151
|
Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, Maes M. The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. Mol Neurobiol 2016; 54:4432-4451. [PMID: 27349436 DOI: 10.1007/s12035-016-0004-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
There is a growing awareness that gut commensal metabolites play a major role in host physiology and indeed the pathophysiology of several illnesses. The composition of the microbiota largely determines the levels of tryptophan in the systemic circulation and hence, indirectly, the levels of serotonin in the brain. Some microbiota synthesize neurotransmitters directly, e.g., gamma-amino butyric acid, while modulating the synthesis of neurotransmitters, such as dopamine and norepinephrine, and brain-derived neurotropic factor (BDNF). The composition of the microbiota determines the levels and nature of tryptophan catabolites (TRYCATs) which in turn has profound effects on aryl hydrocarbon receptors, thereby influencing epithelial barrier integrity and the presence of an inflammatory or tolerogenic environment in the intestine and beyond. The composition of the microbiota also determines the levels and ratios of short chain fatty acids (SCFAs) such as butyrate and propionate. Butyrate is a key energy source for colonocytes. Dysbiosis leading to reduced levels of SCFAs, notably butyrate, therefore may have adverse effects on epithelial barrier integrity, energy homeostasis, and the T helper 17/regulatory/T cell balance. Moreover, dysbiosis leading to reduced butyrate levels may increase bacterial translocation into the systemic circulation. As examples, we describe the role of microbial metabolites in the pathophysiology of diabetes type 2 and autism.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, VIC, 3220, Australia.,Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - Andre Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-040, Brazil
| | - Javier R Caso
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (Imas12), Avda. Complutense s/n, 28040, Madrid, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, VIC, 3220, Australia. .,Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Parana, Brazil.
| |
Collapse
|
152
|
Frye RE, Rossignol DA. Identification and Treatment of Pathophysiological Comorbidities of Autism Spectrum Disorder to Achieve Optimal Outcomes. CLINICAL MEDICINE INSIGHTS-PEDIATRICS 2016; 10:43-56. [PMID: 27330338 PMCID: PMC4910649 DOI: 10.4137/cmped.s38337] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023]
Abstract
Despite the fact that the prevalence of autism spectrum disorder (ASD) continues to rise, no effective medical treatments have become standard of care. In this paper we review some of the pathophysiological abnormalities associated with ASD and their potential associated treatments. Overall, there is evidence for some children with ASD being affected by seizure and epilepsy, neurotransmitter dysfunction, sleep disorders, metabolic abnormalities, including abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, redox and mitochondrial metabolism, and immune and gastrointestinal disorders. Although evidence for an association between these pathophysiological abnormalities and ASD exists, the exact relationship to the etiology of ASD and its associated symptoms remains to be further defined in many cases. Despite these limitations, treatments targeting some of these pathophysiological abnormalities have been studied in some cases with high-quality studies, whereas treatments for other pathophysiological abnormalities have not been well studied in many cases. There are some areas of more promising treatments specific for ASD including neurotransmitter abnormalities, particularly imbalances in glutamate and acetylcholine, sleep onset disorder (with behavioral therapy and melatonin), and metabolic abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, and redox pathways. There is some evidence for treatments of epilepsy and seizures, mitochondrial and immune disorders, and gastrointestinal abnormalities, particularly imbalances in the enteric microbiome, but further clinical studies are needed in these areas to better define treatments specific to children with ASD. Clearly, there are some promising areas of ASD research that could lead to novel treatments that could become standard of care in the future, but more research is needed to better define subgroups of children with ASD who are affected by specific pathophysiological abnormalities and the optimal treatments for these abnormalities.
Collapse
Affiliation(s)
- Richard E Frye
- Arkansas Children's Research Institute, Little Rock, AR, USA.; Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | |
Collapse
|
153
|
Navaneetharaja N, Griffiths V, Wileman T, Carding SR. A Role for the Intestinal Microbiota and Virome in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)? J Clin Med 2016; 5:E55. [PMID: 27275835 PMCID: PMC4929410 DOI: 10.3390/jcm5060055] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/23/2016] [Accepted: 05/31/2016] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a heterogeneous disorder of significant societal impact that is proposed to involve both host and environmentally derived aetiologies that may be autoimmune in nature. Immune-related symptoms of at least moderate severity persisting for prolonged periods of time are common in ME/CFS patients and B cell depletion therapy is of significant therapeutic benefit. The origin of these symptoms and whether it is infectious or inflammatory in nature is not clear, with seeking evidence of acute or chronic virus infections contributing to the induction of autoimmune processes in ME/CFS being an area of recent interest. This article provides a comprehensive review of the current evidence supporting an infectious aetiology for ME/CFS leading us to propose the novel concept that the intestinal microbiota and in particular members of the virome are a source of the "infectious" trigger of the disease. Such an approach has the potential to identify disease biomarkers and influence therapeutics, providing much-needed approaches in preventing and managing a disease desperately in need of confronting.
Collapse
Affiliation(s)
- Navena Navaneetharaja
- The Gut Health and Food Safety Research Programme, The Institute of Food Research, University of East Anglia, Norwich NR4 7UA, UK.
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Verity Griffiths
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Tom Wileman
- The Gut Health and Food Safety Research Programme, The Institute of Food Research, University of East Anglia, Norwich NR4 7UA, UK.
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Simon R Carding
- The Gut Health and Food Safety Research Programme, The Institute of Food Research, University of East Anglia, Norwich NR4 7UA, UK.
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
154
|
Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry 2016; 21:738-48. [PMID: 27090305 PMCID: PMC4879184 DOI: 10.1038/mp.2016.50] [Citation(s) in RCA: 615] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023]
Abstract
The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.
Collapse
Affiliation(s)
- G B Rogers
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - D J Keating
- South Australian Health and Medical Research Institute, Centre for Neuroscience and Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - R L Young
- South Australian Health and Medical Research Institute, Department of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - M-L Wong
- South Australian Health and Medical Research Institute, Mind and Brain Theme, and Flinders University, Adelaide, SA, Australia
| | - J Licinio
- South Australian Health and Medical Research Institute, Mind and Brain Theme, and Flinders University, Adelaide, SA, Australia
| | - S Wesselingh
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
155
|
Cani PD, Knauf C. How gut microbes talk to organs: The role of endocrine and nervous routes. Mol Metab 2016; 5:743-52. [PMID: 27617197 PMCID: PMC5004142 DOI: 10.1016/j.molmet.2016.05.011] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
Background Changes in gut microbiota composition and activity have been associated with different metabolic disorders, including obesity, diabetes, and cardiometabolic disorders. Recent evidence suggests that different organs are directly under the influence of bacterial metabolites that may directly or indirectly regulate physiological and pathological processes. Scope of review We reviewed seminal as well as recent papers showing that gut microbes influence energy, glucose and lipid homeostasis by controlling different metabolic routes such as endocrine, enteric and central nervous system. These dialogues are discussed in the context of obesity and diabetes but also for brain pathologies and neurodegenerative disorders. Major conclusions The recent advances in gut microbiota investigation as well as the discovery of specific metabolites interacting with host cells has led to the identification of novel inter-organ communication during metabolic disturbances. This suggests that gut microbes may be viewed as “novel” future therapeutic partners. This article is part of a special issue on microbiota.
Collapse
Affiliation(s)
- Patrice D. Cani
- Université catholique de Louvain, WELBIO – Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
- NeuroMicrobiota, European Associated Laboratory (INSERM/UCL), Toulouse, France
- NeuroMicrobiota, European Associated Laboratory (INSERM/UCL), Brussels, Belgium
- Corresponding author. Université catholique de Louvain, LDRI, Metabolism and Nutrition research group, European Associated Laboratory NeuroMicrobiota (INSERM / UCL), Av. E. Mounier, 73 box B1.73.11, B-1200 Brussels, Belgium. Tel.: +32 2 764 73 97.Université catholique de LouvainLDRIMetabolism and Nutrition research groupEuropean Associated Laboratory NeuroMicrobiota (INSERM / UCL)Av. E. Mounier73 box B1.73.11BrusselsB-1200Belgium
| | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory (INSERM/UCL), Toulouse, France
- NeuroMicrobiota, European Associated Laboratory (INSERM/UCL), Brussels, Belgium
- Université Paul Sabatier, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1220, Institut de Recherche en Santé Digestive (IRSD), INRA, ENVT, Toulouse, France
- Corresponding author. Université Paul Sabatier, Toulouse III, European Associated Laboratory NeuroMicrobiota (INSERM/UCL), Team 3, “Intestinal Neuroimmune Interactions”, IRSD Institut de Recherche en Santé Digestive (IRSD), INSERM U1220 Bat B, CHU Purpan, Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France. Tel.: +33 562 74 45 21.Université Paul SabatierToulouse IIIEuropean Associated Laboratory NeuroMicrobiota (INSERM/UCL)Team 3“Intestinal Neuroimmune Interactions”IRSD Institut de Recherche en Santé Digestive (IRSD)INSERM U1220 Bat BCHU PurpanPlace du Docteur BaylacCS 60039Toulouse Cedex 331024France
| |
Collapse
|
156
|
El-Ansary A, Al-Ghamdi M, Bhat RS, Al-Daihan S, Al-Ayadhi L. Potency of pre-post treatment of coenzyme Q10 and melatonin supplement in ameliorating the impaired fatty acid profile in rodent model of autism. Food Nutr Res 2016; 60:28127. [PMID: 26945230 PMCID: PMC4779327 DOI: 10.3402/fnr.v60.28127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 01/16/2016] [Accepted: 02/10/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Abnormalities in fatty acid metabolism and membrane fatty acid composition play a part in a wide range of neurodevelopmental and psychiatric disorders. Altered fatty acid homeostasis as a result of insufficient dietary supplementation, genetic defects, the function of enzymes involved in their metabolism, or mitochondrial dysfunction contributes to the development of autism. OBJECTIVE This study evaluates the association of altered brain lipid composition and neurotoxicity related to autism spectrum disorders in propionic acid (PA)-treated rats. DESIGN Forty-eight young male western albino rats were used in this study. They were grouped into six equal groups with eight rats in each. The first group received only phosphate buffered saline (control group). The second group received a neurotoxic dose of buffered PA (250 mg/kg body weight/day for 3 consecutive days). The third and fourth groups were intoxicated with PA as described above followed by treatment with either coenzyme Q (4.5 mg/kg body weight) or melatonin (10 mg/kg body weight) for 1 week (therapeutically treated groups). The fifth and sixth groups were administered both compounds for 1 week prior to PA (protected groups). Methyl esters of fatty acid were extracted with hexane, and the fatty acid composition of the extract was analyzed on a gas chromatography. RESULTS The obtained data proved that fatty acids are altered in brain tissue of PA-treated rats. All saturated fatty acids were increased while all unsaturated fatty acids were significantly decreased in the PA-treated group and relatively ameliorated in the pre-post melatonin and coenzyme Q groups. CONCLUSIONS Melatonin and coenzyme Q were effective in restoring normal level of most of the impaired fatty acids in PA-intoxicated rats which could help suggest both as supplements to ameliorate the autistic features induced in rat pups.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Mashael Al-Ghamdi
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia; ;
| | - Sooad Al-Daihan
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
157
|
The Developing Microbiome of the Preterm Infant. Clin Ther 2016; 38:733-9. [PMID: 26947798 DOI: 10.1016/j.clinthera.2016.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 12/26/2022]
Abstract
PURPOSE To determine the importance of the neonatal microbiome in intestinal and overall health. METHOD A review of existing literature. FINDINGS AND IMPLICATIONS The microbiome is increasingly understood to have a significant role in health and disease. However, the microbiome of the preterm infant is unique, with simple microbial communities exposed to a consistent diet in a regulated environment, and development from naive to stable under the influence of the neonatal intensive care unit. This early microbiome encounters a still developing host and thus has the potential to program fundamental pathways with implications for neonatal and later outcomes.
Collapse
|
158
|
Michel L, Prat A. One more role for the gut: microbiota and blood brain barrier. ANNALS OF TRANSLATIONAL MEDICINE 2016. [PMID: 26855951 DOI: 10.3978/j.issn.2305-5839.2015.10.16.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Laure Michel
- 1 Unité de Recherche en Neuroimmunologie, Centre de Recherche du CHUM, Montréal, Canada ; 2 Department of Neuroscience, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Alexandre Prat
- 1 Unité de Recherche en Neuroimmunologie, Centre de Recherche du CHUM, Montréal, Canada ; 2 Department of Neuroscience, Faculté de Médecine, Université de Montréal, Montréal, Canada
| |
Collapse
|
159
|
Michel L, Prat A. One more role for the gut: microbiota and blood brain barrier. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:15. [PMID: 26855951 DOI: 10.3978/j.issn.2305-5839.2015.10.16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Laure Michel
- 1 Unité de Recherche en Neuroimmunologie, Centre de Recherche du CHUM, Montréal, Canada ; 2 Department of Neuroscience, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Alexandre Prat
- 1 Unité de Recherche en Neuroimmunologie, Centre de Recherche du CHUM, Montréal, Canada ; 2 Department of Neuroscience, Faculté de Médecine, Université de Montréal, Montréal, Canada
| |
Collapse
|
160
|
Jašarević E, Morrison KE, Bale TL. Sex differences in the gut microbiome-brain axis across the lifespan. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150122. [PMID: 26833840 DOI: 10.1098/rstb.2015.0122] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
In recent years, the bidirectional communication between the gut microbiome and the brain has emerged as a factor that influences immunity, metabolism, neurodevelopment and behaviour. Cross-talk between the gut and brain begins early in life immediately following the transition from a sterile in utero environment to one that is exposed to a changing and complex microbial milieu over a lifetime. Once established, communication between the gut and brain integrates information from the autonomic and enteric nervous systems, neuroendocrine and neuroimmune signals, and peripheral immune and metabolic signals. Importantly, the composition and functional potential of the gut microbiome undergoes many transitions that parallel dynamic periods of brain development and maturation for which distinct sex differences have been identified. Here, we discuss the sexually dimorphic development, maturation and maintenance of the gut microbiome-brain axis, and the sex differences therein important in disease risk and resilience throughout the lifespan.
Collapse
Affiliation(s)
- Eldin Jašarević
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen E Morrison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tracy L Bale
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
161
|
El Aidy S, Stilling R, Dinan TG, Cryan JF. Microbiome to Brain: Unravelling the Multidirectional Axes of Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:301-36. [PMID: 26589226 DOI: 10.1007/978-3-319-20215-0_15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of multidirectional signalling molecules is clearly involved in the host-microbiome communication. This interactive signalling not only impacts the gastrointestinal tract, where the majority of microbiota resides, but also extends to affect other host systems including the brain and liver as well as the microbiome itself. Understanding the mechanistic principles of this inter-kingdom signalling is fundamental to unravelling how our supraorganism function to maintain wellbeing, subsequently opening up new avenues for microbiome manipulation to favour desirable mental health outcome.
Collapse
Affiliation(s)
- Sahar El Aidy
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Roman Stilling
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland. .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
162
|
Moos WH, Faller DV, Harpp DN, Kanara I, Pernokas J, Powers WR, Steliou K. Microbiota and Neurological Disorders: A Gut Feeling. Biores Open Access 2016; 5:137-45. [PMID: 27274912 PMCID: PMC4892191 DOI: 10.1089/biores.2016.0010] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the past century, noncommunicable diseases have surpassed infectious diseases as the principal cause of sickness and death, worldwide. Trillions of commensal microbes live in and on our body, and constitute the human microbiome. The vast majority of these microorganisms are maternally derived and live in the gut, where they perform functions essential to our health and survival, including: digesting food, activating certain drugs, producing short-chain fatty acids (which help to modulate gene expression by inhibiting the deacetylation of histone proteins), generating anti-inflammatory substances, and playing a fundamental role in the induction, training, and function of our immune system. Among the many roles the microbiome ultimately plays, it mitigates against untoward effects from our exposure to the environment by forming a biotic shield between us and the outside world. The importance of physical activity coupled with a balanced and healthy diet in the maintenance of our well-being has been recognized since antiquity. However, it is only recently that characterization of the host-microbiome intermetabolic and crosstalk pathways has come to the forefront in studying therapeutic design. As reviewed in this report, synthetic biology shows potential in developing microorganisms for correcting pathogenic dysbiosis (gut microbiota-host maladaptation), although this has yet to be proven. However, the development and use of small molecule drugs have a long and successful history in the clinic, with small molecule histone deacetylase inhibitors representing one relevant example already approved to treat cancer and other disorders. Moreover, preclinical research suggests that epigenetic treatment of neurological conditions holds significant promise. With the mouth being an extension of the digestive tract, it presents a readily accessible diagnostic site for the early detection of potential unhealthy pathogens resident in the gut. Taken together, the data outlined herein provide an encouraging roadmap toward important new medicines and companion diagnostic platforms in a wide range of therapeutic indications.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
- Address correspondence to: Walter H. Moos, PhD, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 600 16th Street, Mail Code 2280, Genentech Hall S512D, Mission Bay Campus, San Francisco, CA 94158, E-mail: , ; or Kosta Steliou, PhD, PhenoMatriX, Inc., 9 Hawthorne Place Suite 4R, Boston, MA 02114, E-mail: ,
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | - Iphigenia Kanara
- Weatherhead Center for International Affairs, Harvard University, Cambridge, Massachusetts
- Consulate General of Greece in Boston, Boston, Massachusetts
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Boston, Massachusetts
- Address correspondence to: Walter H. Moos, PhD, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 600 16th Street, Mail Code 2280, Genentech Hall S512D, Mission Bay Campus, San Francisco, CA 94158, E-mail: , ; or Kosta Steliou, PhD, PhenoMatriX, Inc., 9 Hawthorne Place Suite 4R, Boston, MA 02114, E-mail: ,
| |
Collapse
|
163
|
Evrensel A, Ceylan ME. The Gut-Brain Axis: The Missing Link in Depression. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2015; 13:239-44. [PMID: 26598580 PMCID: PMC4662178 DOI: 10.9758/cpn.2015.13.3.239] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/01/2015] [Accepted: 06/29/2015] [Indexed: 12/15/2022]
Abstract
The gut microbiota is essential to human health and the immune system and plays a major role in the bidirectional communication between the gut and the brain. Based on evidence, the gut microbiota is associated with metabolic disorders such as obesity, diabetes mellitus and neuropsychiatric disorders such as schizophrenia, autistic disorders, anxiety disorders and major depressive disorders. In the past few years, neuroscientific research has shown the importance of the microbiota in the development of brain systems. Recent studies showed that the microbiota could activate the immune and central nervous systems, including commensal and pathogenic microorganisms in the gastrointestinal tract. Gut microorganisms are capable of producing and delivering neuroactive substances such as serotonin and gamma-aminobutyric acid, which act on the gut-brain axis. Preclinical research in rodents suggested that certain probiotics have antidepressant and anxiolytic activities. Effects may be mediated via the immune system or neuroendocrine systems. Herein, we present the latest literature examining the effects of the gut microbiota on depression.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, Istanbul, Turkey
| | | |
Collapse
|
164
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015; 9:392. [PMID: 26528128 PMCID: PMC4604320 DOI: 10.3389/fncel.2015.00392] [Citation(s) in RCA: 668] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022] Open
Abstract
The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a "leaky gut" may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function.
Collapse
Affiliation(s)
- John R Kelly
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Psychiatry and Neurobehavioural Science, University College Cork Cork, Ireland
| | - Paul J Kennedy
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Anatomy and Neuroscience, University College Cork Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Psychiatry and Neurobehavioural Science, University College Cork Cork, Ireland
| | - Gerard Clarke
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Psychiatry and Neurobehavioural Science, University College Cork Cork, Ireland
| | - Niall P Hyland
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Pharmacology and Therapeutics, University College Cork Cork, Ireland
| |
Collapse
|
165
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
166
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
167
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
168
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
169
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
170
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
171
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
172
|
Neuroprotective Effects of Clostridium butyricum against Vascular Dementia in Mice via Metabolic Butyrate. BIOMED RESEARCH INTERNATIONAL 2015; 2015:412946. [PMID: 26523278 PMCID: PMC4615854 DOI: 10.1155/2015/412946] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/01/2015] [Accepted: 09/20/2015] [Indexed: 02/06/2023]
Abstract
Probiotics actively participate in neuropsychiatric disorders. However, the role of gut microbiota in brain disorders and vascular dementia (VaD) remains unclear. We used a mouse model of VaD induced by a permanent right unilateral common carotid arteries occlusion (rUCCAO) to investigate the neuroprotective effects and possible underlying mechanisms of Clostridium butyricum. Following rUCCAO, C. butyricum was intragastrically administered for 6 successive weeks. Cognitive function was estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E) staining. The BDNF-PI3K/Akt pathway-related proteins were assessed by western blot and immunohistochemistry. The diversity of gut microbiota and the levels of butyrate in the feces and the brains were determined. The results showed that C. butyricum significantly attenuated the cognitive dysfunction and histopathological changes in VaD mice. C. butyricum not only increased the levels of BDNF and Bcl-2 and decreased level of Bax but also induced Akt phosphorylation (p-Akt) and ultimately reduced neuronal apoptosis. Moreover, C. butyricum could regulate the gut microbiota and restore the butyrate content in the feces and the brains. These results suggest that C. butyricum might be effective in the treatment of VaD by regulating the gut-brain axis and that it can be considered a new therapeutic strategy against VaD.
Collapse
|
173
|
Rosenfeld CS. Microbiome Disturbances and Autism Spectrum Disorders. Drug Metab Dispos 2015; 43:1557-71. [PMID: 25852213 DOI: 10.1124/dmd.115.063826] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/06/2015] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorders (ASDs) are considered a heterogenous set of neurobehavioral diseases, with the rates of diagnosis dramatically increasing in the past few decades. As genetics alone does not explain the underlying cause in many cases, attention has turned to environmental factors as potential etiological agents. Gastrointestinal disorders are a common comorbidity in ASD patients. It was thus hypothesized that a gut-brain link may account for some autistic cases. With the characterization of the human microbiome, this concept has been expanded to include the microbiota-gut-brain axis. There are mounting reports in animal models and human epidemiologic studies linking disruptive alterations in the gut microbiota or dysbiosis and ASD symptomology. In this review, we will explore the current evidence that gut dysbiosis in animal models and ASD patients correlates with disease risk and severity. The studies to date have surveyed how gut microbiome changes may affect these neurobehavioral disorders. However, we harbor other microbiomes in the body that might impact brain function. We will consider microbial colonies residing in the oral cavity, vagina, and the most recently discovered one in the placenta. Based on the premise that gut microbiota alterations may be causative agents in ASD, several therapeutic options have been tested, such as diet modulations, prebiotics, probiotics, synbiotics, postbiotics, antibiotics, fecal transplantation, and activated charcoal. The potential benefits of these therapies will be considered. Finally, the possible mechanisms by which changes in the gut bacterial communities may result in ASD and related neurobehavioral disorders will be examined.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, Thompson Center for Autism and Neurobehavioral Disorders, Genetics Area Program, and Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
174
|
Leung K, Thuret S. Gut Microbiota: A Modulator of Brain Plasticity and Cognitive Function in Ageing. Healthcare (Basel) 2015; 3:898-916. [PMID: 27417803 PMCID: PMC4934620 DOI: 10.3390/healthcare3040898] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/15/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota have recently been a topic of great interest in the field of microbiology, particularly their role in normal physiology and its influence on human health in disease. A large body of research has supported the presence of a pathway of communication between the gut and the brain, modulated by gut microbiota, giving rise to the term “microbiota-gut-brain” axis. It is now thought that, through this pathway, microbiota can affect behaviour and modulate brain plasticity and cognitive function in ageing. This review summarizes the evidence supporting the existence of such a connection and possible mechanisms of action whereby microbiota can influence the function of the central nervous system. Since normalisation of gut flora has been shown to prevent changes in behaviour, we further postulate on possible therapeutic targets to intervene with cognitive decline in ageing. The research poses various limitations, for example uncertainty about how this data translates to broad human populations. Nonetheless, the microbiota-gut-brain axis is an exciting field worthy of further investigation, particularly with regards to its implications on the ageing population.
Collapse
Affiliation(s)
- Katherine Leung
- Institute of Psychiatry, King's College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK.
| | - Sandrine Thuret
- Institute of Psychiatry, King's College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK.
| |
Collapse
|
175
|
Wasilewska J, Klukowski M. Gastrointestinal symptoms and autism spectrum disorder: links and risks - a possible new overlap syndrome. Pediatric Health Med Ther 2015; 6:153-166. [PMID: 29388597 PMCID: PMC5683266 DOI: 10.2147/phmt.s85717] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a genetically determined neurodevelopmental brain disorder presenting with restricted, repetitive patterns of behaviors, interests, and activities, or persistent deficits in social communication and social interaction. ASD is characterized by many different clinical endophenotypes and is potentially linked with certain comorbidities. According to current recommendations, children with ASD are at risk of having alimentary tract disorders - mainly, they are at a greater risk of general gastrointestinal (GI) concerns, constipation, diarrhea, and abdominal pain. GI symptoms may overlap with ASD core symptoms through different mechanisms. These mechanisms include multilevel pathways in the gut-brain axis contributing to alterations in behavior and cognition. Shared pathogenetic factors and pathophysiological mechanisms possibly linking ASD and GI disturbances, as shown by most recent studies, include intestinal inflammation with or without autoimmunity, immunoglobulin E-mediated and/or cell-mediated GI food allergies as well as gluten-related disorders (celiac disease, wheat allergy, non-celiac gluten sensitivity), visceral hypersensitivity linked with functional abdominal pain, and dysautonomia linked with GI dysmotility and gastroesophageal reflux. Dysregulation of the gut microbiome has also been shown to be involved in modulating GI functions with the ability to affect intestinal permeability, mucosal immune function, and intestinal motility and sensitivity. Metabolic activity of the microbiome and dietary components are currently suspected to be associated with alterations in behavior and cognition also in patients with other neurodegenerative diseases. All the above-listed GI factors may contribute to brain dysfunction and neuroinflammation depending upon an individual patient's genetic vulnerability. Due to a possible clinical endophenotype presenting as comorbidity of ASD and GI disorders, we propose treating this situation as an "overlap syndrome". Practical use of the concept of an overlap syndrome of ASD and GI disorders may help in identifying those children with ASD who suffer from an alimentary tract disease. Unexplained worsening of nonverbal behaviors (agitation, anxiety, aggression, self-injury, sleep deprivation) should alert professionals about this possibility. This may shorten the time to diagnosis and treatment commencement, and thereby alleviate both GI and ASD symptoms through reducing pain, stress, or discomfort. Furthermore, this may also protect children against unnecessary dietary experiments and restrictions that have no medical indications. A personalized approach to each patient is necessary. Our understanding of ASDs has come a long way, but further studies and more systematic research are warranted.
Collapse
Affiliation(s)
- Jolanta Wasilewska
- Department of Pediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Mark Klukowski
- Department of Pediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
176
|
Abstract
Many data sets exhibit well-defined structure that can be exploited to design faster search tools, but it is not always clear when such acceleration is possible. Here we introduce a framework for similarity search based on characterizing a data set's entropy and fractal dimension. We prove that searching scales in time with metric entropy (number of covering hyperspheres), if the fractal dimension of the data set is low, and scales in space with the sum of metric entropy and information-theoretic entropy (randomness of the data). Using these ideas, we present accelerated versions of standard tools, with no loss in specificity and little loss in sensitivity, for use in three domains-high-throughput drug screening (Ammolite, 150x speedup), metagenomics (MICA, 3.5x speedup of DIAMOND (3700x BLASTX)), and protein structure search (esFragBag, 10x speedup of FragBag). Our framework can be used to achieve 'compressive omics,' and the general theory can be readily applied to data science problems outside of biology. Source code: http://gems.csail.mit.edu.
Collapse
Affiliation(s)
- Y William Yu
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 ; Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Noah M Daniels
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 ; Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - David Christian Danko
- Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Bonnie Berger
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 ; Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
177
|
Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, Korecka A, Bakocevic N, Ng LG, Guan NL, Kundu P, Gulyás B, Halldin C, Hultenby K, Nilsson H, Hebert H, Volpe BT, Diamond B, Pettersson S. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2015; 6:263ra158. [PMID: 25411471 DOI: 10.1126/scitranslmed.3009759] [Citation(s) in RCA: 1582] [Impact Index Per Article: 158.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pivotal to brain development and function is an intact blood-brain barrier (BBB), which acts as a gatekeeper to control the passage and exchange of molecules and nutrients between the circulatory system and the brain parenchyma. The BBB also ensures homeostasis of the central nervous system (CNS). We report that germ-free mice, beginning with intrauterine life, displayed increased BBB permeability compared to pathogen-free mice with a normal gut flora. The increased BBB permeability was maintained in germ-free mice after birth and during adulthood and was associated with reduced expression of the tight junction proteins occludin and claudin-5, which are known to regulate barrier function in endothelial tissues. Exposure of germ-free adult mice to a pathogen-free gut microbiota decreased BBB permeability and up-regulated the expression of tight junction proteins. Our results suggest that gut microbiota-BBB communication is initiated during gestation and propagated throughout life.
Collapse
Affiliation(s)
- Viorica Braniste
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden.
| | - Maha Al-Asmakh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Czeslawa Kowal
- Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030, USA
| | - Farhana Anuar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Afrouz Abbaspour
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Miklós Tóth
- Psychiatry Section, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Agata Korecka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Nadja Bakocevic
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | | | - Ng Lai Guan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Parag Kundu
- Lee Kong Chian School of Medicine, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Balázs Gulyás
- Psychiatry Section, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden. Lee Kong Chian School of Medicine, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Christer Halldin
- Psychiatry Section, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden. Lee Kong Chian School of Medicine, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Harriet Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, and School of Technology and Health, KTH Royal Institute of Technology, Novum, SE-141 57 Huddinge, Sweden
| | - Hans Hebert
- Department of Biosciences and Nutrition, Karolinska Institutet, and School of Technology and Health, KTH Royal Institute of Technology, Novum, SE-141 57 Huddinge, Sweden
| | - Bruce T Volpe
- Laboratory of Functional Neuroanatomy, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030, USA
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030, USA
| | - Sven Pettersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden. Lee Kong Chian School of Medicine, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore. Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
178
|
Zeng Q, Sukumaran J, Wu S, Rodrigo A. Neutral Models of Microbiome Evolution. PLoS Comput Biol 2015; 11:e1004365. [PMID: 26200800 PMCID: PMC4511668 DOI: 10.1371/journal.pcbi.1004365] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/18/2015] [Indexed: 12/11/2022] Open
Abstract
There has been an explosion of research on host-associated microbial communities (i.e.,microbiomes). Much of this research has focused on surveys of microbial diversities across a variety of host species, including humans, with a view to understanding how these microbiomes are distributed across space and time, and how they correlate with host health, disease, phenotype, physiology and ecology. Fewer studies have focused on how these microbiomes may have evolved. In this paper, we develop an agent-based framework to study the dynamics of microbiome evolution. Our framework incorporates neutral models of how hosts acquire their microbiomes, and how the environmental microbial community that is available to the hosts is assembled. Most importantly, our framework also incorporates a Wright-Fisher genealogical model of hosts, so that the dynamics of microbiome evolution is studied on an evolutionary timescale. Our results indicate that the extent of parental contribution to microbial availability from one generation to the next significantly impacts the diversity of microbiomes: the greater the parental contribution, the less diverse the microbiomes. In contrast, even when there is only a very small contribution from a constant environmental pool, microbial communities can remain highly diverse. Finally, we show that our models may be used to construct hypotheses about the types of processes that operate to assemble microbiomes over evolutionary time.
Collapse
Affiliation(s)
- Qinglong Zeng
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | - Jeet Sukumaran
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | - Steven Wu
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | - Allen Rodrigo
- Biology Department, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
179
|
MacFabe DF. Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:28177. [PMID: 26031685 PMCID: PMC4451098 DOI: 10.3402/mehd.v26.28177] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Clinical observations suggest that gut and dietary factors transiently worsen and, in some cases, appear to improve behavioral symptoms in a subset of persons with autism spectrum disorders (ASDs), but the reason for this is unclear. Emerging evidence suggests ASDs are a family of systemic disorders of altered immunity, metabolism, and gene expression. Pre- or perinatal infection, hospitalization, or early antibiotic exposure, which may alter gut microbiota, have been suggested as potential risk factors for ASD. Can a common environmental agent link these disparate findings? This review outlines basic science and clinical evidence that enteric short-chain fatty acids (SCFAs), present in diet and also produced by opportunistic gut bacteria following fermentation of dietary carbohydrates, may be environmental triggers in ASD. Of note, propionic acid, a major SCFA produced by ASD-associated gastrointestinal bacteria (clostridia, bacteroides, desulfovibrio) and also a common food preservative, can produce reversible behavioral, electrographic, neuroinflammatory, metabolic, and epigenetic changes closely resembling those found in ASD when administered to rodents. Major effects of these SCFAs may be through the alteration of mitochondrial function via the citric acid cycle and carnitine metabolism, or the epigenetic modulation of ASD-associated genes, which may be useful clinical biomarkers. It discusses the hypothesis that ASDs are produced by pre- or post-natal alterations in intestinal microbiota in sensitive sub-populations, which may have major implications in ASD cause, diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Derrick F MacFabe
- The Kilee Patchell-Evans Autism Research Group, Departments of Psychology (Neuroscience) and Psychiatry, Division of Developmental Disabilities, University of Western Ontario, Ontario, Canada;
| |
Collapse
|
180
|
GUT in FOCUS Symposium NOBEL FORUM, Karolinska Institutet, February 2nd 2015. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:28480. [PMID: 26031687 PMCID: PMC4451120 DOI: 10.3402/mehd.v26.28480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
181
|
Frye RE, Slattery J, MacFabe DF, Allen-Vercoe E, Parker W, Rodakis J, Adams JB, Krajmalnik-Brown R, Bolte E, Kahler S, Jennings J, James J, Cerniglia CE, Midtvedt T. Approaches to studying and manipulating the enteric microbiome to improve autism symptoms. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:26878. [PMID: 25956237 PMCID: PMC4425814 DOI: 10.3402/mehd.v26.26878] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/05/2015] [Accepted: 04/06/2015] [Indexed: 02/07/2023]
Abstract
There is a growing body of scientific evidence that the health of the microbiome (the trillions of microbes that inhabit the human host) plays an important role in maintaining the health of the host and that disruptions in the microbiome may play a role in certain disease processes. An increasing number of research studies have provided evidence that the composition of the gut (enteric) microbiome (GM) in at least a subset of individuals with autism spectrum disorder (ASD) deviates from what is usually observed in typically developing individuals. There are several lines of research that suggest that specific changes in the GM could be causative or highly associated with driving core and associated ASD symptoms, pathology, and comorbidities which include gastrointestinal symptoms, although it is also a possibility that these changes, in whole or in part, could be a consequence of underlying pathophysiological features associated with ASD. However, if the GM truly plays a causative role in ASD, then the manipulation of the GM could potentially be leveraged as a therapeutic approach to improve ASD symptoms and/or comorbidities, including gastrointestinal symptoms. One approach to investigating this possibility in greater detail includes a highly controlled clinical trial in which the GM is systematically manipulated to determine its significance in individuals with ASD. To outline the important issues that would be required to design such a study, a group of clinicians, research scientists, and parents of children with ASD participated in an interdisciplinary daylong workshop as an extension of the 1st International Symposium on the Microbiome in Health and Disease with a Special Focus on Autism (www.microbiome-autism.com). The group considered several aspects of designing clinical studies, including clinical trial design, treatments that could potentially be used in a clinical trial, appropriate ASD participants for the clinical trial, behavioral and cognitive assessments, important biomarkers, safety concerns, and ethical considerations. Overall, the group not only felt that this was a promising area of research for the ASD population and a promising avenue for potential treatment but also felt that further basic and translational research was needed to clarify the clinical utility of such treatments and to elucidate possible mechanisms responsible for a clinical response, so that new treatments and approaches may be discovered and/or fostered in the future.
Collapse
Affiliation(s)
- Richard E Frye
- Division of Neurology, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA;
| | - John Slattery
- Division of Neurology, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Derrick F MacFabe
- Department of Psychology and Psychiatry, Western University, London, ON, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - John Rodakis
- N of One: Autism Research Foundation, Dallas, TX, USA
| | - James B Adams
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Rosa Krajmalnik-Brown
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Ellen Bolte
- N of One: Autism Research Foundation, Dallas, TX, USA
| | - Stephen Kahler
- Division of Neurology, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Jill James
- Department of Developmental Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | |
Collapse
|
182
|
Frye RE, Rose S, Slattery J, MacFabe DF. Gastrointestinal dysfunction in autism spectrum disorder: the role of the mitochondria and the enteric microbiome. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:27458. [PMID: 25956238 PMCID: PMC4425813 DOI: 10.3402/mehd.v26.27458] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorder (ASD) affects a significant number of individuals worldwide with the prevalence continuing to grow. It is becoming clear that a large subgroup of individuals with ASD demonstrate abnormalities in mitochondrial function as well as gastrointestinal (GI) symptoms. Interestingly, GI disturbances are common in individuals with mitochondrial disorders and have been reported to be highly prevalent in individuals with co-occurring ASD and mitochondrial disease. The majority of individuals with ASD and mitochondrial disorders do not manifest a primary genetic mutation, raising the possibility that their mitochondrial disorder is acquired or, at least, results from a combination of genetic susceptibility interacting with a wide range of environmental triggers. Mitochondria are very sensitive to both endogenous and exogenous environmental stressors such as toxicants, iatrogenic medications, immune activation, and metabolic disturbances. Many of these same environmental stressors have been associated with ASD, suggesting that the mitochondria could be the biological link between environmental stressors and neurometabolic abnormalities associated with ASD. This paper reviews the possible links between GI abnormalities, mitochondria, and ASD. First, we review the link between GI symptoms and abnormalities in mitochondrial function. Second, we review the evidence supporting the notion that environmental stressors linked to ASD can also adversely affect both mitochondria and GI function. Third, we review the evidence that enteric bacteria that are overrepresented in children with ASD, particularly Clostridia spp., produce short-chain fatty acid metabolites that are potentially toxic to the mitochondria. We provide an example of this gut–brain connection by highlighting the propionic acid rodent model of ASD and the clinical evidence that supports this animal model. Lastly, we discuss the potential therapeutic approaches that could be helpful for GI symptoms in ASD and mitochondrial disorders. To this end, this review aims to help better understand the underlying pathophysiology associated with ASD that may be related to concurrent mitochondrial and GI dysfunction.
Collapse
Affiliation(s)
- Richard E Frye
- Autism Research Program, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA;
| | - Shannon Rose
- Autism Research Program, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John Slattery
- Autism Research Program, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Derrick F MacFabe
- Kilee Patchell-Evans Autism Research Group, Division of Developmental Disabilities, Departments of Psychology and Psychiatry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
183
|
Rodakis J. An n=1 case report of a child with autism improving on antibiotics and a father's quest to understand what it may mean. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:26382. [PMID: 25808801 PMCID: PMC4374086 DOI: 10.3402/mehd.v26.26382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/11/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023]
Abstract
The author, a parent of a child with autism, describes an n=1 case in which his child's autism symptoms dramatically and rapidly improved following administration of a common antibiotic. The author asserts that this finding is not unusual in the autism population and that, when combined with prior recent medical research, suggests that a link between autism and the microbiome in some children is not just plausible, but in fact likely for some meaningful percentage of cases. The author argues for increased funding for a more thorough examination of links between autism and the microbiome and poses a series of questions to be further examined in future research.
Collapse
Affiliation(s)
- John Rodakis
- N of One: Autism Research Foundation, Dallas, TX, USA;
| |
Collapse
|
184
|
Dietert RR, Dietert JM. The Microbiome and Sustainable Healthcare. Healthcare (Basel) 2015; 3:100-29. [PMID: 27417751 PMCID: PMC4934527 DOI: 10.3390/healthcare3010100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 12/19/2022] Open
Abstract
Increasing prevalences, morbidity, premature mortality and medical needs associated with non-communicable diseases and conditions (NCDs) have reached epidemic proportions and placed a major drain on healthcare systems and global economies. Added to this are the challenges presented by overuse of antibiotics and increased antibiotic resistance. Solutions are needed that can address the challenges of NCDs and increasing antibiotic resistance, maximize preventative measures, and balance healthcare needs with available services and economic realities. Microbiome management including microbiota seeding, feeding, and rebiosis appears likely to be a core component of a path toward sustainable healthcare. Recent findings indicate that: (1) humans are mostly microbial (in terms of numbers of cells and genes); (2) immune dysfunction and misregulated inflammation are pivotal in the majority of NCDs; (3) microbiome status affects early immune education and risk of NCDs, and (4) microbiome status affects the risk of certain infections. Management of the microbiome to reduce later-life health risk and/or to treat emerging NCDs, to spare antibiotic use and to reduce the risk of recurrent infections may provide a more effective healthcare strategy across the life course particularly when a personalized medicine approach is considered. This review will examine the potential for microbiome management to contribute to sustainable healthcare.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
185
|
Mostafa GA, Al-Ayadhi LY. Reduced levels of plasma polyunsaturated fatty acids and serum carnitine in autistic children: relation to gastrointestinal manifestations. Behav Brain Funct 2015; 11:4. [PMID: 25757041 PMCID: PMC4332725 DOI: 10.1186/s12993-014-0048-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/28/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Gastrointestinal (GI) manifestations are common in autistic children. Polyunsaturated fatty acids (PUFAs) and carnitine are anti-inflammatory molecules and their deficiency may result in GI inflammation. The relationship between the increased frequency of GI manifestations and reduced levels of PUFAs and carnitine was not previously investigated in autistic patients. This study was the first to investigate plasma levels of PUFAs and serum carnitine in relation to GI manifestations in autistic children. METHODS Plasma levels of PUFAs (including linoleic, alphalinolenic, arachidonic "AA" and docosahexaenoic "DHA" acids) and serum carnitine were measured in 100 autistic children and 100 healthy-matched children. RESULTS Reduced levels of serum carnitine and plasma DHA, AA, linolenic and linoleic acids were found in 66%, 62%, 60%, 43% and 38%, respectively of autistic children. On the other hand, 54% of autistic patients had elevated ω6/ω3 ratio. Autistic patients with GI manifestations (48%) had significantly decreased levels of serum carnitine and plasma DHA than patients without such manifestations. In addition, autistic patients with GI manifestations had significantly increased percentage of reduced serum carnitine (91.7%) and plasma DHA levels (87.5%) than patients without such manifestations (42.3% and 38.5%, respectively), (P < 0.001 and P < 0.001%, respectively). CONCLUSIONS Reduced levels of plasma DHA and serum carnitine levels may be associated with the GI problems in some autistic patients. However, this is an initial report, studies are recommended to invesigate whether reduced levels of carnitine and DHA are a mere association or have a pathogenic role in GI problems in autistic patients.
Collapse
|
186
|
Scott KP, Antoine JM, Midtvedt T, van Hemert S. Manipulating the gut microbiota to maintain health and treat disease. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:25877. [PMID: 25651995 PMCID: PMC4315778 DOI: 10.3402/mehd.v26.25877] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The intestinal microbiota composition varies between healthy and diseased individuals for numerous diseases. Although any cause or effect relationship between the alterations in the gut microbiota and disease is not always clear, targeting the intestinal microbiota might offer new possibilities for prevention and/or treatment of disease. OBJECTIVE Here we review some examples of manipulating the intestinal microbiota by prebiotics, probiotics, and fecal microbial transplants. RESULTS Prebiotics are best known for their ability to increase the number of bifidobacteria. However, specific prebiotics could potentially also stimulate other species they can also stimulate other species associated with health, like Akkermansia muciniphila, Ruminococcus bromii, the Roseburia/Enterococcus rectale group, and Faecalibacterium prausnitzii. Probiotics have beneficial health effects for different diseases and digestive symptoms. These effects can be due to the direct effect of the probiotic bacterium or its products itself, as well as effects of the probiotic on the resident microbiota. Probiotics can influence the microbiota composition as well as the activity of the resident microbiota. Fecal microbial transplants are a drastic intervention in the gut microbiota, aiming for total replacement of one microbiota by another. With numerous successful studies related to antibiotic-associated diarrhea and Clostridium difficile infection, the potential of fecal microbial transplants to treat other diseases like inflammatory bowel disease, irritable bowel syndrome, and metabolic and cardiovascular disorders is under investigation. CONCLUSIONS Improved knowledge on the specific role of gut microbiota in prevention and treatment of disease will help more targeted manipulation of the intestinal microbiota. Further studies are necessary to see the (long term) effects for health of these interventions.
Collapse
Affiliation(s)
- Karen P Scott
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | | | - Tore Midtvedt
- Department of Microbiology, Tumor and Cell Biology (MTC) Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
187
|
Bilbo SD, Nevison CD, Parker W. A model for the induction of autism in the ecosystem of the human body: the anatomy of a modern pandemic? MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:26253. [PMID: 25634608 PMCID: PMC4310853 DOI: 10.3402/mehd.v26.26253] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023]
Abstract
Background The field of autism research is currently divided based on a fundamental question regarding the nature of autism: Some are convinced that autism is a pandemic of modern culture, with environmental factors at the roots. Others are convinced that the disease is not pandemic in nature, but rather that it has been with humanity for millennia, with its biological and neurological underpinnings just now being understood. Objective In this review, two lines of reasoning are examined which suggest that autism is indeed a pandemic of modern culture. First, given the widely appreciated derailment of immune function by modern culture, evidence that autism is strongly associated with aberrant immune function is examined. Second, evidence is reviewed indicating that autism is associated with ‘triggers’ that are, for the most part, a construct of modern culture. In light of this reasoning, current epidemiological evidence regarding the incidence of autism, including the role of changing awareness and diagnostic criteria, is examined. Finally, the potential role of the microbial flora (the microbiome) in the pathogenesis of autism is discussed, with the view that the microbial flora is a subset of the life associated with the human body, and that the entire human biome, including both the microbial flora and the fauna, has been radically destabilized by modern culture. Conclusions It is suggested that the unequivocal way to resolve the debate regarding the pandemic nature of autism is to perform an experiment: monitor the prevalence of autism after normalizing immune function in a Western population using readily available approaches that address the well-known factors underlying the immune dysfunction in that population.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology & Neuroscience, Systems & Integrative Neuroscience Group, Duke University, Durham, NC, USA
| | - Cynthia D Nevison
- Institute for Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - William Parker
- Department of Surgery, Duke University Medical Center, Durham, NC, USA;
| |
Collapse
|
188
|
De Angelis M, Francavilla R, Piccolo M, De Giacomo A, Gobbetti M. Autism spectrum disorders and intestinal microbiota. Gut Microbes 2015; 6:207-13. [PMID: 25835343 PMCID: PMC4616908 DOI: 10.1080/19490976.2015.1035855] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/08/2015] [Accepted: 03/23/2015] [Indexed: 02/07/2023] Open
Abstract
Through extensive microbial-mammalian co-metabolism, the intestinal microbiota have evolved to exert a marked influence on health and disease via gut-brain-microbiota interactions. In this addendum, we summarize the findings of our recent study on the fecal microbiota and metabolomes of children with pervasive developmental disorder-not otherwise specified (PDD-NOS) or autism (AD) compared with healthy children (HC). Children with PDD-NOS or AD have altered fecal microbiota and metabolomes (including neurotransmitter molecules). We hypothesize that the degree of microbial alteration correlates with the severity of the disease since fecal microbiota and metabolomes alterations were higher in children with PDD-NOS and, especially, AD compared to HC. Our study indicates that the levels of free amino acids (FAA) and volatile organic compounds (VOC) differ in AD subjects compared to children with PDD-NOS, who are more similar to HC. Finally, we propose a new perspective on the implications for the interaction between intestinal microbiota and AD.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil; Plant and Food Sciences;
University of Bari Aldo Moro; Bari, Italy
| | - Ruggiero Francavilla
- Department of Interdisciplinary Medicine;
University of Bari Aldo Moro; Bari, Italy
| | - Maria Piccolo
- Department of Soil; Plant and Food Sciences;
University of Bari Aldo Moro; Bari, Italy
| | - Andrea De Giacomo
- Child Neurological and Psychiatric Unit;
Department of Neurological and Psychiatric Sciences; University of Bari Aldo
Moro; Bari, Italy
| | - Marco Gobbetti
- Department of Soil; Plant and Food Sciences;
University of Bari Aldo Moro; Bari, Italy
| |
Collapse
|
189
|
Jašarević E, Rodgers AB, Bale TL. A novel role for maternal stress and microbial transmission in early life programming and neurodevelopment. Neurobiol Stress 2015; 1:81-88. [PMID: 25530984 PMCID: PMC4267059 DOI: 10.1016/j.ynstr.2014.10.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 12/13/2022] Open
Abstract
Perturbations in the prenatal and early life environment can contribute to the development of offspring stress dysregulation, a pervasive symptom in neuropsychiatric disease. Interestingly, the vertical transmission of maternal microbes to offspring and the subsequent bacterial colonization of the neonatal gut overlap with a critical period of brain development. Therefore, environmental factors such as maternal stress that are able to alter microbial populations and their transmission can thereby shape offspring neurodevelopment. As the neonatal gastrointestinal tract is primarily inoculated at parturition through the ingestion of maternal vaginal microflora, disruption in the vaginal ecosystem may have important implications for offspring neurodevelopment and disease risk. Here, we discuss alterations that occur in the vaginal microbiome following maternal insult and the subsequent effects on bacterial assembly of the neonate gut, the production of neuromodulatory metabolites, and the developmental course of stress regulation.
Collapse
Affiliation(s)
| | | | - Tracy L. Bale
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
190
|
Burokas A, Moloney RD, Dinan TG, Cryan JF. Microbiota regulation of the Mammalian gut-brain axis. ADVANCES IN APPLIED MICROBIOLOGY 2015; 91:1-62. [PMID: 25911232 DOI: 10.1016/bs.aambs.2015.02.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The realization that the microbiota-gut-brain axis plays a critical role in health and disease has emerged over the past decade. The brain-gut axis is a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract. Regulation of the microbiota-brain-gut axis is essential for maintaining homeostasis, including that of the CNS. The routes of this communication are not fully elucidated but include neural, humoral, immune, and metabolic pathways. A number of approaches have been used to interrogate this axis including the use of germ-free animals, probiotic agents, antibiotics, or animals exposed to pathogenic bacterial infections. Together, it is clear that the gut microbiota can be a key regulator of mood, cognition, pain, and obesity. Understanding microbiota-brain interactions is an exciting area of research which may contribute new insights into individual variations in cognition, personality, mood, sleep, and eating behavior, and how they contribute to a range of neuropsychiatric diseases ranging from affective disorders to autism and schizophrenia. Finally, the concept of psychobiotics, bacterial-based interventions with mental health benefit, is also emerging.
Collapse
Affiliation(s)
- Aurelijus Burokas
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
191
|
Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:373-403. [PMID: 24997043 DOI: 10.1007/978-1-4939-0897-4_17] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is increasing evidence that host-microbe interactions play a key role in maintaining homeostasis. Alterations in gut microbial composition is associated with marked changes in behaviors relevant to mood, pain and cognition, establishing the critical importance of the bi-directional pathway of communication between the microbiota and the brain in health and disease. Dysfunction of the microbiome-brain-gut axis has been implicated in stress-related disorders such as depression, anxiety and irritable bowel syndrome and neurodevelopmental disorders such as autism. Bacterial colonization of the gut is central to postnatal development and maturation of key systems that have the capacity to influence central nervous system (CNS) programming and signaling, including the immune and endocrine systems. Moreover, there is now expanding evidence for the view that enteric microbiota plays a role in early programming and later response to acute and chronic stress. This view is supported by studies in germ-free mice and in animals exposed to pathogenic bacterial infections, probiotic agents or antibiotics. Although communication between gut microbiota and the CNS are not fully elucidated, neural, hormonal, immune and metabolic pathways have been suggested. Thus, the concept of a microbiome-brain-gut axis is emerging, suggesting microbiota-modulating strategies may be a tractable therapeutic approach for developing novel treatments for CNS disorders.
Collapse
Affiliation(s)
- Yuliya E Borre
- Laboratory of NeuroGastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
192
|
Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Irritable bowel syndrome: A microbiome-gut-brain axis disorder? World J Gastroenterol 2014; 20:14105-14125. [PMID: 25339800 PMCID: PMC4202342 DOI: 10.3748/wjg.v20.i39.14105] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/18/2014] [Accepted: 05/26/2014] [Indexed: 02/07/2023] Open
Abstract
Irritable bowel syndrome (IBS) is an extremely prevalent but poorly understood gastrointestinal disorder. Consequently, there are no clear diagnostic markers to help diagnose the disorder and treatment options are limited to management of the symptoms. The concept of a dysregulated gut-brain axis has been adopted as a suitable model for the disorder. The gut microbiome may play an important role in the onset and exacerbation of symptoms in the disorder and has been extensively studied in this context. Although a causal role cannot yet be inferred from the clinical studies which have attempted to characterise the gut microbiota in IBS, they do confirm alterations in both community stability and diversity. Moreover, it has been reliably demonstrated that manipulation of the microbiota can influence the key symptoms, including abdominal pain and bowel habit, and other prominent features of IBS. A variety of strategies have been taken to study these interactions, including probiotics, antibiotics, faecal transplantations and the use of germ-free animals. There are clear mechanisms through which the microbiota can produce these effects, both humoral and neural. Taken together, these findings firmly establish the microbiota as a critical node in the gut-brain axis and one which is amenable to therapeutic interventions.
Collapse
|
193
|
Tellez G. Prokaryotes Versus Eukaryotes: Who is Hosting Whom? Front Vet Sci 2014; 1:3. [PMID: 26664911 PMCID: PMC4668860 DOI: 10.3389/fvets.2014.00003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/23/2014] [Indexed: 01/22/2023] Open
Abstract
Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals' actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a "forgotten organ," functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short-chain fatty acids), a process, which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system. Despite these important effects, the mechanisms by which the gut microbial community influences the host's biology remain almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes, which encourage us to postulate: who is hosting whom?
Collapse
Affiliation(s)
- Guillermo Tellez
- The John Kirkpatrick Skeeles Poultry Health Laboratory, Department of Poultry Science, The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
194
|
Nankova BB, Agarwal R, MacFabe DF, La Gamma EF. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders. PLoS One 2014; 9:e103740. [PMID: 25170769 PMCID: PMC4149359 DOI: 10.1371/journal.pone.0103740] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022] Open
Abstract
Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA) like propionic (PPA), and butyric acid (BA), which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD). Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal) or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH) mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s) was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals such as increased levels of SCFA's can epigenetically modulate cell function further supporting their role as environmental contributors to ASD.
Collapse
Affiliation(s)
- Bistra B. Nankova
- New York Medical College, Department of Pediatrics/Maria Fareri Children's Hospital, Valhalla, New York, United States of America
- * E-mail:
| | - Raj Agarwal
- New York Medical College, Department of Pediatrics/Maria Fareri Children's Hospital, Valhalla, New York, United States of America
| | - Derrick F. MacFabe
- The Kilee Patchell-Evans Autism Research Group, Departments of Psychology (Neuroscience) and Psychiatry, Division of Developmental Disabilities, The University of Western Ontario, London, Ontario, Canada
| | - Edmund F. La Gamma
- New York Medical College, Department of Pediatrics/Maria Fareri Children's Hospital, Valhalla, New York, United States of America
| |
Collapse
|
195
|
Dietert RR. The microbiome in early life: self-completion and microbiota protection as health priorities. ACTA ACUST UNITED AC 2014; 101:333-40. [PMID: 25044451 DOI: 10.1002/bdrb.21116] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/03/2014] [Indexed: 01/12/2023]
Abstract
This minireview considers the benefits of refocusing attention away from treating the patient as a mammalian human to managing the complete patient: a majority microbial superorganism. Under the "completed self" model for formation of the human-microbial superorganism, the single, most pivotal sign in distinguishing a life course of health versus that filled with disease is self-completion (i.e., seeding of the minority mammalian human by the majority microbial portion of the symbiont). From a disease prevention perspective, microbial seeding at birth and subsequent nurturing of the microbiota are significant steps to reduce the risk of both noncommunicable diseases (e.g., type 1 diabetes) and certain infectious diseases. Management of the microbiome during pregnancy, birth, and shortly thereafter appears to be the most significant critical window for healthy superorganism formation. However, the bolus for microbiota seeding at birth and the nurturing process are subject to environmental influences and disruption, such as exposure to toxic chemicals and drugs, infections, and other physical and psychological stressors. Additionally, childhood and adult corrective measures, such as fecal transplantation and administration of prebiotics and probiotics, while potentially useful, may have limitations that are yet to be fully defined. This minireview considers (1) basic features of management of the microbiome to facilitate self-completion, (2) protection of the microbiota from environmental hazards, and (3) the benefits of using a superorganism focus for health management beginning with pregnancy and extending throughout childhood and adult life.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York
| |
Collapse
|
196
|
Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: Gut microbiota: the neglected endocrine organ. Mol Endocrinol 2014; 28:1221-38. [PMID: 24892638 DOI: 10.1210/me.2014-1108] [Citation(s) in RCA: 742] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The concept that the gut microbiota serves as a virtual endocrine organ arises from a number of important observations. Evidence for a direct role arises from its metabolic capacity to produce and regulate multiple compounds that reach the circulation and act to influence the function of distal organs and systems. For example, metabolism of carbohydrates results in the production of short-chain fatty acids, such as butyrate and propionate, which provide an important source of nutrients as well as regulatory control of the host digestive system. This influence over host metabolism is also seen in the ability of the prebiotic inulin to influence production of relevant hormones such as glucagon-like peptide-1, peptide YY, ghrelin, and leptin. Moreover, the probiotic Lactobacillus rhamnosus PL60, which produces conjugated linoleic acid, has been shown to reduce body-weight gain and white adipose tissue without effects on food intake. Manipulating the microbial composition of the gastrointestinal tract modulates plasma concentrations of tryptophan, an essential amino acid and precursor to serotonin, a key neurotransmitter within both the enteric and central nervous systems. Indirectly and through as yet unknown mechanisms, the gut microbiota exerts control over the hypothalamic-pituitary-adrenal axis. This is clear from studies on animals raised in a germ-free environment, who show exaggerated responses to psychological stress, which normalizes after monocolonization by certain bacterial species including Bifidobacterium infantis. It is tempting to speculate that therapeutic targeting of the gut microbiota may be useful in treating stress-related disorders and metabolic diseases.
Collapse
Affiliation(s)
- Gerard Clarke
- Alimentary Pharmabiotic Centre (G.C., R.M.S., P.J.K., C.S., J.F.C., T.G.D.) and Departments of Psychiatry (G.C., C.S., T.G.D.) and Anatomy and Neuroscience (J.F.C.), University College Cork, Cork, Ireland; and Teagasc (C.S.), Moorepark, Fermoy, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
197
|
Foley KA, MacFabe DF, Vaz A, Ossenkopp KP, Kavaliers M. Sexually dimorphic effects of prenatal exposure to propionic acid and lipopolysaccharide on social behavior in neonatal, adolescent, and adult rats: implications for autism spectrum disorders. Int J Dev Neurosci 2014; 39:68-78. [PMID: 24747144 DOI: 10.1016/j.ijdevneu.2014.04.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/07/2014] [Accepted: 04/07/2014] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence suggests that the gut microbiome plays an important role in immune functioning, behavioral regulation and neurodevelopment. Altered microbiome composition, including altered short chain fatty acids, and/or immune system dysfunction, may contribute to neurodevelopmental disorders such as autism spectrum disorders (ASD), with some children with ASD exhibiting both abnormal gut bacterial metabolite composition and immune system dysfunction. This study describes the effects of prenatal propionic acid (PPA), a short chain fatty acid and metabolic product of many antibiotic resistant enteric bacteria, and of prenatal lipopolysaccharide (LPS), a bacterial mimetic and microbiome component, on social behavior in male and female neonatal, adolescent and adult rats. Pregnant Long-Evans rats were injected once a day with either a low level of PPA (500 mg/kg SC) on gestation days G12-16, LPS (50 μg/kg SC) on G12, or vehicle control on G12 or G12-16. Sex- and age-specific, subtle effects on behavior were observed. Both male and female PPA treated pups were impaired in a test of their nest seeking response, suggesting impairment in olfactory-mediated neonatal social recognition. As well, adolescent males, born to PPA treated dams, approached a novel object more than control animals and showed increased levels of locomotor activity compared to prenatal PPA females. Prenatal LPS produced subtle impairments in social behavior in adult male and female rats. These findings raise the possibility that brief prenatal exposure to elevated levels of microbiome products, such as PPA or LPS, can subtly influence neonatal, adolescent and adult social behavior.
Collapse
Affiliation(s)
- Kelly A Foley
- Graduate Program in Neuroscience, The University of Western Ontario, London, ON N6A 5B7, Canada; Department of Psychology, The University of Western Ontario, London, ON N6A 5C2, Canada.
| | - Derrick F MacFabe
- Department of Psychology, The University of Western Ontario, London, ON N6A 5C2, Canada; The Kilee Patchell-Evans Autism Research Group, Departments of Psychology and Psychiatry, Division of Developmental Disabilities, The University of Western Ontario, London, ON N6A 5C2, Canada.
| | - Alisha Vaz
- Department of Psychology, The University of Western Ontario, London, ON N6A 5C2, Canada.
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience, The University of Western Ontario, London, ON N6A 5B7, Canada; Department of Psychology, The University of Western Ontario, London, ON N6A 5C2, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, The University of Western Ontario, London, ON N6A 5C2, Canada.
| | - Martin Kavaliers
- Graduate Program in Neuroscience, The University of Western Ontario, London, ON N6A 5B7, Canada; Department of Psychology, The University of Western Ontario, London, ON N6A 5C2, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, The University of Western Ontario, London, ON N6A 5C2, Canada.
| |
Collapse
|
198
|
Foley KA, Ossenkopp KP, Kavaliers M, MacFabe DF. Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner. PLoS One 2014; 9:e87072. [PMID: 24466331 PMCID: PMC3899377 DOI: 10.1371/journal.pone.0087072] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/22/2013] [Indexed: 02/08/2023] Open
Abstract
Alterations in the composition of the gut microbiome and/or immune system function may have a role in the development of autism spectrum disorders (ASD). The current study examined the effects of prenatal and early life administration of lipopolysaccharide (LPS), a bacterial mimetic, and the short chain fatty acid, propionic acid (PPA), a metabolic fermentation product of enteric bacteria, on developmental milestones, locomotor activity, and anxiety-like behavior in adolescent male and female offspring. Pregnant Long-Evans rats were subcutaneously injected once a day with PPA (500 mg/kg) on gestation days G12–16, LPS (50 µg/kg) on G15–16, or vehicle control on G12–16 or G15–16. Male and female offspring were injected with PPA (500 mg/kg) or vehicle twice a day, every second day from postnatal days (P) 10–18. Physical milestones and reflexes were monitored in early life with prenatal PPA and LPS inducing delays in eye opening. Locomotor activity and anxiety were assessed in adolescence (P40–42) in the elevated plus maze (EPM) and open-field. Prenatal and postnatal treatments altered behavior in a sex-specific manner. Prenatal PPA decreased time spent in the centre of the open-field in males and females while prenatal and postnatal PPA increased anxiety behavior on the EPM in female rats. Prenatal LPS did not significantly influence those behaviors. Evidence for the double hit hypothesis was seen as females receiving a double hit of PPA (prenatal and postnatal) displayed increased repetitive behavior in the open-field. These results provide evidence for the hypothesis that by-products of enteric bacteria metabolism such as PPA may contribute to ASD, altering development and behavior in adolescent rats similar to that observed in ASD and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kelly A. Foley
- Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada
- Department of Psychology, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada
- Department of Psychology, The University of Western Ontario, London, Ontario, Canada
- The Kilee Patchell-Evans Autism Research Group, Department of Psychology, The University of Western Ontario, London, Ontario, Canada
| | - Martin Kavaliers
- Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada
- Department of Psychology, The University of Western Ontario, London, Ontario, Canada
- The Kilee Patchell-Evans Autism Research Group, Department of Psychology, The University of Western Ontario, London, Ontario, Canada
| | - Derrick F. MacFabe
- Department of Psychology, The University of Western Ontario, London, Ontario, Canada
- The Kilee Patchell-Evans Autism Research Group, Division of Developmental Disabilities, Departments of Psychology and Psychiatry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
199
|
Abstract
New approaches are needed to examine the diverse symptoms and comorbidities of the growing family of neurodevelopmental disorders known as autism spectrum disorder (ASD). ASD originally was thought to be a static, inheritable neurodevelopmental disorder, and our understanding of it is undergoing a major shift. It is emerging as a dynamic system of metabolic and immune anomalies involving many organ systems, including the brain, and environmental exposure. The initial detailed observation and inquiry of patients with ASD and related conditions and the histories of their caregivers and families have been invaluable. How gastrointestinal (GI) factors are related to ASD is not yet clear. Nevertheless, many patients with ASD have a history of previous antibiotic exposure or hospitalization, GI symptoms, abnormal food cravings, and unique intestinal bacterial populations, which have been proposed to relate to variable symptom severity. In addition to traditional scientific inquiry, detailed clinical observation and recording of exacerbations, remissions, and comorbidities are needed. This article reviews the role that enteric short-chain fatty acids, particularly propionic (also called propanoic) acid, produced from ASD-associated GI bacteria, may play in the etiology of some forms of ASD. Human populations that are partial metabolizers of propionic acid are more common than previously thought. The results from pre-clinical laboratory studies show that propionic acid-treated rats display ASD-like repetitive, perseverative, and antisocial behaviors and seizure. Neurochemical changes, consistent and predictive with findings in ASD patients, including neuroinflammation, increased oxidative stress, mitochondrial dysfunction, glutathione depletion, and altered phospholipid/acylcarnitine profiles, have been observed. Propionic acid has bioactive effects on (1) neurotransmitter systems, (2) intracellular acidification and calcium release, (3) fatty acid metabolism, (4) gap junction gating, (5) immune function, and (6) alteration of gene expression that warrant further exploration. Traditional scientific experimentation is needed to verify the hypothesis that enteric short-chain fatty acids may be a potential environmental trigger in some forms of ASD. Novel collaborative developments in systems biology, particularly examining the role of the microbiome and its effects on host metabolism, immune and mitochondrial function, and gene expression, hold great promise in ASD.
Collapse
Affiliation(s)
- Derrick Macfabe
- The Kilee Patchell-Evans Autism Research Group, Departments of Psychology (Neuroscience) and Psychiatry, Division of Developmental Disabilities, Lawson Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
200
|
Baker SM, Milivojevich A. Gender differences among children with autism spectrum disorder: differential symptom patterns. Glob Adv Health Med 2014; 2:8-18. [PMID: 24416704 PMCID: PMC3865374 DOI: 10.7453/gahmj.2013.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The gender ratio among children in the autism spectrum of more than four boys to every girl is widely recognized. The authors present an analysis of gender differences among 79 482 symptoms and strengths in 1495 boys and 336 girls aged 2 to 18 years from parent-identified autistic children reported to a structurally novel anonymous parent-entered online database, Autism360. The data reveal differences that provide previously undetected clues to gender differences in immune and central nervous system and gastrointestinal functional disturbances. Together with published observations of male/female differences in inflammation, oxidative stress, and detoxication, these findings open doors to research focusing on gender physiology as clues to etiologic factors in autism. This study exemplifies a research method based on a large, detailed, patient-entered, structured data set in which patterns of individual illness and healing may answer collective questions about prevention and treatment.
Collapse
|