151
|
Scheinfeld MH, Ghersi E, Laky K, Fowlkes BJ, D'Adamio L. Processing of beta-amyloid precursor-like protein-1 and -2 by gamma-secretase regulates transcription. J Biol Chem 2002; 277:44195-201. [PMID: 12228233 DOI: 10.1074/jbc.m208110200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The familial Alzheimer's disease gene product beta-amyloid (Abeta) precursor protein (APP) is processed by the beta- and gamma-secretases to produce Abeta as well as AID (APP Intracellular Domain) which is derived from the extreme carboxyl terminus of APP. AID was originally shown to lower the cellular threshold to apoptosis and more recently has been shown to modulate gene expression such that it represses Notch-dependent gene expression while in combination with Fe65 it enhances gene activation. Here we report that the two other members of the APP family, beta-amyloid precursor-like protein-1 and -2 (APLP1 and APLP2), are also processed by the gamma-secretase in a Presenilin 1-dependent manner. Furthermore, the extreme carboxyl-terminal fragments produced by this processing (here termed APP-like Intracellular Domain or ALID1 and ALID2) are able to enhance Fe65-dependent gene activation, similar to what has been reported for AID. Considering that only APP and not the APLPs have been linked to familial Alzheimer's disease (AD), this data should help in understanding the physiologic roles of the APP family members and in differentiating these functions from the pathologic role of APP in Alzheimer's disease.
Collapse
Affiliation(s)
- Meir H Scheinfeld
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
152
|
Niikura T, Hashimoto Y, Tajima H, Nishimoto I. Death and survival of neuronal cells exposed to Alzheimer's insults. J Neurosci Res 2002; 70:380-91. [PMID: 12391601 DOI: 10.1002/jnr.10354] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neuronal cell death is the central abnormality occurring in brains suffering from Alzheimer's disease (AD). The notion that AD is a disease caused by loss of neurons points toward suppression of neuronal death as the most important therapeutic target. Nevertheless, the mechanisms for neuronal death in AD are still relatively unclear. Three known mutant genes cause familial AD (FAD): amyloid precursor protein, presenilin 1, and presenilin 2. Detailed analysis of cytotoxic mechanisms of the FAD-linked mutant genes reveals that they cause neuronal cell death at physiologically low expression levels. Unexpectedly, cytotoxic mechanisms vary depending on the type of mutations and genes, suggesting that various mechanisms for neuronal cell death are involved in AD patients. In support of this, activity-dependent neurotrophic factor, basic fibroblast growth factor, and insulin-like growth factor-I can completely protect neurons from beta-amyloid (A beta) cytotoxicity but exhibit incomplete or little effect on cytotoxicity by FAD mutant genes. By contrast, Humanin, a newly identified 24-residue peptide, suppresses neuronal cell death by various FAD mutants and A beta, whereas this factor has no effect on cytotoxicity from AD-irrelevant insults. Studies investigating death and survival of neuronal cells exposed to AD insults will open a new horizon in developing therapy aimed at neuroprotection.
Collapse
Affiliation(s)
- Takako Niikura
- Department of Pharmacology and Neurosciences, Keio University School of Medicine, Shinanomachi, Tokyo, Japan
| | | | | | | |
Collapse
|
153
|
LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat Rev Neurosci 2002; 3:862-72. [PMID: 12415294 DOI: 10.1038/nrn960] [Citation(s) in RCA: 768] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Frank M LaFerla
- Laboratory of Molecular Neuropathogenesis, Department of Neurobiology and Behavior, University of California, Irvine, 1109 Gillespie Neuroscience Building, Irvine, California 92697, USA.
| |
Collapse
|
154
|
Abstract
The beta-amyloid precursor protein has been the focus of much attention from the Alzheimer's disease community for the past decade and a half. The beta-amyloid precursor protein holds a pivotal position in Alzheimer's disease research because it is the precursor to the amyloid beta-protein which many believe plays a central role in Alzheimer's disease pathogenesis. It was also the first gene in which mutations associated with inherited Alzheimer's disease were found. Although the molecular details of the generation of amyloid beta-protein from beta-amyloid precursor protein are being unraveled, the actual physiological functions of beta-amyloid precursor protein are far from clear. This situation is changing as accumulating new evidence suggests that the C-terminal cytosolic tail of beta-amyloid precursor protein may have multiple biological activities, ranging from axonal transport to nuclear signaling. This article reviews the current state of knowledge about the biological functions of beta-amyloid precursor protein.
Collapse
Affiliation(s)
- Edward H Koo
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
155
|
Velez-Pardo C, Ospina GG, Jimenez del Rio M. Abeta[25-35] peptide and iron promote apoptosis in lymphocytes by an oxidative stress mechanism: involvement of H2O2, caspase-3, NF-kappaB, p53 and c-Jun. Neurotoxicology 2002; 23:351-65. [PMID: 12387362 DOI: 10.1016/s0161-813x(02)00081-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Abeta deposition in the neuritic plaques is one of the major neuropathological hallmarks of the Alzheimer disease (AD). Studies in vitro have demonstrated that the Abeta[25-35] fragment, which contains the cytotoxic functional sequence of the amyloid peptide, induces neurotoxicity and cell death by apoptosis. Despite intense investigations, a complete picture of the precise molecular cascade leading to cell death in a single cellular model is still lacking. In this study, we provide evidence that Abeta[25-35] induce apoptosis either alone or in presence of iron in peripheral blood lymphocytes cells (PBL) in a concentration-dependent fashion by an oxidative stress mechanism involving: (1) the production of hydrogen peroxide (H2O2), reflected by rhodamine-positive fluorescent cells, (2) activation and/or translocation of NF-kappaB, p53 and c-Jun transcription factors showed by immunocytochemical diaminobenzidine positive nuclei, (3) activation of NF-kappaB complex by electrophoretic mobility shift assay/immuno-blotting/and ammonium pyrrolidinedithiocarbamate (PDTC) inhibition, (4) caspase-3 activation, reflected by caspase Ac-DEVD-cho inhibition, (5) mRNA synthesis de novo according to actinomycin D cell death inhibition. These results are consistent with the notion that the Abeta[25-35]/H2O2 generation precede the apoptotic process and that once H2O2 is generated, it is able to trigger a specific cell death signalisation. Thus, taken together these results, we present a well-ordered cascade of the major molecular events leading PBL to apoptosis. These results may contribute to explain the importance of Abeta alone or in the presence of redox-available iron in association with Abeta plaques (and neurofibrillary tangles) in AD brains and the significant role played by H2O2 as a second messenger of death signal in some degenerative diseases linked to oxidative stress stimuli.
Collapse
Affiliation(s)
- Carlos Velez-Pardo
- Department of Internal Medicine, School of Medicine, University of Antioquia, Medellin, Colombia.
| | | | | |
Collapse
|
156
|
Tarr PE, Contursi C, Roncarati R, Noviello C, Ghersi E, Scheinfeld MH, Zambrano N, Russo T, D'Adamio L. Evidence for a role of the nerve growth factor receptor TrkA in tyrosine phosphorylation and processing of beta-APP. Biochem Biophys Res Commun 2002; 295:324-9. [PMID: 12150951 DOI: 10.1016/s0006-291x(02)00678-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cytoplasmic tail of the beta-amyloid precursor protein (APP) contains a Y(682)ENPTY(687) sequence through which APP associates with phosphotyrosine binding (PTB) domain containing proteins in a tyrosine phosphorylation-independent manner. We have recently found that tyrosine phosphorylation of APP-Y(682) promotes docking of Shc proteins that modulate growth factor signaling to the ERK and PI3K/Akt pathways. We have also shown that APP is phosphorylated on Y(682) in cells that overexpress a constitutively active form of the tyrosine kinase abl. Here we present evidence that the nerve growth factor receptor TrkA may also promote phosphorylation of APP. Overexpression of TrkA, but not of mutated, kinase inactive TrkA resulted in tyrosine phosphorylation of APP. Site-directed mutagenesis studies showed that TrkA overexpression was associated with phosphorylation of APP-Y(682). Moreover, overexpression of TrkA also affected APP processing reducing the generation of the APP intracellular domain (AID). Thus, tyrosine phosphorylation of APP may functionally link APP processing and neurotrophic signaling to intracellular pathways associated with cellular differentiation and survival.
Collapse
Affiliation(s)
- Philip E Tarr
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Ullmann 1209, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG. Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 2002; 110:55-67. [PMID: 12150997 DOI: 10.1016/s0092-8674(02)00809-7] [Citation(s) in RCA: 434] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Defining the molecular mechanisms that integrate diverse signaling pathways at the level of gene transcription remains a central issue in biology. Here, we demonstrate that interleukin-1beta (IL-1beta) causes nuclear export of a specific N-CoR corepressor complex, resulting in derepression of a specific subset of NF-kappaB-regulated genes, exemplified by the tetraspanin KAI1 that regulates membrane receptor function. Nuclear export of the N-CoR/TAB2/HDAC3 complex by IL-1beta is temporally linked to selective recruitment of a Tip60 coactivator complex. Surprisingly, KAI1 is also directly activated by a ternary complex, dependent on the acetyltransferase activity of Tip60, consisting of the presenilin-dependent C-terminal cleavage product of the amyloid beta precursor protein (APP), Fe65, and Tip60, identifying a specific in vivo gene target of an APP-dependent transcription complex in the brain.
Collapse
Affiliation(s)
- Sung Hee Baek
- Howard Hughes Medical Institute, Department of Molecular Medicine, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
158
|
Sambamurti K, Hardy J, Refolo LM, Lahiri DK. Targeting APP metabolism for the treatment of Alzheimer's disease. Drug Dev Res 2002. [DOI: 10.1002/ddr.10077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
159
|
Roncarati R, Sestan N, Scheinfeld MH, Berechid BE, Lopez PA, Meucci O, McGlade JC, Rakic P, D'Adamio L. The gamma-secretase-generated intracellular domain of beta-amyloid precursor protein binds Numb and inhibits Notch signaling. Proc Natl Acad Sci U S A 2002; 99:7102-7. [PMID: 12011466 PMCID: PMC124535 DOI: 10.1073/pnas.102192599] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2002] [Indexed: 01/05/2023] Open
Abstract
The beta-amyloid precursor protein (APP) and the Notch receptor undergo intramembranous proteolysis by the Presenilin-dependent gamma-secretase. The cleavage of APP by gamma-secretase releases amyloid-beta peptides, which have been implicated in the pathogenesis of Alzheimer's disease, and the APP intracellular domain (AID), for which the function is not yet well understood. A similar gamma-secretase-mediated cleavage of the Notch receptor liberates the Notch intracellular domain (NICD). NICD translocates to the nucleus and activates the transcription of genes that regulate the generation, differentiation, and survival of neuronal cells. Hence, some of the effects of APP signaling and Alzheimer's disease pathology may be mediated by the interaction of APP and Notch. Here, we show that membrane-tethered APP binds to the cytosolic Notch inhibitors Numb and Numb-like in mouse brain lysates. AID also binds Numb and Numb-like, and represses Notch activity when released by APP. Thus, gamma-secretase may have opposing effects on Notch signaling; positive by cleaving Notch and generating NICD, and negative by processing APP and generating AID, which inhibits the function of NICD.
Collapse
Affiliation(s)
- Roberta Roncarati
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Tarr PE, Roncarati R, Pelicci G, Pelicci PG, D'Adamio L. Tyrosine phosphorylation of the beta-amyloid precursor protein cytoplasmic tail promotes interaction with Shc. J Biol Chem 2002; 277:16798-804. [PMID: 11877420 DOI: 10.1074/jbc.m110286200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Amyloid precursor protein (APP) is a widely expressed transmembrane protein of unknown function that is involved in the pathogenesis of Alzheimer's disease. The cytoplasmic tail of APP interacts with phosphotyrosine binding (PTB) domain containing proteins (Fe65, X11, mDab-1, and JIP-1) and may modulate gene expression and apoptosis. We now identify Shc A and Shc C, PTB-containing adapter proteins that signal to cellular differentiation and survival pathways, as novel APP-interacting proteins. The APP cytoplasmic tail contains a PTB-binding motif (Y(682)ENPTY(687)) that, when phosphorylated on Tyr(682), precipitated the PTB domain of Shc A and Shc C, as well as endogenous full-length Shc A. APP and Shc C were physically associated in adult mouse brain homogenates. Increase in phosphorylation of APP by overexpression of the nerve growth factor receptor Trk A in 293T cells promoted the interaction of transfected APP and endogenous Shc A. Pervanadate treatment of N2a neuroblastoma cells resulted in tyrosine phosphorylation and association of endogenous APP and Shc A. Thus, APP and Shc proteins interact in vitro, in cells, and in the mouse brain. Tyrosine phosphorylation of APP may promote the interaction with Shc proteins.
Collapse
Affiliation(s)
- Philip E Tarr
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
161
|
Scheinfeld MH, Roncarati R, Vito P, Lopez PA, Abdallah M, D'Adamio L. Jun NH2-terminal kinase (JNK) interacting protein 1 (JIP1) binds the cytoplasmic domain of the Alzheimer's beta-amyloid precursor protein (APP). J Biol Chem 2002; 277:3767-75. [PMID: 11724784 DOI: 10.1074/jbc.m108357200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The familial Alzheimer's disease gene product amyloid beta precursor protein (APP) is sequentially processed by beta- and gamma-secretases to generate the Abeta peptide. The biochemical pathway leading to Abeta formation has been extensively studied since extracellular aggregates of Abeta peptides are considered the culprit of Alzheimer's disease. Aside from its pathological relevance, the biological role of APP processing is unknown. Cleavage of APP by gamma-secretase releases, together with Abeta, a COOH-terminal APP intracellular domain, termed AID. This peptide has recently been identified in brain tissue of normal control and patients with sporadic Alzheimer's disease. We have previously shown that AID acts as a positive regulator of apoptosis. Nevertheless, the molecular mechanism by which AID regulates this process remains unknown. Hoping to gain clues about the function of APP, we used the yeast two-hybrid system to identify interaction between the AID region of APP and JNK-interacting protein-1 (JIP1). This molecular interaction is confirmed in vitro, in vivo by fluorescence resonance energy transfer (FRET), and in mouse brain lysates. These data provide a link between APP and its processing by gamma-secretase, and stress kinase signaling pathways. These pathways are known regulators of apoptosis and may be involved in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Meir H Scheinfeld
- Albert Einstein College of Medicine, Department of Microbiology & Immunology, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
162
|
Gao Y, Pimplikar SW. The gamma -secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus. Proc Natl Acad Sci U S A 2001; 98:14979-84. [PMID: 11742091 PMCID: PMC64969 DOI: 10.1073/pnas.261463298] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequential processing of the amyloid precursor protein (APP) by beta- and gamma-secretases generates the Abeta peptide, a major constituent of the senile plaques observed in Alzheimer's disease. The cleavage by gamma-secretase also results in the cytoplasmic release of a 59- or 57-residue-long C-terminal fragment (Cgamma). This processing resembles regulated intramembrane proteolysis of transmembrane proteins such as Notch, where the released cytoplasmic fragments enter the nucleus and modulate gene expression. Here, we examined whether the analogous Cgamma fragments of APP also exert effects in the nucleus. We find that ectopically expressed Cgamma is present both in the cytoplasm and in the nucleus. Interestingly, expression of Cgamma59 causes disappearance of PAT1, a protein that interacts with the APP cytoplasmic domain, from the nucleus and induces its proteosomal degradation. Treatment of cells with lactacystin prevents PAT1 degradation and retains its nuclear localization. By contrast, Cgamma57, a minor product of gamma-cleavage, is only marginally effective in PAT1 degradation. Furthermore, Cgamma59 but not Cgamma57 potently represses retinoic acid-responsive gene expression. Thus, our studies provide the evidence that, as predicted by the regulated intramembrane proteolysis mechanism, Cgamma seems to function in the nucleus.
Collapse
Affiliation(s)
- Y Gao
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
163
|
Cupers P, Orlans I, Craessaerts K, Annaert W, De Strooper B. The amyloid precursor protein (APP)-cytoplasmic fragment generated by gamma-secretase is rapidly degraded but distributes partially in a nuclear fraction of neurones in culture. J Neurochem 2001; 78:1168-78. [PMID: 11553691 DOI: 10.1046/j.1471-4159.2001.00516.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gamma-secretase cleavage is the last step in the generation of the beta-amyloid peptide (Abeta) from the amyloid precursor protein (APP). The Abeta precipitates in the amyloid plaques in the brain of Alzheimer's disease patients. The fate of the intracellular APP carboxy-terminal stub generated together with Abeta has been, in contrast, only poorly documented. The analogies between the processing of APP and other transmembrane proteins like SREBP and Notch suggests that this intracellular fragment could have important signalling functions. We demonstrate here that APP-C59 is rapidly degraded (half-life approximately 5 min) when overexpressed in baby hamster kidney cells or primary cultures of neurones by a mechanism that is not inhibited by endosomal/lysosomal or proteasome inhibitors. Furthermore, APP-C59 binds to the DNA binding protein Fe65, although this does not increase the half-life of APP-C59. Finally, we demonstrate that a fraction of APP-C59 becomes redistributed to the nuclear detergent-insoluble pellet, in which the transcription factor SP1 is also present. Overall our results reinforce the analogy between Notch and APP processing, and suggest that the APP intracellular domain, like the Notch intracellular domain, could have a role in signalling events from the plasma membrane to the nucleus.
Collapse
Affiliation(s)
- P Cupers
- Neuronal Cell Biology Group, Center for Human Genetics, Flanders Interuniversitary Institute for Biotechnology and Catholic University of Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
164
|
Soriano S, Lu DC, Chandra S, Pietrzik CU, Koo EH. The amyloidogenic pathway of amyloid precursor protein (APP) is independent of its cleavage by caspases. J Biol Chem 2001; 276:29045-50. [PMID: 11397796 DOI: 10.1074/jbc.m102456200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid beta-protein (A beta) is the main constituent of senile plaques in Alzheimer's disease and is derived by proteolysis from the amyloid precursor protein (APP). Generation and secretion of both A beta 40 and A beta 42 isoforms depend largely on internalization of APP and occurs mainly in the endocytic pathway. Evidence has also been presented (Gervais, F. G., Xu, D., Robertson, G. S., Vaillancourt, J. P., Zhu, Y., Huang, J., LeBlanc, A., Smith, D., Rigby, M., Shearman, M. S., Clarke, E. E., Zheng, H., Van der Ploeg, L. H. T., Ruffolo, S. C., Thornberry, N. A., Xanthoudakis, S., Zamboni, R. J., Roy, S., and Nicholson, D. W. (1999) Cell, 97, 395--406) that caspase cleavage of APP at its cytosolic tail affects its processing such that it is redirected to a more amyloidogenic pathway, resulting in enhanced A beta generation. However, caspase cleavage of APP also results in loss of its endocytosis signal (YENP), an event that would predict a decline in internalization and a concomitant decrease, not an increase, in A beta generation. In the present work, we examined whether caspase cleavage of APP is relevant to amyloidogenesis. We found that 1) caspase cleavage of APP results in reduced internalization and, accordingly, a decline in A beta secretion; 2) masking of the caspase site in APP did not affect A beta levels and, 3) caspase activation in cells by serum withdrawal did not increase A beta secretion. Thus, caspase cleavage of APP is unlikely to play a direct role in amyloidogenesis.
Collapse
Affiliation(s)
- S Soriano
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093-0691, USA.
| | | | | | | | | |
Collapse
|
165
|
Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta. Proc Natl Acad Sci U S A 2001; 98:6336-41. [PMID: 11371646 PMCID: PMC33469 DOI: 10.1073/pnas.101133498] [Citation(s) in RCA: 506] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Through functional expression screening, we identified a gene, designated Humanin (HN) cDNA, which encodes a short polypeptide and abolishes death of neuronal cells caused by multiple different types of familial Alzheimer's disease genes and by Abeta amyloid, without effect on death by Q79 or superoxide dismutase-1 mutants. Transfected HN cDNA was transcribed to the corresponding polypeptide and then was secreted into the cultured medium. The rescue action clearly depended on the primary structure of HN. This polypeptide would serve as a molecular clue for the development of new therapeutics for Alzheimer's disease targeting neuroprotection.
Collapse
Affiliation(s)
- Y Hashimoto
- Departments of Pharmacology and Neurosciences, KEIO University School of Medicine, 160-8582 Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Boorsma M, Koller D, Renner WA, Bachmann MF. New applications of alphavirus-based expression vectors. Cytotechnology 2001; 35:203-12. [PMID: 22358860 PMCID: PMC3449701 DOI: 10.1023/a:1013192017048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alphaviruses are positive stranded RNA viruses that replicate to extremely high titers. Sindbis and Semliki Forest viral vectors are widely used tools for high-level production of recombinant proteins. Recent studies have broadened their scope to vaccine production, gene therapy, and analysis of cell function. Here we discuss the development of non-cytopathic and inducible expression vectors which can be applied to bioprocess development strategies. Furthermore, a Sindbis-based expression cloning system has been developed that allows for the rapid identification of genes encoding proteins with a selected functional activity.
Collapse
Affiliation(s)
- Marco Boorsma
- Cytos Biotechnology AG, Wagistrasse 21, CH-8952 Zurich-Schlieren, Switzerland
- Institute for Biotechnology, ETH-Zurich, CH-8093 Zurich, Switzerland
| | - Daniel Koller
- Cytos Biotechnology AG, Wagistrasse 21, CH-8952 Zurich-Schlieren, Switzerland
| | - Wolfgang A. Renner
- Cytos Biotechnology AG, Wagistrasse 21, CH-8952 Zurich-Schlieren, Switzerland
| | - Martin F. Bachmann
- Cytos Biotechnology AG, Wagistrasse 21, CH-8952 Zurich-Schlieren, Switzerland
| |
Collapse
|
167
|
Sudo H, Hashimoto Y, Niikura T, Shao Z, Yasukawa T, Ito Y, Yamada M, Hata M, Hiraki T, Kawasumi M, Kouyama K, Nishimoto I. Secreted Abeta does not mediate neurotoxicity by antibody-stimulated amyloid precursor protein. Biochem Biophys Res Commun 2001; 282:548-56. [PMID: 11401495 DOI: 10.1006/bbrc.2001.4604] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibodies against APP, a precursor of Abeta deposited in Alzheimer's disease brain, have been shown to cause neuronal death. Therefore, it is important to determine whether Abeta mediates antibody-induced neurotoxicity. When primary neurons were treated with anti-APP antibodies, Abeta40 and Abeta42 in the cultured media were undetectable by an assay capable of detecting 100 nM Abeta peptides. However, exogenously treated Abeta1-42 or Abeta1-43 required >3 microM to exert neurotoxicity, and 25 microM Abeta1-40 was not neurotoxic. Glutathione-ethyl-ester inhibited neuronal death by anti-APP antibody, but not death by Abeta1-42, whereas serum attenuated toxicity by Abeta1-42, but not by anti-APP antibody. Using immortalized neuronal cells, we specified the domain responsible for toxicity to be cytoplasmic His(657)-Lys(676), but not the Abeta1-42 region, of APP. This indicates that neuronal cell death by anti-APP antibody is not mediated by secreted Abeta.
Collapse
Affiliation(s)
- H Sudo
- Department of Pharmacology and Neurosciences, KEIO University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|