151
|
Wang SM, Kim NY, Kang DW, Um YH, Na HR, Woo YS, Lee CU, Bahk WM, Lim HK. A Comparative Study on the Predictive Value of Different Resting-State Functional Magnetic Resonance Imaging Parameters in Preclinical Alzheimer's Disease. Front Psychiatry 2021; 12:626332. [PMID: 34177638 PMCID: PMC8226028 DOI: 10.3389/fpsyt.2021.626332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/23/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: Diverse resting-state functional magnetic resonance imaging (rs-fMRI) studies showed that rs-fMRI might be able to reflect the earliest detrimental effect of cerebral beta-amyloid (Aβ) pathology. However, no previous studies specifically compared the predictive value of different rs-fMRI parameters in preclinical AD. Methods: A total of 106 cognitively normal adults (Aβ+ group = 66 and Aβ- group = 40) were included. Three different rs-fMRI parameter maps including functional connectivity (FC), fractional amplitude of low-frequency fluctuations (fALFF), and regional homogeneity (ReHo) were calculated. Receiver operating characteristic (ROC) curve analyses were utilized to compare classification performance of the three rs-fMRI parameters. Results: FC maps showed the best classifying performance in ROC curve analysis (AUC, 0.915, p < 0.001). Good but weaker performance was achieved by using ReHo maps (AUC, 0.836, p < 0.001) and fALFF maps (AUC, 0.804, p < 0.001). The brain regions showing the greatest discriminative power included the left angular gyrus for FC, left anterior cingulate for ReHo, and left middle frontal gyrus for fALFF. However, among the three measurements, ROI-based FC was the only measure showing group difference in voxel-wise analysis. Conclusion: Our results strengthen the idea that rs-fMRI might be sensitive to earlier changes in spontaneous brain activity and FC in response to cerebral Aβ retention. However, further longitudinal studies with larger sample sizes are needed to confirm their utility in predicting the risk of AD.
Collapse
Affiliation(s)
- Sheng-Min Wang
- Department of Psychiatry, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Nak-Young Kim
- Department of Psychiatry, Keyo Hospital, Uiwang, South Korea
| | - Dong Woo Kang
- Department of Psychiatry, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Yoo Hyun Um
- Department of Psychiatry, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Hae-Ran Na
- Department of Psychiatry, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Young Sup Woo
- Department of Psychiatry, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Chang Uk Lee
- Department of Psychiatry, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Won-Myong Bahk
- Department of Psychiatry, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Hyun Kook Lim
- Department of Psychiatry, College of Medicine, Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
152
|
Chan MMY, Han YMY. The Effect of Transcranial Direct Current Stimulation in Changing Resting-State Functional Connectivity in Patients With Neurological Disorders: A Systematic Review. J Cent Nerv Syst Dis 2020; 12:1179573520976832. [PMID: 33402860 PMCID: PMC7745554 DOI: 10.1177/1179573520976832] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND People with neurological disorders are found to have abnormal resting-state functional connectivity (rsFC), which is associated with the persistent functional impairment found in these patients. Recently, transcranial direct current stimulation (tDCS) has been shown to improve rsFC, although the results are inconsistent. OBJECTIVE We hope to explore whether tDCS induces rsFC changes among patients with neurological disorders, whether rsFC is clinically relevant and how different tDCS parameters affect rsFC outcome among these individuals. METHODS A systematic review was conducted according to PRISMA guidelines (systematic review registration number: CRD42020168654). Randomized controlled trials that studied the tDCS effects on rsFC between the experimental and sham-controlled groups using either electrophysiological or neuroimaging methods were included. RESULTS Active tDCS can induce changes in both localized (ie, brain regions under the transcranial electrodes) and diffused (ie, brain regions not directly influenced by the transcranial electrodes) rsFC. Interestingly, fMRI studies showed that the default mode network was enhanced regardless of patients' diagnoses, the stimulation paradigms used or the rsFC analytical methods employed. Second, stimulation intensity, but not total stimulation time, appeared to positively influence the effect of tDCS on rsFC. LIMITATIONS AND CONCLUSION Due to the inherent heterogeneity in rsFC analytical methods and tDCS protocols, meta-analysis was not conducted. We recommend that future studies may investigate the effect of tDCS on rsFC for repeated cathodal stimulation. For clinicians, we suggest anodal stimulation at a higher stimulation intensity within the safety limit may maximize tDCS effects in modulating aberrant functional connectivity of patients with neurological disorders.
Collapse
Affiliation(s)
- Melody MY Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yvonne MY Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
153
|
Wang T, Liao H, Zi Y, Wang M, Mao Z, Xiang Y, Zhang L, Li J, Shen Q, Cai S, Tan C. Distinct Changes in Global Brain Synchronization in Early-Onset vs. Late-Onset Parkinson Disease. Front Aging Neurosci 2020; 12:604995. [PMID: 33381021 PMCID: PMC7767969 DOI: 10.3389/fnagi.2020.604995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
Early- and late-onset Parkinson's disease (EOPD and LOPD, respectively) have different risk factors, clinical features, and disease course; however, the functional outcome of these differences have not been well characterized. This study investigated differences in global brain synchronization changes and their clinical significance in EOPD and LOPD patients. Patients with idiopathic PD including 25 EOPD and 24 LOPD patients, and age- and sex-matched healthy control (HC) subjects including 27 younger and 26 older controls (YCs and OCs, respectively) were enrolled. Voxel-based degree centrality (DC) was calculated as a measure of global synchronization and compared between PD patients and HC groups matched in terms of disease onset and severity. DC was decreased in bilateral Rolandic operculum and left insula and increased in the left superior frontal gyrus (SFG) and precuneus of EOPD patients compared to YCs. DC was decreased in the right putamen, mid-cingulate cortex, bilateral Rolandic operculum, and left insula and increased in the right cerebellum-crus1 of LOPD patients compared to OCs. Correlation analyses showed that DC in the right cerebellum-crus1 was inversely associated with the Hamilton Depression Scale (HDS) score in LOPD patients. Thus, EOPD and LOPD patients show distinct alterations in global synchronization relative to HCs. Furthermore, our results suggest that the left SFG and right cerebellum-crus1 play important roles in the compensation for corticostriatal-thalamocortical loop injury in EOPD and LOPD patients, whereas the cerebellum is a key hub in the neural mechanisms underlying LOPD with depression. These findings provide new insight into the clinical heterogeneity of the two PD subtypes.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuheng Zi
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenni Mao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yijuan Xiang
- Department of Radiology, Hunan Province Maternal and Child Health Care Hospital, Changsha, China
| | - Lin Zhang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junli Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
154
|
Zhou L, Liu G, Luo H, Li H, Peng Y, Zong D, Ouyang R. Aberrant Hippocampal Network Connectivity Is Associated With Neurocognitive Dysfunction in Patients With Moderate and Severe Obstructive Sleep Apnea. Front Neurol 2020; 11:580408. [PMID: 33362692 PMCID: PMC7759642 DOI: 10.3389/fneur.2020.580408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/11/2020] [Indexed: 01/20/2023] Open
Abstract
Objectives: This work aims to explore the changes of functional connectivity (FC) within the hippocampus network in patients with moderate and severe obstructive sleep apnea (OSA) and its correlation with neurocognitive dysfunction to explore the potential neurophysiological mechanism. Methods: A total of 32 treatment-naïve patients with moderate or severe OSA and 26 healthy controls (HCs), matched in age, gender, and education, underwent the evaluations of Epworth Sleep Scale, neurocognitive function, full-night polysomnography, and resting-state functional magnetic resonance imaging. The FC map of the hippocampus to other brain areas was compared among 15 OSA patients and 15 HCs with little head motion. Finally, the correlation between hippocampus FC strength and respiratory sleep parameters and neurocognitive assessments was analyzed. Results: Compared with HCs, the right hippocampus showed a significantly decreased FC with the bilateral insular lobe, right thalamus, and right anterior cingulate gyrus (ACG) and an increased FC with the right superior and middle temporal gyrus, left posterior cingulate gyrus, and left angular gyrus in the patients with OSA. The left hippocampus presented a significantly decreased FC with the left anterior cerebellum in patients with OSA. In addition, the aberrant right hippocampal FC with the right ACG was significantly correlated with disease severity and disrupted sleep architecture in the OSA group. Furthermore, after adjusting the related confounding factors, the FC strength between the right hippocampus, right insular lobe, and right thalamus was positively associated with the scores of Stroop Color-Word Test (SCWT) or Hopkins Verbal Learning Test-Revised (HVLT-R), while the FC between the right hippocampus and the right middle temporal gyrus was negatively correlated with the scores of HVLT-R. The right hippocampus FC with right superior temporal gyrus, left angular gyrus, and ACG were all negatively related to the scores of the symbol coding test (r = -0.642, p = 0.045; r = -0.638, p = 0.047; r = -0.753, p = 0.012), respectively. The FC between the left hippocampal and the left anterior cerebellar lobe showed a positive relationship with the scores of HVLT-R (r = 0.757, p = 0.011) and CPT-3D (r = -0.801, p = 0.005). Conclusion: The hippocampus presented abnormal FC with the cerebral and cerebellar regions extensively in OSA, and the correlation between abnormal hippocampal network FC and neurocognitive dysfunction in OSA suggests a promising insight to explore the potential biomarker and pathophysiologic mechanism of neurocognitive dysfunction of OSA.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Guiqian Liu
- Hunan Province Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yating Peng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Dandan Zong
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Ruoyun Ouyang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
155
|
Zhang Y, Hua Y, Bai Y. Applications of Functional Magnetic Resonance Imaging in Determining the Pathophysiological Mechanisms and Rehabilitation of Spatial Neglect. Front Neurol 2020; 11:548568. [PMID: 33281698 PMCID: PMC7688780 DOI: 10.3389/fneur.2020.548568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a neuroimaging tool which has been applied extensively to explore the pathophysiological mechanisms of neurological disorders. Spatial neglect is considered to be the failure to attend or respond to stimuli on the side of the space or body opposite a cerebral lesion. In this review, we summarize and analyze fMRI studies focused specifically on spatial neglect. Evidence from fMRI studies have highlighted the role of dorsal and ventral attention networks in the pathophysiological mechanisms of spatial neglect, and also support the concept of interhemispheric rivalry as an explanatory model. fMRI studies have shown that several rehabilitation methods can induce activity changes in brain regions implicated in the control of spatial attention. Future investigations with large study cohorts and appropriate subgroup analyses should be conducted to confirm the possibility that fMRI might offer an objective standard for predicting spatial neglect and tracking the response of brain activity to clinical treatment, as well as provide biomarkers to guide rehabilitation for patients with SN.
Collapse
Affiliation(s)
- Yuqian Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital North, Fudan University, Shanghai, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
156
|
Weissberger GH, Mosqueda L, Nguyen AL, Axelrod J, Nguyen CP, Boyle PA, Spreng N, Han SD. Functional Connectivity Correlates of Perceived Financial Exploitation in Older Adults. Front Aging Neurosci 2020; 12:583433. [PMID: 33304266 PMCID: PMC7693621 DOI: 10.3389/fnagi.2020.583433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/14/2020] [Indexed: 12/28/2022] Open
Abstract
Financial exploitation (FE) in old age is devastating and common; however, the neural correlates of FE are poorly understood. Previous studies of FE in older adults have implicated declines in decision making and social cognition as two risk factors for FE in later life. Here we examined whether functional connectivity among brain regions implicated in decision making and social cognition differed for those with an experience of FE vs. those without. Participants included 16 older adults without cognitive impairment who reported FE (Mean age = 70.5, 62.5% female, Mean education = 16.0 years) and 16 demographically and cognitively matched adults who denied a history of FE (Mean age = 65.1, 37.5% female, Mean education = 15.1 years). Measures of whole-brain resting-state functional connectivity in the hippocampus, insula, and medial frontal cortex were derived for each group. Compared to the non-FE group, FE was associated with greater functional connectivity between the right hippocampus and bilateral temporal regions, and less functional connectivity between the right hippocampus and the right cerebellum and bilateral lingual gyri. The FE group showed less connectivity between the right and left insula and cingulate cortex, and between the right insula and regions of the left lateral temporal gyrus and dorsolateral prefrontal cortex. Finally, the FE group showed greater functional connectivity between the medial frontal cortex and the right lateral temporal gyrus and orbitofrontal cortex, and less functional connectivity with the right pre- and postcentral gyri. Results suggest that perceived FE in old age is associated with whole-brain functional connectivity differences involving the hippocampus, insula, and medial frontal cortex, consistent with models implicating age-associated changes in decision making and social cognition in FE.
Collapse
Affiliation(s)
- Gali H. Weissberger
- Department of Family Medicine, USC Keck School of Medicine, Alhambra, CA, United States
- Interdisciplinary Department of Social Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Laura Mosqueda
- Department of Family Medicine, USC Keck School of Medicine, Alhambra, CA, United States
- USC School of Gerontology, Los Angeles, CA, United States
| | - Annie L. Nguyen
- Department of Family Medicine, USC Keck School of Medicine, Alhambra, CA, United States
| | - Jenna Axelrod
- Department of Family Medicine, USC Keck School of Medicine, Alhambra, CA, United States
| | - Caroline P. Nguyen
- Department of Family Medicine, USC Keck School of Medicine, Alhambra, CA, United States
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Behavioral Sciences and Psychiatry, Rush University Medical Center, Chicago, IL, United States
| | - Nathan Spreng
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - S. Duke Han
- Department of Family Medicine, USC Keck School of Medicine, Alhambra, CA, United States
- USC School of Gerontology, Los Angeles, CA, United States
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Behavioral Sciences and Psychiatry, Rush University Medical Center, Chicago, IL, United States
- Department of Psychology, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA, United States
- Department of Neurology, USC Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
157
|
Chatterjee I, Mittal K. A Concise Study of Schizophrenia and Resting-state fMRI data analysis. QEIOS 2020. [DOI: https://doi.org/10.32388/599711.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
158
|
Gur RC, Butler ER, Moore TM, Rosen AFG, Ruparel K, Satterthwaite TD, Roalf DR, Gennatas ED, Bilker WB, Shinohara RT, Port A, Elliott MA, Verma R, Davatzikos C, Wolf DH, Detre JA, Gur RE. Structural and Functional Brain Parameters Related to Cognitive Performance Across Development: Replication and Extension of the Parieto-Frontal Integration Theory in a Single Sample. Cereb Cortex 2020; 31:1444-1463. [PMID: 33119049 DOI: 10.1093/cercor/bhaa282] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The parieto-frontal integration theory (PFIT) identified a fronto-parietal network of regions where individual differences in brain parameters most strongly relate to cognitive performance. PFIT was supported and extended in adult samples, but not in youths or within single-scanner well-powered multimodal studies. We performed multimodal neuroimaging in 1601 youths age 8-22 on the same 3-Tesla scanner with contemporaneous neurocognitive assessment, measuring volume, gray matter density (GMD), mean diffusivity (MD), cerebral blood flow (CBF), resting-state functional magnetic resonance imaging measures of the amplitude of low frequency fluctuations (ALFFs) and regional homogeneity (ReHo), and activation to a working memory and a social cognition task. Across age and sex groups, better performance was associated with higher volumes, greater GMD, lower MD, lower CBF, higher ALFF and ReHo, and greater activation for the working memory task in PFIT regions. However, additional cortical, striatal, limbic, and cerebellar regions showed comparable effects, hence PFIT needs expansion into an extended PFIT (ExtPFIT) network incorporating nodes that support motivation and affect. Associations of brain parameters became stronger with advancing age group from childhood to adolescence to young adulthood, effects occurring earlier in females. This ExtPFIT network is developmentally fine-tuned, optimizing abundance and integrity of neural tissue while maintaining a low resting energy state.
Collapse
Affiliation(s)
- Ruben C Gur
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ellyn R Butler
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tyler M Moore
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Adon F G Rosen
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kosha Ruparel
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David R Roalf
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Efstathios D Gennatas
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Warren B Bilker
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Allison Port
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mark A Elliott
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ragini Verma
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel H Wolf
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
159
|
Jain R, Ramakrishnan AG. Electrophysiological and Neuroimaging Studies - During Resting State and Sensory Stimulation in Disorders of Consciousness: A Review. Front Neurosci 2020; 14:555093. [PMID: 33041757 PMCID: PMC7522478 DOI: 10.3389/fnins.2020.555093] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
A severe brain injury may lead to a disorder of consciousness (DOC) such as coma, vegetative state (VS), minimally conscious state (MCS) or locked-in syndrome (LIS). Till date, the diagnosis of DOC relies only on clinical evaluation or subjective scoring systems such as Glasgow coma scale, which fails to detect subtle changes and thereby results in diagnostic errors. The high rate of misdiagnosis and inability to predict the recovery of consciousness for DOC patients have created a huge research interest in the assessment of consciousness. Researchers have explored the use of various stimulation and neuroimaging techniques to improve the diagnosis. In this article, we present the important findings of resting-state as well as sensory stimulation methods and highlight the stimuli proven to be successful in the assessment of consciousness. Primarily, we review the literature based on (a) application/non-use of stimuli (i.e., sensory stimulation/resting state-based), (b) type of stimulation used (i.e., auditory, visual, tactile, olfactory, or mental-imagery), (c) electrophysiological signal used (EEG/ERP, fMRI, PET, EMG, SCL, or ECG). Among the sensory stimulation methods, auditory stimulation has been extensively used, since it is easier to conduct for these patients. Olfactory and tactile stimulation have been less explored and need further research. Emotionally charged stimuli such as subject’s own name or narratives in a familiar voice or subject’s own face/family pictures or music result in stronger responses than neutral stimuli. Studies based on resting state analysis have employed measures like complexity, power spectral features, entropy and functional connectivity patterns to distinguish between the VS and MCS patients. Resting-state EEG and fMRI are the state-of-the-art techniques and have a huge potential in predicting the recovery of coma patients. Further, EMG and mental-imagery based studies attempt to obtain volitional responses from the VS patients and thus could detect their command-following capability. This may provide an effective means to communicate with these patients. Recent studies have employed fMRI and PET to understand the brain-activation patterns corresponding to the mental imagery. This review promotes our knowledge about the techniques used for the diagnosis of patients with DOC and attempts to provide ideas for future research.
Collapse
Affiliation(s)
- Ritika Jain
- Medical Intelligence and Language Engineering Laboratory, Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India
| | - Angarai Ganesan Ramakrishnan
- Medical Intelligence and Language Engineering Laboratory, Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
160
|
Han L, Pengfei Z, Chunli L, Zhaodi W, Xindi W, Qian C, Shusheng G, Zhenchang W. The effects of sound therapy in tinnitus are characterized by altered limbic and auditory networks. Brain Commun 2020; 2:fcaa131. [PMID: 33134919 PMCID: PMC7585694 DOI: 10.1093/braincomms/fcaa131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 01/01/2023] Open
Abstract
To determine the neural mechanism underlying the effects of sound therapy on tinnitus, we hypothesize that sound therapy may be effective by modulating both local neural activity and functional connectivity that is associated with auditory perception, auditory information storage or emotional processing. In this prospective observational study, 30 tinnitus patients underwent resting-state functional magnetic resonance imaging scans at baseline and after 12 weeks of sound therapy. Thirty-two age- and gender-matched healthy controls also underwent two scans over a 12-week interval; 30 of these healthy controls were enrolled for data analysis. The amplitude of low-frequency fluctuation was analysed, and seed-based functional connectivity measures were shown to significantly alter spontaneous local brain activity and its connections to other brain regions. Interaction effects between the two groups and the two scans in local neural activity as assessed by the amplitude of low-frequency fluctuation were observed in the left parahippocampal gyrus and the right Heschl's gyrus. Importantly, local functional activity in the left parahippocampal gyrus in the patient group was significantly higher than that in the healthy controls at baseline and was reduced to relatively normal levels after treatment. Conversely, activity in the right Heschl's gyrus was significantly increased and extended beyond a relatively normal range after sound therapy. These changes were found to be positively correlated with tinnitus relief. The functional connectivity between the left parahippocampal gyrus and the cingulate cortex was higher in tinnitus patients after treatment. The alterations of local activity and functional connectivity in the left parahippocampal gyrus and right Heschl’s gyrus were associated with tinnitus relief. Resting-state functional magnetic resonance imaging can provide functional information to explain and ‘visualize’ the mechanism underlying the effect of sound therapy on the brain.
Collapse
Affiliation(s)
- Lv Han
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhao Pengfei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Liu Chunli
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wang Zhaodi
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wang Xindi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Chen Qian
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Gong Shusheng
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wang Zhenchang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
161
|
Xing C, Zhang J, Cui J, Yong W, Hu J, Yin X, Wu Y, Chen YC. Disrupted Functional Network Connectivity Predicts Cognitive Impairment in Presbycusis Patients. Front Aging Neurosci 2020; 12:246. [PMID: 32903748 PMCID: PMC7438913 DOI: 10.3389/fnagi.2020.00246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/17/2020] [Indexed: 11/18/2022] Open
Abstract
Purpose: Individuals with presbycusis often show deficits in cognitive function, however, the exact neurophysiological mechanisms are not well understood. This study explored the alterations in intra- and inter-network functional connectivity (FC) of multiple networks in presbycusis patients, and further correlated FC with cognitive assessment scores to assess their ability to predict cognitive impairment. Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) was performed in 40 presbycusis patients and 40 matched controls, and 12 resting-state networks (RSNs) were identified by independent component analysis (ICA) approach. A two-sample t-test was carried out to detect the intra-network FC differences, and functional network connectivity (FNC) was calculated to compare the inter-network FC differences. Pearson or Spearman correlation analysis was subsequently used to explore the correlation between altered FC and cognitive assessment scores. Results: Our study demonstrated that patients with presbycusis showed significantly decreased FC in the subcortical limbic network (scLN), default mode network (DMN), executive control network (ECN), and attention network (AN) compared with the control group. Moreover, the connectivity for scLN-AUN (auditory network) and VN (visual network)-DMN were found significantly increased while AN-DMN was found significantly decreased in presbycusis patients. Ultimately, this study revealed the intra- and inter-network alterations associated with some cognitive assessment scores. Conclusion: This study observed intra- and inter-network FC alterations in presbycusis patients, and investigated that presbycusis can lead to abnormal connectivity of RSNs and plasticity compensation mechanism, which may be the basis of cognitive impairment, suggesting that FNC can be used to predict potential cognitive impairment in their early stage.
Collapse
Affiliation(s)
- Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Juan Zhang
- Department of Neurology, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing, China
| | - Jinluan Cui
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Yong
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jinghua Hu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
162
|
Becq GJPC, Barbier EL, Achard S. Brain networks of rats under anesthesia using resting-state fMRI: comparison with dead rats, random noise and generative models of networks. J Neural Eng 2020; 17:045012. [PMID: 32580176 DOI: 10.1088/1741-2552/ab9fec] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Connectivity networks are crucial to understand the brain resting-state activity using functional magnetic resonance imaging (rs-fMRI). Alterations of these brain networks may highlight important findings concerning the resilience of the brain to different disorders. The focus of this paper is to evaluate the robustness of brain network estimations, discriminate them under anesthesia and compare them to generative models. APPROACH The extraction of brain functional connectivity (FC) networks is difficult and biased due to the properties of the data: low signal to noise ratio, high dimension low sample size. We propose to use wavelet correlations to assess FC between brain areas under anesthesia using four anesthetics (isoflurane, etomidate, medetomidine, urethane). The networks are then deduced from the functional connectivity matrices by applying statistical thresholds computed using the number of samples at a given scale of wavelet decomposition. Graph measures are extracted and extensive comparisons with generative models of structured networks are conducted. MAIN RESULTS The sample size and filtering are critical to obtain significant correlations values and thereby detect connections between regions. This is necessary to construct networks different from random ones as shown using rs-fMRI brain networks of dead rats. Brain networks under anesthesia on rats have topological features that are mixing small-world, scale-free and random networks. Betweenness centrality indicates that hubs are present in brain networks obtained from anesthetized rats but locations of these hubs are altered by anesthesia. SIGNIFICANCE Understanding the effects of anesthesia on brain areas is of particular importance in the context of animal research since animal models are commonly used to explore functions, evaluate lesions or illnesses, and test new drugs. More generally, results indicate that the use of correlations in the context of fMRI signals is robust but must be treated with caution. Solutions are proposed in order to control spurious correlations by setting them to zero.
Collapse
Affiliation(s)
- G J-P C Becq
- University Grenoble Alpes, CNRS, Grenoble INP, Gipsa-lab, 38000, Grenoble, France
| | | | | |
Collapse
|
163
|
Wang S, Yang C, Zhao Y, Lai H, Zhang L, Gong Q. Sex-linked neurofunctional basis of psychological resilience in late adolescence: a resting-state functional magnetic resonance imaging study. Eur Child Adolesc Psychiatry 2020; 29:1075-1087. [PMID: 31641900 DOI: 10.1007/s00787-019-01421-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 10/10/2019] [Indexed: 02/05/2023]
Abstract
Psychological resilience refers to the ability to adapt effectively in the face of adversity, which is closely related to an individual's psychological and physical health and well-being. Although previous behavioural studies have shown sex differences in psychological resilience, little is known about the neural basis of sex differences in psychological resilience. Here, we measured amplitude of low-frequency fluctuations (ALFF) via resting-state functional magnetic resonance imaging to investigate the sex-linked neurofunctional basis of psychological resilience in 231 healthy adolescents. At the behavioural level, we replicated previous findings indicating that males are more resilient than females. At the neural level, we found sex differences in the relationship between psychological resilience and ALFF in the right orbitofrontal cortex (OFC). Specifically, males showed a positive correlation between psychological resilience and ALFF in the right OFC, while females showed a negative correlation in this region. The sex-specific association between psychological resilience and spontaneous brain activity might be dependent on differences in hormonal systems and brain development between male and female adolescents. Taken together, the results of our study might provide the first evidence of sex-specific neurofunctional substrates of psychological resilience in adolescents, emphasizing the vital role of sex effects in future psychological resilience-related studies.
Collapse
Affiliation(s)
- Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610036, People's Republic of China
| | - Cheng Yang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China
| | - Yajun Zhao
- School of Sociology and Psychology, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Han Lai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China
| | - Lei Zhang
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China. .,Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China. .,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610036, People's Republic of China.
| |
Collapse
|
164
|
Lin X, Chen Y, Wang M, Song C, Lin B, Yuan X, Liu Q, Yang H, Jiang N. Altered Topological Patterns of Gray Matter Networks in Tinnitus: A Graph-Theoretical-Based Study. Front Neurosci 2020; 14:541. [PMID: 32536854 PMCID: PMC7267018 DOI: 10.3389/fnins.2020.00541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/01/2020] [Indexed: 11/13/2022] Open
Abstract
Objective Tinnitus is a prevalent hearing disorder, which could have a devastating impact on a patient’s life. Functional studies have revealed connectivity pattern changes in the tinnitus brains that suggested a change of network dynamics as well as topological organization. However, no studies have yet provided evidence for the topological network changes in the gray matter. In this research, we aim to use the graph-theoretical approach to investigate the changes of topology in the tinnitus brain using structural MRI data, which could provide insights into the underlying anatomical basis for the neural mechanism in generating phantom sounds. Methods We collected 3D MRI images on 46 bilateral tinnitus patients and 46 age and gender-matched healthy controls. Brain networks were constructed with correlation matrices of the cortical thickness and subcortical volumes of 80 cortical/subcortical regions of interests. Global network properties were analyzed using local and global efficiency, clustering coefficient, and small-world coefficient, and regional network properties were evaluated using the betweenness coefficient for hub connectivity, and interregional correlations for edge properties. Between-group differences in cortical thickness and subcortical volumes were assessed using independent sample t-tests, and local efficiency, global efficiency, clustering coefficient, sigma, and interregional correlation were compared using non-parametric permutation tests. Results Tinnitus was found to have increased global efficiency, local efficiency, and cluster coefficient, indicating generally heightened connectivity of the network. The small-world coefficient remained normal for tinnitus, indicating intact small-worldness. Betweenness centrality analysis showed that hubs in the amygdala and parahippocampus were only found for tinnitus but not controls. In contrast, hubs in the auditory cortex, insula, and thalamus were only found for controls but not tinnitus. Interregional correlation analysis further found in tinnitus enhanced connectivity between the auditory cortex and prefrontal lobe, and decreased connectivity of the insula with anterior cingulate gyrus and parahippocampus. Conclusion These findings provided the first morphological evidence of altered topological organization of the brain networks in tinnitus. These alterations suggest that heightened efficiency of the brain network and altered auditory-limbic connection for tinnitus, which could be developed in compensation for the auditory deafferentation, leading to overcompensation and, ultimately, an emotional and cognitive burden.
Collapse
Affiliation(s)
- Xiaofeng Lin
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Nuclear Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yueyao Chen
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Mingxia Wang
- Department of Hearing and Speech Sciences, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Chao Song
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingling Lin
- Department of Radiology, Peking University Shen Zhen Hospital, Shenzhen, China
| | - Xiaoping Yuan
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingyu Liu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ningyi Jiang
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Nuclear Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
165
|
Yang J, Gohel S, Vachha B. Current methods and new directions in resting state fMRI. Clin Imaging 2020; 65:47-53. [PMID: 32353718 DOI: 10.1016/j.clinimag.2020.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/24/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Resting state functional connectivity magnetic resonance imaging (rsfcMRI) has become a key component of investigations of neurocognitive and psychiatric behaviors. Over the past two decades, several methods and paradigms have been adopted to utilize and interpret data from resting-state fluctuations in the brain. These findings have increased our understanding of changes in many disease states. As the amount of resting state data available for research increases with big datasets and data-sharing projects, it is important to review the established traditional analysis methods and recognize areas where research methodology can be adapted to better accommodate the scale and complexity of rsfcMRI analysis. In this paper, we review established methods of analysis as well as areas that have been receiving increasing attention such as dynamic rsfcMRI, independent vector analysis, multiband rsfcMRI and network of networks.
Collapse
Affiliation(s)
- Jackie Yang
- NYU Grossman School of Medicine, 550 1(st) Avenue, New York, NY 10016, USA
| | - Suril Gohel
- Department of Health Informatics, Rutgers University School of Health Professions, 65 Bergen Street, Newark, NJ 07107, USA
| | - Behroze Vachha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA.
| |
Collapse
|
166
|
Neuroimaging Findings in Chronic Hepatitis C Virus Infection: Correlation with Neurocognitive and Neuropsychiatric Manifestations. Int J Mol Sci 2020; 21:ijms21072478. [PMID: 32252497 PMCID: PMC7177498 DOI: 10.3390/ijms21072478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is commonly associated with neurocognitive dysfunction, altered neuropsychological performance and neuropsychiatric symptoms. Quantifiable neuropsychological changes in sustained attention, working memory, executive function, verbal learning and recall are the hallmark of HCV-associated neurocognitive disorder (HCV-AND). This constellation is at variance with the neuropsychological complex that is seen in minimal hepatic encephalopathy, which is typified by an array of alterations in psychomotor speed, selective attention and visuo-constructive function. Noncognitive symptoms, including sleep disturbances, depression, anxiety and fatigue, which are less easily quantifiable, are frequently encountered and can dominate the clinical picture and the clinical course of patients with chronic HCV infection. More recently, an increased vulnerability to Parkinson’s disease among HCV-infected patients has also been reported. The degree to which neurocognitive and neuropsychiatric changes are due to HCV replication within brain tissues or HCV-triggered peripheral immune activation remain to be determined. Without absolute evidence that clearly exonerates or indicts HCV, our understanding of the so-called “HCV brain syndrome”, relies primarily on clinical and neuropsychological assessments, although other comorbidities and substance abuse may impact on neurocognitive function, thus confounding an appropriate recognition. In recent years, a number of functional and structural brain imaging studies have been of help in recognizing possible biological markers of HCV-AND, thus providing a rationale for guiding and justifying antiviral therapy in selected cases. Here, we review clinical, neuroradiological, and therapeutic responses to interferon-based and interferon-free regimens in HCV-related cognitive and neuropsychiatric disorder.
Collapse
|
167
|
Subramanian S, Rajamanickam K, Prakash JS, Ramachandran M. Study on structural atrophy changes and functional connectivity measures in Alzheimer's disease. J Med Imaging (Bellingham) 2020; 7:016002. [PMID: 32118092 DOI: 10.1117/1.jmi.7.1.016002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/03/2020] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the progressive accumulation of neurofibrillary tangles associated with amyloid plaques. We used 80 resting-state functional magnetic resonance imaging and 80 T 1 images acquired using MP-RAGE (magnetization-prepared rapid acquisition gradient echo) from Alzheimer's Disease Neuroimaging Initiative data to detect atrophy changes and functional connectivity patterns of the default mode networks (DMNs). The study subjects were classified into four groups (each with n = 20 ) based on their Mini-Mental State Examination (MMSE) score as follows: cognitively normal (CN), early mild cognitive impairment, late mild cognitive impairment, and AD. The resting-state functional connectivity of the DMN was examined between the groups using the CONN functional connectivity toolbox. Loss of gray matter in AD was observed. Atrophy measured by the volume of selected subcortical regions, using the Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library's Integrated Registration and Segmentation Tool (FIRST), revealed significant volume loss in AD when compared to CN ( p < 0.05 ). DMNs were selected to assess functional connectivity. The negative connectivity of DMN increased in AD group compared to controls. Graph theory parameters, such as global and local efficiency, betweenness centrality, average path length, and cluster coefficient, were computed. Relatively higher correlation between MMSE and functional metrics ( r = 0.364 , p = 0.001 ) was observed as compared to atrophy measures ( r = 0.303 , p = 0.006 ). In addition, the receiver operating characteristic analysis showed large area under the curve ( A Z ) for functional parameters ( A Z > 0.9 ), compared to morphometric changes ( A Z < 0.8 ). In summary, it is observed that the functional connectivity measures may serve a better predictor in comparison to structural atrophy changes. We postulate that functional connectivity measures have the potential to evolve as a marker for the early detection of AD.
Collapse
Affiliation(s)
- Saraswathi Subramanian
- Chettinad Academy of Research and Education, Faculty of Allied Health Sciences, Kelambakkam, Chennai, Tamil Nadu, India
| | - Karunanithi Rajamanickam
- Chettinad Academy of Research and Education, Faculty of Allied Health Sciences, Kelambakkam, Chennai, Tamil Nadu, India
| | - Joy Sebastian Prakash
- Chettinad Academy of Research and Education, Faculty of Allied Health Sciences, Kelambakkam, Chennai, Tamil Nadu, India
| | - Murugesan Ramachandran
- Chettinad Academy of Research and Education, Faculty of Allied Health Sciences, Kelambakkam, Chennai, Tamil Nadu, India
| | | |
Collapse
|
168
|
Goldstein-Piekarski AN, Holt-Gosselin B, O'Hora K, Williams LM. Integrating sleep, neuroimaging, and computational approaches for precision psychiatry. Neuropsychopharmacology 2020; 45:192-204. [PMID: 31426055 PMCID: PMC6879628 DOI: 10.1038/s41386-019-0483-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/21/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
Abstract
In advancing precision psychiatry, we focus on what imaging technology and computational approaches offer for the future of diagnostic subtyping and personalized tailoring of interventions for sleep impairment in mood and anxiety disorders. Current diagnostic criteria for mood and anxiety tend to lump different forms of sleep disturbance together. Parsing the biological features of sleep impairment and brain circuit dysfunction is one approach to identifying subtypes within these disorders that are mechanistically coherent and offer targets for intervention. We focus on two large-scale neural circuits implicated in sleep impairment and in mood and anxiety disorders: the default mode network and negative affective network. Through a synthesis of existing knowledge about these networks, we pose a testable framework for understanding how hyper- versus hypo-engagement of these networks may underlie distinct features of mood and sleep impairment. Within this framework we consider whether poor sleep quality may have an explanatory role in previously observed associations between network dysfunction and mood symptoms. We expand this framework to future directions including the potential for connecting circuit-defined subtypes to more distal features derived from digital phenotyping and wearable technologies, and how new discovery may be advanced through machine learning approaches.
Collapse
Affiliation(s)
- Andrea N Goldstein-Piekarski
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Bailey Holt-Gosselin
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305, USA
| | - Kathleen O'Hora
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305, USA.
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA.
| |
Collapse
|
169
|
Iyer KK, Zalesky A, Barlow KM, Cocchi L. Default mode network anatomy and function is linked to pediatric concussion recovery. Ann Clin Transl Neurol 2019; 6:2544-2554. [PMID: 31755665 PMCID: PMC6917315 DOI: 10.1002/acn3.50951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Objective To determine whether anatomical and functional brain features relate to key persistent post–concussion symptoms (PPCS) in children recovering from mild traumatic brain injuries (mTBI), and whether such brain indices can predict individual recovery from PPCS. Methods One hundred and ten children with mixed recovery following mTBI were seen at the concussion clinic at Neurology department Alberta Children’s Hospital. The primary outcome was the Post–Concussion Symptom Inventory (PCSI, parent proxy). Sleep disturbance scores (PCSI subdomain) and the Neurocognition Index (CNS Vital Signs) were also measured longitudinally. PPCS was assessed at 4 weeks postinjury and 8–10 weeks postinjury. Gray matter volumes were assessed using magnetic resonance imaging (MRI) and voxel‐based morphometry at 4 weeks postinjury. Functional connectivity was estimated at the same timepoint using resting‐state MRI. Two complementary machine learning methods were used to assess if the combination of gray matter and functional connectivity indices carried meaningful prognostic information. Results Higher scores on a composite index of sleep disturbance, including fatigue, were associated with converging decreases in gray matter volume and local functional connectivity in two key nodes of the default mode network: the posterior cingulate cortex and the medial prefrontal cortex. Sleep‐related disturbances also significantly correlated with reductions in functional connectivity between these brain regions. The combination of structural and functional brain indices associated to individual variations in the default mode network accurately predicted clinical outcomes at follow‐up (area under the curve = 0.86). Interpretation These results highlight that the function–structure profile of core default mode regions underpins sleep‐related problems following mTBI and carries meaningful prognostic information for pediatric concussion recovery.
Collapse
Affiliation(s)
- Kartik K. Iyer
- Child Health Research CentreFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre & Department of Biomedical EngineeringThe University of MelbourneVictoriaAustralia
| | - Karen M. Barlow
- Child Health Research CentreFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
- Department of NeurologyQueensland Children’s HospitalBrisbaneQueenslandAustralia
- Alberta Children's Hospital Research InstituteCalgaryCanada
- University of CalgaryCalgaryCanada
| | - Luca Cocchi
- Clinical Brain Networks GroupQIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
| |
Collapse
|
170
|
Li Z, Li C, Liang Y, Wang K, Zhang W, Chen R, Wu Q, Zhang X. Altered Functional Connectivity and Brain Network Property in Pregnant Women With Cleft Fetuses. Front Psychol 2019; 10:2235. [PMID: 31649585 PMCID: PMC6795235 DOI: 10.3389/fpsyg.2019.02235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Non-syndromic clefts of the lip and/or palate (NSCLP) is the most common congenital anomaly in the craniofacial region. NSCLP is a highly gene-associated malformation. We speculate that pregnant women with NSCLP fetuses (pregnancies with NSCLP) may have specific brain changes during pregnancy. To explore characteristic brain function changes of pregnancies with NSCLP, we analyzed resting-state fMRI (rs-fMRI) data of 42 pregnant women (21 pregnancies with NSCLP and 21 pregnancies with normal fetuses) to compare intergroup differences of (fractional) amplitude of low frequency fluctuations (fALFF/ALFF), regional homogeneity (Reho), functional connectivity (FC) and network topological properties. Compared with the control group, increased ALFF in the left hippocampus, the right fusiform and the left anterior cingulate (ACG), increased Reho in left middle occipital gyrus (MOG) and right medial frontal gyrus (MFG) were found for pregnancies with NSCLP. Meanwhile, FC between the left supramarginal gyrus (SMG) and bilateral olfactory cortex (OLF), FC between left precentral gyrus (PreCG) and right MFG, FC between right inferior frontal gyrus (IFG) and left inferior temporal gyrus (ITG) were enhanced in pregnancies with NSCLP. Besides, FC between left PreCG and left amygdala, bilateral para-hippocampal gyrus, FC between left amygdala and left MFG, right IFG were decreased. Graph theory-based analysis explored increased degree centrality (DC), betweenness centrality (BC) and nodal efficiency (Ne) in the left ITG and left SMG for pregnancies with NSCLP. Pregnancies with NSCLP has widespread decreased FC within neural networks of speech and language, which indicated that they were more likely to be associated with defects in speech and language skills. At the same time, increased topological indices showed that speech and language related regions played dominant role in their brain networks. These findings may provide clues for early detection of NSCLP fetuses.
Collapse
Affiliation(s)
- Zhen Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yuting Liang
- Department of Radiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Keyang Wang
- Department of Radiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wenjing Zhang
- Department of Oral and Maxillofacial Plastic and Trauma Surgery, Center of Cleft Lip and Palate Treatment, Beijing Stomatological Hospital, Beijing, China
| | - Renji Chen
- Department of Oral and Maxillofacial Plastic and Trauma Surgery, Center of Cleft Lip and Palate Treatment, Beijing Stomatological Hospital, Beijing, China
| | - Qingqing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| |
Collapse
|
171
|
Argyropoulos GPD, Loane C, Roca-Fernandez A, Lage-Martinez C, Gurau O, Irani SR, Butler CR. Network-wide abnormalities explain memory variability in hippocampal amnesia. eLife 2019; 8:e46156. [PMID: 31282861 PMCID: PMC6639076 DOI: 10.7554/elife.46156] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/05/2019] [Indexed: 01/11/2023] Open
Abstract
Patients with hippocampal amnesia play a central role in memory neuroscience but the neural underpinnings of amnesia are hotly debated. We hypothesized that focal hippocampal damage is associated with changes across the extended hippocampal system and that these, rather than hippocampal atrophy per se, would explain variability in memory between patients. We assessed this hypothesis in a uniquely large cohort of patients (n = 38) after autoimmune limbic encephalitis, a syndrome associated with focal structural hippocampal pathology. These patients showed impaired recall, recognition and maintenance of new information, and remote autobiographical amnesia. Besides hippocampal atrophy, we observed correlatively reduced thalamic and entorhinal cortical volume, resting-state inter-hippocampal connectivity and activity in posteromedial cortex. Associations of hippocampal volume with recall, recognition, and remote memory were fully mediated by wider network abnormalities, and were only direct in forgetting. Network abnormalities may explain the variability across studies of amnesia and speak to debates in memory neuroscience.
Collapse
Affiliation(s)
- Georgios PD Argyropoulos
- Memory Research Group, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Clare Loane
- Memory Research Group, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUnited Kingdom
| | - Adriana Roca-Fernandez
- Memory Research Group, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Carmen Lage-Martinez
- Memory Research Group, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Valdecilla Biomedical Research InstituteUniversity Hospital Marqués de ValdecillaSantanderSpain
| | - Oana Gurau
- Memory Research Group, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Christopher R Butler
- Memory Research Group, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
172
|
Han L, Na Z, Chunli L, Yuchen C, Pengfei Z, Hao W, Xu C, Peng Z, Zheng W, Zhenghan Y, Shusheng G, Zhenchang W. Baseline Functional Connectivity Features of Neural Network Nodes Can Predict Improvement After Sound Therapy Through Adjusted Narrow Band Noise in Tinnitus Patients. Front Neurosci 2019; 13:614. [PMID: 31333394 PMCID: PMC6620714 DOI: 10.3389/fnins.2019.00614] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/29/2019] [Indexed: 12/17/2022] Open
Abstract
Previous resting-state functional magnetic resonance imaging (fMRI) studies have shown neural connectivity alterations after the treatment of tinnitus. We aim to study the value of the baseline functional connectivity features of neural network nodes to predict outcomes of sound therapy through adjusted narrow band noise. The fMRI data of 27 untreated tinnitus patients and 27 matched healthy controls were analyzed. We calculated the graph-theoretical metric degree centrality (DC) to characterize the functional connectivity of the neural network nodes. Therapeutic outcomes are determined by the changes in the Tinnitus Handicap Inventory (THI) score after a 12-week intervention. The connectivity of 10 brain nodes in tinnitus patients was significantly increased at baseline. The functional connectivity of right insula, inferior parietal lobule (IPL), bilateral thalami, and left middle temporal gyrus was significantly modified with the sound therapy, and such changes correlated with THI changes in tinnitus patients. Receiver operating characteristic curve analyses revealed that the measurements from the five brain regions were effective at classifying improvement after therapy. After age, gender, and education correction, the adjusted area under the curve (AUC) values for the bilateral thalami were the highest (left, 0.745; right, 0.708). Our study further supported the involvement of the fronto-parietal-cingulate network in tinnitus and found that the connectivity of the thalamus at baseline is an object neuroimaging-based indicator to predict clinical outcome of sound therapy through adjusted narrow band noise.
Collapse
Affiliation(s)
- Lv Han
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zeng Na
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liu Chunli
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Otolaryngology, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Chen Yuchen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhao Pengfei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wang Hao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cheng Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhang Peng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wang Zheng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yang Zhenghan
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Gong Shusheng
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wang Zhenchang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
173
|
Liu CH, Kung YY, Yeh TC, Hsu PS, Yang CJ, Cheng CM, Lin HC, Yang JL, Wu TP, Chang CM, Hsieh JC, Chen FP. Differing Spontaneous Brain Activity in Healthy Adults with Two Different Body Constitutions: A Resting-State Functional Magnetic Resonance Imaging Study. J Clin Med 2019; 8:E951. [PMID: 31261997 PMCID: PMC6678373 DOI: 10.3390/jcm8070951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022] Open
Abstract
Traditional Chinese medicine (TCM) practitioners assess body constitution (BC) as a treatment basis for maintaining body homeostasis. We investigated patterns in spontaneous brain activity in different BC groups using resting-state functional magnetic resonance imaging (rsfMRI) and determined the relationship between these patterns and quality of life (QOL). Thirty-two healthy individuals divided into two groups (body constitution questionnaire (BCQ)-gentleness [BCQ-G] and BCQ-deficiency [BCQ-D]) based on the body constitution questionnaire (BCQ) underwent rsfMRI to analyze regional homogeneity (ReHo) and the amplitude of low-frequency fluctuation (ALFF). The World Health Organization Quality of Life Instruments (brief edition) scale was used to evaluate the QOL. The BCQ-G group (n = 18) had significantly greater ReHo values in the right postcentral gyrus and lower ALFF values in the brainstem than the BCQ-D group (n = 14). In the BCQ-D group, decreased ReHo of the postcentral gyrus correlated with better physiological functioning; increased ALFF in the brainstem correlated with poor QOL. BCQ-subgroup analysis revealed a nonsignificant correlation between ReHo and Yang deficiency/phlegm and stasis (Phl & STA). Nonetheless, the BCQ-D group showed a positive correlation between ALFF and Phl & STA in the parahippocampus. This study identified differences between BCQ-G and BCQ-D types of healthy adults based on the rsfMRI analysis. The different BCQ types with varied brain endophenotypes may elucidate individualized TCM treatment strategies.
Collapse
Affiliation(s)
- Ching-Hsiung Liu
- Department of Neurology, Lotung Poh-Ai Hospital, Ilan 26514, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Yen-Ying Kung
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Tzu-Chen Yeh
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11267, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Pei-Shan Hsu
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11267, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Ching-Ju Yang
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11267, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chou-Ming Cheng
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Hong-Chun Lin
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Jen-Lin Yang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei 11267, Taiwan
- Faculty of Medicine, School of Medicine, Yang-Ming University, Taipei 11221, Taiwan
| | - Ta-Peng Wu
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei 11267, Taiwan
- Faculty of Medicine, School of Medicine, Yang-Ming University, Taipei 11221, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11267, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Fang-Pey Chen
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei 11267, Taiwan.
| |
Collapse
|
174
|
Wang Z, Wang Y, Sweeney JA, Gong Q, Lui S, Mosconi MW. Resting-State Brain Network Dysfunctions Associated With Visuomotor Impairments in Autism Spectrum Disorder. Front Integr Neurosci 2019; 13:17. [PMID: 31213995 PMCID: PMC6554427 DOI: 10.3389/fnint.2019.00017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Individuals with autism spectrum disorder (ASD) show elevated levels of motor variability that are associated with clinical outcomes. Cortical-cerebellar networks involved in visuomotor control have been implicated in postmortem and anatomical imaging studies of ASD. However, the extent to which these networks show intrinsic functional alterations in patients, and the relationship between intrinsic functional properties of cortical-cerebellar networks and visuomotor impairments in ASD have not yet been clarified. Methods: We examined the amplitude of low-frequency fluctuation (ALFF) of cortical and cerebellar brain regions during resting-state functional MRI (rs-fMRI) in 23 individuals with ASD and 16 typically developing (TD) controls. Regions of interest (ROIs) with ALFF values significantly associated with motor variability were identified for for patients and controls respectively, and their functional connectivity (FC) to each other and to the rest of the brain was examined. Results: For TD controls, greater ALFF in bilateral cerebellar crus I, left superior temporal gyrus, left inferior frontal gyrus, right supramarginal gyrus, and left angular gyrus each were associated with greater visuomotor variability. Greater ALFF in cerebellar lobule VIII was associated with less visuomotor variability. For individuals with ASD, greater ALFF in right calcarine cortex, right middle temporal gyrus (including MT/V5), left Heschl's gyrus, left post-central gyrus, right pre-central gyrus, and left precuneus was related to greater visuomotor variability. Greater ALFF in cerebellar vermis VI was associated with less visuomotor variability. Individuals with ASD and TD controls did not show differences in ALFF for any of these ROIs. Individuals with ASD showed greater posterior cerebellar connectivity with occipital and parietal cortices relative to TD controls, and reduced FC within cerebellum and between lateral cerebellum and pre-frontal and other regions of association cortex. Conclusion: Together, these findings suggest that increased resting oscillations within visuomotor networks in ASD are associated with more severe deficits in controlling variability during precision visuomotor behavior. Differences between individuals with ASD and TD controls in the topography of networks showing relationships to visuomotor behavior suggest atypical patterns of cerebellar-cortical specialization and connectivity in ASD that underlies previously documented visuomotor deficits.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Occupational Therapy, University of Florida, Gainesville, FL, United States
| | - Yan Wang
- Huaxi Magnetic Resonance Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - John A. Sweeney
- Huaxi Magnetic Resonance Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Qiyong Gong
- Huaxi Magnetic Resonance Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi Magnetic Resonance Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
175
|
Sun D, Phillips RD, Mulready HL, Zablonski ST, Turner JA, Turner MD, McClymond K, Nieuwsma JA, Morey RA. Resting-state brain fluctuation and functional connectivity dissociate moral injury from posttraumatic stress disorder. Depress Anxiety 2019; 36:442-452. [PMID: 30690812 PMCID: PMC6488394 DOI: 10.1002/da.22883] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/07/2019] [Accepted: 01/12/2019] [Indexed: 02/04/2023] Open
Abstract
Moral injury is closely associated with posttraumatic stress disorder (PTSD) and characterized by disturbances in social and moral cognition. Little is known about the neural underpinnings of moral injury, and whether the neural correlates are different between moral injury and PTSD. A sample of 26 U.S. military veterans (two females: 28-55 years old) were investigated to determine how subjective appraisals of morally injurious events measured by Moral Injury Event Scale (MIES) and PTSD symptoms are differentially related to spontaneous fluctuations indexed by amplitude of low frequency fluctuation (ALFF) as well as functional connectivity during resting-state functional magnetic resonance imaging scanning. ALFF in the left inferior parietal lobule (L-IPL) was positively associated with MIES subscores of transgressions, negatively associated with subscores of betrayals, and not related with PTSD symptoms. Moreover, functional connectivity between the L-IPL and bilateral precuneus was positively related with PTSD symptoms and negatively related with MIES total scores. Our results provide the first evidence that morally injurious events and PTSD symptoms have dissociable neural underpinnings, and behaviorally distinct subcomponents of morally injurious events are different in neural responses. The findings increase our knowledge of the neural distinctions between moral injury and PTSD and may contribute to developing nosology and interventions for military veterans afflicted by moral injury.
Collapse
Affiliation(s)
- Delin Sun
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, North Carolina,VA Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC), Durham, North Carolina
| | - Rachel D. Phillips
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, North Carolina,VA Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC), Durham, North Carolina
| | - Hannah L. Mulready
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC), Durham, North Carolina
| | - Stephen T. Zablonski
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC), Durham, North Carolina
| | - Jessica A. Turner
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Matthew D. Turner
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Kathryn McClymond
- Department of Religious Studies, Georgia State University, Atlanta, Georgia
| | - Jason A. Nieuwsma
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC), Durham, North Carolina,Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, North Carolina
| | - Rajendra A. Morey
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, North Carolina,VA Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC), Durham, North Carolina,Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
176
|
Smitha KA, Arun KM, Rajesh PG, Thomas B, Radhakrishnan A, Sarma PS, Kesavadas C. Resting fMRI as an alternative for task-based fMRI for language lateralization in temporal lobe epilepsy patients: a study using independent component analysis. Neuroradiology 2019; 61:803-810. [PMID: 31020344 DOI: 10.1007/s00234-019-02209-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/02/2019] [Indexed: 02/04/2023]
Abstract
PURPOSE Our aim is to investigate whether rs-fMRI can be used as an effective technique to study language lateralization. We aim to find out the most appropriate language network among different networks identified using ICA. METHODS Fifteen healthy right-handed subjects, sixteen left, and sixteen right temporal lobe epilepsy patients prospectively underwent MR scanning in 3T MRI (GE Discovery™ MR750w), using optimized imaging protocol. We obtained task-fMRI data using a visual-verb generation paradigm. Rs-fMRI and language-fMRI analysis were conducted using FSL software. Independent component analysis (ICA) was used to estimate rs-fMRI networks. Dice coefficient was calculated to examine the similarity in activated voxels of a common language template and the rs-fMRI language networks. Laterality index (LI) was calculated from the task-based language activation and rs-fMRI language network, for a range of LI thresholds at different z scores. RESULTS Measurement of hemispheric language dominance with rs-fMRI was highly concordant with task-fMRI results. Among the evaluated z scores for a range of LI thresholds, rs-fMRI yielded a maximum accuracy of 95%, a sensitivity of 83%, and specificity of 92.8% for z = 2 at 0.05 LI threshold. CONCLUSION The present study suggests that rs-fMRI networks obtained using ICA technique can be used as an alternative for task-fMRI language laterality. The novel aspect of the work is suggestive of optimal thresholds while applying rs-fMRI, is an important endeavor given that many patients with epilepsy have co-morbid cognitive deficits. Thus, an accurate method to determine language laterality without requiring a patient to complete the language task would be advantageous.
Collapse
Affiliation(s)
- K A Smitha
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - K M Arun
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - P G Rajesh
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - Ashalatha Radhakrishnan
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - P Sankara Sarma
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Science and Technology, Trivandrum, Kerala, 695011, India
| | - C Kesavadas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India.
| |
Collapse
|
177
|
O'Connor EE, Zeffiro TA. Why is Clinical fMRI in a Resting State? Front Neurol 2019; 10:420. [PMID: 31068901 PMCID: PMC6491723 DOI: 10.3389/fneur.2019.00420] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022] Open
Abstract
While resting state fMRI (rs-fMRI) has gained widespread application in neuroimaging clinical research, its penetration into clinical medicine has been more limited. We surveyed a neuroradiology professional group to ascertain their experience with rs-fMRI, identify perceived barriers to using rs-fMRI clinically and elicit suggestions about ways to facilitate its use in clinical practice. The electronic survey also collected information about demographics and work environment using Likert scales. We found that 90% of the respondents had adequate equipment to conduct rs-fMRI and 82% found rs-fMRI data easy to collect. Fifty-nine percent have used rs-fMRI in their past research and 72% reported plans to use rs-fMRI for research in the next year. Nevertheless, only 40% plan to use rs-fMRI in clinical practice in the next year and 82% agreed that their clinical fMRI use is largely confined to pre-surgical planning applications. To explore the reasons for the persistent low utilization of rs-fMRI in clinical applications, we identified barriers to clinical rs-fMRI use related to the availability of robust denoising procedures, single-subject analysis techniques, demonstration of functional connectivity map reliability, regulatory clearance, reimbursement, and neuroradiologist training opportunities. In conclusion, while rs-fMRI use in clinical neuroradiology practice is limited, enthusiasm appears to be quite high and there are several possible avenues in which further research and development may facilitate its penetration into clinical practice.
Collapse
Affiliation(s)
- Erin E O'Connor
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, MD, United States
| | - Thomas A Zeffiro
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, MD, United States
| |
Collapse
|
178
|
Narasimham S, McGovern EM, Quinlivan B, Killian O, Beck R, O'Riordan S, Hutchinson M, Reilly RB. Neural Correlates of Abnormal Temporal Discrimination in Unaffected Relatives of Cervical Dystonia Patients. Front Integr Neurosci 2019; 13:8. [PMID: 30914929 PMCID: PMC6423170 DOI: 10.3389/fnint.2019.00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/25/2019] [Indexed: 12/27/2022] Open
Abstract
Background: An abnormal temporal discrimination threshold in cervical dystonia (CD) is considered to be a mediational endophenotype; in unaffected relatives it is hypothesized to indicate non-manifesting gene carriage. The pathogenesis underlying this condition remains unknown. Investigation of the neural networks involved in disordered temporal discrimination may highlight its pathomechanisms. Objective: To examine resting state brain function in unaffected relatives of CD patients with normal and abnormal temporal discrimination. We hypothesized that the endophenotype, an abnormal temporal discrimination, would manifest as altered connectivity in relatives in regions associated with CD, thereby illuminating the neural substrates of the link between temporal discrimination and CD. Methods: Rs-fMRI data was analyzed from two sex- and age-matched cohorts: 16 unaffected relatives of CD patients with normal temporal discrimination and 16 with abnormal temporal discrimination. Regional and whole brain functional connectivity measures were extracted via Independent Component Analysis (ICA), Regional Homogeneity (ReHo), and Amplitude of Low Frequency (ALFF) analyses. Results: Our ICA analysis revealed increased connectivity within both the executive control and cerebellar networks and decreased connectivity within the sensorimotor network in relatives with abnormal temporal discrimination when compared to relatives with normal temporal discrimination. The ReHo and ALFF analyses complimented these results and demonstrated connectivity differences in areas corresponding to motor planning, movement coordination, visual information processing, and eye movements in unaffected relatives with abnormal temporal discrimination. Conclusion: Disordered connectivity in unaffected relatives with abnormal temporal discrimination illuminates neural substrates underlying endophenotype expression and supports the hypothesis that genetically determined aberrant connectivity, when later coupled with unknown environmental triggers, may lead to disease penetrance.
Collapse
Affiliation(s)
- Shruti Narasimham
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Eavan M McGovern
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland
| | - Brendan Quinlivan
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Owen Killian
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Rebecca Beck
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Sean O'Riordan
- Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland
| | - Michael Hutchinson
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland
| | - Richard B Reilly
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
179
|
Sundermann B, Pfleiderer B, Minnerup H, Berger K, Douaud G. Interaction of Developmental Venous Anomalies with Resting-State Functional MRI Measures. AJNR Am J Neuroradiol 2018; 39:2326-2331. [PMID: 30385467 DOI: 10.3174/ajnr.a5847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/25/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Functional MR imaging of the brain, used for both clinical and neuroscientific applications, relies on measuring fluctuations in blood oxygenation. Such measurements are susceptible to noise of vascular origin. The purpose of this study was to assess whether developmental venous anomalies, which are frequently observed normal variants, can bias fMRI measures by appearing as true neural signal. MATERIALS AND METHODS Large developmental venous anomalies (1 in each of 14 participants) were identified from a large neuroimaging cohort (n = 814). Resting-state fMRI data were decomposed using independent component analysis, a data-driven technique that creates distinct component maps representing aspects of either structured noise or true neural activity. We searched all independent components for maps that exhibited a spatial distribution of their signals following the topography of developmental venous anomalies. RESULTS Of the 14 developmental venous anomalies identified, 10 were clearly present in 17 fMRI independent components in total. While 9 (52.9%) of these 17 independent components were dominated by venous contributions and 2 (11.8%) by motion artifacts, 2 independent components (11.8%) showed partial neural signal contributions and 5 independent components (29.4%) unambiguously exhibited typical neural signal patterns. CONCLUSIONS Developmental venous anomalies can strongly resemble neural signal as measured by fMRI. They are thus a potential source of bias in fMRI analyses, especially when present in the cortex. This could impede interpretation of local activity in patients, such as in presurgical mapping. In scientific studies with large samples, developmental venous anomaly confounds could be mainly addressed using independent component analysis-based denoising.
Collapse
Affiliation(s)
- B Sundermann
- From the Nuffield Department of Clinical Neurosciences (B.S., G.D.), Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK .,Institute of Clinical Radiology (B.S., B.P.), Medical Faculty, University of Münster and University Hospital Münster, Münster, Germany
| | - B Pfleiderer
- Institute of Clinical Radiology (B.S., B.P.), Medical Faculty, University of Münster and University Hospital Münster, Münster, Germany
| | - H Minnerup
- Department of Epidemiology and Social Medicine (H.M., K.B.), University of Münster, Münster, Germany
| | - K Berger
- Department of Epidemiology and Social Medicine (H.M., K.B.), University of Münster, Münster, Germany
| | - G Douaud
- From the Nuffield Department of Clinical Neurosciences (B.S., G.D.), Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| |
Collapse
|
180
|
Carotenuto A, Cocozza S, Quarantelli M, Arcara G, Lanzillo R, Brescia Morra V, Cerillo I, Tedeschi E, Orefice G, Bambini V, Brunetti A, Iodice R. Pragmatic abilities in multiple sclerosis: The contribution of the temporo-parietal junction. BRAIN AND LANGUAGE 2018; 185:47-53. [PMID: 30110668 DOI: 10.1016/j.bandl.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Recent studies showed that multiple sclerosis (MS) patients might experience communicative deficits, specifically in pragmatics (i.e., the ability to integrate the context-dependent aspects of language). A crucial region for pragmatics is the temporo-parietal junction, in particular the so-called Geschwind's area (GA), which is involved in high-level language processes, including the comprehension of narratives, metaphor, and irony. We evaluated the relationship between pragmatic abilities, measured through the Assessment of Pragmatic Abilities and Cognitive Substrates (APACS) test, and the functional connectivity (FC) of the bilateral GAs, assessed through a seed-based analysis of Resting-State fMRI in patients with MS. A positive correlation was observed between APACS scores and the FC for both the right and the left GA and the paracingulate cortex. Our findings suggest that the brain FC for social communication involves connections extending over both hemispheres, including right and left GAs and right and left paracingulate cortex, possibly impaired in patients with MS. This study offers preliminary evidence for future researches enrolling also a control sample to explore the involvement of GA in pragmatics in neurological disorders as well as in healthy conditions.
Collapse
Affiliation(s)
- Antonio Carotenuto
- Department of Neurosciences, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| | - Mario Quarantelli
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | | | - Roberta Lanzillo
- Department of Neurosciences, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Vincenzo Brescia Morra
- Department of Neurosciences, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Ilaria Cerillo
- Department of Neurosciences, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Enrico Tedeschi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Giuseppe Orefice
- Department of Neurosciences, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Valentina Bambini
- Center for Neurocognition, Epistemology and Theoretical Syntax (NETS), University School for Advanced Studies IUSS, Pavia, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Rosa Iodice
- Department of Neurosciences, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| |
Collapse
|
181
|
Reduced resting-state functional connectivity of the basolateral amygdala to the medial prefrontal cortex in preweaning rats exposed to chronic early-life stress. Brain Struct Funct 2018; 223:3711-3729. [DOI: 10.1007/s00429-018-1720-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/15/2018] [Indexed: 10/28/2022]
|
182
|
Wintermark M, Colen R, Whitlow CT, Zaharchuk G. The vast potential and bright future of neuroimaging. Br J Radiol 2018; 91:20170505. [PMID: 29848016 DOI: 10.1259/bjr.20170505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Significant advances in anatomical and functional neuroimaging techniques have allowed researchers and clinicians to visualize the brain in action. The field of neuroimaging currently includes newer and faster scanners, improved image quality, higher spatial and temporal resolution and diverse methods of acquisition and analysis. Beyond simply imaging brain structures, these developments enable quantitative assessment of the microstructural and functional architecture, perfusion and metabolism of the brain. The resultant highly granular data have the potential to greatly improve characterization of neurological, neurosurgical and psychiatric disorders without invasive neurosurgery. However, the surge in neuroimaging data that can be collected over a relatively short acquisition period has led to a "big data" problem, where novel methods are needed to appropriately extract and analyze information and integrate data with other types of big data, such as genomic and proteomic data. Another challenge is the translation of these new technologies from basic science into clinical practice, so that they can be leveraged to improve patient outcomes and alleviate human disease. Critical to this endeavor is research comparing the effectiveness and outcomes of these advancements to allow widespread acceptance in the modern, economically constrained healthcare system. This review aims to illustrate the different facets of cutting edge neuroimaging techniques, as well as the potential role of these methods as clinical tools for evaluating the breadth of diseases that affect the brain.
Collapse
Affiliation(s)
- Max Wintermark
- 1 Department of Radiology, Division of Neuroradiology, Stanford University , Palo Alto, CA , USA
| | - Rivka Colen
- 2 Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Christopher T Whitlow
- 3 Departments of Radiology and Biomedical Engineering and Clinical Translational Science Institute, Wake Forest School of Medicine , Winston-Salem, NC , USA
| | - Greg Zaharchuk
- 1 Department of Radiology, Division of Neuroradiology, Stanford University , Palo Alto, CA , USA
| |
Collapse
|
183
|
Sun Q, Chen GQ, Wang XB, Yu Y, Hu YC, Yan LF, Zhang X, Yang Y, Zhang J, Liu B, Wang CC, Ma Y, Wang W, Han Y, Cui GB. Alterations of White Matter Integrity and Hippocampal Functional Connectivity in Type 2 Diabetes Without Mild Cognitive Impairment. Front Neuroanat 2018; 12:21. [PMID: 29615873 PMCID: PMC5869188 DOI: 10.3389/fnana.2018.00021] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/06/2018] [Indexed: 12/26/2022] Open
Abstract
Aims: To investigate the white matter (WM) integrity and hippocampal functional connectivity (FC) in type 2 diabetes mellitus (T2DM) patients without mild cognitive impairment (MCI) by using diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI), respectively. Methods: Twelve T2DM patients without MCI and 24 age, sex and education matched healthy controls (HC) were recruited. DTI and rs-fMRI data were subsequently acquired on a 3.0T MR scanner. Tract-based spatial statistics (TBSS) combining region of interests (ROIs) analysis was used to investigate the alterations of DTI metrics (fractional anisotropy (FA), mean diffusivity (MD), λ1 and λ23) and FC measurement was performed to calculate hippocampal FC with other brain regions. Cognitive function was evaluated by using Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Brain volumes were also evaluated among these participants. Results: There were no difference of MMSE and MoCA scores between two groups. Neither whole brain nor regional brain volume decrease was revealed in T2DM patients without MCI. DTI analysis revealed extensive WM disruptions, especially in the body of corpus callosum (CC). Significant decreases of hippocampal FC with certain brain structures were revealed, especially with the bilateral frontal cortex. Furthermore, the decreased FA in left posterior thalamic radiation (PTR) and increased MD in the splenium of CC were closely related with the decreased hippocampal FC to caudate nucleus and frontal cortex. Conclusions: T2DM patients without MCI showed extensive WM disruptions and abnormal hippocampal FC. Moreover, the WM disruptions and abnormal hippocampal FC were closely associated. HighlightsT2DM patients without MCI demonstrated no obvious brain volume decrease. Extensive white matter disruptions, especially within the body of corpus callosum, were revealed with DTI analysis among the T2DM patients. Despite no MCI in T2DM patients, decreased functional connectivity between hippocampal region and some critical brain regions were detected. The alterations in hippocampal functional connectivity were closely associated with those of the white matter structures in T2DM patients.
This trial was registered to ClinicalTrials.gov (NCT02420470, https://www.clinicaltrials.gov/).
Collapse
Affiliation(s)
- Qian Sun
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Guan-Qun Chen
- Department of Neurology, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Xi-Bin Wang
- Department of Medical Image Diagnosis, Hanzhong Central Hospital, Hanzhong, China
| | - Ying Yu
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Yu-Chuan Hu
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Lin-Feng Yan
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Xin Zhang
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Yang Yang
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Jin Zhang
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Bin Liu
- Student Brigade, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Cong-Cong Wang
- Student Brigade, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Yi Ma
- Student Brigade, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Wen Wang
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Ying Han
- Department of Neurology, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| |
Collapse
|