151
|
Can Co-Activation of Nrf2 and Neurotrophic Signaling Pathway Slow Alzheimer's Disease? Int J Mol Sci 2017; 18:ijms18061168. [PMID: 28561773 PMCID: PMC5485992 DOI: 10.3390/ijms18061168] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/22/2017] [Accepted: 05/27/2017] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifaceted disease that is hard to treat by single-modal treatment. AD starts with amyloid peptides, mitochondrial dysfunction, and oxidative stress and later is accompanied with chronic endoplasmic reticulum (ER) stress and autophagy dysfunction, resulting in more complicated pathogenesis. Currently, few treatments can modify the complicated pathogenic progress of AD. Compared to the treatment with exogenous antioxidants, the activation of global antioxidant defense system via Nrf2 looks more promising in attenuating oxidative stress in AD brains. Accompanying the activation of the Nrf2-mediated antioxidant defense system that reduce the AD-causative factor, oxidative stress, it is also necessary to activate the neurotrophic signaling pathway that replaces damaged organelles and molecules with new ones. Thus, the dual actions to activate both the Nrf2 antioxidant system and neurotrophic signaling pathway are expected to provide a better strategy to modify AD pathogenesis. Here, we review the current understanding of AD pathogenesis and neuronal defense systems and discuss a possible way to co-activate the Nrf2 antioxidant system and neurotrophic signaling pathway with the hope of helping to find a better strategy to slow AD.
Collapse
|
152
|
Kumaran A, Ho CC, Hwang LS. Protective effect of Nelumbo nucifera extracts on beta amyloid protein induced apoptosis in PC12 cells, in vitro model of Alzheimer's disease. J Food Drug Anal 2017; 26:172-181. [PMID: 29389553 PMCID: PMC9332666 DOI: 10.1016/j.jfda.2017.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly. β-Amyloid (Aβ) has been proposed to play a role in the pathogenesis of AD. Deposits of insoluble Aβ are found in the brains of patients with AD and are one of the pathological hallmarks of the disease, but the underlying signaling pathways are poorly understood. In order to develop antidementia agents with potential therapeutic value, we examined the inhibitory effect of the Nelumbo nucifera seed embryo extracts on to the aggregated amyloid β peptide (agg Aβ1–40)-induced damage of differentiated PC-12 cells (dPC-12), a well-known cell model for AD. In the present study, seed embryos of N. nucifera were extracted with 70% methanol in water and then separated into hexane, ethyl acetate, n-butanol, and water layers. Among them, only the n-butanol layer showed strong activity and was therefore subjected to separation on Sephadex LH-20 chromatography. Two fractions showing potent activity were found to significantly inhibit Aβ1–40 toxicity on dPC-12 cells in increasing order of concentration (10–50 μg/mL). Further purification and characterization of these active fractions identified them to be flavonoids such as rutin, orientin, isoorientin, isoquercetrin, and hyperoside. 2,2-Diphenyl-1-picrylhydrazyl hydrate scavenging activity of the extracts was also carried out to ascertain the possible mechanism of the activity.
Collapse
Affiliation(s)
- Alaganandam Kumaran
- Graduate Institute of Food Science and Technology, National Taiwan University, Number 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan.
| | - Cheng Chang Ho
- Graduate Institute of Food Science and Technology, National Taiwan University, Number 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| | - Lucy Sun Hwang
- Graduate Institute of Food Science and Technology, National Taiwan University, Number 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan.
| |
Collapse
|
153
|
Espargaró A, Ginex T, Vadell MDM, Busquets MA, Estelrich J, Muñoz-Torrero D, Luque FJ, Sabate R. Combined in Vitro Cell-Based/in Silico Screening of Naturally Occurring Flavonoids and Phenolic Compounds as Potential Anti-Alzheimer Drugs. JOURNAL OF NATURAL PRODUCTS 2017; 80:278-289. [PMID: 28128562 DOI: 10.1021/acs.jnatprod.6b00643] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Alzheimer's disease (AD) is the main cause of dementia in people over 65 years. One of the major culprits in AD is the self-aggregation of amyloid-β peptide (Aβ), which has stimulated the search for small molecules able to inhibit Aβ aggregation. In this context, we recently reported a simple, but effective in vitro cell-based assay to evaluate the potential antiaggregation activity of putative Aβ aggregation inhibitors. In this work this assay was used together with docking and molecular dynamics simulations to analyze the anti-Aβ aggregation activity of several naturally occurring flavonoids and phenolic compounds. The results showed that rosmarinic acid, melatonin, and o-vanillin displayed zero or low inhibitory capacity, curcumin was found to have an intermediate inhibitory potency, and apigenin and quercetin showed potent antiaggregation activity. Finally, the suitability of the combined in vitro cell-based/in silico approach to distinguish between active and inactive compounds was further assessed for an additional set of flavonols and dihydroflavonols.
Collapse
Affiliation(s)
- Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , E-08028, Barcelona, Spain
| | - Tiziana Ginex
- Department of Nutrition, Food Sciences, and Gastronomy, School of Pharmacy and Institute of Biomedicine, Campus Torribera, University of Barcelona , Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - Maria Del Mar Vadell
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , E-08028, Barcelona, Spain
| | - Maria A Busquets
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , E-08028, Barcelona, Spain
| | - Joan Estelrich
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , E-08028, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), School of Pharmacy, and Institute of Biomedicine (IBUB), University of Barcelona , E-08028, Barcelona, Spain
| | - F Javier Luque
- Department of Nutrition, Food Sciences, and Gastronomy, School of Pharmacy and Institute of Biomedicine, Campus Torribera, University of Barcelona , Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , E-08028, Barcelona, Spain
| |
Collapse
|
154
|
Wang CN, Wang YJ, Wang H, Song L, Chen Y, Wang JL, Ye Y, Jiang B. The Anti-dementia Effects of Donepezil Involve miR-206-3p in the Hippocampus and Cortex. Biol Pharm Bull 2017; 40:465-472. [PMID: 28123152 DOI: 10.1248/bpb.b16-00898] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a most serious age-related neurodegenerative disorder accompanied with significant memory impairments in this world. Recently, microRNAs (miRNAs) have been reported to be invlolved in the pathophysiology of AD. Previous studies have shown that miRNA-206 (miR-206) is implicated in the pathogenesis of AD via suppressing the expression of brain-derived neurotrophic factor (BDNF) in the brain. Here, we examined the miR-206-3p and miR-206-5p expression in the hippocampus and cortex of Abeta precursor protein (APP)/presenilin-1 (PS1) transgenic mice treated with donepezil, a drug approved for treating AD in clinic. We found that the expression of miR-206-3p was significantly up-regulated in the hippocampus and cortex of APP/PS1 mice, while donepezil administration significantly reversed this dysfunction. In addition, enhancing the miR-206-3p level by the usage of AgomiR-206-3p significantly attenuated the anti-dementia effects of donepezil in APP/PS1 mice. Together, these results suggested that miR-206-3p is involved in the anti-dementia effects of donepezil, and could be a novel pharmacological target for treating AD.
Collapse
Affiliation(s)
- Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Natural products against Alzheimer's disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2016; 35:178-216. [PMID: 28043897 DOI: 10.1016/j.biotechadv.2016.12.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a severe, chronic and progressive neurodegenerative disease associated with memory and cognition impairment ultimately leading to death. It is the commonest reason of dementia in elderly populations mostly affecting beyond the age of 65. The pathogenesis is indicated by accumulation of the amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) in brain tissues and hyperphosphorylation of tau protein in neurons. The main cause is considered to be the formation of reactive oxygen species (ROS) due to oxidative stress. The current treatment provides only symptomatic relief by offering temporary palliative therapy which declines the rate of cognitive impairment associated with AD. Inhibition of the enzyme acetylcholinesterase (AChE) is considered as one of the major therapeutic strategies offering only symptomatic relief and moderate disease-modifying effect. Other non-cholinergic therapeutic approaches include antioxidant and vitamin therapy, stem cell therapy, hormonal therapy, use of antihypertensive or lipid-lowering medications and selective phosphodiesterase (PDE) inhibitors, inhibition of β-secretase and γ-secretase and Aβ aggregation, inhibition of tau hyperphosphorylation and intracellular NFT, use of nonsteroidal anti-inflammatory drugs (NSAIDs), transition metal chelators, insulin resistance drugs, etanercept, brain-derived neurotrophic factor (BDNF) etc. Medicinal plants have been reported for possible anti-AD activity in a number of preclinical and clinical trials. Ethnobotany, being popular in China and in the Far East and possibly less emphasized in Europe, plays a substantial role in the discovery of anti-AD agents from botanicals. Chinese Material Medica (CMM) involving Chinese medicinal plants has been used traditionally in China in the treatment of AD. Ayurveda has already provided numerous lead compounds in drug discovery and many of these are also undergoing clinical investigations. A number of medicinal plants either in their crude forms or as isolated compounds have exhibited to reduce the pathological features associated with AD. In this present review, an attempt has been made to elucidate the molecular mode of action of various plant extracts, phytochemicals and traditional herbal formulations investigated against AD as reported in various preclinical and clinical tests. Herbal synergism often found in polyherbal formulations were found effective to combat disease heterogeneity as found in complex pathogenesis of AD. Finally a note has been added to describe biotechnological improvement, genetic and genomic resources and mathematical and statistical techniques for empirical model building associated with anti-AD plant secondary metabolites and their source botanicals.
Collapse
|
156
|
Neuroprotective Effects of Açaí ( Euterpe oleracea Mart.) against Rotenone In Vitro Exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8940850. [PMID: 27781077 PMCID: PMC5066013 DOI: 10.1155/2016/8940850] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022]
Abstract
Neuropsychiatric diseases, such as bipolar disorder (BD) and schizophrenia (SCZ), have a very complex pathophysiology. Several current studies describe an association between psychiatric illness and mitochondrial dysfunction and consequent cellular modifications, including lipid, protein, and DNA damage, caused by cellular oxidative stress. Euterpe oleracea (açaí) is a powerful antioxidant fruit. Açaí is an Amazonian palm fruit primarily found in the lowlands of the Amazonian rainforest, particularly in the floodplains of the Amazon River. Given this proposed association, this study analyzed the potential in vitro neuropharmacological effect of Euterpe oleracea (açaí) extract in the modulation of mitochondrial function and oxidative metabolism. SH-SY5Y cells were treated with rotenone to induce mitochondrial complex I dysfunction and before and after we exposed the cells to açaí extract at 5 μg/mL. Treated and untreated cells were then analyzed by spectrophotometric, fluorescent, immunological, and molecular assays. The results showed that açaí extract can potentially increase protein amount and enzyme activity of mitochondrial complex I, mainly through NDUFS7 and NDUFS8 overexpression. Açaí extract was also able to decrease cell reactive oxygen species levels and lipid peroxidation. We thus suggest açaí as a potential candidate for drug development and a possible alternative BD therapy.
Collapse
|
157
|
Neurodegenerative Diseases: Might Citrus Flavonoids Play a Protective Role? Molecules 2016; 21:molecules21101312. [PMID: 27706034 PMCID: PMC6274333 DOI: 10.3390/molecules21101312] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/07/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (ND) result from the gradual and progressive degeneration of the structure and function of the central nervous system or the peripheral nervous system or both. They are characterized by deterioration of neurons and/or myelin sheath, disruption of sensory information transmission and loss of movement control. There is no effective treatment for ND, and the drugs currently marketed are symptom-oriented, albeit with several side effects. Within the past decades, several natural remedies have gained attention as potential neuroprotective drugs. Moreover, an increasing number of studies have suggested that dietary intake of vegetables and fruits can prevent or delay the onset of ND. These properties are mainly due to the presence of polyphenols, an important group of phytochemicals that are abundantly present in fruits, vegetables, cereals and beverages. The main class of polyphenols is flavonoids, abundant in Citrus fruits. Our review is an overview on the scientific literature concerning the neuroprotective effects of the Citrus flavonoids in the prevention or treatment of ND. This review may be used as scientific basis for the development of nutraceuticals, food supplements or complementary and alternative drugs to maintain and improve the neurophysiological status.
Collapse
|
158
|
Ali F, Rahul, Naz F, Jyoti S, Siddique YH. Health functionality of apigenin: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1207188] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
159
|
Balez R, Steiner N, Engel M, Muñoz SS, Lum JS, Wu Y, Wang D, Vallotton P, Sachdev P, O’Connor M, Sidhu K, Münch G, Ooi L. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer's disease. Sci Rep 2016; 6:31450. [PMID: 27514990 PMCID: PMC4981845 DOI: 10.1038/srep31450] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/21/2016] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases, yet current therapeutic treatments are inadequate due to a complex disease pathogenesis. The plant polyphenol apigenin has been shown to have anti-inflammatory and neuroprotective properties in a number of cell and animal models; however a comprehensive assessment has not been performed in a human model of AD. Here we have used a human induced pluripotent stem cell (iPSC) model of familial and sporadic AD, in addition to healthy controls, to assess the neuroprotective activity of apigenin. The iPSC-derived AD neurons demonstrated a hyper-excitable calcium signalling phenotype, elevated levels of nitrite, increased cytotoxicity and apoptosis, reduced neurite length and increased susceptibility to inflammatory stress challenge from activated murine microglia, in comparison to control neurons. We identified that apigenin has potent anti-inflammatory properties with the ability to protect neurites and cell viability by promoting a global down-regulation of cytokine and nitric oxide (NO) release in inflammatory cells. In addition, we show that apigenin is able to protect iPSC-derived AD neurons via multiple means by reducing the frequency of spontaneous Ca(2+) signals and significantly reducing caspase-3/7 mediated apoptosis. These data demonstrate the broad neuroprotective action of apigenin against AD pathogenesis in a human disease model.
Collapse
Affiliation(s)
- Rachelle Balez
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Nicole Steiner
- School of Medicine, Western Sydney University, Locked bag 1797, Penrith, NSW, Australia
| | - Martin Engel
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Sonia Sanz Muñoz
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Yizhen Wu
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Dadong Wang
- CSIRO Informatics and Statistics, Locked Bag 17, North Ryde, NSW 1670, Australia
| | - Pascal Vallotton
- CSIRO Informatics and Statistics, Locked Bag 17, North Ryde, NSW 1670, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing School of Medicine, University of New South Wales, High Street, Kensington,. NSW, 2052, Australia
| | - Michael O’Connor
- School of Medicine, Western Sydney University, Locked bag 1797, Penrith, NSW, Australia
- Molecular Medicine Research Group, Western Sydney University, Locked bag 1797, Penrith, NSW, Australia
| | - Kuldip Sidhu
- Centre for Healthy Brain Ageing School of Medicine, University of New South Wales, High Street, Kensington,. NSW, 2052, Australia
| | - Gerald Münch
- School of Medicine, Western Sydney University, Locked bag 1797, Penrith, NSW, Australia
- Centre of Complementary Medicine Research (CompleMed), Western Sydney University, Locked bag 1797, Penrith, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
160
|
Malabade R, Taranalli AD. Calotropis procera: A potential cognition enhancer in scopolamine and electroconvulsive shock-induced amnesia in rats. Indian J Pharmacol 2016; 47:419-24. [PMID: 26288476 PMCID: PMC4527065 DOI: 10.4103/0253-7613.161269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/16/2015] [Accepted: 06/26/2015] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Present study evaluates the effect of Calotropis procera (Apocynaceae) dry latex on cognitive function in rats using scopolamine and electroconvulsive shock (ECS) induced amnesia model. MATERIALS AND METHODS Male Wistar rats were pretreated with 200, 400 and 800 mg/kg of C. procera dry latex in scopolamine-induced amnesia model. Dose showing maximum effect in cognitive performance was selected and further evaluated using scopolamine and ECS-induced amnesia model for its effect on neurochemical enzymes and cognitive performance. Acetylcholinesterase (AChE) activity, β amyloid1-42, and dopamine level were analyzed, while the cognitive performance was assessed by elevated plus maze, step-through passive avoidance test, and Morris water maze. Simultaneously, C. procera dry latex (25, 50, 100, 250, 500, and 1000 μg/mL) was screened for in vitro AChE inhibition assay. RESULTS Pretreatment with (200, 400 and 800 mg/kg) C. procera dry latex shows dose dependent increase in cognitive performance in scopolamine-induced amnesia. Further, pretreatment with the selected dose (800 mg/kg) showed significant improvement in transfer latency (P < 0.001, P < 0.01), escape latency (P < 0.05), time spent in target quadrant (P < 0.001) also significant decrease in AChE activity (P < 0.05), β amyloid1-42 level (P < 0.001), and increase in dopamine level (P < 0.01) in rat brain homogenate when compared with scopolamine and ECS disease control groups. IC50 for C. procera dry latex was found to be <1000 μg/mL. CONCLUSIONS Pretreatment with C. procera dry latex (800 mg/kg) produced significant cognition enhancement by improving cognitive performance and decreasing the marker neurochemical enzyme activity in scopolamine and ECS-induced amnesia model.
Collapse
Affiliation(s)
- Rohit Malabade
- Department of Pharmacology, KLE University's College of Pharmacy, Belagavi, Karnataka, India
| | - Ashok D Taranalli
- Department of Pharmacology, KLE University's College of Pharmacy, Belagavi, Karnataka, India
| |
Collapse
|
161
|
Solanki I, Parihar P, Parihar MS. Neurodegenerative diseases: From available treatments to prospective herbal therapy. Neurochem Int 2016; 95:100-8. [PMID: 26550708 DOI: 10.1016/j.neuint.2015.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/23/2015] [Accepted: 11/03/2015] [Indexed: 11/23/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and many others represent a relevant health problem with age worldwide. Efforts have been made in recent years to discover the mechanism of neurodegenerative diseases and prospective therapy that can help to slow down the effects of the aging and prevent these diseases. Since pathogenesis of these diseases involves multiple factors therefore the important task for neuroscientists is to identify such multiple factors and prevent age-associated neurodegenerative diseases. For these neurodegenerative diseases yet we have only palliative therapies and none of them significantly capable to slow down or halt the underlying pathology. Polyphenolic compounds such as flavonoids present in vegetables and fruits are believed to have anti-aging properties and reduce the risk of neurodegenerative diseases. Despite their abundance, investigations into the benefits of these polyphenolic compounds in human health have only recently begun. Preclinical and clinical studies have demonstrated the potential beneficial effects of flavonoids in neurons. Although clinical trials on the effectiveness of dietary flavonoids to treat human diseases are limited but various animal models and cell culture studies have shown a great promise in developing these compounds as suitable therapeutic targets. In this review, we elaborate the neuroprotective properties of flavonoids especially their applications in prevention and intervention of different neurodegenerative diseases. Their multi-target properties may allow them to be potential dietary supplement in prevention and treatment of the age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Isha Solanki
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, MP, India
| | - Priyanka Parihar
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, MP, India
| | | |
Collapse
|
162
|
Cai M, Ma Y, Zhang W, Wang S, Wang Y, Tian L, Peng Z, Wang H, Qingrong T. Apigenin-7-O-β-D-(-6''-p-coumaroyl)-Glucopyranoside Treatment Elicits Neuroprotective Effect against Experimental Ischemic Stroke. Int J Biol Sci 2016; 12:42-52. [PMID: 26722216 PMCID: PMC4679397 DOI: 10.7150/ijbs.12275] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 09/21/2015] [Indexed: 02/05/2023] Open
Abstract
Stroke is the major cause of permanent disability and mortality in China. Apigenin-7-O-β-D-(-6''-p-coumaroyl)-glucopyranoside (APG) is a glycoside subtype of apigenin and has the antioxidant activity; however, whether and how it plays a neuroprotective role following cerebral ischemia remains unknown. In present study, we adopted the oxygen glucose/reperfusion model in PC12 cells, bilateral common carotid artery occlusion model in C57B6 mice and middle cerebral artery occlusion model in SD rats to observe the therapeutic effects of APG on ischemic stroke. We also discussed the underlying mechanism. Treatment with 0.4 μg/ml or 0.8 μg/ml APG promoted cell viability and proliferation, reduced LDH release and apoptotic cell death levels in PC12 cells. Treatment with 50 mg/kg or 100 mg/kg APG at 30 minutes after reperfusion improved neurological outcomes in vivo, as demonstrated by elevation of neurological scores in both mice and rats. It also increased the number of survival neurons in mice and reduced infarct volume in rats. APG also increased the contents of Mn-SOD and the phosphorylation level of STAT3, elevated the antioxidant activity and reduced oxidative productions. These findings revealed a neuroprotective effect of APG, which possibly induced by the STAT3 phosphorylation-mediated Mn-SOD up-regulation.
Collapse
Affiliation(s)
| | | | - Wei Zhang
- 3. Department of Pharmacology; Xijing hospital, the Forth Military Medical School
| | | | | | - Li Tian
- 2. Department of Anesthesiology
| | | | | | | |
Collapse
|
163
|
Moosavi F, Hosseini R, Saso L, Firuzi O. Modulation of neurotrophic signaling pathways by polyphenols. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 10:23-42. [PMID: 26730179 PMCID: PMC4694682 DOI: 10.2147/dddt.s96936] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and the concomitant modulations of signaling pathways is useful for designing more effective agents for management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
164
|
Souza CS, Paulsen BS, Devalle S, Lima Costa S, Borges HL, Rehen SK. Commitment of human pluripotent stem cells to a neural lineage is induced by the pro-estrogenic flavonoid apigenin. ACTA ACUST UNITED AC 2015. [DOI: 10.3402/arb.v2.29244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
165
|
Venigalla M, Sonego S, Gyengesi E, Sharman MJ, Münch G. Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer's disease. Neurochem Int 2015; 95:63-74. [PMID: 26529297 DOI: 10.1016/j.neuint.2015.10.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, characterized by deposition of amyloid plaques and neurofibrillary tangles, as well as microglial and astroglial activation, and, finally, leading to neuronal dysfunction and death. Current treatments for AD primarily focus on enhancement of cholinergic transmission. However, these treatments are only symptomatic, and no disease-modifying drug is available for the treatment of AD patients. This review will provide an overview of the antioxidant, anti-inflammatory, anti-amyloidogenic, neuroprotective, and cognition-enhancing effects of a variety of nutraceuticals including curcumin, apigenin, docosahexaenoic acid, epigallocatechin gallate, α-lipoic acid and resveratrol and their potential for AD prevention and treatment. We suggest that therapeutic use of these compounds might lead to a safe strategy to delay the onset of AD or slow down its progression. The continuing investigation of the potential of these substances is necessary as they are promising compounds to yield a possible remedy for this pervasive disease.
Collapse
Affiliation(s)
- Madhuri Venigalla
- Dept of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Sandra Sonego
- Dept of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Erika Gyengesi
- Dept of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; Molecular Medicine Research Group, Western Sydney University, Campbelltown, NSW, Australia
| | | | - Gerald Münch
- Dept of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia; Molecular Medicine Research Group, Western Sydney University, Campbelltown, NSW, Australia.
| |
Collapse
|
166
|
Venigalla M, Gyengesi E, Münch G. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease. Neural Regen Res 2015; 10:1181-5. [PMID: 26487830 PMCID: PMC4590215 DOI: 10.4103/1673-5374.162686] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder, characterized by deposition of amyloid beta, neurofibrillary tangles, astrogliosis and microgliosis, leading to neuronal dysfunction and loss in the brain. Current treatments for Alzheimer's disease primarily focus on enhancement of cholinergic transmission. However, these treatments are only symptomatic, and no disease-modifying drug is available for Alzheimer's disease patients. This review will provide an overview of the proven antioxidant, anti-inflammatory, anti-amyloidogenic, neuroprotective, and cognition-enhancing effects of curcumin and apigenin and discuss the potential of these compounds for Alzheimer's disease prevention and treatment. We suggest that these compounds might delay the onset of Alzheimer's disease or slow down its progression, and they should enter clinical trials as soon as possible.
Collapse
Affiliation(s)
- Madhuri Venigalla
- Department of Pharmacology, School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia ; Molecular Medicine Research Group, University of Western Sydney, Penrith, NSW, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia ; National Institute of Complementary Medicine, University of Western Sydney, Penrith, NSW, Australia ; Molecular Medicine Research Group, University of Western Sydney, Penrith, NSW, Australia
| |
Collapse
|
167
|
Stella F, Radanovic M, Canineu PR, de Paula VJR, Forlenza OV. Anti-dementia medications: current prescriptions in clinical practice and new agents in progress. Ther Adv Drug Saf 2015; 6:151-65. [PMID: 26301069 DOI: 10.1177/2042098615592116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Almost three decades after the publication of the first clinical studies with tacrine, the pharmacological treatment of Alzheimer's disease (AD) remains a challenge. Randomized clinical trials have yielded evidence of significant - although modest and transient - benefit from cholinergic replacement therapy for people diagnosed with AD, and disease modification with antidementia compounds is still an urgent, unmet need. The natural history of AD is very long, and its pharmacological treatment must acknowledge different needs according to the stage of the disease process. Cognitive and functional deterioration evolves gradually since the onset of clinical symptoms, which may be preceded by several years or perhaps decades of silent, presymptomatic neurodegeneration. Therefore, the pharmacological treatment of AD must ideally comprise both a symptomatic effect to preserve or improve cognition and a disease-modifying effect to tackle the progression of the pathological process. Primary prevention is the ultimate goal, should these strategies be delivered to patients with preclinical AD. In this article, we briefly address the pharmaceutical compounds that are currently used for the symptomatic treatment of AD and discuss the ongoing strategies designed to modify its natural course.
Collapse
Affiliation(s)
- Florindo Stella
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, and UNESP - Universidade Estadual Paulista, Biosciences Institute, Campus of Rio Claro, São Paulo, Brazil
| | - Márcia Radanovic
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paulo Renato Canineu
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vanessa J R de Paula
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Orestes V Forlenza
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Rua Dr. Ovídio Pires de Campos 785, 05403-010 - São Paulo, Brazil
| |
Collapse
|
168
|
Ghoneim FM, Khalaf HA, Elsamanoudy AZ, Abo El-khair SM, Helaly AMN, Mahmoud EHM, Elshafey SH. Protective effect of chronic caffeine intake on gene expression of brain derived neurotrophic factor signaling and the immunoreactivity of glial fibrillary acidic protein and Ki-67 in Alzheimer's disease. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:7710-7728. [PMID: 26339337 PMCID: PMC4555665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/26/2015] [Indexed: 06/05/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with progressive degeneration of the hippocampal and cortical neurons. This study was designed to demonstrate the protective effect of caffeine on gene expression of brain derived neurotrophic factor (BDNF) and its receptor neural receptor protein-tyrosine kinase-β (TrkB) as well as glial fibrillary acidic protein (GFAP) and Ki-67 immunoreactivity in Aluminum chloride (AlCl3) induced animal model of AD. Fifty adult rats included in this study were classified into 5 group (10 rats each); negative and positive control groups (I&II), AD model group (III), group treated with caffeine from the start of AD induction (IV) and group treated with caffeine two weeks before AD induction (V). Hippocampal tissue BDNF and its receptor (TrkB) gene expression by real time RT-PCR in addition to immunohistochemical study of GFAP and Ki67 immunoreactivity were performed for all rats in the study. The results of this study revealed that caffeine has protective effect through improving the histological and immunohistochemical findings induced by AlCl3 as well as BDNF and its receptor gene expression. It could be concluded from the current study, that chronic caffeine consumption in a dose of 1.5 mg/kg body weight daily has a potentially good protective effect against AD.
Collapse
Affiliation(s)
- Fatma M Ghoneim
- Department of Histology and Cell Biology, Mansoura UniversityEgypt
| | - Hanaa A Khalaf
- Department of Histology and Cell Biology, Mansoura UniversityEgypt
| | - Ayman Z Elsamanoudy
- Department of Medical Biochemistry and Molecular Biology, Mansoura UniversityEgypt
| | - Salwa M Abo El-khair
- Department of Medical Biochemistry and Molecular Biology, Mansoura UniversityEgypt
| | - Ahmed MN Helaly
- Department of Forensic Medicine and Toxicology, Mansoura UniversityEgypt
| | | | - Saad H Elshafey
- Department of Histology and Cell Biology, Mansoura UniversityEgypt
| |
Collapse
|
169
|
Simonyan KV, Chavushyan VA. Neuroprotective activity of hydroponic Teucrium polium following bilateral ovariectomy. Metab Brain Dis 2015; 30:785-92. [PMID: 25502011 DOI: 10.1007/s11011-014-9640-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/02/2014] [Indexed: 12/14/2022]
Abstract
Ovariectomy is known as "surgical menopause" with decreased levels of estrogen in female rodents. Its reported risks and adverse effects include cognitive impairment. The action of hydroponic Teucrium polium on nucleus basalis of Meynert (bnM) neurons following 6 weeks of ovariectomy was carried out. The analysis of spike activity was observed by on-line selection and the use of a software package. Early and late tetanic, - posttetanic potentiation and depression of neurons to high frequency stimulation of hippocampus were studied. The complex averaged peri-event time and frequency histograms were constructed. The histochemical study of the activity of Са(2+)-dependent acid phosphatase was observed. In conditions of hydroponic Teucrium polium administration, positive changes in neurons and gain of metabolism leading to cellular survival were revealed. The administration of Teucrium polium elicited neurodegenerative changes in bnM.
Collapse
Affiliation(s)
- K V Simonyan
- Laboratory of Neuroendocrine Relationships, Orbeli Institute of Physiology, Yerevan, 0028, Armenia,
| | | |
Collapse
|
170
|
Venkatesan R, Ji E, Kim SY. Phytochemicals that regulate neurodegenerative disease by targeting neurotrophins: a comprehensive review. BIOMED RESEARCH INTERNATIONAL 2015; 2015:814068. [PMID: 26075266 PMCID: PMC4446472 DOI: 10.1155/2015/814068] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/17/2015] [Accepted: 04/24/2015] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD), characterized by progressive dementia and deterioration of cognitive function, is an unsolved social and medical problem. Age, nutrition, and toxins are the most common causes of AD. However, currently no credible treatment is available for AD. Traditional herbs and phytochemicals may delay its onset and slow its progression and also allow recovery by targeting multiple pathological causes by antioxidative, anti-inflammatory, and antiamyloidogenic properties. They also regulate mitochondrial stress, apoptotic factors, free radical scavenging system, and neurotrophic factors. Neurotrophins such as BDNF, NGF, NT3, and NT4/5 play a vital role in neuronal and nonneuronal responses to AD. Neurotrophins depletion accelerates the progression of AD and therefore, replacing such neurotrophins may be a potential treatment for neurodegenerative disease. Here, we review the phytochemicals that mediate the signaling pathways involved in neuroprotection specifically neurotrophin-mediated activation of Trk receptors and members of p75(NTR) superfamily. We focus on representative phenolic derivatives, iridoid glycosides, terpenoids, alkaloids, and steroidal saponins as regulators of neurotrophin-mediated neuroprotection. Although these phytochemicals have attracted attention owing to their in vitro neurotrophin potentiating activity, their in vivo and clinical efficacy trials has yet to be established. Therefore, further research is necessary to prove the neuroprotective effects in preclinical models and in humans.
Collapse
Affiliation(s)
- Ramu Venkatesan
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic of Korea
| | - Eunhee Ji
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic of Korea
- Gachon Medical Research Institute, Gil Medical Center, Inchon 405-760, Republic of Korea
- Gachon Institute of Pharmaceutical Science, Gachon University, No. 191 Hambakmoe-ro, Yeonsu-gu, Incheon 406-799, Republic of Korea
| |
Collapse
|
171
|
Solanki I, Parihar P, Mansuri ML, Parihar MS. Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv Nutr 2015; 6:64-72. [PMID: 25593144 PMCID: PMC4288281 DOI: 10.3945/an.114.007500] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During the past several years, there has been enormous progress in the understanding of the causative factors that initiate neuronal damage in various neurodegenerative diseases, including Alzheimer disease, Parkinson disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. Preventing neuronal damage and neuronal death will have a huge clinical benefit. However, despite major advances in causative factors that trigger these neurodegenerative diseases, to date there have been no therapies available that benefit patients who suffer from these diseases. Because most neurodegenerative diseases are late-onset and remain asymptomatic for most of the phases, the therapies initiated in advanced stages of the disease have limited value to patients. It may be possible to prevent or halt the disease progression to a great extent if therapies start at the initial stage of the disease. Such therapies may restore neuronal function by reducing or even eliminating the primary stressor. Flavonoids are key compounds for the development of a new generation of therapeutic agents that are clinically effective in treating neurodegenerative diseases. Regular consumption of flavonoids has been associated with a reduced risk of neurodegenerative diseases. In addition to their antioxidant properties, these polyphenolic compounds exhibit neuroprotective properties by their interaction with cellular signaling pathways followed by transcription and translation that mediate cell function under both normal and pathologic conditions. This review focuses on human intervention studies as well as animal studies on the role of various flavonoids in the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Mordhwaj S Parihar
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, India
| |
Collapse
|
172
|
Berto A, Ribeiro AB, Sentandreu E, de Souza NE, Mercadante AZ, Chisté RC, Fernandes E. The seed of the Amazonian fruit Couepia bracteosa exhibits higher scavenging capacity against ROS and RNS than its shell and pulp extracts. Food Funct 2015. [DOI: 10.1039/c5fo00722d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Couepia bracteosa is an interesting source of bioactive compounds which may be investigated for protecting human health against oxidative damage.
Collapse
Affiliation(s)
- Alessandra Berto
- Postgraduate Program of Chemistry
- State University of Maringá
- Maringá
- Brazil
| | | | - Enrique Sentandreu
- Department of Food Science
- Faculty of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
- Brazil
| | | | | | - Renan Campos Chisté
- UCIBIO-REQUIMTE
- Department of Chemical Sciences
- Faculty of Pharmacy
- University of Porto
- (FFUP)
| | - Eduarda Fernandes
- UCIBIO-REQUIMTE
- Department of Chemical Sciences
- Faculty of Pharmacy
- University of Porto
- (FFUP)
| |
Collapse
|
173
|
Chui DH, Marcellino M, Marotta F, Sweed H, Solimene U, Vignali AI, Xiao W, Ayala A, Cagnuolo U, Zerbinati N. A double-blind, rct testing beneficial modulation of BDNF in middle-aged, life style-stressed subjects: a clue to brain protection? J Clin Diagn Res 2014; 8:MC01-6. [PMID: 25584253 PMCID: PMC4290272 DOI: 10.7860/jcdr/2014/10301.5141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The aim of this prospective study was to see whether LD-1227, a quality-controlled marine nutraceuticals shown to protect experimental stress-induced hyppocampal degeneration, could beneficially modulate BDNF, as measured in the serum, in otherwise healthy but work-stressed individuals. MATERIALS AND METHODS Forty-eight men and women between the ages of 38 and 62 reporting high-demanding work activity but with an overall positive attitude towards their personal life were recruited. Subjects were divided in two group (24 patients each) and blindly supplemented for 2 month with: a) LD-1227 400mg or b) placebo. A third group of healthy non-stressed subjects was used as well. Blood samples were taken before and after the supplementation period. Unstimulated saliva was collected and tested for amylase while serum levels were used to measure BDNF. State Trait Anxiety Inventory (STAI), Pittsburgh Sleep Quality Index (PSQI) and psychological well-being assessment (PSWB) were measured too. Patients with Val66Met functional polymorphism of BDNF excluded those given their reported association with an impaired release of BDNF. RESULTS RESULTS showed that, as compared to healthy, non-stressed individuals, stressed ones has a trend decrease of BDNF and this was significantly increased by LD 12-1227 supplementation and the same inverse phenomenon occurred to salivary amylase (p<0.05). No change was noted in the PSQI score but, either STAI or PSWB tests scored better in LD-1227 supplemented subjects. CONCLUSION The present data suggest that LD-1227 is beneficially affecting neuromodulation and related symptoms during common stressful life conditions and may have the potential as tools in a neuroprotective clinical strategy.
Collapse
Affiliation(s)
- DH Chui
- Peking University Third Hospital & Neuroscience Research Institute, Beijing, China
| | - M Marcellino
- ReGenera Research Group for Aging-Intervention, Milano, Italy
| | - F Marotta
- ReGenera Research Group for Aging-Intervention, Milano, Italy
| | - H Sweed
- Geriatrics and Gerontology Department, Faculty of Medicine - Ain Shams University, Cairo, Egypt
| | - U Solimene
- WHO-cntr for Traditional Medicine & Biotechnology, University of Milano, Italy
| | - AI Vignali
- ReGenera Research Group for Aging-Intervention, Milano, Italy
| | - W Xiao
- Peking University Third Hospital & Neuroscience Research Institute, Beijing, China
| | - A Ayala
- Geriatrics and Gerontology Department, Faculty of Medicine - Ain Shams University, Cairo, Egypt
| | - U Cagnuolo
- ReGenera Research Group for Aging-Intervention, Milano, Italy
| | - N Zerbinati
- CMP-Medical Center and Laboratories, Regenerative Medicine Unit, Pavia, Italy
| |
Collapse
|
174
|
Brain-Derived Neurotrophic Factor in Alzheimer's Disease: Risk, Mechanisms, and Therapy. Mol Neurobiol 2014; 52:1477-1493. [PMID: 25354497 DOI: 10.1007/s12035-014-8958-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/21/2014] [Indexed: 12/19/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has a neurotrophic support on neuron of central nervous system (CNS) and is a key molecule in the maintenance of synaptic plasticity and memory storage in hippocampus. However, changes of BDNF level and expression have been reported in the CNS as well as blood of Alzheimer's disease (AD) patients in the last decade, which indicates a potential role of BDNF in the pathogenesis of AD. Therefore, this review aims to summarize the latest progress in the field of BDNF and its biological roles in AD pathogenesis. We will discuss the interaction between BDNF and amyloid beta (Aβ) peptide, the effect of BDNF on synaptic repair in AD, and the association between BDNF polymorphism and AD risk. The most important is, enlightening the detailed biological ability and complicated mechanisms of action of BDNF in the context of AD would provide a future BDNF-related remedy for AD, such as increment in the production or release of endogenous BDNF by some drugs or BDNF mimics.
Collapse
|
175
|
Numakawa T. Possible protective action of neurotrophic factors and natural compounds against common neurodegenerative diseases. Neural Regen Res 2014; 9:1506-8. [PMID: 25317165 PMCID: PMC4192965 DOI: 10.4103/1673-5374.139474] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2014] [Indexed: 02/01/2023] Open
Abstract
It has been suggested that altered levels/function of brain-derived neurotrophic factor (BDNF) play a role in the pathophysiology of neurodegenerative diseases including Alzheimer's disease. BDNF positively contributes to neural survival and synapse maintenance via stimulating its high affinity receptor TrkB, making upregulation of BDNF and/or activation of BDNF-related intracellular signaling an attractive approach to treating neurodegenerative diseases. In this short review, I briefly introduce small natural compounds such as flavonoids that successfully increase activation of the BDNF system and discuss their beneficial effects against neurodegeneration.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo, Japan
| |
Collapse
|
176
|
Lu J, Maezawa I, Weerasekara S, Erenler R, Nguyen TDT, Nguyen J, Swisher LZ, Li J, Jin LW, Ranjan A, Srivastava SK, Hua DH. Syntheses, neural protective activities, and inhibition of glycogen synthase kinase-3β of substituted quinolines. Bioorg Med Chem Lett 2014; 24:3392-7. [PMID: 24951331 PMCID: PMC4110911 DOI: 10.1016/j.bmcl.2014.05.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 01/13/2023]
Abstract
A new series of fifteen 5-, 6-, and 8-appended 4-methylquinolines were synthesized and evaluated for their neural protective activities. Selected compounds were further examined for their inhibition of glycogen synthase kinase-3β (GSK-3β) and protein kinase C (PKC). Two most potent analogs, compounds 3 and 10, show nanomolar protective activities in amyloid β-induced MC65 cells and enzymatic inhibitory activities against GSK-3β, but poor PKC inhibitory activities. Using normal mouse model, the distribution of the most potent analog 3 in various tissues and possible toxic effects in the locomotors and inhibition of liver transaminases activities were carried out. No apparent decline of locomotor activity and no inhibition of liver transaminases were found. The compound appears to be safe for long-term use in Alzheimer's disease mouse model.
Collapse
Affiliation(s)
- Jianyu Lu
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States
| | - Izumi Maezawa
- M.I.N.D. Institute and Department of Pathology, 2825 50th Street, UC Davis Health System, Sacramento, CA 95817, United States
| | - Sahani Weerasekara
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States
| | - Ramazan Erenler
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States
| | - Tuyen D T Nguyen
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States
| | - James Nguyen
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States
| | - Luxi Z Swisher
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States
| | - Jun Li
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States
| | - Lee-Way Jin
- M.I.N.D. Institute and Department of Pathology, 2825 50th Street, UC Davis Health System, Sacramento, CA 95817, United States
| | - Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, United States
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, United States
| | - Duy H Hua
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
177
|
Chronic neuroinflammation in Alzheimer's disease: new perspectives on animal models and promising candidate drugs. BIOMED RESEARCH INTERNATIONAL 2014; 2014:309129. [PMID: 25025046 PMCID: PMC4083880 DOI: 10.1155/2014/309129] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 12/03/2022]
Abstract
Chronic neuroinflammation is now considered one of the major factors in the pathogenesis of Alzheimer's disease (AD). However, the most widely used transgenic AD models (overexpressing mutated forms of amyloid precursor protein, presenilin, and/or tau) do not demonstrate the degree of inflammation, neurodegeneration (particularly of the cholinergic system), and cognitive decline that is comparable with the human disease. Hence a more suitable animal model is needed to more closely mimic the resulting cognitive decline and memory loss in humans in order to investigate the effects of neuroinflammation on neurodegeneration. One of these models is the glial fibrillary acidic protein-interleukin 6 (GFAP-IL6) mouse, in which chronic neuroinflammation triggered constitutive expression of the cytokine interleukin-6 (IL-6) in astrocytes. These transgenic mice show substantial and progressive neurodegeneration as well as a decline in motor skills and cognitive function, starting from 6 months of age. This animal model could serve as an excellent tool for drug discovery and validation in vivo. In this review, we have also selected three potential anti-inflammatory drugs, curcumin, apigenin, and tenilsetam, as candidate drugs, which could be tested in this model.
Collapse
|
178
|
Moghbelinejad S, Nassiri-Asl M, Naserpour Farivar T, Abbasi E, Sheikhi M, Taghiloo M, Farsad F, Samimi A, Hajiali F. Rutin activates the MAPK pathway and BDNF gene expression on beta-amyloid induced neurotoxicity in rats. Toxicol Lett 2014; 224:108-13. [DOI: 10.1016/j.toxlet.2013.10.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/26/2022]
|