lost their CXCR2 expression upon in vitro culture and expansion. Genetic modification of human primary NK cells to re-express CXCR2 improved their ability to specifically migrate along a chemokine gradient of recombinant CXCR2 ligands or RCC tumor supernatants compared with controls. The enhanced trafficking resulted in increased killing of target cells. In addition, while their functionality remained unchanged compared with control NK cells, CXCR2-transduced NK cells obtained increased adhesion properties and formed more conjugates with target cells. Conclusions To increase the success of NK cell-based therapies of solid tumors, it is of great importance to promote their homing to the tumor site. In this study, we show that stable engineering of human primary NK cells to express a chemokine receptor thereby enhancing their migration is a promising strategy to improve anti-tumor responses following adoptive transfer of NK cells. Electronic supplementary material The online version of this article (doi:10.1186/s40425-017-0275-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Veronika Kremer
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Maarten A Ligtenberg
- Department of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Rosa Zendehdel
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Christina Seitz
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Erik Wennerberg
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Eugenia Colón
- Department of Oncology-Pathology, Stockholm South General Hospital, Stockholm, Sweden.,Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden
| | | | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. .,Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
185
|
Paul S, Lal G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Front Immunol 2017; 8:1124. [PMID: 28955340 PMCID: PMC5601256 DOI: 10.3389/fimmu.2017.01124] [Citation(s) in RCA: 467] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells that show strong cytolytic function against physiologically stressed cells such as tumor cells and virus-infected cells. NK cells show a broad array of tissue distribution and phenotypic variability. NK cells express several activating and inhibitory receptors that recognize the altered expression of proteins on target cells and control the cytolytic function. NK cells have been used in several clinical trials to control tumor growth. However, the results are encouraging only in hematological malignancies but not very promising in solid tumors. Increasing evidence suggests that tumor microenvironment regulate the phenotype and function of NK cells. In this review, we discussed the NK cell phenotypes and its effector function and impact of the tumor microenvironment on effector and cytolytic function of NK cells. We also summarized various NK cell-based immunotherapeutic strategies used in the past and the possibilities to improve the function of NK cell for the better clinical outcome.
Collapse
Affiliation(s)
- Sourav Paul
- National Centre for Cell Science, Pune, India
| | | |
Collapse
|
186
|
Martín-Antonio B, Suñe G, Perez-Amill L, Castella M, Urbano-Ispizua A. Natural Killer Cells: Angels and Devils for Immunotherapy. Int J Mol Sci 2017; 18:ijms18091868. [PMID: 28850071 PMCID: PMC5618517 DOI: 10.3390/ijms18091868] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years, the relevance of the immune system to fight cancer has led to the development of immunotherapy, including the adoptive cell transfer of immune cells, such as natural killer (NK) cells and chimeric antigen receptors (CAR)-modified T cells. The discovery of donor NK cells’ anti-tumor activity in acute myeloid leukemia patients receiving allogeneic stem cell transplantation (allo-SCT) was the trigger to conduct many clinical trials infusing NK cells. Surprisingly, many of these studies did not obtain optimal results, suggesting that many different NK cell parameters combined with the best clinical protocol need to be optimized. Various parameters including the high array of activating receptors that NK cells have, the source of NK cells selected to treat patients, different cytotoxic mechanisms that NK cells activate depending on the target cell and tumor cell survival mechanisms need to be considered before choosing the best immunotherapeutic strategy using NK cells. In this review, we will discuss these parameters to help improve current strategies using NK cells in cancer therapy. Moreover, the chimeric antigen receptor (CAR) modification, which has revolutionized the concept of immunotherapy, will be discussed in the context of NK cells. Lastly, the dark side of NK cells and their involvement in inflammation will also be discussed.
Collapse
Affiliation(s)
- Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.
| | - Guillermo Suñe
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.
| | - Lorena Perez-Amill
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Maria Castella
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.
| | - Alvaro Urbano-Ispizua
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.
| |
Collapse
|
187
|
Liang S, Xu K, Niu L, Wang X, Liang Y, Zhang M, Chen J, Lin M. Comparison of autogeneic and allogeneic natural killer cells immunotherapy on the clinical outcome of recurrent breast cancer. Onco Targets Ther 2017; 10:4273-4281. [PMID: 28894383 PMCID: PMC5584889 DOI: 10.2147/ott.s139986] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the present study, we aimed to compare the clinical outcome of autogeneic and allogeneic natural killer (NK) cells immunotherapy for the treatment of recurrent breast cancer. Between July 2016 and February 2017, 36 patients who met the enrollment criteria were randomly assigned to two groups: autogeneic NK cells immunotherapy group (group I, n=18) and allogeneic NK cells immunotherapy group (group II, n=18). The clinical efficacy, quality of life, immune function, circulating tumor cell (CTC) level, and other related indicators were evaluated. We found that allogeneic NK cells immunotherapy has better clinical efficacy than autogeneic therapy. Moreover, allogeneic NK cells therapy improves the quality of life, reduces the number of CTCs, reduces carcinoembryonic antigen and cancer antigen 15-3 (CA15-3) expression, and significantly enhances immune function. To our knowledge, this is the first clinical trial to compare the clinical outcome of autogeneic and allogeneic NK cells immunotherapy for recurrent breast cancer.
Collapse
Affiliation(s)
- Shuzhen Liang
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou, Guangdong, China.,Fuda Cancer Institute, Guangzhou, Guangdong, China
| | - Kecheng Xu
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou, Guangdong, China.,Fuda Cancer Institute, Guangzhou, Guangdong, China
| | - Lizhi Niu
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou, Guangdong, China.,Fuda Cancer Institute, Guangzhou, Guangdong, China
| | - Xiaohua Wang
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou, Guangdong, China
| | - Yingqing Liang
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou, Guangdong, China
| | | | - Jibing Chen
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou, Guangdong, China.,Fuda Cancer Institute, Guangzhou, Guangdong, China
| | - Mao Lin
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou, Guangdong, China.,Fuda Cancer Institute, Guangzhou, Guangdong, China
| |
Collapse
|
188
|
Guerra AD, Yeung OW, Qi X, Kao WJ, Man K. The Anti-Tumor Effects of M1 Macrophage-Loaded Poly (ethylene glycol) and Gelatin-Based Hydrogels on Hepatocellular Carcinoma. Am J Cancer Res 2017; 7:3732-3744. [PMID: 29109772 PMCID: PMC5667344 DOI: 10.7150/thno.20251] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022] Open
Abstract
Background and Aims: Recently we reported that direct injection of M1 macrophages significantly caused tumor regression in vivo. Despite the promising result, a major limitation in translating this approach is the induction of acute inflammatory response. To improve the strategy, a biocompatible scaffold for cell presentation and support is essential to control cell fate. Here, we aimed to elucidate the anti-tumor effects of a poly(ethylene glycol) diacrylate (PEGdA) and thiolated gelatin poly(ethylene glycol) (Gel-PEG-Cys) cross-linked hydrogels capsulated with M1 macrophages in both in vitro and in vivo disease models. Methods: Hydrogels were made at 0.5% (w/v) Iragcure 2959 photoinitiator, 10% (w/v) PEGdA, and 10% (w/v) Gel-PEG-Cys. Monocytic THP-1 cells were loaded into hydrogels and differentiated into M1 macrophages with lipopolysaccharide (LPS) and interferon gamma (IFN-γ). The M1 hydrogels were then cocultivated with HCC cell-lines Hep3B and MHCC97L to investigate the anti-tumor capacities and the associated molecular profiles in vitro. A nude mice ectopic liver cancer model with dorsal window chamber (DWC) and a subcutaneous tumor model were both performed to validate the in vivo application of M1 hydrogels. Results: M1 hydrogels significantly decreased the viability of HCC cells (MHCC97L: -46%; Hep3B: -56.9%; P<0.05) compared to the control in vitro. In response to HCC cells, the hydrogel embedded M1 macrophages up-regulated nitrite and tumor necrosis factor alpha (TNF-α) activating caspase-3 induced apoptosis in the tumor cells. Increased tumor necrosis was observed in DWC filled with M1 hydrogels. In addition, mice treated with M1 hydrogels exhibited a significant 2.4-fold decrease in signal intensity of subcutaneous HCC tumor compared to control (P=0.036). Conclusion: M1 hydrogels induced apoptosis in HCC cells and tumor regression in vivo. Continuous development of the scaffold-based cancer immunotherapy may provide an alternative and innovative strategy against HCC.
Collapse
|
189
|
Zhu L, Li XJ, Kalimuthu S, Gangadaran P, Lee HW, Oh JM, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. Natural Killer Cell (NK-92MI)-Based Therapy for Pulmonary Metastasis of Anaplastic Thyroid Cancer in a Nude Mouse Model. Front Immunol 2017; 8:816. [PMID: 28785259 PMCID: PMC5519537 DOI: 10.3389/fimmu.2017.00816] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022] Open
Abstract
Objective Natural killer (NK) cells represent the third largest population of lymphocytes, and they play an important role in immune surveillance against tumors. The lungs are a common metastatic site for anaplastic thyroid cancer (ATC), and metastasis is one of the most frequent causes of mortality in this type of cancer. In the current study, we evaluated the effects of NK cell-based immunotherapy for pulmonary metastasis of ATC and determined how it affects the effector molecules of NK cells. Methods Human NK cells (NK-92MI) were retrovirally transduced to express the effluc gene. Human ATC cells (CAL-62) were transduced with the effluc and Rluc genes. The cytotoxicity of NK cells against CAL-62 cells was assessed using the CytoTox 96® Non-Radioactive Cytotoxicity Assay system. Pulmonary metastases of ATC were developed by i.v. injection of CAL-62, and metastasis growth was monitored using bioluminescence imaging (BLI). To treat the metastases, five million NK-92MI cells were injected twice into the caudal vein of nude mice. To assess the targetability of NK cells to ATC tumors, NK-92MI cells expressing the effluc gene (NK/F) were administered through the tail vein of nude mice with a pulmonary metastasis or tumor xenograft. BLI was subsequently performed at 1, 3, 24, and 48 h. Results NK/F and CAL-62 cells expressing the effluc or Rluc gene (CAL-62/F, CAL-62/R) were successfully established. Expression of the effluc and Rluc genes in NK/F, CAL-62/F, and CAL-62/R cells was verified by RT-polymerase chain reaction, western blotting, and luciferase assay. After coculture of NK-92MI and CAL-62/F cells for 24 h, the BLI signal intensity of CAL-62/F cells proportionally decreased with the number of cocultured NK cells. An ATC pulmonary metastasis mouse model was successfully generated, and NK cells significantly inhibited the growth of the metastasis (p < 0.01). The NK/F cells exhibited targetability to the pulmonary metastasis and tumor xenograft in the mouse model. Conclusion The results of present study suggest that NK cells are able to target ATC tumors and that NK cell-based immunotherapy may serve as an effective therapeutic approach for pulmonary metastases of ATC.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Xiu Juan Li
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea.,Department of Radiology, Taian City Central Hospital, Taian, China
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
190
|
Short-term clinical efficacy of percutaneous irreversible electroporation combined with allogeneic natural killer cell for treating metastatic pancreatic cancer. Immunol Lett 2017; 186:20-27. [DOI: 10.1016/j.imlet.2017.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023]
|
191
|
Fang F, Xiao W, Tian Z. NK cell-based immunotherapy for cancer. Semin Immunol 2017; 31:37-54. [DOI: 10.1016/j.smim.2017.07.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022]
|
192
|
Veluchamy JP, Kok N, van der Vliet HJ, Verheul HMW, de Gruijl TD, Spanholtz J. The Rise of Allogeneic Natural Killer Cells As a Platform for Cancer Immunotherapy: Recent Innovations and Future Developments. Front Immunol 2017; 8:631. [PMID: 28620386 PMCID: PMC5450018 DOI: 10.3389/fimmu.2017.00631] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are critical immune effector cells in the fight against cancer. As NK cells in cancer patients are highly dysfunctional and reduced in number, adoptive transfer of large numbers of cytolytic NK cells and their potential to induce relevant antitumor responses are widely explored in cancer immunotherapy. Early studies from autologous NK cells have failed to demonstrate significant clinical benefit. In this review, the clinical benefits of adoptively transferred allogeneic NK cells in a transplant and non-transplant setting are compared and discussed in the context of relevant NK cell platforms that are being developed and optimized by various biotech industries with a special focus on augmenting NK cell functions.
Collapse
Affiliation(s)
- John P Veluchamy
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands.,Glycostem Therapeutics, Oss, Netherlands
| | - Nina Kok
- Glycostem Therapeutics, Oss, Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
193
|
Wang W, Erbe AK, DeSantes KB, Sondel PM. Donor selection for ex vivo-expanded natural killer cells as adoptive cancer immunotherapy. Future Oncol 2017; 13:1043-1047. [PMID: 28492088 DOI: 10.2217/fon-2017-0039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Wei Wang
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Amy K Erbe
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | | | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA.,Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
194
|
Hoogstad-van Evert JS, Cany J, van den Brand D, Oudenampsen M, Brock R, Torensma R, Bekkers RL, Jansen JH, Massuger LF, Dolstra H. Umbilical cord blood CD34 + progenitor-derived NK cells efficiently kill ovarian cancer spheroids and intraperitoneal tumors in NOD/SCID/IL2Rg null mice. Oncoimmunology 2017; 6:e1320630. [PMID: 28919991 PMCID: PMC5593716 DOI: 10.1080/2162402x.2017.1320630] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
Adoptive transfer of allogeneic natural killer (NK) cells is an attractive therapy approach against ovarian carcinoma. Here, we evaluated the potency of highly active NK cells derived from human CD34+ haematopoietic stem and progenitor cells (HSPC) to infiltrate and mediate killing of human ovarian cancer spheroids using an in vivo-like model system and mouse xenograft model. These CD56+Perforin+ HSPC-NK cells were generated under stroma-free conditions in the presence of StemRegenin-1, IL-15, and IL-12, and exerted efficient cytolytic activity and IFNγ production toward ovarian cancer monolayer cultures. Live-imaging confocal microscopy demonstrated that these HSPC-NK cells actively migrate, infiltrate, and mediate tumor cell killing in a three-dimensional multicellular ovarian cancer spheroid. Infiltration of up to 30% of total HSPC-NK cells within 8 h resulted in robust tumor spheroid destruction. Furthermore, intraperitoneal HSPC-NK cell infusions in NOD/SCID-IL2Rγnull (NSG) mice bearing ovarian carcinoma significantly reduced tumor progression. These findings demonstrate that highly functional HSPC-NK cells efficiently destruct ovarian carcinoma spheroids in vitro and kill intraperitoneal ovarian tumors in vivo, providing great promise for effective immunotherapy through intraperitoneal HSPC-NK cell adoptive transfer in ovarian carcinoma patients.
Collapse
Affiliation(s)
- Janneke S Hoogstad-van Evert
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeannette Cany
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dirk van den Brand
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Manon Oudenampsen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ruurd Torensma
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ruud L Bekkers
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leon F Massuger
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
195
|
Xie S, Chen J, Zhang M, Wu Z. Allogenic natural killer cell immunotherapy of sizeable ovarian cancer: A case report. Mol Clin Oncol 2017; 6:903-906. [PMID: 28588787 DOI: 10.3892/mco.2017.1230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/17/2017] [Indexed: 12/25/2022] Open
Abstract
Masses are often detected in the abdomen of patients with sizeable ovarian cancer. There are currently no effective treatments available for late-stage ovarian cancer. Immunotherapy is gaining increasing attention worldwide in the clinical setting due to its ability to eliminate tumor cells and its favorable toxicity profile. We herein report the case of a 60-year-old woman who received allogenic natural killer (NK) cell immunotherapy for a sizeable ovarian carcinoma and achieved a noteworthy response. NK cells were isolated from the donor's peripheral blood mononuclear cells, and the cell numbers were increased to 8-10 billion [corrected]. The activated cells were expanded ex vivo for 14 days prior to intravenous infusion. After six infusions of NK cell therapy >3 months, the level of carbohydrate antigen 125 decreased significantly (from 11,270 to 580 U/ml). Furthermore, the size of the masses in the abdomen was markedly reduced. Overall, the treatment had few adverse effects and it prolonged patient survival. The present data and the patient response suggest that allogenic NK cell immunotherapy is a promising approach for ovarian cancer, with few treatment-related adverse effects. The patient received six intravenous infusions of allogenic HANK cells between March, 2015 and June, 2015, but discontinued in October, 2015 and succumbed to the disease in March, 2016 following relapse.
Collapse
Affiliation(s)
- Silun Xie
- Shenzhen Hank Bioengineering Institute, Shenzhen, Guangdong 518004, P.R. China
| | - Jibing Chen
- Cancer Institute of Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou, Guangdong 510665, P.R. China
| | - Mingjiie Zhang
- Shenzhen Hank Bioengineering Institute, Shenzhen, Guangdong 518004, P.R. China
| | - Zhengyi Wu
- Shenzhen Hank Bioengineering Institute, Shenzhen, Guangdong 518004, P.R. China
| |
Collapse
|
196
|
Granzin M, Wagner J, Köhl U, Cerwenka A, Huppert V, Ullrich E. Shaping of Natural Killer Cell Antitumor Activity by Ex Vivo Cultivation. Front Immunol 2017; 8:458. [PMID: 28491060 PMCID: PMC5405078 DOI: 10.3389/fimmu.2017.00458] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/04/2017] [Indexed: 01/11/2023] Open
Abstract
Natural killer (NK) cells are a promising tool for the use in adoptive immunotherapy, since they efficiently recognize and kill tumor cells. In this context, ex vivo cultivation is an attractive option to increase NK cells in numbers and to improve their antitumor potential prior to clinical applications. Consequently, various strategies to generate NK cells for adoptive immunotherapy have been developed. Here, we give an overview of different NK cell cultivation approaches and their impact on shaping the NK cell antitumor activity. So far, the cytokines interleukin (IL)-2, IL-12, IL-15, IL-18, and IL-21 are used to culture and expand NK cells. The selection of the respective cytokine combination is an important factor that directly affects NK cell maturation, proliferation, survival, distribution of NK cell subpopulations, activation, and function in terms of cytokine production and cytotoxic potential. Importantly, cytokines can upregulate the expression of certain activating receptors on NK cells, thereby increasing their responsiveness against tumor cells that express the corresponding ligands. Apart from using cytokines, cocultivation with autologous accessory non-NK cells or addition of growth-inactivated feeder cells are approaches for NK cell cultivation with pronounced effects on NK cell activation and expansion. Furthermore, ex vivo cultivation was reported to prime NK cells for the killing of tumor cells that were previously resistant to NK cell attack. In general, NK cells become frequently dysfunctional in cancer patients, for instance, by downregulation of NK cell activating receptors, disabling them in their antitumor response. In such scenario, ex vivo cultivation can be helpful to arm NK cells with enhanced antitumor properties to overcome immunosuppression. In this review, we summarize the current knowledge on NK cell modulation by different ex vivo cultivation strategies focused on increasing NK cytotoxicity for clinical application in malignant diseases. Moreover, we critically discuss the technical and regulatory aspects and challenges underlying NK cell based therapeutic approaches in the clinics.
Collapse
Affiliation(s)
- Markus Granzin
- Clinical Research, Miltenyi Biotec Inc., Gaithersburg, MD, USA
| | - Juliane Wagner
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Goethe University, Frankfurt, Germany
| | - Ulrike Köhl
- Institute of Cellular Therapeutics, Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany
| | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center, Heidelberg, Germany.,Division of Immunbiochemistry, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Volker Huppert
- R&D Reagents, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Evelyn Ullrich
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Goethe University, Frankfurt, Germany
| |
Collapse
|
197
|
Sheikholeslami A, Nabiuni M, Arefian E. Suppressing the molecular signaling pathways involved in inflammation and cancer in breast cancer cell lines MDA-MB-231 and MCF-7 by miR-590. Tumour Biol 2017; 39:1010428317697570. [DOI: 10.1177/1010428317697570] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is the most frequent cancer among women worldwide. Tumor immunology suggests relationships between the immune system, chronic inflammation, and cancer. The immune system may either prevent or promote carcinogenesis. Here, we evaluated molecular signaling pathways common in inflammation and cancer and detected the microRNAs which play pivotal roles in mediating these pathways. Using bioinformatics assays, signaling pathways common in inflammation and cancer, and microRNAs mediating these pathways were identified. MiR-590 was selected and cloned into the pLenti-III-eGFP vector and transfected into the breast cancer cell lines. The expression level of microRNA and the candidate genes was evaluated by real-time quantitative reverse transcription polymerase chain reaction, and the apoptosis level in transfected cells was measured by Annexin V-7AAD assay. The cell migration was tested by real-time quantitative reverse transcription polymerase chain reaction for MMP2/MMP9. The expression levels of miR-590 and the selected genes (i.e. JAK2, PI3K, MAPK1, and CREB) were measured 72 h after transfection. While miR-590 showed an over-expression, the genes were significantly down-regulated. A significant increase was observed in apoptosis level in both cell lines and MMP2/MMP9 was significantly decreased in MDA-MB-231 cells. MiR-590 was selected as a microRNA which triggers and down-regulates critical genes of signaling pathways similar in cancer and inflammation. Following the miR-590 treatment, JAK2, PI3K, MAPK1, and CREB were down-regulated and the apoptosis level was increased in breast cancer cell lines. Apparently, some microRNAs can be good candidates for novel treatments of cancer. Although miR-590 showed good results in this study, further studies are required to investigate the role of miR-590 in breast cancer therapy.
Collapse
Affiliation(s)
- Azar Sheikholeslami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
198
|
Kaur K, Cook J, Park SH, Topchyan P, Kozlowska A, Ohanian N, Fang C, Nishimura I, Jewett A. Novel Strategy to Expand Super-Charged NK Cells with Significant Potential to Lyse and Differentiate Cancer Stem Cells: Differences in NK Expansion and Function between Healthy and Cancer Patients. Front Immunol 2017; 8:297. [PMID: 28424683 PMCID: PMC5380683 DOI: 10.3389/fimmu.2017.00297] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/02/2017] [Indexed: 11/30/2022] Open
Abstract
Natural killer (NK) cells are known to target cancer stem cells and undifferentiated tumors. In this paper, we provide a novel strategy for expanding large numbers of super-charged NK cells with significant potential to lyse and differentiate cancer stem cells and demonstrate the differences in the dynamics of NK cell expansion between healthy donors and cancer patients. Decline in cytotoxicity and lower interferon (IFN)-γ secretion by osteoclast (OC)-expanded NK cells from cancer patients correlates with faster expansion of residual contaminating T cells within purified NK cells, whereas healthy donors’ OCs continue expanding super-charged NK cells while limiting T cell expansion for up to 60 days. Similar to patient NK cells, NK cells from tumor-bearing BLT-humanized mice promote faster expansion of residual T cells resulting in decreased numbers and function of NK cells, whereas NK cells from mice with no tumor continue expanding NK cells and retain their cytotoxicity. In addition, dendritic cells (DCs) in contrast to OCs are found to promote faster expansion of residual T cells within purified NK cells resulting in the decline in NK cell numbers from healthy individuals. Addition of anti-CD3 mAb inhibits T cell proliferation while enhancing NK cell expansion; however, expanding NK cells have lower cytotoxicity but higher secretion of IFN-γ. Expansion and functional activation of super-charged NK cells by OCs is dependent on interleukin (IL)-12 and IL-15. Thus, in this report, we not only provide a novel strategy to expand super-charged NK cells, but also demonstrate that rapid and sustained expansion of residual T cells within the purified NK cells during expansion with DCs or OCs could be a potential mechanism by which the numbers and function of NK cells decline in cancer patients and in BLT-humanized mice.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Oral Medicine, School of Dentistry, Los Angeles, CA, USA
| | - Jessica Cook
- Division of Oral Biology and Oral Medicine, School of Dentistry, Los Angeles, CA, USA
| | - So-Hyun Park
- Division of Oral Biology and Oral Medicine, School of Dentistry, Los Angeles, CA, USA
| | - Paytsar Topchyan
- Division of Oral Biology and Oral Medicine, School of Dentistry, Los Angeles, CA, USA
| | - Anna Kozlowska
- Division of Oral Biology and Oral Medicine, School of Dentistry, Los Angeles, CA, USA.,Department of Tumor Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Nick Ohanian
- Division of Oral Biology and Oral Medicine, School of Dentistry, Los Angeles, CA, USA
| | - Changge Fang
- Pingan Advanced Personalized Diagnostics, Biomed Co. (USA and Beijing), Beijing, China
| | - Ichiro Nishimura
- Division of Oral Biology and Oral Medicine, School of Dentistry, Los Angeles, CA, USA.,The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA.,Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA.,The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Anahid Jewett
- Division of Oral Biology and Oral Medicine, School of Dentistry, Los Angeles, CA, USA.,The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA.,The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| |
Collapse
|
199
|
Baggio L, Laureano ÁM, Silla LMDR, Lee DA. Natural killer cell adoptive immunotherapy: Coming of age. Clin Immunol 2017; 177:3-11. [DOI: 10.1016/j.clim.2016.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 11/26/2022]
|
200
|
Qin Z, Chen J, Zeng J, Niu L, Xie S, Wang X, Liang Y, Wu Z, Zhang M. Effect of NK cell immunotherapy on immune function in patients with hepatic carcinoma: A preliminary clinical study. Cancer Biol Ther 2017; 18:323-330. [PMID: 28353401 DOI: 10.1080/15384047.2017.1310346] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We investigated the effectiveness of adoptive transfer of KIR ligand-mismatched highly activated nature killer (HANK) cells in patients with hepatic carcinoma. Peripheral blood mononuclear cells were obtained and cultured in vitro to induce expansion and activation of HANK cells. After 12 d of culture, the cells were divided into 3 parts and infused intravenously on days 13 to 15. The patients (n = 16) were given one to 6 courses of immunotherapy. No side effects were observed. The lymphocyte subsets and cytokine, thymidine kinase 1 (TK1) and circulating tumor cell (CTC) levels were measured 1 day before treatment and 1 month after the final infusion: the absolute number of total T cells and NK cells and the IL-2 and TNF-β levels were significantly higher, and the TK1 and CTC levels were significantly lower at 1 month after treatment. The percentage of patients who experienced partial response, disease stabilization, and disease progression at 3 months after treatment was 18.8%, 50.0% and 31.2%, respectively. The total follow-up period was 2-12 months. The median progression-free survival from treatment was 7.5 months. This is the first study on the benefits of HANK cell immunotherapy for hepatic carcinoma These encouraging preliminary observations imply that HANK cell immunotherapy is safe, can improve the immune function of patients with liver cancer, and may even reduce the rate of tumor metastasis and recurrence. However, further studies on larger samples of patients with a longer follow-up period are required to confirm these findings.
Collapse
Affiliation(s)
- Zilin Qin
- a School of Medicine , Jinan University , Guangdong Province , Guangzhou , China
| | - Jibing Chen
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Jianying Zeng
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Lizhi Niu
- a School of Medicine , Jinan University , Guangdong Province , Guangzhou , China.,b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Silun Xie
- c Hank Bioengineering Co., Ltd. , Shenzhen , China
| | - Xiaohua Wang
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Yingqing Liang
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Zhenyi Wu
- c Hank Bioengineering Co., Ltd. , Shenzhen , China
| | | |
Collapse
|