151
|
Collins MH. Serologic Tools and Strategies to Support Intervention Trials to Combat Zika Virus Infection and Disease. Trop Med Infect Dis 2019; 4:E68. [PMID: 31010134 PMCID: PMC6632022 DOI: 10.3390/tropicalmed4020068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/30/2022] Open
Abstract
Zika virus is an emerging mosquito-borne flavivirus that recently caused a large epidemic in Latin America characterized by novel disease phenotypes, including Guillain-Barré syndrome, sexual transmission, and congenital anomalies, such as microcephaly. This epidemic, which was declared an international public health emergency by the World Health Organization, has highlighted shortcomings in our current understanding of, and preparation for, emerging infectious diseases in general, as well as challenges that are specific to Zika virus infection. Vaccine development for Zika virus has been a high priority of the public health response, and several candidates have shown promise in pre-clinical and early phase clinical trials. The optimal selection and implementation of imperfect serologic assays are among the crucial issues that must be addressed in order to advance Zika vaccine development. Here, I review key considerations for how best to incorporate into Zika vaccine trials the existing serologic tools, as well as those on the horizon. Beyond that, this discussion is relevant to other intervention strategies to combat Zika and likely other emerging infectious diseases.
Collapse
Affiliation(s)
- Matthew H Collins
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA 30030, USA.
| |
Collapse
|
152
|
Abstract
Zika virus infection and dengue and chikungunya fevers are emerging viral diseases that have become public health threats. Their aetiologic agents are transmitted by the bite of genus Aedes mosquitoes. Without effective therapies or vaccines, vector control is the main strategy for preventing the spread of these diseases. Increased insecticide resistance calls for biorational actions focused on control of the target vector population. The chitin required for larval survival structures is a good target for biorational control. Chitin synthases A and B (CHS) are enzymes in the chitin synthesis pathway. Double-stranded RNA (dsRNA)-mediated gene silencing (RNAi) achieves specific knockdown of target proteins. Our goal in this work, a new proposed RNAi-based bioinsecticide, was developed as a potential strategy for mosquito population control. DsRNA molecules that target five different regions in the CHSA and B transcript sequences were produced in vitro and in vivo through expression in E. coli HT115 and tested by direct addition to larval breeding water. Mature and immature larvae treated with dsRNA targeting CHS catalytic sites showed significantly decreased viability associated with a reduction in CHS transcript levels. The few larval and adult survivors displayed an altered morphology and chitin content. In association with diflubenzuron, this bioinsecticide exhibited insecticidal adjuvant properties.
Collapse
|
153
|
Abstract
Arthropods are small invertebrate animals, among which some species are hematophagous. It is during their blood meal that they can transmit pathogenic microorganisms that they may be harboring to the vertebrate host that they parasitize, which in turn will potentially develop a vector-borne disease. The transmission may occur directly through their bite, but also through contaminated feces. Zoonotic diseases, diseases that can naturally be transmitted between humans and animals, are a considerable part of emerging diseases worldwide, and a major part of them are vector-borne. Research and public attention has long been focused on malaria and mosquito-borne arboviruses, and bacterial vector-borne diseases remains today a neglected field of medical entomology. Despite the emphasis on Lyme disease in recent decades, and despite the major outbreaks caused by bacteria in the last few centuries, this field has in fact been poorly explored and is therefore relatively poorly known, other than the most famous examples such as the plague and epidemic typhus outbreaks. Here we propose to review the state of knowledge of bacterial agents transmitted by arthropod vectors.
Collapse
|
154
|
Landscape and Environmental Factors Influencing Stage Persistence and Abundance of the Bamboo Mosquito, Tripteroides bambusa (Diptera: Culicidae), across an Altitudinal Gradient. INSECTS 2019; 10:insects10020041. [PMID: 30717093 PMCID: PMC6409834 DOI: 10.3390/insects10020041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 01/10/2023]
Abstract
The bamboo mosquito, Tripteroides bambusa (Yamada) (Diptera: Culicidae), is a common insect across East Asia. Several studies have looked at the ecology of Tr. bambusa developmental stages separately, but little is known about the factors associated with the persistence (how often) and abundance (how many individuals) of Tr. bambusa stages simultaneously studied across a heterogeneous landscape. Here, we ask what environmental and landscape factors are associated with the persistence and abundance of Tr. bambusa stages across the altitudinal gradient of Mt. Konpira, Nagasaki City, Japan. During a season-long study we counted 8065 (7297 4th instar larvae, 670 pupae and 98 adults) Tr. bambusa mosquitoes. We found that persistence and abundance patterns were not associated among stages, with the exception of large (4th instar) and small (1st to 3rd instars) larvae persistence, which were positively correlated. We also found that relative humidity was associated with the persistence of Tr. bambusa aquatic stages, being positively associated with large and small larvae, but negatively with pupae. Similarly, landscape aspect changed from positive to negative the sign of its association with Tr. bambusa pupae and adults, highlighting that environmental associations change with life stage. Meanwhile, Tr. bambusa abundance patterns were negatively impacted by more variable microenvironments, as measured by the negative impacts of kurtosis and standard deviation (SD) of environmental variables, indicating Tr. bambusa thrives in stable environments, suggesting this mosquito species has a finely grained response to environmental changes.
Collapse
|
155
|
Silva B, Almeida AM, Dolinski C, Souza RM. Efficacy of Heterorhabdits indica LPP35 against Aedes aegypti in domiciliary oviposition sites. J Nematol 2019; 51:1-7. [PMID: 31339672 PMCID: PMC6909013 DOI: 10.21307/jofnem-2019-050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Indexed: 12/03/2022] Open
Abstract
Entomopathogenic nematodes have been evaluated for control of mosquito species for decades. Depending on the nematode and mosquito involved, mortality rates of larvae (L) may reach 100% in vitro. Nonetheless, nematode efficacy at oviposition sites has rarely been assessed. Heterorhabditis indica LPP35 has been shown to kill over 75% of Aedes aegypti L3/L4 in cups and bottles outdoors. To assess its efficacy in indoor oviposition sites, different types/sizes of floor drains and pot saucers, and 65 liter water barrels, were infested with L3/L4 and treated with two doses of infective juveniles (IJs). In floor drains, mortality rates varied from 45 to 82%, with better results in the smallest drains. The adjustable dose of 25 IJs/cm2 of the drain’s bottom internal surface gave better results than the fixed dose of 100 IJs/larva. Mortality rates were only 28 to 53% and 0.1 to 1.7% in pot saucers and water barrels, respectively, probably because ridges and grooves that marked the bottom internal surface of these containers hindered the encounter of larvae and IJs.
Collapse
Affiliation(s)
- Bruna Silva
- Department of Entomology and Plant Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro , Av. Alberto Lamego, 2000, Campos dos Goytacazes (RJ) , Brazil
| | - Alexandre M Almeida
- Department of Entomology and Plant Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro , Av. Alberto Lamego, 2000, Campos dos Goytacazes (RJ) , Brazil
| | - Claudia Dolinski
- Department of Entomology and Plant Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro , Av. Alberto Lamego, 2000, Campos dos Goytacazes (RJ) , Brazil
| | - Ricardo M Souza
- Department of Entomology and Plant Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro , Av. Alberto Lamego, 2000, Campos dos Goytacazes (RJ) , Brazil
| |
Collapse
|
156
|
Lopes TRR, Paiva MHS, Farias PCS, Silva Júnior JVJ. Arbovirus control: what is the (real) stone in the way? Rev Inst Med Trop Sao Paulo 2019; 61:e15. [PMID: 30785569 PMCID: PMC6376926 DOI: 10.1590/s1678-9946201961015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/16/2019] [Indexed: 11/25/2022] Open
|
157
|
Yokoi T, Nakagawa Y, Miyagawa H. Asymmetric synthesis of tetrahydroquinoline-type ecdysone agonists and QSAR for their binding affinity against Aedes albopictus ecdysone receptors. PEST MANAGEMENT SCIENCE 2019; 75:115-124. [PMID: 30070016 DOI: 10.1002/ps.5160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Tetrahydroquinolines (THQs) are a class of non-steroidal ecdysone agonists that specifically bind to mosquito ecdysone receptors (EcR). The THQ scaffold contains two chiral centers at the C-2 and C-4 positions, resulting in four stereoisomers. We have previously shown that the (2R,4S)-isomers are the most biologically active; however, the lack of a practical synthetic method for these isomers has hampered further structure-activity studies. RESULTS In this study, a chiral phosphoric acid-catalyzed Povarov reaction was employed to develop a facile asymmetric synthesis of THQs with a (2R,4S)-configuration, which allowed the preparation of a 40-compound library of enantiopure THQs. Evaluation of their binding affinity against Aedes albopictus EcR, followed by quantitative structure-activity relationship (QSAR) analyses, uncovered the physicochemical properties of THQs that are important for the ligand-receptor interaction. The most potent THQ derivative was twofold more active than the molting hormone, 20-hydroxyecdysone. CONCLUSION The QSAR results provide valuable information for the rational design of novel mosquito-specific ecdysone agonists. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Taiyo Yokoi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hisashi Miyagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
158
|
Kao YH, Eisenberg MC. Practical unidentifiability of a simple vector-borne disease model: Implications for parameter estimation and intervention assessment. Epidemics 2018; 25:89-100. [PMID: 29903539 PMCID: PMC6264791 DOI: 10.1016/j.epidem.2018.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 12/25/2022] Open
Abstract
Mathematical modeling has an extensive history in vector-borne disease epidemiology, and is increasingly used for prediction, intervention design, and understanding mechanisms. Many studies rely on parameter estimation to link models and data, and to tailor predictions and counterfactuals to specific settings. However, few studies have formally evaluated whether vector-borne disease models can properly estimate the parameters of interest given the constraints of a particular dataset. Identifiability analysis allows us to examine whether model parameters can be estimated uniquely-a lack of consideration of such issues can result in misleading or incorrect parameter estimates and model predictions. Here, we evaluate both structural (theoretical) and practical identifiability of a commonly used compartmental model of mosquito-borne disease, using the 2010 dengue epidemic in Taiwan as a case study. We show that while the model is structurally identifiable, it is practically unidentifiable under a range of human and mosquito time series measurement scenarios. In particular, the transmission parameters form a practically identifiable combination and thus cannot be estimated separately, potentially leading to incorrect predictions of the effects of interventions. However, in spite of the unidentifiability of the individual parameters, the basic reproduction number was successfully estimated across the unidentifiable parameter ranges. These identifiability issues can be resolved by directly measuring several additional human and mosquito life-cycle parameters both experimentally and in the field. While we only consider the simplest case for the model, we show that a commonly used model of vector-borne disease is unidentifiable from human and mosquito incidence data, making it difficult or impossible to estimate parameters or assess intervention strategies. This work illustrates the importance of examining identifiability when linking models with data to make predictions and inferences, and particularly highlights the importance of combining laboratory, field, and case data if we are to successfully estimate epidemiological and ecological parameters using models.
Collapse
Affiliation(s)
- Yu-Han Kao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States
| | - Marisa C Eisenberg
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States; Department of Mathematics, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
159
|
Roiz D, Wilson AL, Scott TW, Fonseca DM, Jourdain F, Müller P, Velayudhan R, Corbel V. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl Trop Dis 2018; 12:e0006845. [PMID: 30521524 PMCID: PMC6283470 DOI: 10.1371/journal.pntd.0006845] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Diseases caused by Aedes-borne viruses, such as dengue, Zika, chikungunya, and yellow fever, are emerging and reemerging globally. The causes are multifactorial and include global trade, international travel, urbanisation, water storage practices, lack of resources for intervention, and an inadequate evidence base for the public health impact of Aedes control tools. National authorities need comprehensive evidence-based guidance on how and when to implement Aedes control measures tailored to local entomological and epidemiological conditions. METHODS AND FINDINGS This review is one of a series being conducted by the Worldwide Insecticide resistance Network (WIN). It describes a framework for implementing Integrated Aedes Management (IAM) to improve control of diseases caused by Aedes-borne viruses based on available evidence. IAM consists of a portfolio of operational actions and priorities for the control of Aedes-borne viruses that are tailored to different epidemiological and entomological risk scenarios. The framework has 4 activity pillars: (i) integrated vector and disease surveillance, (ii) vector control, (iii) community mobilisation, and (iv) intra- and intersectoral collaboration as well as 4 supporting activities: (i) capacity building, (ii) research, (iii) advocacy, and (iv) policies and laws. CONCLUSIONS IAM supports implementation of the World Health Organisation Global Vector Control Response (WHO GVCR) and provides a comprehensive framework for health authorities to devise and deliver sustainable, effective, integrated, community-based, locally adapted vector control strategies in order to reduce the burden of Aedes-transmitted arboviruses. The success of IAM requires strong commitment and leadership from governments to maintain proactive disease prevention programs and preparedness for rapid responses to outbreaks.
Collapse
Affiliation(s)
- David Roiz
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Anne L Wilson
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Thomas W Scott
- Department of Entomology & Nematology, University of California, Davis, California, United States of America
| | - Dina M Fonseca
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | | | - Pie Müller
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Raman Velayudhan
- Department of Control of Neglected Tropical Diseases (HTM/NTD), World Health Organization (WHO), Geneva, Switzerland
| | - Vincent Corbel
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
160
|
Silva JVJ, Ludwig-Begall LF, Oliveira-Filho EFD, Oliveira RAS, Durães-Carvalho R, Lopes TRR, Silva DEA, Gil LHVG. A scoping review of Chikungunya virus infection: epidemiology, clinical characteristics, viral co-circulation complications, and control. Acta Trop 2018; 188:213-224. [PMID: 30195666 PMCID: PMC7092809 DOI: 10.1016/j.actatropica.2018.09.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
Chikungunya fever is a mosquito-borne viral illness characterized by a sudden onset of fever associated with joint pains. It was first described in the 1950s during a Chikungunya virus (CHIKV) outbreak in southern Tanzania and has since (re-) emerged and spread to several other geographical areas, reaching large populations and causing massive epidemics. In recent years, CHIKV has gained considerable attention due to its quick spread to the Caribbean and then in the Americas, with many cases reported between 2014 and 2017. CHIKV has further garnered attention due to the clinical diagnostic difficulties when Zika (ZIKV) and dengue (DENV) viruses are simultaneously present. In this review, topical CHIKV-related issues, such as epidemiology and transmission, are examined. The different manifestations of infection (acute, chronic and atypical) are described and a particular focus is placed upon the diagnostic handling in the case of ZIKV and DENV co-circulating. Natural and synthetic compounds under evaluation for treatment of chikungunya disease, including drugs already licensed for other purposes, are also discussed. Finally, previous and current vaccine strategies, as well as the control of the CHIKV transmission through an integrated vector management, are reviewed in some detail.
Collapse
Affiliation(s)
- José V J Silva
- Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Virology, Recife, PE, Brazil; Federal University of Santa Maria, Department of Preventive Veterinary Medicine, Virology Section, Santa Maria, RS, Brazil.
| | - Louisa F Ludwig-Begall
- Liège University, Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, Belgium
| | | | - Renato A S Oliveira
- Federal University of Paraíba, Department of Fisiology and Pathology, João Pessoa, PB, Brazil
| | - Ricardo Durães-Carvalho
- Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Virology, Recife, PE, Brazil
| | - Thaísa R R Lopes
- Federal University of Pernambuco, Laboratory of Immunopathology Keizo Asami, Virology Section, Recife, PE, Brazil
| | - Daisy E A Silva
- Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Virology, Recife, PE, Brazil
| | - Laura H V G Gil
- Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Virology, Recife, PE, Brazil.
| |
Collapse
|
161
|
|
162
|
Jiménez-Cortés JG, García-Contreras R, Bucio-Torres MI, Cabrera-Bravo M, Córdoba-Aguilar A, Benelli G, Salazar-Schettino PM. Bacterial symbionts in human blood-feeding arthropods: Patterns, general mechanisms and effects of global ecological changes. Acta Trop 2018; 186:69-101. [PMID: 30003907 DOI: 10.1016/j.actatropica.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Due to their high impact on public health, human blood-feeding arthropods are one of the most relevant animal groups. Bacterial symbionts have been long known to play a role in the metabolism, and reproduction of these arthropod vectors. Nowadays, we have a more complete picture of their functions, acknowledging the wide influence of bacterial symbionts on processes ranging from the immune response of the arthropod host to the possible establishment of pathogens and parasites. One or two primary symbiont species have been found to co-evolve along with their host in each taxon (being ticks an exception), leading to various kinds of symbiosis, mostly mutualistic in nature. Moreover, several secondary symbiont species are shared by all arthropod groups. With respect to gut microbiota, several bacterial symbionts genera are hosted in common, indicating that these bacterial groups are prone to invade several hematophagous arthropod species feeding on humans. The main mechanisms underlying bacterium-arthropod symbiosis are discussed, highlighting that even primary symbionts elicit an immune response from the host. Bacterial groups in the gut microbiota play a key role in immune homeostasis, and in some cases symbiont bacteria could be competing directly or indirectly with pathogens and parasites. Finally, the effects climate change, great human migrations, and the increasingly frequent interactions of wild and domestic animal species are analyzed, along with their implications on microbiota alteration and their possible impacts on public health and the control of pathogens and parasites harbored in arthropod vectors of human parasites and pathogens.
Collapse
Affiliation(s)
- J Guillermo Jiménez-Cortés
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| | - Rodolfo García-Contreras
- Laboratorio de Bacteriología, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Martha I Bucio-Torres
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Margarita Cabrera-Bravo
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Alex Córdoba-Aguilar
- Laboratorio de Ecología de la Conducta de Artrópodos, Instituto de Ecología, Universidad Nacional Autónoma de México, México
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Paz M Salazar-Schettino
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
163
|
Moretti R, Yen PS, Houé V, Lampazzi E, Desiderio A, Failloux AB, Calvitti M. Combining Wolbachia-induced sterility and virus protection to fight Aedes albopictus-borne viruses. PLoS Negl Trop Dis 2018; 12:e0006626. [PMID: 30020933 PMCID: PMC6066253 DOI: 10.1371/journal.pntd.0006626] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/30/2018] [Accepted: 06/21/2018] [Indexed: 11/19/2022] Open
Abstract
Among the strategies targeting vector control, the exploitation of the endosymbiont Wolbachia to produce sterile males and/or invasive females with reduced vector competence seems to be promising. A new Aedes albopictus transinfection (ARwP-M) was generated by introducing wMel Wolbachia in the ARwP line which had been established previously by replacing wAlbA and wAlbB Wolbachia with the wPip strain. Various infection and fitness parameters were studied by comparing ARwP-M, ARwP and wild-type (SANG population) Ae. albopictus sharing the same genetic background. Moreover, the vector competence of ARwP-M related to chikungunya, dengue and zika viruses was evaluated in comparison with ARwP. ARwP-M showed a 100% rate of maternal inheritance of wMel and wPip Wolbachia. Survival, female fecundity and egg fertility did not show to differ between the three Ae. albopictus lines. Crosses between ARwP-M males and SANG females were fully unfertile regardless of male age while egg hatch in reverse crosses increased from 0 to about 17% with SANG males aging from 3 to 17 days. When competing with SANG males for SANG females, ARwP-M males induced a level of sterility significantly higher than that expected for an equal mating competitiveness (mean Fried index of 1.71 instead of 1). The overall Wolbachia density in ARwP-M females was about 15 fold higher than in ARwP, mostly due to the wMel infection. This feature corresponded to a strongly reduced vector competence for chikungunya and dengue viruses (in both cases, 5 and 0% rates of transmission at 14 and 21 days post infection) with respect to ARwP females. Results regarding Zika virus did not highlight significant differences between ARwP-M and ARwP. However, none of the tested ARwP-M females was capable at transmitting ZIKV. These findings are expected to promote the exploitation of Wolbachia to suppress the wild-type Ae. albopictus populations.
Collapse
Affiliation(s)
- Riccardo Moretti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
- * E-mail:
| | - Pei-Shi Yen
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors Unit, Paris, France
| | - Vincent Houé
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors Unit, Paris, France
| | - Elena Lampazzi
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Angiola Desiderio
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Anna-Bella Failloux
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors Unit, Paris, France
| | - Maurizio Calvitti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| |
Collapse
|
164
|
Dvorak AC, Solo-Gabriele HM, Galletti A, Benzecry B, Malone H, Boguszewski V, Bird J. Possible impacts of sea level rise on disease transmission and potential adaptation strategies, a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:951-968. [PMID: 29679917 DOI: 10.1016/j.jenvman.2018.03.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Sea levels are projected to rise in response to climate change, causing the intrusion of sea water into land. In flat coastal regions, this would generate an increase in shallow water covered areas with limited circulation. This scenario raises a concern about the consequences it could have on human health, specifically the possible impacts on disease transmission. In this review paper we identified three categories of diseases which are associated with water and whose transmission can be affected by sea level rise. These categories include: mosquitoborne diseases, naturalized organisms (Vibrio spp. and toxic algae), and fecal-oral diseases. For each disease category, we propose comprehensive adaptation strategies that would help minimize possible health risks. Finally, the City of Key West, Florida is analyzed as a case study, due to its inherent vulnerability to sea level rise. Current and projected adaptation techniques are discussed as well as the integration of additional recommendations, focused on disease transmission control. Given that sea level rise will likely continue into the future, the promotion and implementation of positive adaptation strategies is necessary to ensure community resilience.
Collapse
Affiliation(s)
- Ana C Dvorak
- Dept. of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | - Helena M Solo-Gabriele
- Dept. of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL, USA.
| | - Andrea Galletti
- Dept. of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | - Bernardo Benzecry
- Dept. of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | - Hannah Malone
- Dept. of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | | | | |
Collapse
|
165
|
Karthika P, Vadivalagan C, Thirumurugan D, Kumar RR, Murugan K, Canale A, Benelli G. DNA barcoding of five Japanese encephalitis mosquito vectors (Culex fuscocephala, Culex gelidus, Culex tritaeniorhynchus, Culex pseudovishnui and Culex vishnui). Acta Trop 2018; 183:84-91. [PMID: 29625090 DOI: 10.1016/j.actatropica.2018.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/17/2018] [Accepted: 04/01/2018] [Indexed: 12/25/2022]
Abstract
Culex mosquitoes can act as vectors of several important diseases, including Japanese encephalitis, West Nile virus, St. Louis encephalitis and equine encephalitis. Besides the neurological sequelae caused in humans, Japanese encephalitis can lead to abortion in sows and encephalitis in horses. Effective vector control and early diagnosis, along with continuous serosurveillance in animals, are crucial to fight this arboviral disease. However, the success of vector control operations is linked with the fast and reliable identification of targeted species, and knowledge about their biology and ecology. Since the DNA barcoding of Culex vectors of Japanese encephalitis is scarcely explored, here we evaluated the efficacy of this tool to identify and analyze the variations among five overlooked Culex vectors of Japanese encephalitis, Culex fuscocephala, Culex gelidus, Culex tritaeniorhynchus, Culex pseudovishnui and Culex vishnui, relying to the analysis of mitochondrial CO1 gene. Variations in their base pair range were elucidated by the entropy Hx plot. The differences among individual conspecifics and on base pair range across the same were studied. The C (501-750 bp) region showed a moderate variation among all the selected species. C. tritaeniorhynchus exhibited the highest variation in all the ranges. The observed genetic divergence was partially non-discriminatory. i.e., the overall intra- and inter nucleotide divergence was 0.0920 (0.92%) and 0.125 (1.25%), respectively. However, 10X rule fits accurately intraspecies divergence <3% for the five selected Culex species. The analysis of individual scatter plots showed threshold values (10X) of 0.008 (0.08%), 0.005 (0.05%), 0.123 (1.23%), 0.033 (0.33%) and 0.019 (0.19%) for C. fuscocephala, C. gelidus, C. tritaeniorhynchus, C. pseudovishnui and C. vishnui, respectively. The C. tritaeniorhynchus haplotypes KU497604, KU497603, AB690847 and AB690854 exhibited the highest divergence range, i.e., from 0.465 -0.546. Comparatively, the intra-divergence among the other haplotypes of C. tritaeniorhynchus ranged from 0-0.056. The maximum parsimony tree was formed by distinctive conspecific clusters with appreciable branch values illustrating their close congruence and extensive genetic deviations. Overall, this study adds valuable knowledge to the molecular biology and systematics of five overlooked mosquito species acting as major vectors of Japanese encephalitis in Asian countries.
Collapse
Affiliation(s)
- Pushparaj Karthika
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Chithravel Vadivalagan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India; Entomology Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Durairaj Thirumurugan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Rangaswamy Ravi Kumar
- Centre for Medical Entomology and Vector Control, National Center for Disease Control, M/o Health and Family Welfare, Govt. of India, 22-Shamnath Marg, Delhi, 110054, India
| | - Kadarkarai Murugan
- Entomology Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India; Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632 115, Tamil Nadu, India
| | - Angelo Canale
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| |
Collapse
|
166
|
Benelli G. Managing mosquitoes and ticks in a rapidly changing world - Facts and trends. Saudi J Biol Sci 2018; 26:921-929. [PMID: 31303820 PMCID: PMC6600734 DOI: 10.1016/j.sjbs.2018.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/06/2018] [Accepted: 06/26/2018] [Indexed: 02/08/2023] Open
Abstract
Vector-borne diseases transmitted by mosquitoes and ticks are on the rise. The effective and sustainable control of these arthropod vectors is a puzzling challenge for public health worldwide. In the present review, I attempted to provide a concise and updated overview of the current mosquito and tick research scenario. The wide array of control tools recently developed has been considered, with special reference to those approved by the World Health Organization Vector Control Advisory Group (WHO VCAG), as well as novel ones with an extremely promising potential to be exploited in vector control programs. Concerning mosquitoes, a major focus has been given on genetically modified vectors, eave tubes, attractive toxic sugar baits (ATSB) and biocontrol agents. Regarding ticks, the recent development of highly effective repellents and acaricides (including nanoformulated ones) as well as behavior-based control tools, has been highlighted. In the second part of the review, key research questions about biology and control of mosquitoes and ticks have been critically formulated. A timely research agenda outlining hot issues to be addressed in mosquito and tick research is provided. Overall, it is expected that the present review will contribute to boost research and applications on successful mosquito and tick control strategies, along with an improved knowledge of their biology and ecology.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.,The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| |
Collapse
|
167
|
Mendoza EJ, Warner B, Kobinger G, Ogden NH, Safronetz D. Baited vaccines: A strategy to mitigate rodent-borne viral zoonoses in humans. Zoonoses Public Health 2018; 65:711-727. [PMID: 29931738 DOI: 10.1111/zph.12487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/05/2018] [Accepted: 05/21/2018] [Indexed: 11/27/2022]
Abstract
Rodents serve as the natural reservoir and vector for a variety of pathogens, some of which are responsible for severe and life-threatening disease in humans. Despite the significant impact in humans many of these viruses, including Old and New World hantaviruses as well as Arenaviruses, most have no specific vaccine or therapeutic to treat or prevent human infection. The recent success of wildlife vaccines to mitigate rabies in animal populations offers interesting insight into the use of similar strategies for other zoonotic agents of human disease. In this review, we discuss the notion of using baited vaccines as a means to interrupt the transmission of viral pathogens between rodent reservoirs and to susceptible human hosts.
Collapse
Affiliation(s)
- Emelissa J Mendoza
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Bryce Warner
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gary Kobinger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.,Centre Hospitalier de l'Université Laval, Quebec City, Quebec, Canada
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, St-Hyacinthe, Quebec, Canada
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
168
|
Benelli G, Duggan MF. Management of arthropod vector data - Social and ecological dynamics facing the One Health perspective. Acta Trop 2018; 182:80-91. [PMID: 29454734 DOI: 10.1016/j.actatropica.2018.02.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
Abstract
Emerging infectious diseases (EIDs) are spread by direct and/or indirect contacts between a pathogen or parasite and their hosts. Arthropod vectors have evolved as excellent bloodsuckers, providing an elegant transportation mode for a wide number of infectious agents. The nature of pathogen and parasite transfer and the models used to predict how a disease might spread are magnified in complexity when an arthropod vector is part of the disease cycle. One Health is a worldwide strategy for expanding interdisciplinary collaborations and communications in all aspects of health care for humans, animals and the environment. It would benefit from a structured analysis to address vectoring of arthropod-borne diseases as a dynamic transactional process. This review focused on how arthropod vector data can be used to better model and predict zoonotic disease outbreaks. With enhanced knowledge to describe arthropod vector disease transfer, researchers will have a better understanding about how to model disease outbreaks. As public health research evolves to include more social-ecological systems, the roles of society, ecology, epidemiology, pathogen/parasite evolution and animal behavior can be better captured in the research design. Overall, because of more collaborative data collection processes on arthropod vectors, disease modeling can better predict conditions where EIDs will occur.
Collapse
|
169
|
Fungal Metabolite Antagonists of Plant Pests and Human Pathogens: Structure-Activity Relationship Studies. Molecules 2018; 23:molecules23040834. [PMID: 29621148 PMCID: PMC6017029 DOI: 10.3390/molecules23040834] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
Fungi are able to produce many bioactive secondary metabolites that belong to different classes of natural compounds. Some of these compounds have been selected for their antagonism against pests and human pathogens and structure-activity relationship (SAR) studies have been performed to better understand which structural features are essential for the biological activity. In some cases, these studies allowed for the obtaining of hemisynthetic derivatives with increased selectivity and stability in respect to the natural products as well as reduced toxicity in view of their potential practical applications. This review deals with the SAR studies performed on fungal metabolites with potential fungicidal, bactericidal, insecticidal, and herbicidal activities from 1990 to the present (beginning of 2018).
Collapse
|
170
|
Benelli G, Maggi F, Pavela R, Murugan K, Govindarajan M, Vaseeharan B, Petrelli R, Cappellacci L, Kumar S, Hofer A, Youssefi MR, Alarfaj AA, Hwang JS, Higuchi A. Mosquito control with green nanopesticides: towards the One Health approach? A review of non-target effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10184-10206. [PMID: 28755145 DOI: 10.1007/s11356-017-9752-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/10/2017] [Indexed: 05/27/2023]
Abstract
The rapid spread of highly aggressive arboviruses, parasites, and bacteria along with the development of resistance in the pathogens and parasites, as well as in their arthropod vectors, represents a huge challenge in modern parasitology and tropical medicine. Eco-friendly vector control programs are crucial to fight, besides malaria, the spread of dengue, West Nile, chikungunya, and Zika virus, as well as other arboviruses such as St. Louis encephalitis and Japanese encephalitis. However, research efforts on the control of mosquito vectors are experiencing a serious lack of eco-friendly and highly effective pesticides, as well as the limited success of most biocontrol tools currently applied. Most importantly, a cooperative interface between the two disciplines is still lacking. To face this challenge, we have reviewed a wide number of promising results in the field of green-fabricated pesticides tested against mosquito vectors, outlining several examples of synergy with classic biological control tools. The non-target effects of green-fabricated nanopesticides, including acute toxicity, genotoxicity, and impact on behavioral traits of mosquito predators, have been critically discussed. In the final section, we have identified several key challenges at the interface between "green" nanotechnology and classic biological control, which deserve further research attention.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032, Camerino, Italy
| | - Roman Pavela
- Crop Research Institute, Drnovska 507, 16106, Prague 6, Czech Republic
| | - Kadarkarai Murugan
- Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
| | - Baskaralingam Vaseeharan
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630004, India
| | - Riccardo Petrelli
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032, Camerino, Italy
| | - Loredana Cappellacci
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032, Camerino, Italy
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, 43400, Serdang, Malaysia
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Mohammad Reza Youssefi
- Department of Veterinary Parasitology, Babol-Branch, Islamic Azad University, Babol, Iran
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 32001, Taiwan
| |
Collapse
|
171
|
Chellappandian M, Thanigaivel A, Vasantha-Srinivasan P, Edwin ES, Ponsankar A, Selin-Rani S, Kalaivani K, Senthil-Nathan S, Benelli G. Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn., and impacts on a beneficial mosquito predator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10294-10306. [PMID: 28455566 DOI: 10.1007/s11356-017-8952-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Use of environmentally friendly, decomposable natural products for effective vector control has gained considerable momentum in modern society. In this study, essential oil of Sphaeranthus indicus (Si-EO) was extracted and further phytochemical screening revealed fourteen compounds with prominent peak area percentage of 24.9 and 22.54% in 3,5-di-tert-butyl-4-hydroxybenzaldehyde and benzene,2-(1,1-dimethylethyl)-1,4-dimethoxy, respectively. The Si-EO was further evaluated for their larvicidal response against Culex quinquefasciatus and Aedes aegypti at different dosages (62.5, 125, 250 and 500 ppm). The Si-EO displayed prominent larvicidal activity at higher concentration (500 ppm) against both species of mosquitoes. The LC50 and LC90 values of oils were observed at 130 and 350 ppm against C. quinquefasciatus larvae and at 140 and 350 ppm against A. aegypti larvae, respectively. Repellent bioassay established higher protection rate at 200 ppm up to 120 min against both the mosquitoes. However, adulticidal response displayed higher mortality rate only at 700 and 800 ppm against C. quinquefasciatus and A. aegypti, respectively. Toxicological screening against mosquito predator Toxorhynchites splendens revealed that the Si-EO was harmless even at the concentration of 1500 ppm. Overall, these results suggest that the Si-EO plays a significant role as a new bio-rational product against ecological burden mosquito vectors which provides an eco-friendly alternative to synthetic pesticides.
Collapse
Affiliation(s)
- Muthiah Chellappandian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Edward-Sam Edwin
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Athirstam Ponsankar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Selvaraj Selin-Rani
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, Tirunelveli, Tamil Nadu, 627802, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India.
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del 23 Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
172
|
Evans HC, Elliot SL, Barreto RW. Entomopathogenic fungi and their potential for the management of Aedes aegypti (Diptera: Culicidae) in the Americas. Mem Inst Oswaldo Cruz 2018; 113:206-214. [PMID: 29412361 PMCID: PMC5804314 DOI: 10.1590/0074-02760170369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
Classical biological control has been used extensively for the management of exotic weeds and agricultural pests, but never for alien insect vectors of medical importance. This simple but elegant control strategy involves the introduction of coevolved natural enemies from the centre of origin of the target alien species. Aedes aegypti - the primary vector of the dengue, yellow fever and Zika flaviviruses - is just such an invasive alien in the Americas where it arrived accidentally from its West African home during the slave trade. Here, we introduce the concept of exploiting entomopathogenic fungi from Africa for the classical biological control of Ae. aegypti in the Americas. Fungal pathogens attacking arthropods are ubiquitous in tropical forests and are important components in the natural balance of arthropod populations. They can produce a range of specialised spore forms, as well as inducing a variety of bizarre behaviours in their hosts, in order to maximise infection. The fungal groups recorded as specialised pathogens of mosquito hosts worldwide are described and discussed. We opine that similar fungal pathogens will be found attacking and manipulating Ae. aegypti in African forests and that these could be employed for an economic, environmentally-safe and long-term solution to the flavivirus pandemics in the Americas.
Collapse
Affiliation(s)
- Harry C Evans
- Centre for Agriculture and Biosciences International, Egham, Surrey, UK.,Universidade Federal de Viçosa, Departamento de Entomologia, Viçosa, MG, Brasil.,Universidade Federal de Viçosa, Departamento de Fitopatologia, Viçosa, MG, Brasil
| | - Simon L Elliot
- Universidade Federal de Viçosa, Departamento de Entomologia, Viçosa, MG, Brasil
| | - Robert W Barreto
- Universidade Federal de Viçosa, Departamento de Fitopatologia, Viçosa, MG, Brasil
| |
Collapse
|
173
|
Abstract
Technologies for controlling mosquito vectors based on genetic manipulation and the release of genetically modified mosquitoes (GMMs) are gaining ground. However, concrete epidemiological evidence of their effectiveness, sustainability, and impact on the environment and nontarget species is lacking; no reliable ecological evidence on the potential interactions among GMMs, target populations, and other mosquito species populations exists; and no GMM technology has yet been approved by the WHO Vector Control Advisory Group. Our opinion is that, although GMMs may be considered a promising control tool, more studies are needed to assess their true effectiveness, risks, and benefits. Overall, several lines of evidence must be provided before GMM-based control strategies can be used under the integrated vector management framework.
Collapse
Affiliation(s)
- André B B Wilke
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John C Beier
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| |
Collapse
|
174
|
Spitzen J, Takken W. Keeping track of mosquitoes: a review of tools to track, record and analyse mosquito flight. Parasit Vectors 2018; 11:123. [PMID: 29499744 PMCID: PMC5834890 DOI: 10.1186/s13071-018-2735-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/21/2018] [Indexed: 12/13/2022] Open
Abstract
The health impact of mosquito-borne diseases causes a huge burden on human societies. Recent vector control campaigns have resulted in promising declines in incidence and prevalence of these diseases, notably malaria, but resistance to insecticides and drugs are on the rise, threatening to overturn these gains. Moreover, several vector-borne diseases have re-emerged, requiring prompt and effective response measures. To improve and properly implement vector control interventions, the behaviour of the vectors must be well understood with detailed examination of mosquito flight being an essential component. Current knowledge on mosquito behaviour across its life history is briefly presented, followed by an overview of recent developments in automated tracking techniques for detailed interpretation of mosquito behaviour. These techniques allow highly accurate recording and observation of mating, feeding and oviposition behaviour. Software programmes built with specific algorithms enable quantification of these behaviours. For example, the crucial role of heat on host landing and the multimodal integration of carbon dioxide (CO2) with other host cues, has been unravelled based on three-dimensional tracking of mosquito flight behaviour. Furthermore, the behavioural processes underlying house entry and subsequent host searching and finding can be better understood by analysis of detailed flight recordings. Further potential of these technologies to solve knowledge gaps is discussed. The use of tracking techniques can support or replace existing monitoring tools and provide insights on mosquito behaviour that can lead to innovative and more effective vector-control measures.
Collapse
Affiliation(s)
- Jeroen Spitzen
- Laboratory of Entomology, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
175
|
Wolff GH, Riffell JA. Olfaction, experience and neural mechanisms underlying mosquito host preference. ACTA ACUST UNITED AC 2018; 221:221/4/jeb157131. [PMID: 29487141 DOI: 10.1242/jeb.157131] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mosquitoes are best known for their proclivity towards biting humans and transmitting bloodborne pathogens, but there are over 3500 species, including both blood-feeding and non-blood-feeding taxa. The diversity of host preference in mosquitoes is exemplified by the feeding habits of mosquitoes in the genus Malaya that feed on ant regurgitation or those from the genus Uranotaenia that favor amphibian hosts. Host preference is also by no means static, but is characterized by behavioral plasticity that allows mosquitoes to switch hosts when their preferred host is unavailable and by learning host cues associated with positive or negative experiences. Here we review the diverse range of host-preference behaviors across the family Culicidae, which includes all mosquitoes, and how adaptations in neural circuitry might affect changes in preference both within the life history of a mosquito and across evolutionary time-scales.
Collapse
Affiliation(s)
- Gabriella H Wolff
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
176
|
Singh RK, Dhama K, Khandia R, Munjal A, Karthik K, Tiwari R, Chakraborty S, Malik YS, Bueno-Marí R. Prevention and Control Strategies to Counter Zika Virus, a Special Focus on Intervention Approaches against Vector Mosquitoes-Current Updates. Front Microbiol 2018; 9:87. [PMID: 29472902 PMCID: PMC5809424 DOI: 10.3389/fmicb.2018.00087] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/15/2018] [Indexed: 12/31/2022] Open
Abstract
Zika virus (ZIKV) is the most recent intruder that acquired the status of global threat creating panic and frightening situation to public owing to its rapid spread, attaining higher virulence and causing complex clinical manifestations including microcephaly in newborns and Guillain Barré Syndrome. Alike other flaviviruses, the principal mode of ZIKV transmission is by mosquitoes. Advances in research have provided reliable diagnostics for detecting ZIKV infection, while several drug/therapeutic targets and vaccine candidates have been identified recently. Despite these progresses, currently there is neither any effective drug nor any vaccine available against ZIKV. Under such circumstances and to tackle the problem at large, control measures of which mosquito population control need to be strengthened following appropriate mechanical, chemical, biological and genetic control measures. Apart from this, several other known modes of ZIKV transmission which have gained importance in recent past such as intrauterine, sexual intercourse, and blood-borne spread need to be checked and kept under control by adopting appropriate precautions and utmost care during sexual intercourse, blood transfusion and organ transplantation. The virus inactivation by pasteurization, detergents, chemicals, and filtration can effectively reduce viral load in plasma-derived medicinal products. Added to this, strengthening of the surveillance and monitoring of ZIKV as well as avoiding travel to Zika infected areas would aid in keeping viral infection under check. Here, we discuss the salient advances in the prevention and control strategies to combat ZIKV with a focus on highlighting various intervention approaches against the vector mosquitoes of this viral pathogen along with presenting an overview regarding human intervention measures to counter other modes of ZIKV transmission and spread. Additionally, owing to the success of vaccines for a number of infections globally, a separate section dealing with advances in ZIKV vaccines and transmission blocking vaccines has also been included.
Collapse
Affiliation(s)
- Raj K Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Yashpal S Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Rubén Bueno-Marí
- Laboratorios Lokímica, Departamento de Investigación y Desarrollo (I+D), Valencia, Spain
| |
Collapse
|
177
|
Chandrasekaran R, Seetharaman P, Krishnan M, Gnanasekar S, Sivaperumal S. Carica papaya (Papaya) latex: a new paradigm to combat against dengue and filariasis vectors Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). 3 Biotech 2018; 8:83. [PMID: 29430347 PMCID: PMC5796936 DOI: 10.1007/s13205-018-1105-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/07/2018] [Indexed: 12/22/2022] Open
Abstract
This study manifests the larvicidal efficacy of Carica papaya latex extract and silver nanoparticles (CPAgNPs) synthesized using latex, against developing immature juveniles of Aedes aegypti and Culex quinquefasciatus. Briefly, the latex was collected and fractioned with different solvents such as chloroform, methanol and aqueously. The obtained crude extracts were subjected to larvicidal activity in the dose-dependent method. After 24 h, the mortality rate was calculated and statistically analyzed. From the results, it was demonstrated that the chloroform extract displayed prominent activity in IInd and IIIrd instar larvae of A. aegypti and C. quinquefasciatus with better LC50 values followed by methanol and aqueous extract. Subsequently, we profiled the qualitative analysis of a chloroform extract through biochemical tests; Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. Moreover, we authenticated the major secondary metabolites and activated larvicidal compound present in the extract. Further, we synthesized CPAgNPs using aqueous latex extract and challenged with IInd and IIIrd instar larvae of A. aegypti and C. quinquefasciatus. Noticeably, the synthesized nanoproducts were showed 100% mortality in a 24-h treatment with significant LC50 values. Hence, this study has opened up new vistas in the field of parasitological research to develop Carica papaya latex as a new stratagem in the insect vector management program.
Collapse
Affiliation(s)
- Rajkuberan Chandrasekaran
- Department of Biotechnology, School of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu India
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu India
| | - Prabukumar Seetharaman
- Department of Biotechnology, School of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu India
| | - Muthukumar Krishnan
- Department of Physics, National Institute of Technology, Tiruchirappalli, Tamil Nadu India
| | - Sathishkumar Gnanasekar
- Department of Biotechnology, School of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu India
| | - Sivaramakrishnan Sivaperumal
- Department of Biotechnology, School of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu India
| |
Collapse
|
178
|
Martins-da-Silva A, Telleria EL, Batista M, Marchini FK, Traub-Csekö YM, Tempone AJ. Identification of Secreted Proteins Involved in Nonspecific dsRNA-Mediated Lutzomyia longipalpis LL5 Cell Antiviral Response. Viruses 2018; 10:v10010043. [PMID: 29346269 PMCID: PMC5795456 DOI: 10.3390/v10010043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023] Open
Abstract
Hematophagous insects transmit infectious diseases. Sand flies are vectors of leishmaniasis, but can also transmit viruses. We have been studying immune responses of Lutzomyia longipalpis, the main vector of visceral leishmaniasis in the Americas. We identified a non-specific antiviral response in L. longipalpis LL5 embryonic cells when treated with non-specific double-stranded RNAs (dsRNAs). This response is reminiscent of interferon response in mammals. We are investigating putative effectors for this antiviral response. Secreted molecules have been implicated in immune responses, including interferon-related responses. We conducted a mass spectrometry analysis of conditioned medium from LL5 cells 24 and 48 h after dsRNA or mock treatment. We identified 304 proteins. At 24 h, 19 proteins had an abundance equal or greater than 2-fold change, while the levels of 17 proteins were reduced when compared to control cells. At the 48 h time point, these numbers were 33 and 71, respectively. The two most abundant secreted peptides at 24 h in the dsRNA-transfected group were phospholipid scramblase, an interferon-inducible protein that mediates antiviral activity, and forskolin-binding protein (FKBP), a member of the immunophilin family, which mediates the effect of immunosuppressive drugs. The transcription profile of most candidates did not follow the pattern of secreted protein abundance.
Collapse
Affiliation(s)
- Andrea Martins-da-Silva
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz-Fiocruz, Av. Brasil 4365, Rio de Janeiro 21040-360, RJ, Brazil.
| | - Erich Loza Telleria
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz-Fiocruz, Av. Brasil 4365, Rio de Janeiro 21040-360, RJ, Brazil.
| | - Michel Batista
- Laboratório de Genômica Funcional, Instituto Carlos Chagas-Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba 81350-010, PR, Brazil.
- Plataforma Espectrometria de Massas-RPT02H, Instituto Carlos Chagas-Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba 81350-010, PR, Brazil.
| | - Fabricio Klerynton Marchini
- Laboratório de Genômica Funcional, Instituto Carlos Chagas-Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba 81350-010, PR, Brazil.
- Plataforma Espectrometria de Massas-RPT02H, Instituto Carlos Chagas-Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba 81350-010, PR, Brazil.
| | - Yara Maria Traub-Csekö
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz-Fiocruz, Av. Brasil 4365, Rio de Janeiro 21040-360, RJ, Brazil.
| | - Antonio Jorge Tempone
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz-Fiocruz, Av. Brasil 4365, Rio de Janeiro 21040-360, RJ, Brazil.
| |
Collapse
|
179
|
Rothan HA, Bidokhti MRM, Byrareddy SN. Current concerns and perspectives on Zika virus co-infection with arboviruses and HIV. J Autoimmun 2018; 89:11-20. [PMID: 29352633 DOI: 10.1016/j.jaut.2018.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/30/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Dissemination of vector-borne viruses, such as Zika virus (ZIKV), in tropical and sub-tropical regions has a complicated impact on the immunopathogenesis of other endemic viruses such as dengue virus (DENV), chikungunya virus (CHIKV) and human immunodeficiency virus (HIV). The consequences of the possible co-infections with these viruses have specifically shown significant impact on the treatment and vaccination strategies. ZIKV is a mosquito-borne flavivirus from African and Asian lineages that causes neurological complications in infected humans. Many of DENV and CHIKV endemic regions have been experiencing outbreaks of ZIKV infection. Intriguingly, the mosquitoes, Aedes Aegypti and Aedes Albopictus, can simultaneously transmit all the combinations of ZIKV, DENV, and CHIKV to the humans. The co-circulation of these viruses leads to a complicated immune response due to the pre-existence or co-existence of ZIKV infection with DENV and CHIKV infections. The non-vector transmission of ZIKV, especially, via sexual intercourse and placenta represents an additional burden that may hander the treatment strategies of other sexually transmitted diseases such as HIV. Collectively, ZIKV co-circulation and co-infection with other viruses have inevitable impact on the host immune response, diagnosis techniques, and vaccine development strategies for the control of these co-infections.
Collapse
Affiliation(s)
- Hussin A Rothan
- Department of Human Biology, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Mehdi R M Bidokhti
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Centre (UNMC), Omaha, NE 68198-5800, USA.
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Centre (UNMC), Omaha, NE 68198-5800, USA.
| |
Collapse
|
180
|
Tahir D, Almeras L, Varloud M, Raoult D, Davoust B, Parola P. Assessment of MALDI-TOF mass spectrometry for filariae detection in Aedes aegypti mosquitoes. PLoS Negl Trop Dis 2017; 11:e0006093. [PMID: 29261659 PMCID: PMC5754087 DOI: 10.1371/journal.pntd.0006093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/04/2018] [Accepted: 11/02/2017] [Indexed: 11/28/2022] Open
Abstract
Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) is an emerging tool for routine identification of bacteria, archaea and fungi. It has also been recently applied as an accurate approach for arthropod identification. Preliminary studies have shown that the MALDI-TOF MS was able to differentiate whether ticks and mosquitoes were infected or not with some bacteria and Plasmodium parasites, respectively. The aim of the present study was to test the efficiency of MALDI-TOF MS tool in distinguishing protein profiles between uninfected mosquitoes from specimens infected by filarioid helminths. Aedes aegypti mosquitoes were engorged on microfilaremic blood infected with Dirofilaria immitis, Brugia malayi or Brugia pahangi. Fifteen days post-infective blood feeding, a total of 534 mosquitoes were killed by freezing. To assess mass spectra (MS) profile changes following filariae infections, one compartment (legs, thorax, head or thorax and head) per mosquito was submitted for MALDI-TOF MS analysis; the remaining body parts were used to establish filariae infectious status by real-time qPCR. A database of reference MS, based on the mass profiles of at least two individual mosquitoes per compartment, was created. Subsequently, the remaining compartment spectra (N = 350) from Ae. aegypti infected or not infected by filariae were blind tested against the spectral database. In total, 37 discriminating peak masses ranging from 2062 to 14869 daltons were identified, of which 17, 11, 12 and 7 peak masses were for legs, thorax, thorax-head and head respectively. Two peak masses (4073 and 8847 Da) were specific to spectra from Ae. aegypti infected with filariae, regardless of nematode species or mosquito compartment. The thorax-head part provided better classification with a specificity of 94.1% and sensitivity of 86.6, 71.4 and 68.7% of D. immitis, B. malayi and B. pahangi respectively. This study presents the potential of MALDI-TOF MS as a reliable tool for differentiating non-infected and filariae-infected Ae. aegypti mosquitoes. Considering that the results might vary in other mosquito species, further studies are needed to consolidate the obtained preliminary results before applying this tool in entomological surveillance as a fast mass screening method of filariosis vectors in endemic areas. Filariosis is a disease group affecting humans and animals, caused by nematode parasites of the family Onchocercidae, superfamily Filarioidea. These parasites can be transmitted, essentially, by mosquitoes during blood meals of infected female specimens. Screening vectors for these filariae currently relies on time- and resource-consuming methods such as dissection and polymerase chain reaction-based methods. Here, we applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to assess whether this tool can detect changes in the protein profiles of Aedes aegypti infected with filarioid helminths compared to those uninfected by testing different parts of mosquitoes. First a reference mass spectra database from Ae. aegypti infected or not infected by filariae was created using MS from 47 specimen compartments. Then we tested the remaining mass spectra (350 x 4) in a blind validation test. Regardless of filariae species, the best correct classification rate was obtained from the thorax-head part with a specificity of 94.1% and sensitivity of 86.6, 71.4 and 68.7% for non-infected and D. immitis, B. malayi and B. pahangi infected mosquitoes respectively. The results indicated that MALDI-TOF MS is potentially able to screen Aedes aegypti mosquitoes as being non-infected or filariae-infected. Furthermore, complementary works using other mosquito species infected with different filarioids are needed to reinforce these preliminary results prior to apply this tool on field samples.
Collapse
Affiliation(s)
- Djamel Tahir
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille Université, UM63, CNRS 7278, IRD 198 (Dakar), Inserm 1095, AP-HM Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Lionel Almeras
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille Université, UM63, CNRS 7278, IRD 198 (Dakar), Inserm 1095, AP-HM Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | | | - Didier Raoult
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille Université, UM63, CNRS 7278, IRD 198 (Dakar), Inserm 1095, AP-HM Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Bernard Davoust
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille Université, UM63, CNRS 7278, IRD 198 (Dakar), Inserm 1095, AP-HM Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Parola
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille Université, UM63, CNRS 7278, IRD 198 (Dakar), Inserm 1095, AP-HM Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- * E-mail:
| |
Collapse
|
181
|
Benelli G, Pavela R, Rakotosaona R, Randrianarivo E, Nicoletti M, Maggi F. Chemical composition and insecticidal activity of the essential oil from Helichrysum faradifani endemic to Madagascar. Nat Prod Res 2017; 32:1690-1698. [DOI: 10.1080/14786419.2017.1396590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Rianasoambolanoro Rakotosaona
- Institut Malgache de Recherches Appliquées, Association-Fondation Rakoto Ratsimamanga, Avarabohitra Itaosy, Antananarivo, Madagascar
| | - Emmanuel Randrianarivo
- Institut Malgache de Recherches Appliquées, Association-Fondation Rakoto Ratsimamanga, Avarabohitra Itaosy, Antananarivo, Madagascar
| | | | - Filippo Maggi
- School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
182
|
Lourenço-de-Oliveira R, Marques JT, Sreenu VB, Atyame Nten C, Aguiar ERGR, Varjak M, Kohl A, Failloux AB. Culex quinquefasciatus mosquitoes do not support replication of Zika virus. J Gen Virol 2017; 99:258-264. [PMID: 29076805 DOI: 10.1099/jgv.0.000949] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The rapid spread of Zika virus (ZIKV) in the Americas raised many questions about the role of Culex quinquefasciatus mosquitoes in transmission, in addition to the key role played by the vector Aedes aegypti. Here we analysed the competence of Cx. quinquefasciatus (with or without Wolbachia endosymbionts) for a ZIKV isolate. We also examined the induction of RNA interference pathways after viral challenge and the production of small virus-derived RNAs. We did not observe any infection nor such small virus-derived RNAs, regardless of the presence or absence of Wolbachia. Thus, Cx. quinquefasciatus does not support ZIKV replication and Wolbachia is not involved in producing this phenotype. In short, these mosquitoes are very unlikely to play a role in transmission of ZIKV.
Collapse
Affiliation(s)
- Ricardo Lourenço-de-Oliveira
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
- Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - João T Marques
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha-Belo Horizonte-MG, CEP 31270-901, Brazil
| | - Vattipally B Sreenu
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Célestine Atyame Nten
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
- Present address: University of Reunion Island, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM U1187, IRD 249, Sainte-Clotilde, Reunion Island, France
| | - Eric Roberto Guimarães Rocha Aguiar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha-Belo Horizonte-MG, CEP 31270-901, Brazil
| | - Margus Varjak
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
183
|
Benelli G, Beier JC. Current vector control challenges in the fight against malaria. Acta Trop 2017; 174:91-96. [PMID: 28684267 DOI: 10.1016/j.actatropica.2017.06.028] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/30/2017] [Indexed: 01/18/2023]
Abstract
The effective and eco-friendly control of Anopheles vectors plays a key role in any malaria management program. Integrated Vector Management (IVM) suggests making use of the full range of vector control tools available. The strategies for IVM require novel technologies to control outdoor transmission of malaria. Despite the wide number of promising control tools tested against mosquitoes, current strategies for malaria vector control used in most African countries are not sufficient to achieve successful malaria control. The majority of National Malaria Control Programs in Africa still rely on indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). These methods reduce malaria incidence but generally have little impact on malaria prevalence. In addition to outdoor transmission, growing levels of insecticide resistance in targeted vectors threaten the efficacy of LLINs and IRS. Larvicidal treatments can be useful, but are not recommended for rural areas. The research needed to improve the quality and delivery of mosquito vector control should focus on (i) optimization of processes and methods for vector control delivery; (ii) monitoring of vector populations and biting activity with reliable techniques; (iii) the development of effective and eco-friendly tools to reduce the burden or locally eliminate malaria and other mosquito-borne diseases; (iv) the careful evaluation of field suitability and efficacy of new mosquito control tools to prove their epidemiological impact; (v) the continuous monitoring of environmental changes which potentially affect malaria vector populations; (vi) the cooperation among different disciplines, with main emphasis on parasitology, tropical medicine, ecology, entomology, and ecotoxicology. A better understanding of behavioral ecology of malaria vectors is required. Key ecological obstacles that limit the effectiveness of vector control include the variation in mosquito behavior, development of insecticide resistance, presence of behavioral avoidance, high vector biodiversity, competitive and food web interactions, lack of insights on mosquito dispersal and mating behavior, and the impact of environmental changes on mosquito ecological traits. Overall, the trans-disciplinary cooperation among parasitologists and entomologists is crucial to ensure proper evaluation of the epidemiological impact triggered by novel mosquito vector control strategies.
Collapse
|
184
|
Barreaux P, Barreaux AMG, Sternberg ED, Suh E, Waite JL, Whitehead SA, Thomas MB. Priorities for Broadening the Malaria Vector Control Tool Kit. Trends Parasitol 2017; 33:763-774. [PMID: 28668377 PMCID: PMC5623623 DOI: 10.1016/j.pt.2017.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
Abstract
Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) have contributed substantially to reductions in the burden of malaria in the past 15 years. Building on this foundation, the goal is now to drive malaria towards elimination. Vector control remains central to this goal, but there are limitations to what is achievable with the current tools. Here we highlight how a broader appreciation of adult mosquito behavior is yielding a number of supplementary approaches to bolster the vector-control tool kit. We emphasize tools that offer new modes of control and could realistically contribute to operational control in the next 5 years. Promoting complementary tools that are close to field-ready is a priority for achieving the global malaria-control targets.
Collapse
Affiliation(s)
- Priscille Barreaux
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Laboratory of Ecology and Epidemiology of Parasites, Université de Neuchatel, Avenue du 1er-Mars 26, 2000, Neuchatel, Switzerland
| | - Antoine M G Barreaux
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Eleanore D Sternberg
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Eunho Suh
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jessica L Waite
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Shelley A Whitehead
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
185
|
Macias VM, Ohm JR, Rasgon JL. Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1006. [PMID: 28869513 PMCID: PMC5615543 DOI: 10.3390/ijerph14091006] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 02/08/2023]
Abstract
Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease.
Collapse
Affiliation(s)
- Vanessa M Macias
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Johanna R Ohm
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
186
|
Masi M, Cimmino A, Tabanca N, Becnel JJ, Bloomquist JR, Evidente A. A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae), the vector of yellow and dengue fevers and Zika virus. OPEN CHEM 2017. [DOI: 10.1515/chem-2017-0019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractAedes aegypti L. is the major vector of the arboviruses responsible for dengue fever, one of the most devastating human diseases. Some bacterial, fungal and plant metabolites belonging to different chemical subgroups, including Amaryllidaceae alkaloids, anthracenes, azoxymethoxytetrahydropyrans, cytochalasans, 2,5-diketopiperazines, isochromanones, naphthoquinones, organic small acids and their methyl esters, sterols and terpenes including sesquiterpenes and diterpenes, were tested for their larvicidal and adulticidal activity against Ae. aegypti. Out of 23 compounds tested, gliotoxin exhibited mosquitocidal activity in both bioassays with an LC50 value of 0.0257 ± 0.001 µg/µL against 1st instar Ae. aegypti and LD50 value of 2.79 ± 0.1197 µg/mosquito against adult female Ae. aegypti. 2-Methoxy-1,4-naphthoquinone and cytochalasin A showed LC50 values of 0.0851 ± 0.0012 µg/µL and 0.0854 ± 0.0019 µg/µL, respectively, against Ae. aegypti larvae. In adult bioassays, fusaric acid (LD50= 0.8349 ± 0.0118 µg/mosquito), 3-nitropropionic acid (LD50 = 1.6641 ± 0.0494 µg/mosquito) and α-costic acid (LD50 = 2.547 ± 0.0835 µg/mosquito) exhibited adulticidal activity. Results from the current study confirm that compounds belonging to cytochalsin, diketopiperazine, naphthoquinone and low molecular weight organic acid groups are active and may stimulate further SAR investigations.
Collapse
Affiliation(s)
- Marco Masi
- Dipartimento di Science Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia4, 80126, Italy
| | - Alessio Cimmino
- Dipartimento di Science Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia4, 80126, Italy
| | - Nurhayat Tabanca
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158 USA
| | - James J. Becnel
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA
| | - Jeffrey R. Bloomquist
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Antonio Evidente
- Dipartimento di Science Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia4, 80126, Italy
| |
Collapse
|
187
|
Thomas MB. Biological control of human disease vectors: a perspective on challenges and opportunities. BIOCONTROL (DORDRECHT, NETHERLANDS) 2017; 63:61-69. [PMID: 29391855 PMCID: PMC5769823 DOI: 10.1007/s10526-017-9815-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 05/03/2017] [Indexed: 05/31/2023]
Abstract
Chemical insecticides are the mainstay of contemporary control of human disease vectors. However, the spread of insecticide resistance and the emergence of new disease threats are creating an urgent need for alternative tools. This perspective paper explores whether biological control might be able to make a greater contribution to vector control in the future, and highlights some of the challenges in taking a technology from initial concept through to operational use. The aim is to stimulate a dialogue within biocontrol and vector control communities, in order to make sure that biological control tools can realize their full potential.
Collapse
Affiliation(s)
- Matthew B. Thomas
- Department of Entomology and Center for Infectious Disease Dynamics, Penn State, University Park, PA 16802 USA
| |
Collapse
|
188
|
von Seidlein L, Kekulé AS, Strickman D. Novel Vector Control Approaches: The Future for Prevention of Zika Virus Transmission? PLoS Med 2017; 14:e1002219. [PMID: 28095418 PMCID: PMC5240911 DOI: 10.1371/journal.pmed.1002219] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In a Perspective accompanying Abad-Franch and colleagues, Lorenz von Seidlein, Alexander Kekulé, and Daniel Strickman discuss the importance of developing effective strategies to minimize mosquito-borne transmission of human diseases.
Collapse
Affiliation(s)
- Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
- * E-mail:
| | | | - Daniel Strickman
- Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| |
Collapse
|
189
|
Do Chenopodium ambrosioides-Synthesized Silver Nanoparticles Impact Oryzias melastigma Predation Against Aedes albopictus Larvae? J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1113-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|