151
|
Garaiova Z, Melikishvili S, Michlewska S, Ionov M, Pedziwiatr-Werbicka E, Waczulikova I, Hianik T, Gomez-Ramirez R, de la Mata FJ, Bryszewska M. Dendronized Gold Nanoparticles as Carriers for gp160 (HIV-1) Peptides: Biophysical Insight into Complex Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1542-1550. [PMID: 33475368 DOI: 10.1021/acs.langmuir.0c03159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unavailability of effective and safe human immunodeficiency virus (HIV) vaccines incites several approaches for development of the efficient antigen/adjuvant vaccination composite. In this study, three different dendronized gold nanoparticles (AuNPs 13-15) were investigated for a complexation ability with gp160 synthetic peptides derived from an HIV envelope. It has been shown that HIV peptides interacted with nanoparticles as evident from the changes in their secondary structures, restricted the mobility of the attached fluorescence dye, and enhanced peptide helicity confirmed by the fluorescence polarization and circular dichroism results. Transmission electron microscopy visualized complexes as cloud-like structures with attached nanoparticles. AuNP 13-15 nanoparticles bind negatively charged peptides depending on the number of functional groups; the fastest saturation and peptide retardation were observed for the most dendronized nanoparticle as indicated from dynamic light scattering, laser Doppler velocimetry, and agarose gel electrophoresis experiments. Dendronized gold nanoparticles can be considered one of the potential HIV peptide-based vaccination platforms.
Collapse
Affiliation(s)
- Zuzana Garaiova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava 842 48, Slovakia
| | - Sopio Melikishvili
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava 842 48, Slovakia
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-237, Poland
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-237, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-237, Poland
| | - Elzbieta Pedziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-237, Poland
| | - Iveta Waczulikova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava 842 48, Slovakia
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava 842 48, Slovakia
| | - Rafael Gomez-Ramirez
- Inorganic Chemistry Department, IQAR, University Alcala, Alcala de Henares 28801, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Madrid 28034, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Francisco Javier de la Mata
- Inorganic Chemistry Department, IQAR, University Alcala, Alcala de Henares 28801, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Madrid 28034, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-237, Poland
| |
Collapse
|
152
|
El-Malek FA, Rofeal M, Farag A, Omar S, Khairy H. Polyhydroxyalkanoate nanoparticles produced by marine bacteria cultivated on cost effective Mediterranean algal hydrolysate media. J Biotechnol 2021; 328:95-105. [PMID: 33485864 DOI: 10.1016/j.jbiotec.2021.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 01/02/2023]
Abstract
Algae are omnipresent in all seas and oceans, which make thema target for many applications such as bio-fertilizers, fish feeding and removal of heavy metals. In the present study, different algal species were examined as sustainable alternatives substrates for PHA production by Halomonas sp. Several media simulations were utilized to achieve high polymer productivity. The maximum poly(3-hydroxybutyrate) (PHB) concentrations were determined by using Corallina mediterranea hydrolysates as a carbon and nitrogen source. The isolates Halomonas pacifica ASL10 and Halomonas salifodiane ASL11 were found to be able to produce PHA by 67 % wt and 63 % wt CDW, respectively. PHB nanoparticles (NPs) had high zeta potential values and small particle sizes. These properties make it suitable for several drug delivery and pharmaceutical applications. Interestingly, NPs showed a potent antibacterial activity against several reference strains. The antibacterial efficacy of PHA-NPs has not been previously studied, thus this study opens a promising use of PHA-NPs.
Collapse
Affiliation(s)
- Fady Abd El-Malek
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt
| | - Marian Rofeal
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt
| | - Aida Farag
- Marine Biotechnology and Natural Products Extract Laboratory, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Sanaa Omar
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt
| | - Heba Khairy
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt.
| |
Collapse
|
153
|
Lin Y, Wan Y, Du X, Li J, Wei J, Li T, Li C, Liu Z, Zhou M, Zhong Z. TAT-modified serum albumin nanoparticles for sustained-release of tetramethylpyrazine and improved targeting to spinal cord injury. J Nanobiotechnology 2021; 19:28. [PMID: 33478501 PMCID: PMC7819157 DOI: 10.1186/s12951-020-00766-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Spinal Cord injury (SCI) is a kind of severe traumatic disease. The inflammatory response is a significant feature after SCI. Tetramethylpyrazine (TMP), a perennial herb of umbelliferae, is an alkaloid extracted from ligustici. TMP can inhibit the production of nitric oxide and reduce the inflammatory response in peripheral tissues. It can be seen that the therapeutic effect of TMP on SCI is worthy of affirmation. TMP has defects such as short half-life and poor water-solubility. In addition, the commonly used dosage forms of TMP include tablets, dropping pills, injections, etc., and its tissue and organ targeting is still a difficult problem to solve. To improve the solubility and targeting of TMP, here, we developed a nanotechnology-based drug delivery system, TMP-loaded nanoparticles modified with HIV trans-activator of transcription (TAT-TMP-NPs). RESULTS The nanoparticles prepared in this study has integrated structure. The hemolysis rate of each group is less than 5%, indicating that the target drug delivery system has good safety. The results of in vivo pharmacokinetic studies show that TAT-TMP-NPs improves the bioavailability of TMP. The quantitative results of drug distribution in vivo show that TAT-TMP-NPs is more distributed in spinal cord tissue and had higher tissue targeting ability compared with other treatment groups. CONCLUSIONS The target drug delivery system can overcome the defect of low solubility of TMP, achieve the targeting ability, and show the further clinical application prospect.
Collapse
Affiliation(s)
- Yan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yujie Wan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xingjie Du
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Wei
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ting Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhongbing Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
154
|
Binary Medical Nanofluids by Combination of Polymeric Eudragit Nanoparticles for Vehiculization of Tobramycin and Resveratrol: Antimicrobial, Hemotoxicity and Protein Corona Studies. J Pharm Sci 2021; 110:1739-1748. [PMID: 33428918 DOI: 10.1016/j.xphs.2021.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
The development of smart nanoparticles (NPs) became a trend to enhance the delivery of drugs. In the present work, Tobramycin (TB), an aminoglycoside antibiotic that displays several undesirable side effects, has been encapsulated into cationic Eudragit®E100 (E100) NPs for the treatment of infections caused by Pseudomonas aeruginosa. Combination with neutral Eudragit®NE30D (NE30D) NPs containing resveratrol (RSV), a strong natural antioxidant, increased the antimicrobial activity of TB (75% higher than free TB). NPs were stabilized with 1.0% (w/v) poloxamer 188 (P188) or poloxamer 407 (P407) as surfactants. E100 NPs showed 83.3 ± 8.5%, and 70.1 ± 2.7 encapsulation efficiency (EE) of TB with P188 and P407 coatings, respectively. The presence of NPs was confirmed by DLS and TEM studies. TB was controlled released from NPs for 6 h. Hemotoxicity tests of NPs in the range of MIC values on human blood gave negative results. Analysis of Surface Plasmon Resonance verified that NE30D/P407/RSV does not interact with plasma proteins BSA, IgG or fibrinogen, besides E100/P188/TB interact with BSA, findings that are compatible with a negligible in vivo clearance of the nanovehicles. The obtained results show a potential binary fluid composed of two NPs to highly improve the effectiveness of conventional antibiotics.
Collapse
|
155
|
Skubalova Z, Rex S, Sukupova M, Zahalka M, Skladal P, Pribyl J, Michalkova H, Weerasekera A, Adam V, Heger Z. Passive Diffusion vs Active pH-Dependent Encapsulation of Tyrosine Kinase Inhibitors Vandetanib and Lenvatinib into Folate-Targeted Ferritin Delivery System. Int J Nanomedicine 2021; 16:1-14. [PMID: 33442247 PMCID: PMC7797358 DOI: 10.2147/ijn.s275808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction The present study reports on examination of the effects of encapsulating the tyrosine kinase inhibitors (TKIs) vandetanib and lenvatinib into a biomacromolecular ferritin-based delivery system. Methods The encapsulation of TKIs was performed via two strategies: i) using an active reversible pH-dependent reassembly of ferritin´s quaternary structure and ii) passive loading of hydrophobic TKIs through the hydrophobic channels at the junctions of ferritin subunits. After encapsulation, ferritins were surface-functionalized with folic acid promoting active-targeting capabilities. Results The physico-chemical and nanomechanical analyses revealed that despite the comparable encapsulation efficiencies of both protocols, the active loading affects stability and rigidity of ferritins, plausibly due to their imperfect reassembly. Biological experiments with hormone-responsive breast cancer cells (T47-D and MCF-7) confirmed the cytotoxicity of encapsulated and folate-targeted TKIs to folate-receptor positive cancer cells, but only limited cytotoxic effects to healthy breast epithelium. Importantly, the long-term cytotoxic experiments revealed that compared to the pH-dependent encapsulation, the passively-loaded TKIs exert markedly higher anticancer activity, most likely due to undesired influence of harsh acidic environment used for the pH-dependent encapsulation on the TKIs’ structural and functional properties. Conclusion Since the passive loading does not require a reassembly step for which acids are needed, the presented investigation serves as a solid basis for future studies focused on encapsulation of small hydrophobic molecules.
Collapse
Affiliation(s)
- Zuzana Skubalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Simona Rex
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Martina Sukupova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Martin Zahalka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Petr Skladal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Pribyl
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Akila Weerasekera
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
156
|
Rabbani A, Haghniaz R, Khan T, Khan R, Khalid A, Naz SS, Ul-Islam M, Vajhadin F, Wahid F. Development of bactericidal spinel ferrite nanoparticles with effective biocompatibility for potential wound healing applications. RSC Adv 2021; 11:1773-1782. [PMID: 35424142 PMCID: PMC8693516 DOI: 10.1039/d0ra08417d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/20/2020] [Indexed: 12/18/2022] Open
Abstract
The current study was devised to explore the antibacterial activity and underlying mechanism of spinel ferrite nanoparticles (NPs) along with their biocompatibility and wound healing potentials. In this regard, nickel ferrite and zinc/nickel ferrite NPs were synthesized via a modified co-precipitation method and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy Energy-dispersive X-ray spectroscopy (EDX). The biocompatibility of the synthesized NPs with human dermal fibroblast (HDF) and red blood cells (RBCs) was assessed. The biocompatible concentrations of the NPs were used to investigate the antimicrobial activity against various pathogenic Gram-negative and Gram-positive bacteria. The mode of bactericidal action was also explored. In vitro scratch assay was performed to evaluate the wound healing potential of NPs. The SEM-EDX analysis showed that the average particles size of nickel ferrite and zinc/nickel ferrite were 49 and 46 nm, respectively, with appropriate elemental composition and homogenous distribution. The XRD pattern showed all the characteristic diffraction peaks of spinel ferrite NPs, which confirmed the synthesis of the pure phase cubic spinel structure. The biocompatible concentration of nickel ferrite and zinc/nickel ferrite NPs was found to be 250 and 125 μg ml-1, respectively. Both the NPs showed inhibition against all the selected strains in the concentration range of 50 to 1000 μg ml-1. Studies on the underlying antimicrobial mechanism revealed damage to the cell membrane, protein leakage, and intracellular reactive oxygen species production. The in vitro scratch assay confirmed the migration and proliferation of fibroblast with artificial wound shrinkage. This study shows that nickel ferrite and zinc/nickel ferrite NPs could be a strong candidate for antibacterial and wound healing nano-drugs.
Collapse
Affiliation(s)
- Atiya Rabbani
- Department of Biotechnology, COMSATS University Islamabad Abbottabad Campus Pakistan
| | - Reihaneh Haghniaz
- Khademhosseini's Laboratory, Center for Minimally Invasive Therapeutics (CMIT) California NanoSystems Institute, University of California Los Angles Los Angles USA
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad Abbottabad Campus Pakistan
| | - Romana Khan
- Department of Environmental Sciences, COMSATS University Islamabad Abbottabad Campus Pakistan
| | - Ayesha Khalid
- Department of Biotechnology, COMSATS University Islamabad Abbottabad Campus Pakistan
| | - Syeda Sohaila Naz
- Department of Nanosciences and Technology, National Centre for Physics Islamabad Pakistan
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University Salalah Oman
| | | | - Fazli Wahid
- Department of Biotechnology, COMSATS University Islamabad Abbottabad Campus Pakistan
- Department of Biomedical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology Mang, Khanpur Road Haripur Pakistan
| |
Collapse
|
157
|
Srećković NZ, Nedić ZP, Liberti D, Monti DM, Mihailović NR, Katanić Stanković JS, Dimitrijević S, Mihailović VB. Application potential of biogenically synthesized silver nanoparticles using Lythrum salicaria L. extracts as pharmaceuticals and catalysts for organic pollutant degradation. RSC Adv 2021; 11:35585-35599. [PMID: 35493140 PMCID: PMC9043271 DOI: 10.1039/d1ra05570d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
This study was designed to evaluate the optimal conditions for the eco-friendly synthesis of silver nanoparticles (AgNPs) using Lythrum salicaria L. (Lythraceae) aqueous extracts and their potential application and safe use. AgNPs synthesized using L. salicaria aerial parts (LSA-AgNPs) and root extract (LSR-AgNPs) were characterized by UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM/EDS), and X-ray powder diffraction (XRPD). Dynamic light scattering (DLS) was used for the determination of the size distribution profiles of the obtained nanoparticles. Both L. salicaria extracts showed high phenolic content, while the flavone C-glucosides orientin, vitexin, and isovitexin were detected in extracts using HPLC. The synthesized AgNPs displayed growth inhibition of the tested bacteria and fungi in concentrations between 0.156 and 1.25 mg mL−1. The studied nanoparticles also showed antioxidant potential and gained selectivity at different concentrations on different cancer cell lines. Concentrations of LSA-AgNPs were found to be 20.5 and 12 μg mL−1 towards A431 and SVT2, respectively, while LSR-AgNPs were effective only against A431 cancer cells (62 μg mL−1). The hemolytic activity of LSA-AgNPs in concentrations up to 150 μg mL−1 was not observed, while LSR-AgNPs in the highest applied concentration hemolyzed 2.8% of erythrocytes. The degradation possibility of Congo red and 4-nitrophenol using LSA-AgNPs and LSR-AgNPs as catalysts was also proven. The results indicate that L. salicaria may be used for the eco-friendly synthesis of AgNPs with possible applications as antimicrobial and selective cytotoxic agents towards cancer cell lines, as well as in catalytic degradation of pollutants. This study was designed to evaluate the optimal conditions for the eco-friendly synthesis of silver nanoparticles (AgNPs) using Lythrum salicaria L. (Lythraceae) aqueous extracts and their potential application and safe use.![]()
Collapse
Affiliation(s)
- Nikola Z. Srećković
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Zoran P. Nedić
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, P.O. Box 47, 11159 Belgrade, Serbia
| | - Davide Liberti
- University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, Department of Chemical Sciences, via Cinthia 4, 80126, Naples, Italy
| | - Daria Maria Monti
- University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, Department of Chemical Sciences, via Cinthia 4, 80126, Naples, Italy
| | - Nevena R. Mihailović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Jelena S. Katanić Stanković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | | | - Vladimir B. Mihailović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
158
|
Kupikowska-Stobba B, Kasprzak M. Fabrication of nanoparticles for bone regeneration: new insight into applications of nanoemulsion technology. J Mater Chem B 2021; 9:5221-5244. [PMID: 34142690 DOI: 10.1039/d1tb00559f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introducing synthetic bone substitutes into the clinic was a major breakthrough in the regenerative medicine of bone. Despite many advantages of currently available bone implant materials such as biocompatiblity and osteoconductivity, they still suffer from relatively poor bioactivity, osteoinductivity and osteointegration. These properties can be effectively enhanced by functionalization of implant materials with nanoparticles such as osteoinductive hydroxyapatite nanocrystals, resembling inorganic part of the bone, or bioactive polymer nanoparticles providing sustained delivery of pro-osteogenic agents directly at implantation site. One of the most widespread techniques for fabrication of nanoparticles for bone regeneration applications is nanoemulsification. It allows manufacturing of nanoscale particles (<100 nm) that are injectable, 3D-printable, offer high surface-area-to-volume-ratio and minimal mass transport limitations. Nanoparticles obtained by this technique are of particular interest for biomedical engineering due to fabrication procedures requiring low surfactant concentrations, which translates into reduced risk of surfactant-related in vivo adverse effects and improved biocompatibility of the product. This review discusses nanoemulsion technology and its current uses in manufacturing of nanoparticles for bone regeneration applications. In the first section, we introduce basic concepts of nanoemulsification including nanoemulsion formation, properties and preparation methods. In the next sections, we focus on applications of nanoemulsions in fabrication of nanoparticles used for delivery of drugs/biomolecules facilitating osteogenesis and functionalization of bone implants with special emphasis on biomimetic hydroxyapatite nanoparticles, synthetic polymer nanoparticles loaded with bioactive compounds and bone-targeting nanoparticles. We also highlight key challenges in formulation of nanoparticles via nanoemulsification and outline potential further improvements in this field.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials, Ceramic and Concrete Division in Warsaw, Department of Biomaterials, Postępu 9, 02-677, Warsaw, Poland.
| | - Mirosław Kasprzak
- ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials, Ceramic and Concrete Division in Warsaw, Department of Biomaterials, Postępu 9, 02-677, Warsaw, Poland.
| |
Collapse
|
159
|
Singh MP, Flynn NH, Sethuraman SN, Manouchehri S, Ritchey J, Liu J, Ramsey JD, Pope C, Ranjan A. Reprogramming the rapid clearance of thrombolytics by nanoparticle encapsulation and anchoring to circulating red blood cells. J Control Release 2021; 329:148-161. [DOI: 10.1016/j.jconrel.2020.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023]
|
160
|
Kozanecka-Okupnik W, Sierakowska A, Berdzik N, Kowalczyk I, Mrówczyńska L, Jasiewicz B. New triazole-bearing gramine derivatives - synthesis, structural analysis and protective effect against oxidative haemolysis. Nat Prod Res 2020; 36:3413-3419. [PMID: 33356568 DOI: 10.1080/14786419.2020.1864364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The new series of triazole-bearing gramine derivatives were synthesized through a CuAAC procedure. The structures of all newly obtained compounds were confirmed by spectroscopic analysis and DFT methods. The obtained derivatives were screened for their protective potency against oxidative haemolysis induced by free radicals generated from 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). Our work demonstrates that derivatives with propyl or octyl linker and phthalimide group associated with indole-triazole moiety, which have a folded structure, effectively protect human erythrocytes against oxidative stress-induced haemolysis.
Collapse
Affiliation(s)
| | - A Sierakowska
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - N Berdzik
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - I Kowalczyk
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - L Mrówczyńska
- Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - B Jasiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
161
|
Zhang M, Du Y, Wang S, Chen B. A Review of Biomimetic Nanoparticle Drug Delivery Systems Based on Cell Membranes. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5495-5503. [PMID: 33363358 PMCID: PMC7753887 DOI: 10.2147/dddt.s282368] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
Cancers have always been an intractable problem because of recurrence and drug resistance. In the past few decades, nanoparticles have been explored intensely to diagnose, prevent and treat malignancy due to their good penetrability and better targeting. However, most nanocarriers have poor biodegradation and can be discharged out of the body quickly or cleared by immune cells while failing to obtain effective drug concentration at the specific sites. The emergence of biological membrane encapsulation technology relieves the fast clearance of antitumor drugs and reduces toxicity in vivo. This review will discuss the advantages and disadvantages of several blood cell membrane-coated nanoparticles and further introduce exosome-carried drugs to evidence the promising prospect of biomimetic nanoparticle drug delivery systems.
Collapse
Affiliation(s)
- Meilin Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Ying Du
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Shujun Wang
- Jinling Hospital Department of Blood Transfusion, School of Medicine, Nanjing University, Nanjing, Jiangsu Province 210002, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| |
Collapse
|
162
|
Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, Fatahi Y, Dinarvand R, Tahriri M, Tayebi L, Hamblin MR, Webster TJ. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000076] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Navid Rabiee
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Sepideh Ahmadi
- Student Research Committee Department of Medical Biotechnology School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
- Cellular and Molecular Biology Research Center Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
| | - Ronak Afshari
- Department of Physics Sharif University of Technology P.O. Box 11155‐9161 Tehran Iran
| | - Samira Khalaji
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mohammad Rabiee
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Universal Scientific Education and Research Network (USERN) Tehran 15875‐4413 Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
| | - Mohammadreza Tahriri
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Lobat Tayebi
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston USA
- Department of Dermatology Harvard Medical School Boston USA
- Laser Research Centre Faculty of Health Science University of Johannesburg Doornfontein 2028 South Africa
| | - Thomas J. Webster
- Department of Chemical Engineering Northeastern University Boston MA 02115 USA
| |
Collapse
|
163
|
Zhu R, Avsievich T, Popov A, Bykov A, Meglinski I. In vivo nano-biosensing element of red blood cell-mediated delivery. Biosens Bioelectron 2020; 175:112845. [PMID: 33262059 DOI: 10.1016/j.bios.2020.112845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Abstract
Biosensors based on nanotechnology are developing rapidly and are widely applied in many fields including biomedicine, environmental monitoring, national defense and analytical chemistry, and have achieved vital positions in these fields. Novel nano-materials are intensively developed and manufactured for potential biosensing and theranostic applications while lacking comprehensive assessment of their potential health risks. The integration of diagnostic in vivo biosensors and the DDSs for delivery of therapeutic drugs holds an enormous potential in next-generation theranostic platforms. Controllable, precise, and safe delivery of diagnostic biosensing devices and therapeutic agents to the target tissues, organs, or cells is an important determinant in developing advanced nanobiosensor-based theranostic platforms. Particularly, inspired by the comprehensive biological investigations on the red blood cells (RBCs), advanced strategies of RBC-mediated in vivo delivery have been developed rapidly and are currently in different stages of transforming from research and design to pre-clinical and clinical investigations. In this review, the RBC-mediated delivery of in vivo nanobiosensors for applications of bio-imaging at the single-cell level, advanced medical diagnostics, and analytical detection of biomolecules and cellular activities are presented. A comprehensive perspective of the technical framework of the state-of-the-art RBC-mediated delivery systems is explained in detail to inspire the design and implementation of advanced nanobiosensor-based theranostic platforms taking advantage of RBC-delivery modalities.
Collapse
Affiliation(s)
- Ruixue Zhu
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570, Oulu, Finland.
| | - Tatiana Avsievich
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570, Oulu, Finland.
| | - Alexey Popov
- VTT Technical Research Centre of Finland, Kaitoväylä 1, 90590, Oulu, Finland.
| | - Alexander Bykov
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570, Oulu, Finland.
| | - Igor Meglinski
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570, Oulu, Finland; Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, 634050, Tomsk, Russia; Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University (MEPhI), 115409, Moscow, Russia; Department of Histology, Cytology and Embryology, Institute of Clinical Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; College of Engineering and Physical Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
164
|
Zenych A, Fournier L, Chauvierre C. Nanomedicine progress in thrombolytic therapy. Biomaterials 2020; 258:120297. [DOI: 10.1016/j.biomaterials.2020.120297] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/10/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
165
|
Sadat SMA, Vakili MR, Paiva IM, Weinfeld M, Lavasanifar A. Development of Self-Associating SN-38-Conjugated Poly(ethylene oxide)-Poly(ester) Micelles for Colorectal Cancer Therapy. Pharmaceutics 2020; 12:pharmaceutics12111033. [PMID: 33138058 PMCID: PMC7694018 DOI: 10.3390/pharmaceutics12111033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
The clinical use of 7-ethyl-10-hydroxy-camptothecin (SN-38), which is the active metabolite of irinotecan, has been hampered because of its practical water-insolubility. In this study, we successfully synthesized two self-associating SN-38-polymer drug conjugates to improve the water-solubility of SN-38, while retaining its anticancer activity. The polymeric micellar SN-38 conjugates were composed of either methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) conjugated to SN-38 at the PBCL end (mPEO-b-PBCL/SN-38) or mPEO-block-poly(α-carboxyl-ε-caprolactone) attached to SN-38 from the pendent-free carboxyl site (mPEO-b-PCCL/SN-38). The chemical structure of block copolymers was confirmed by 1H NMR. The physicochemical characterizations of their self-assembled structures including size, surface charge, polydispersity, critical micellar concentration, conjugation content and efficiency, morphology, kinetic stability, and in vitro release of SN-38 were compared between the two formulations. In vitro anticancer activities were evaluated by measuring cellular cytotoxicity and caspase activation by MTS and Caspase-Glo 3/7 assays, respectively. The hemolytic activity of both micellar structures against rat red blood cells was also measured. The results showed the formation of SN-38-polymeric micellar conjugates at diameters < 50 nm with a narrow size distribution and sustained release of SN-38 for both structures. The loading content of SN-38 in mPEO-b-PBCL and mPEO-b-PCCL were 11.47 ± 0.10 and 12.03 ± 0.17 (% w/w), respectively. The mPEO-b-PBCL/SN-38, end-capped micelles were kinetically more stable than mPEO-b-PCCL/SN-38. The self-assembled mPEO-b-PBCL/SN-38 and mPEO-b-PCCL/SN-38 micelles resulted in significantly higher cytotoxic effects than irinotecan against human colorectal cancer cell lines HCT116, HT-29, and SW20. The CRC cells were found to be 70-fold to 330-fold more sensitive to micellar SN-38 than irinotecan, on average. Both SN-38-incorporated micelles showed two-fold higher caspase-3/7 activation levels than irinotecan. The mPEO-b-PBCL/SN-38 micelles were not hemolytic, but mPEO-b-PCCL/SN-38 showed some hemolysis. The overall results from this study uphold mPEO-b-PBCL/SN-38 over mPEO-b-PCCL/SN-38 micellar formulation as an effective delivery system of SN-38 that warrants further preclinical investigation.
Collapse
Affiliation(s)
- Sams M. A. Sadat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.M.A.S.); (I.M.P.)
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.M.A.S.); (I.M.P.)
- Correspondence: (M.R.V.); (A.L.); Tel.: +1-5879204349 (M.R.V.); +1-7804922742 (A.L.); Fax: +1-7804921217 (M.R.V.); +1-7804921217 (A.L.)
| | - Igor M. Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.M.A.S.); (I.M.P.)
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.M.A.S.); (I.M.P.)
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
- Correspondence: (M.R.V.); (A.L.); Tel.: +1-5879204349 (M.R.V.); +1-7804922742 (A.L.); Fax: +1-7804921217 (M.R.V.); +1-7804921217 (A.L.)
| |
Collapse
|
166
|
Epigallocatechin-3-Gallate-Loaded Gold Nanoparticles: Preparation and Evaluation of Anticancer Efficacy in Ehrlich Tumor-Bearing Mice. Pharmaceuticals (Basel) 2020; 13:ph13090254. [PMID: 32961982 PMCID: PMC7559993 DOI: 10.3390/ph13090254] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is a pleiotropic compound with anticancer, anti-inflammatory, and antioxidant properties. To enhance EGCG anticancer efficacy, it was loaded onto gold nanoparticles (GNPs). EGCG-GNPs were prepared by a simple green synthesis method and were evaluated using different techniques. Hemocompatibility with human blood and in vivo anticancer efficacy in Ehrlich ascites carcinoma-bearing mice were evaluated. EGCG/gold chloride molar ratio had a marked effect on the formation and properties of EGCG-GNPs where well-dispersed spherical nanoparticles were obtained at a molar ratio not more than 0.8:1. The particle size ranged from ~26 to 610 nm. High drug encapsulation efficiency and loading capacity of ~93 and 32%, respectively were obtained. When stored at 4 °C for three months, EGCG-GNPs maintained over 90% of their drug payload and had small changes in their size and zeta potential. They were non-hemolytic and had no deleterious effects on partial thromboplastin time, prothrombin time, and complement protein C3 concentration. EGCG-GNPs had significantly better in vivo anticancer efficacy compared with pristine EGCG as evidenced by smaller tumor volume and weight and higher mice body weight. These results confirm that EGCG-GNPs could serve as an efficient delivery system for EGCG with a good potential to enhance its anticancer efficacy.
Collapse
|
167
|
Kang Y. Cell Biological Techniques and Cell-Biomaterial Interactions. Cells 2020; 9:cells9092094. [PMID: 32937795 PMCID: PMC7563228 DOI: 10.3390/cells9092094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
Biomaterials play a key role in modern tissue engineering and regenerative medicine. They are expected to take over the function of a damaged tissue in the long term, trigger the self-healing potential of the body, and biodegrade at an appropriate rate. To meet these requirements, it is imperative to understand the cell-biomaterial interactions and develop new cell biotechnologies. The collection of this Special Issue brings together a number of studies portraying the underlying mechanisms of cell-biomaterial interactions.
Collapse
Affiliation(s)
- Yunqing Kang
- Department of Ocean and Mechanical Engineering, College of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA;
- Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Faculty of Integrative Biology PhD program, College of Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
168
|
Witika BA, Makoni PA, Matafwali SK, Chabalenge B, Mwila C, Kalungia AC, Nkanga CI, Bapolisi AM, Walker RB. Biocompatibility of Biomaterials for Nanoencapsulation: Current Approaches. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1649. [PMID: 32842562 PMCID: PMC7557593 DOI: 10.3390/nano10091649] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022]
Abstract
Nanoencapsulation is an approach to circumvent shortcomings such as reduced bioavailability, undesirable side effects, frequent dosing and unpleasant organoleptic properties of conventional drug delivery systems. The process of nanoencapsulation involves the use of biomaterials such as surfactants and/or polymers, often in combination with charge inducers and/or ligands for targeting. The biomaterials selected for nanoencapsulation processes must be as biocompatible as possible. The type(s) of biomaterials used for different nanoencapsulation approaches are highlighted and their use and applicability with regard to haemo- and, histocompatibility, cytotoxicity, genotoxicity and carcinogenesis are discussed.
Collapse
Affiliation(s)
- Bwalya A. Witika
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (B.A.W.); (P.A.M.)
| | - Pedzisai A. Makoni
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (B.A.W.); (P.A.M.)
| | - Scott K. Matafwali
- Department of Basic Sciences, School of Medicine, Copperbelt University, Ndola 10101, Zambia;
| | - Billy Chabalenge
- Department of Market Authorization, Zambia Medicines Regulatory Authority, Lusaka 10101, Zambia;
| | - Chiluba Mwila
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (A.C.K.)
| | - Aubrey C. Kalungia
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (A.C.K.)
| | - Christian I. Nkanga
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, P.O. Box 212, Kinshasa XI, Democratic Republic of the Congo;
| | - Alain M. Bapolisi
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa;
| | - Roderick B. Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (B.A.W.); (P.A.M.)
| |
Collapse
|
169
|
Mohammadpour R, Cheney DL, Grunberger JW, Yazdimamaghani M, Jedrzkiewicz J, Isaacson KJ, Dobrovolskaia MA, Ghandehari H. One-year chronic toxicity evaluation of single dose intravenously administered silica nanoparticles in mice and their Ex vivo human hemocompatibility. J Control Release 2020; 324:471-481. [PMID: 32464151 PMCID: PMC7429347 DOI: 10.1016/j.jconrel.2020.05.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023]
Abstract
Chronic toxicity evaluations of nanotechnology-based drugs are essential to support initiation of clinical trials. Ideally such evaluations should address the dosing strategy in human applications and provide sufficient information for long-term usage. Herein, we investigated one-year toxicity of non-surface modified silica nanoparticles (SNPs) with variations in size and porosity (Stöber SNPs 46 ± 4.9 and 432.0 ± 18.7 nm and mesoporous SNPs 466.0 ± 86.0 nm) upon single dose intravenous administration to female and male BALB/c mice (10 animal/sex/group) along with their human blood compatibility. Our evidence of clinical observation and blood parameters showed no significant changes in body weight, cell blood count, nor plasma biomarker indices. No significant changes were noted in post necropsy examination of internal organs and organ-to-body weight ratio. However, microscopic examination revealed significant amount of liver inflammation and aggregates of histocytes with neutrophils within the spleen suggesting an ongoing or resolving injury. The fast accumulation of these plain SNPs in the liver and spleen upon IV administration and the duration needed for their clearance caused these injuries. There were also subtle changes which were attributed to prior infarctions or resolved intravascular thrombosis and included calcifications in pulmonary vessels, focal cardiac fibrosis with calcifications, and focal renal injury. Most of the pathologic lesions were observed when large, non-porous SNPs were administered. Statistically significant chronic toxicity was not observed for the small non-porous particles and for the mesoporous particles. This one-year post-exposure evaluation indicate that female and male BALB/c mice need up to one year to recover from acute tissue toxic effects of silica nanoparticles upon single dose intravenous administration at their 10-day maximum tolerated dose. Further, ex vivo testing with human blood and plasma revealed no hemolysis or complement activation following incubation with these silica nanoparticles. These results can inform the potential utility of silica nanoparticles in biomedical applications such as controlled drug delivery where intravenous injection of the particles is intended.
Collapse
Affiliation(s)
- Raziye Mohammadpour
- Utah Center for Nanomedicine, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States
| | - Darwin L Cheney
- Utah Center for Nanomedicine, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States
| | - Jason W Grunberger
- Utah Center for Nanomedicine, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States
| | - Mostafa Yazdimamaghani
- Utah Center for Nanomedicine, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States
| | - Jolanta Jedrzkiewicz
- Department of Pathology, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States
| | - Kyle J Isaacson
- Utah Center for Nanomedicine, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States.
| |
Collapse
|
170
|
Low LE, Wu J, Lee J, Tey BT, Goh BH, Gao J, Li F, Ling D. Tumor-responsive dynamic nanoassemblies for targeted imaging, therapy and microenvironment manipulation. J Control Release 2020; 324:69-103. [DOI: 10.1016/j.jconrel.2020.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023]
|
171
|
Synthesis of biocompatible silver nanoparticles by a modified polyol method for theranostic applications: Studies on red blood cells, internalization ability and antibacterial activity. J Inorg Biochem 2020; 211:111177. [PMID: 32795713 DOI: 10.1016/j.jinorgbio.2020.111177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022]
Abstract
Recently, there has been ongoing research in the field of nanotechnology and nanomedicine aiming at developing multifunctional biomaterials using noble metals. The unique properties of silver (Ag) are known from ancient times and thus are being explored for their behavior on the nano scale. Silver shows high antimicrobial activity against different microorganisms, while modification of the surface of its nanostructures can be useful in active targeting regarding cancer treatment. During the synthetic procedure, in order to obtain a more uniform sample of silver nanoparticles (Ag NPs) with spherical morphology, a stabilizer is essential. The stabilizers used not only control the progression of the reaction, but also increases the biocompatibility of the NPs. Thus, we managed to synthesize spherical and rod-like Ag NPs via a polyol method and stabilize them with polyvinylpyrrolidone (PVP). The resulted Ag NPs were characterized morphologically with Transmission Electron Microscopy (TEM) and further confirmed by their structural characterization (FT-IR, UV-Vis, Dynamic Light Scattering (DLS) and Zeta Potential). For their biocompatibility profile, we studied their interaction with red blood cells (RBCs) through hemolysis assay and we monitored their structural alterations through SEM. The antimicrobial activity was tested with the agar diffusion disc assay for Gram negative and Gram positive microorganisms E. coli and S. aureus respectively. Nanoparticles' (NPs) internalization and localization studies in cancer cells were monitored with fluorescence microscopy in MCF-7 and U87-MG. According to our results it is worth it to investigate the potential of these nanomaterials since they can have a significant role in applications of theranostics in nanomedicine.
Collapse
|
172
|
CUI FZ, LIU JH, LIU Y, YUAN BY, GONG X, YUAN QH, GONG TT, WANG L. Synthesis of PEGylated BaGdF5 Nanoparticles as Efficient CT/MRI Dual-modal Contrast Agents for Gastrointestinal Tract Imaging. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60039-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
173
|
Milić M, Vuković B, Barbir R, Pem B, Milić M, Šerić V, Frőhlich E, Vinković Vrček I. Effect of differently coated silver nanoparticles on hemostasis. Platelets 2020; 32:651-661. [PMID: 32668997 DOI: 10.1080/09537104.2020.1792432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
With the emergence of nano-enabled medical devices (MDs) for the use in human medicine, ensuring their safety becomes of crucial importance. Hemocompatibility is one of the major criteria for approval of all MDs in contact with blood (e.g. vascular grafts, stents, or valves). Silver nanoparticles (AgNPs) are among the most used nanomaterials for MDs due to their biocidal activity; however, detailed knowledge on their hemostatic effects is still lacking.This study aimed to evaluate comprehensively AgNPs effects on hemostasis in human blood by exploiting combination of affordable and clinically relevant techniques.Differently stabilized AgNPs were prepared using sodium bis(2-ethylhexyl)sulphosuccinate (AOT), polyvinylpyrrolidone (PVP), poly-L-lysine (PLL), and bovine serum albumin (BSA) as coating agents. They were tested for hemolytic activity, induction of platelet aggregation, plasmatic coagulation, thrombin generation, and hemostasis in whole blood.All AgNPs were found to cause dose-dependent hemolysis. The BSA-, AOT-, and PVP-coated AgNPs delayed plasmatic coagulation, while only PLL-AgNPs inhibited plasmatic coagulation, induced platelet activation, and interfered with hemostasis by delaying clotting time and decreasing clot firmness in whole blood.Obtained results demonstrate that a combination of different techniques should be used for reliable assessment of AgNPs hemostatic effects highlighting the need for a standardized approach in sampling and experimental protocols.
Collapse
Affiliation(s)
- Marija Milić
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia.,Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Barbara Vuković
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia.,Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Barbara Pem
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vatroslav Šerić
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia.,Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | | | | |
Collapse
|
174
|
Gaikwad H, Li Y, Gifford G, Groman E, Banda NK, Saba L, Scheinman R, Wang G, Simberg D. Complement Inhibitors Block Complement C3 Opsonization and Improve Targeting Selectivity of Nanoparticles in Blood. Bioconjug Chem 2020; 31:1844-1856. [PMID: 32598839 DOI: 10.1021/acs.bioconjchem.0c00342] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Complement is one of the critical branches of innate immunity that determines the recognition of engineered nanoparticles by immune cells. Antibody-targeted iron oxide nanoparticles are a popular platform for magnetic separations, in vitro diagnostics, and molecular imaging. We used 60 nm cross-linked iron oxide nanoworms (CLIO NWs) modified with antibodies against Her2/neu and EpCAM, which are common markers of blood-borne cancer cells, to understand the role of complement in the selectivity of targeting of tumor cells in whole blood. CLIO NWs showed highly efficient targeting and magnetic isolation of tumor cells spiked in lepirudin-anticoagulated blood, but specificity was low due to high uptake by neutrophils, monocytes, and lymphocytes. Complement C3 opsonization in plasma was predominantly via the alternative pathway regardless of the presence of antibody, PEG, or fluorescent tag, but was higher for antibody-conjugated CLIO NWs. Addition of various soluble inhibitors of complement convertase (compstatin, soluble CD35, and soluble CD55) to whole human blood blocked up to 99% of the uptake of targeted CLIO NWs by leukocytes, which resulted in a more selective magnetic isolation of tumor cells. Using well-characterized nanomaterials, we demonstrate here that complement therapeutics can be used to improve targeting selectivity.
Collapse
Affiliation(s)
| | | | | | | | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | | | | | | | | |
Collapse
|
175
|
Kwiatek D, Mrówczyńska L, Stopikowska N, Runowski M, Lesicki A, Lis S. Surface Modification of Luminescent Ln III Fluoride Core-Shell Nanoparticles with Acetylsalicylic acid (Aspirin): Synthesis, Spectroscopic and in Vitro Hemocompatibility Studies. ChemMedChem 2020; 15:1490-1496. [PMID: 32510839 DOI: 10.1002/cmdc.202000269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 12/31/2022]
Abstract
Luminescent lanthanide fluoride core-shell (LaF3 :Tb3+ ,Ce3+ @SiO2 -NH2 ) nanoparticles, with acetylsalicylic acid (aspirin) coated on the surface have been obtained. The synthesized products, which combine the potential located in the silica shell with the luminescent activity of the core, were characterized in detail with the use of luminescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) methods. The in vitro effects of the modified luminescent nanoparticles on human red blood cell (RBC) membrane permeability, RBC shape, and sedimentation rate were investigated to assess the hemocompatibility of the obtained compounds. This study demonstrates that LaF3 : Tb3+ 5 %, Ce3+ 10 %@SiO2 -NH2 nanoparticles with acetylsalicylic acid (aspirin) coated on the surface are very good precursors for multifunctional drug-delivery systems or bio-imaging probes that can be used safely in potential biomedical applications.
Collapse
Affiliation(s)
- Dorota Kwiatek
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.,Current address, Department of Molecular Probes and Prodrugs, Institute of Bioorganic Chemistry, Polish Academy of Sciences Z., Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Natalia Stopikowska
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Marcin Runowski
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Andrzej Lesicki
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Stefan Lis
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
176
|
Safety assessment control on mouse fibroblast cells compared with various chemically synthesized graphene oxide nanocomposites. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01133-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
177
|
Liu T, Bai R, Zhou H, Wang R, Liu J, Zhao Y, Chen C. The effect of size and surface ligands of iron oxide nanoparticles on blood compatibility. RSC Adv 2020; 10:7559-7569. [PMID: 35492144 PMCID: PMC9049842 DOI: 10.1039/c9ra10969b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/11/2020] [Indexed: 11/21/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used and have attracted increased attention for their unique physicochemical properties, especially in biomedical sciences as contrast agents following intravenous administration. However, only few studies have systematically reported the blood compatibility of iron oxide nanoparticles with different physicochemical properties such as different sizes and surface ligands. Therefore, we selected three widely used organic ligands (polyacrylic acid, hyaluronic acid, and chitosan) with modified SPIONs at the same size of 5-6 nm, and polyacrylic acid-modified SPIONs with different sizes (5, 10, and 30 nm) at different concentrations to evaluate their haemocompatibility. Our results revealed that SPIONs modified with polyacrylic acid demonstrated size-dependent destruction of red blood cells and complement activation. Interestingly, 5 nm SPIONs prolonged blood clotting time as compared with 10 nm and 30 nm SPIONs in vitro. Compared with polyacrylic acid-modified SPIONs, hyaluronic acid- and chitosan-modified SPIONs least affected red blood cells, platelets, coagulation, and complement activation. Hence, hyaluronic acid- and chitosan-coated SPIONs are more suitable for nanomedicine applications than polyacrylic acid-coated SPIONs. Furthermore, the interaction between SPIONs and blood components strongly correlated with the administered concentration of nanoparticles. These results will provide some experimental information for safe-by-design SPIONs.
Collapse
Affiliation(s)
- Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
| | - Rongqi Wang
- Department of Clinical Laboratory, Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital Beijing 100080 P. R. China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
- Faculty of Life Sciences & Medicine, Northwest University (NWU) Xi'an 710069 P. R. China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|