151
|
Inorganic nitrate prevents the loss of tight junction proteins and modulates inflammatory events induced by broad-spectrum antibiotics: A role for intestinal microbiota? Nitric Oxide 2019; 88:27-34. [DOI: 10.1016/j.niox.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023]
|
152
|
Le Roux-Mallouf T, Pelen F, Vallejo A, Halimaoui I, Doutreleau S, Verges S. Effect of chronic nitrate and citrulline supplementation on vascular function and exercise performance in older individuals. Aging (Albany NY) 2019; 11:3315-3332. [PMID: 31141497 PMCID: PMC6555465 DOI: 10.18632/aging.101984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Abstract
Increased nitric oxide (NO) bioavailability may improve exercise performance and vascular function. It remains unclear whether older adults who experience a decreased NO bioavailability may benefit from chronic NO precursor supplementation. This randomised, double-blind, trial aims to assess the effect of chronic NO precursor intake on vascular function and exercise performance in older adults (60-70 years old). Twenty-four healthy older adults (12 females) performed vascular function assessment and both local (knee extensions) and whole-body (incremental cycling) exercise tests to exhaustion before and after one month of daily intake of a placebo (PLA) or a nitrate-rich salad and citrulline (N+C, 520mg nitrate and 6g citrulline) drink. Arterial blood pressure (BP) and stiffness, post-ischemic, hypercapnic and hypoxic vascular responses were evaluated. Prefrontal cortex and quadriceps oxygenation was monitored by near-infrared spectroscopy. N+C supplementation reduced mean BP (-3.3mmHg; p=0.047) without altering other parameters of vascular function and oxygenation kinetics. N+C supplementation reduced heart rate and oxygen consumption during submaximal cycling and increased maximal power output by 5.2% (p<0.05), but had no effect on knee extension exercise performance. These results suggest that chronic NO precursor supplementation in healthy older individuals can reduce resting BP and increase cycling performance by improving cardiorespiratory responses.
Collapse
Affiliation(s)
| | - Felix Pelen
- Université Grenoble Alpes, Inserm, HP2 Laboratory, Grenoble F-38000, France
| | - Angela Vallejo
- Université Grenoble Alpes, Inserm, HP2 Laboratory, Grenoble F-38000, France
| | - Idir Halimaoui
- Université Grenoble Alpes, Inserm, HP2 Laboratory, Grenoble F-38000, France
| | - Stéphane Doutreleau
- Université Grenoble Alpes, Inserm, HP2 Laboratory, Grenoble F-38000, France
- Sport and Pathologies Unit, Grenoble Alpes University Hospital, Hôpital Michallon, Grenoble F-38042, France
| | - Samuel Verges
- Université Grenoble Alpes, Inserm, HP2 Laboratory, Grenoble F-38000, France
- Sport and Pathologies Unit, Grenoble Alpes University Hospital, Hôpital Michallon, Grenoble F-38042, France
| |
Collapse
|
153
|
Walker MA, Bailey TG, McIlvenna L, Allen JD, Green DJ, Askew CD. Acute Dietary Nitrate Supplementation Improves Flow Mediated Dilatation of the Superficial Femoral Artery in Healthy Older Males. Nutrients 2019; 11:E954. [PMID: 31035478 PMCID: PMC6566150 DOI: 10.3390/nu11050954] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Aging is often associated with reduced leg blood flow, increased arterial stiffness, and endothelial dysfunction, all of which are related to declining nitric oxide (NO) bioavailability. Flow mediated dilatation (FMD) and passive leg movement (PLM) hyperaemia are two techniques used to measure NO-dependent vascular function. We hypothesised that acute dietary nitrate (NO3-) supplementation would improve NO bioavailability, leg FMD, and PLM hyperaemia. Fifteen healthy older men (69 ± 4 years) attended two experiment sessions and consumed either 140 mL of concentrated beetroot juice (800 mg NO3-) or placebo (NO3--depleted beetroot juice) in a randomised, double blind, cross-over design study. Plasma nitrite (NO2-) and NO3-, blood pressure (BP), augmentation index (AIx75), pulse wave velocity (PWV), FMD of the superficial femoral artery, and PLM hyperaemia were measured immediately before and 2.5 h after consuming NO3- and placebo. Placebo had no effect but NO3- led to an 8.6-fold increase in plasma NO2-, which was accompanied by an increase in FMD (NO3-: +1.18 ± 0.94% vs. placebo: 0.23 ± 1.13%, p = 0.002), and a reduction in AIx75 (NO3-: -8.7 ± 11.6% vs. placebo: -4.6 ± 5.5%, p = 0.027). PLM hyperaemia, BP, and PWV were unchanged during both trials. This study showed that a dose of dietary NO3- improved NO bioavailability and enhanced endothelial function as measured by femoral artery FMD. These findings provide insight into the specific central and peripheral vascular responses to dietary NO3- supplementation in older adults.
Collapse
Affiliation(s)
- Meegan A Walker
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.
| | - Tom G Bailey
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.
- School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Luke McIlvenna
- Institute for Health and Sport, College of Sport and Exercise Science, Victoria University, Melbourne, VIC 3031, Australia.
| | - Jason D Allen
- Institute for Health and Sport, College of Sport and Exercise Science, Victoria University, Melbourne, VIC 3031, Australia.
- Department of Kinesiology, University of Virginia, Charlottesville, VA 22903, USA.
| | - Daniel J Green
- School of Sport Sciences, Exercise and Health, University of Western Australia, West Perth, WA 6872, Australia.
| | - Christopher D Askew
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, QLD 4575, Australia.
| |
Collapse
|
154
|
Affiliation(s)
- Nathan S. Bryan
- Department of Molecular and Human GeneticsBaylor College of Medicine One Baylor Plaza Alkek Building for Biomedical Research R-850 Houston TX 77030
| |
Collapse
|
155
|
The Porphyromonas gingivalis Hybrid Cluster Protein Hcp Is Required for Growth with Nitrite and Survival with Host Cells. Infect Immun 2019; 87:IAI.00572-18. [PMID: 30670550 DOI: 10.1128/iai.00572-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/11/2019] [Indexed: 12/13/2022] Open
Abstract
Although the periodontal pathogen Porphyromonas gingivalis must withstand high levels of nitrosative stress while in the oral cavity, the mechanisms of nitrosative stress defense are not well understood in this organism. Previously we showed that the transcriptional regulator HcpR plays a significant role in defense, and here we further defined its regulon. Our study shows that hcp (PG0893), a putative nitric oxide (NO) reductase, is the only gene significantly upregulated in response to nitrite (NO2) and that this regulation is dependent on HcpR. An isogenic mutant deficient in hcp is not able to grow with 200 μM nitrite, demonstrating that the sensitivity of the HcpR mutant is mediated through Hcp. We further define the molecular mechanisms of HcpR interaction with the hcp promoter through mutational analysis of the inverted repeat present within the promoter. Although other putative nitrosative stress protection mechanisms present on the nrfAH operon are also found in the P. gingivalis genome, we show that their gene products play no role in growth of the bacterium with nitrite. As growth of the hcp-deficient strain was also significantly diminished in the presence of a nitric oxide-producing compound, S-nitrosoglutathione (GSNO), Hcp appears to be the primary means by which P. gingivalis responds to NO2 --based stress. Finally, we show that Hcp is required for survival with host cells but that loss of Hcp has no effect on association and entry of P. gingivalis into human oral keratinocytes.
Collapse
|
156
|
Loscalzo J. Nitric Oxide Signaling and Atherothrombosis Redux: Evidence From Experiments of Nature and Implications for Therapy. Circulation 2019; 137:233-236. [PMID: 29335284 DOI: 10.1161/circulationaha.117.032901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Joseph Loscalzo
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
157
|
Costa D, Benincasa G, Lucchese R, Infante T, Nicoletti GF, Napoli C. Effect of nitric oxide reduction on arterial thrombosis. SCAND CARDIOVASC J 2019; 53:1-8. [DOI: 10.1080/14017431.2019.1581943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dario Costa
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuditta Benincasa
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberta Lucchese
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Claudio Napoli
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- IRCCS SDN, Naples, Italy
| |
Collapse
|
158
|
Tribble GD, Angelov N, Weltman R, Wang BY, Eswaran SV, Gay IC, Parthasarathy K, Dao DHV, Richardson KN, Ismail NM, Sharina IG, Hyde ER, Ajami NJ, Petrosino JF, Bryan NS. Frequency of Tongue Cleaning Impacts the Human Tongue Microbiome Composition and Enterosalivary Circulation of Nitrate. Front Cell Infect Microbiol 2019; 9:39. [PMID: 30881924 PMCID: PMC6406172 DOI: 10.3389/fcimb.2019.00039] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/07/2019] [Indexed: 01/25/2023] Open
Abstract
The oral microbiome has the potential to provide an important symbiotic function in human blood pressure physiology by contributing to the generation of nitric oxide (NO), an essential cardiovascular signaling molecule. NO is produced by the human body via conversion of arginine to NO by endogenous nitric oxide synthase (eNOS) but eNOS activity varies by subject. Oral microbial communities are proposed to supplement host NO production by reducing dietary nitrate to nitrite via bacterial nitrate reductases. Unreduced dietary nitrate is delivered to the oral cavity in saliva, a physiological process termed the enterosalivary circulation of nitrate. Previous studies demonstrated that disruption of enterosalivary circulation via use of oral antiseptics resulted in increases in systolic blood pressure. These previous studies did not include detailed information on the oral health of enrolled subjects. Using 16S rRNA gene sequencing and analysis, we determined whether introduction of chlorhexidine antiseptic mouthwash for 1 week was associated with changes in tongue bacterial communities and resting systolic blood pressure in healthy normotensive individuals with documented oral hygiene behaviors and free of oral disease. Tongue cleaning frequency was a predictor of chlorhexidine-induced changes in systolic blood pressure and tongue microbiome composition. Twice-daily chlorhexidine usage was associated with a significant increase in systolic blood pressure after 1 week of use and recovery from use resulted in an enrichment in nitrate-reducing bacteria on the tongue. Individuals with relatively high levels of bacterial nitrite reductases had lower resting systolic blood pressure. These results further support the concept of a symbiotic oral microbiome contributing to human health via the enterosalivary nitrate-nitrite-NO pathway. These data suggest that management of the tongue microbiome by regular cleaning together with adequate dietary intake of nitrate provide an opportunity for the improvement of resting systolic blood pressure.
Collapse
Affiliation(s)
- Gena D. Tribble
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Nikola Angelov
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Robin Weltman
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Bing-Yan Wang
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Sridhar V. Eswaran
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Isabel C. Gay
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Kavitha Parthasarathy
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Doan-Hieu V. Dao
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Katherine N. Richardson
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Nadia M. Ismail
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Iraida G. Sharina
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center Houston, Houston, TX, United States
| | | | - Nadim J. Ajami
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of MedicineHouston, TX, United States
| | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of MedicineHouston, TX, United States
| | - Nathan S. Bryan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
159
|
Hughan KS, Wendell SG, Delmastro-Greenwood M, Helbling N, Corey C, Bellavia L, Potti G, Grimes G, Goodpaster B, Kim-Shapiro DB, Shiva S, Freeman BA, Gladwin MT. Conjugated Linoleic Acid Modulates Clinical Responses to Oral Nitrite and Nitrate. Hypertension 2019; 70:634-644. [PMID: 28739973 DOI: 10.1161/hypertensionaha.117.09016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dietary NO3- (nitrate) and NO2- (nitrite) support ˙NO (nitric oxide) generation and downstream vascular signaling responses. These nitrogen oxides also generate secondary nitrosating and nitrating species that react with low molecular weight thiols, heme centers, proteins, and unsaturated fatty acids. To explore the kinetics of NO3-and NO2-metabolism and the impact of dietary lipid on nitrogen oxide metabolism and cardiovascular responses, the stable isotopes Na15NO3 and Na15NO2 were orally administered in the presence or absence of conjugated linoleic acid (cLA). The reduction of 15NO2- to 15NO was indicated by electron paramagnetic resonance spectroscopy detection of hyperfine splitting patterns reflecting 15NO-deoxyhemoglobin complexes. This formation of 15NO also translated to decreased systolic and mean arterial blood pressures and inhibition of platelet function. Upon concurrent administration of cLA, there was a significant increase in plasma cLA nitration products 9- and 12-15NO2-cLA. Coadministration of cLA with 15NO2- also impacted the pharmacokinetics and physiological effects of 15NO2-, with cLA administration suppressing plasma NO3-and NO2-levels, decreasing 15NO-deoxyhemoglobin formation, NO2-inhibition of platelet activation, and the vasodilatory actions of NO2-, while enhancing the formation of 9- and 12-15NO2-cLA. These results indicate that the biochemical reactions and physiological responses to oral 15NO3-and 15NO2-are significantly impacted by dietary constituents, such as unsaturated lipids. This can explain the variable responses to NO3-and NO2-supplementation in clinical trials and reveals dietary strategies for promoting the generation of pleiotropic nitrogen oxide-derived lipid signaling mediators. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT01681836.
Collapse
Affiliation(s)
- Kara S Hughan
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Stacy Gelhaus Wendell
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Meghan Delmastro-Greenwood
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Nicole Helbling
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Catherine Corey
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Landon Bellavia
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Gopal Potti
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - George Grimes
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Bret Goodpaster
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Daniel B Kim-Shapiro
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Sruti Shiva
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Bruce A Freeman
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Mark T Gladwin
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| |
Collapse
|
160
|
Liddle L, Burleigh MC, Monaghan C, Muggeridge DJ, Sculthorpe N, Pedlar CR, Butcher J, Henriquez FL, Easton C. Variability in nitrate-reducing oral bacteria and nitric oxide metabolites in biological fluids following dietary nitrate administration: An assessment of the critical difference. Nitric Oxide 2019; 83:1-10. [DOI: 10.1016/j.niox.2018.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/02/2018] [Accepted: 12/04/2018] [Indexed: 02/08/2023]
|
161
|
Blekkenhorst LC, Lewis JR, Prince RL, Devine A, Bondonno NP, Bondonno CP, Wood LG, Puddey IB, Ward NC, Croft KD, Woodman RJ, Beilin LJ, Hodgson JM. Reply to OM Shannon et al. Am J Clin Nutr 2018; 108:1353-1354. [PMID: 30379994 DOI: 10.1093/ajcn/nqy246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/03/2018] [Indexed: 01/24/2023] Open
Affiliation(s)
- Lauren C Blekkenhorst
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Joshua R Lewis
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Richard L Prince
- Medical School and School of Biomedical Sciences (NPB and KDC), The University of Western Australia, Perth, Western Australia, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Nicola P Bondonno
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Lisa G Wood
- School of Biomedical Science and Pharmacy, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Ian B Puddey
- Medical School and School of Biomedical Sciences (NPB and KDC), The University of Western Australia, Perth, Western Australia, Australia
| | - Natalie C Ward
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Kevin D Croft
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Richard J Woodman
- Flinders Center for Epidemiology and Biostatistics, Flinders University, Adelaide, South Australia, Australia
| | - Lawrence J Beilin
- Medical School and School of Biomedical Sciences (NPB and KDC), The University of Western Australia, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
162
|
Rossman MJ, LaRocca TJ, Martens CR, Seals DR. Healthy lifestyle-based approaches for successful vascular aging. J Appl Physiol (1985) 2018; 125:1888-1900. [PMID: 30212305 PMCID: PMC6842891 DOI: 10.1152/japplphysiol.00521.2018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/23/2018] [Accepted: 09/09/2018] [Indexed: 12/19/2022] Open
Abstract
This review summarizes a presentation given at the 2016 Gerontological Society of America Annual Meeting as part of the Vascular Aging Workshop. The development of age-related vascular dysfunction increases the risk of cardiovascular disease as well as other chronic age-associated disorders, including chronic kidney disease and Alzheimer's disease. Healthy lifestyle behaviors, most notably regular aerobic exercise and certain dietary patterns, are considered "first-line" strategies for the prevention and/or treatment of vascular dysfunction with aging. Despite the well-established benefits of these strategies, however, many older adults do not meet the recommended guidelines for exercise or consume a healthy diet. Therefore, it is important to establish alternative and/or complementary evidence-based approaches to prevent or reverse age-related vascular dysfunction. Time-efficient forms of exercise training, hormetic exposure to mild environmental stress, fasting "mimicking" dietary paradigms, and nutraceutical/pharmaceutical approaches to favorably modulate cellular and molecular pathways activated by exercise and healthy dietary patterns may hold promise as such alternative approaches. Determining the efficacy of these novel strategies is important to provide alternatives for adults with low adherence to conventional healthy lifestyle practices for healthy vascular aging.
Collapse
Affiliation(s)
- Matthew J Rossman
- Department of Integrative Physiology, University of Colorado-Boulder , Boulder, Colorado
| | - Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado-Boulder , Boulder, Colorado
| | - Christopher R Martens
- Department of Integrative Physiology, University of Colorado-Boulder , Boulder, Colorado
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado-Boulder , Boulder, Colorado
| |
Collapse
|
163
|
Faconti L, Mills CE, Govoni V, Gu H, Morant S, Jiang B, Cruickshank JK, Webb AJ. Cardiac effects of 6 months' dietary nitrate and spironolactone in patients with hypertension and with/at risk of type 2 diabetes, in the factorial design, double-blind, randomized controlled VaSera trial. Br J Clin Pharmacol 2018; 85:169-180. [PMID: 30294825 DOI: 10.1111/bcp.13783] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/13/2018] [Accepted: 09/09/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS The aims of the present study were to explore whether a long-term intervention with dietary nitrate [(NO3 - ), a potential tolerance-free source of beneficial vasoactive nitric oxide] and spironolactone (to oppose aldosterone's potential deleterious cardiovascular effects) improve cardiac structure/function, independently of blood pressure (BP), in patients with/at risk of type 2 diabetes (a population at risk of heart failure). METHODS A subsample of participants in our double-blind, randomized, factorial-design intervention (VaSera) trial of active beetroot juice as a nitrate source (≤11.2 mmol) or placebo (nitrate depleted) beetroot juice, and either ≤50 mg spironolactone or ≤16 mg doxazosin (control), had transthoracic cardiac ultrasounds at baseline (n = 105), and at 3 months and 6 months (n = 87) after the start of the intervention. Analysis was by modified intent-to-treat. RESULTS Nitrate-containing juice (n = 40) decreased left ventricular (LV) end-diastolic volume {-6.3 [95% confidence interval (CI) -11.1, -1.6] ml} and end-systolic volume [-3.2 (95% CI -5.9, -0.5) ml], and increased end-diastolic mass/volume ratio [+0.04 (95% CI 0.00, 0.07)], relative to placebo juice (n = 47). Spironolactone (n = 44) reduced relative wall thickness compared with doxazosin (n = 43) [-0.01 (95% CI -0.02, -0.00)]. Although spironolactone reduced LV mass index relative to baseline [-1.48 (95% CI -2.08, -0.88) g m-2.7 ], there was no difference vs. doxazosin [-0.85 (95% CI -1.76, 0.05) g m-2.7 ]. Spironolactone also decreased the E/A ratio [-0.12 (95% CI -0.19, -0.04)] and increased S' (a tissue-Doppler systolic function index) by 0.52 (95% CI 0.05, 1.0) cm s-1 . BP did not differ between the juices, or between the drugs. CONCLUSIONS Six months' dietary nitrate decreased LV volumes ~5%, representing new, sustained, BP-independent benefits on cardiac structure, extending mechanisms characterized in preclinical models of heart failure. Spironolactone's effects on cardiac remodelling and systolic-diastolic function, although confirmatory, were independent of BP.
Collapse
Affiliation(s)
- Luca Faconti
- Department of Clinical Pharmacology, School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, London, UK.,Department of Nutritional Sciences, School of Life Course Sciences, King's College London, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Charlotte Elizabeth Mills
- Department of Nutritional Sciences, School of Life Course Sciences, King's College London, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Virginia Govoni
- Department of Nutritional Sciences, School of Life Course Sciences, King's College London, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Haotian Gu
- Department of Clinical Pharmacology, School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Steven Morant
- Medicines Monitoring Unit (MEMO), University of Dundee, Dundee, UK
| | - Benju Jiang
- Department of Clinical Pharmacology, School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - J Kennedy Cruickshank
- Department of Nutritional Sciences, School of Life Course Sciences, King's College London, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Andrew James Webb
- Department of Clinical Pharmacology, School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
164
|
Bonilla Ocampo DA, Paipilla AF, Marín E, Vargas-Molina S, Petro JL, Pérez-Idárraga A. Dietary Nitrate from Beetroot Juice for Hypertension: A Systematic Review. Biomolecules 2018; 8:biom8040134. [PMID: 30400267 PMCID: PMC6316347 DOI: 10.3390/biom8040134] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
According to current therapeutic approaches, a nitrate-dietary supplementation with beetroot juice (BRJ) is postulated as a nutritional strategy that might help to control arterial blood pressure in healthy subjects, pre-hypertensive population, and even patients diagnosed and treated with drugs. In this sense, a systematic review of random clinical trials (RCTs) published from 2008 to 2018 from PubMed/MEDLINE, ScienceDirect, and manual searches was conducted to identify studies examining the relationship between BRJ and blood pressure. The specific inclusion criteria were: (1) RCTs; (2) trials that assessed only the BRJ intake with control group; and (3) trials that reported the effects of this intervention on blood pressure. The search identified 11 studies that met the inclusion criteria. This review was able to demonstrate that BRJ supplementation is a cost-effective strategy that might reduce blood pressure in different populations, probably through the nitrate/nitrite/nitric oxide (NO3−/NO2−/NO) pathway and secondary metabolites found in Beta vulgaris. This easily found and cheap dietary intervention could significantly decrease the risk of suffering cardiovascular events and, in doing so, would help to diminish the mortality rate associated to this pathology. Hence, BRJ supplementation should be promoted as a key component of a healthy lifestyle to control blood pressure in healthy and hypertensive individuals. However, several factors related to BRJ intake (e.g., gender, secondary metabolites present in B. vulgaris, etc.) should be studied more deeply.
Collapse
Affiliation(s)
- Diego A Bonilla Ocampo
- Research Division, DBSS, 110861 Bogotá, Colombia.
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, 110311 Bogotá, Colombia.
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, 230002 Montería, Colombia.
| | - Andrés F Paipilla
- Research Division, DBSS, 110861 Bogotá, Colombia.
- Institución Educativa CCAPF, 111511 Bogotá, Colombia.
| | - Estevan Marín
- Research Division, DBSS, 110861 Bogotá, Colombia.
- Molecular Biology Laboratory, Dr. Félix Gómez Endocrinometabolic Research Center, University of Zulia, 15424 Maracaibo, Venezuela.
| | - Salvador Vargas-Molina
- Research Division, DBSS, 110861 Bogotá, Colombia.
- EADE-University of Wales Trinity Saint David, 29017 Málaga, Spain.
| | - Jorge L Petro
- Research Division, DBSS, 110861 Bogotá, Colombia.
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, 230002 Montería, Colombia.
| | | |
Collapse
|
165
|
Ma L, Hu L, Feng X, Wang S. Nitrate and Nitrite in Health and Disease. Aging Dis 2018; 9:938-945. [PMID: 30271668 PMCID: PMC6147587 DOI: 10.14336/ad.2017.1207] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/07/2017] [Indexed: 12/23/2022] Open
Abstract
The source of dietary nitrate (NO3) is mainly green, leafy vegetables, partially absorbed into blood through intestinal mucosa. The recycled nitrate is reabsorbed and concentrated by the salivary glands and then secreted into saliva. In 2012, sialin was first discovered as the mammalian membrane nitrate transporter in salivary glands and plays a key role in circulation of inorganic nitrate, providing a scientific basis for further investigation into the circulation and functions of nitrate. Dietary nitrate can be converted to nitrite (NO2) by oral commensal bacteria under the tongue or in the stomach, following which nitrite is converted to nitric oxide (NO) through non-enzymatic synthesis. Previously, nitrate and nitrite were thought to be carcinogenic due to the potential formation of nitrogen compounds, whereas the beneficial functions of NO3--NO2--NO pathway were ignored. Under conditions of hypoxia and ischemia, the production of endogenous NO from L-arginine is inhibited, while the activity of exogenous NO3--NO2--NO is enhanced. Recently, a greater amount of evidence has shown that nitrate and nitrite serve as a reservoir and perform positive biological NO-like functions. Therefore, exogenous dietary nitrate plays an important role in various physiological activities as an effective supplement of nitrite and NO in human body. Here we generally review the source, circulation and bio-functions of dietary nitrate.
Collapse
Affiliation(s)
- Linsha Ma
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University, Beijing 100069, China
| | - Liang Hu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University, Beijing 100069, China
| | - Xiaoyu Feng
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University, Beijing 100069, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University, Beijing 100069, China
| |
Collapse
|
166
|
Kapil V, Rathod KS, Khambata RS, Bahra M, Velmurugan S, Purba A, S Watson D, Barnes MR, Wade WG, Ahluwalia A. Sex differences in the nitrate-nitrite-NO • pathway: Role of oral nitrate-reducing bacteria. Free Radic Biol Med 2018; 126:113-121. [PMID: 30031863 DOI: 10.1016/j.freeradbiomed.2018.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 01/22/2023]
Abstract
Oral reduction of nitrate to nitrite is dependent on the oral microbiome and is the first step of an alternative mammalian pathway to produce nitric oxide in humans. Preliminary evidence suggests important sex differences in this pathway. We prospectively investigated sex-differences following inorganic nitrate supplementation on nitrate/nitrite levels and vascular function, and separately examined sex differences in oral nitrate reduction, and oral microbiota by 16S rRNA profiling. At baseline, females exhibit higher nitrite levels in all biological matrices despite similar nitrate levels to males. Following inorganic nitrate supplementation, plasma nitrite was increased to a significantly greater extent in females than in males and pulse wave velocity was only reduced in females. Females exhibited higher oral bacterial nitrate-reducing activity at baseline and after nitrate supplementation. Despite these differences, there were no differences in the composition of either the total salivary microbiota or those oral taxa with nitrate reductase genes. Our results demonstrate that females have augmented oral nitrate reduction that contributes to higher nitrite levels at baseline and also after inorganic nitrate supplementation, however this was not associated with differences in microbial composition (clinicaltrials.gov: NCT01583803).
Collapse
Affiliation(s)
- Vikas Kapil
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Krishnaraj S Rathod
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Manpreet Bahra
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Shanti Velmurugan
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Amandeep Purba
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - David S Watson
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - William G Wade
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
167
|
A single dose of beetroot juice improves endothelial function but not tissue oxygenation in pregnant women: a randomised clinical trial. Br J Nutr 2018; 120:1006-1013. [PMID: 30229712 DOI: 10.1017/s0007114518002441] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Beetroot juice (BJ) consumption has been associated with improved cardiovascular health owing to an increase in NO bioconversion. This study evaluates the effect of BJ consumption on macrovascular endothelial function (flow-mediated dilation (FMD)) and muscle oxygen saturation (StO2) parameters in pregnant women within a randomised, crossover, double-blind design in which twelve pregnant women consumed a single dose (140 ml) of BJ or placebo (PLA). Urinary nitrate was assessed before (T0) and 150 min after BJ/PLA consumption. FMD was used to evaluate macrovascular endothelial function, and near-IR spectroscopy was used to evaluate muscle StO2 parameters during the occlusion and reperfusion phases, which were taken at baseline (PRE) and 120 and 140 min after BJ/PLA consumption, respectively. A significant increase in urinary nitrate was observed at 150 min after BJ consumption when compared with T0 (BJ: 0·20 (sd 0·13) v. T0: 0·02 (sd 0·00), P=0·000) and PLA intervention (PLA: 0·02 (sd 0·00), P=0·001). FMD improved after BJ consumption when compared with PRE (BJ: 11·00 (sd 1·67) v. PRE: 5·53 (sd 1·17), P=0·000) and PLA (5·34 (sd 1·31), P=0·000). No significant difference between PLA and PRE in FMD (P=1·000) was observed. In StO2 parameters, a difference was not observed after BJ consumption compared with PRE and PLA intervention. The data demonstrate that a single dose of 140 ml of BJ consumption improves macrovascular endothelial function, but not StO2 parameters.
Collapse
|
168
|
Carlström M, Lundberg JO, Weitzberg E. Mechanisms underlying blood pressure reduction by dietary inorganic nitrate. Acta Physiol (Oxf) 2018; 224:e13080. [PMID: 29694703 DOI: 10.1111/apha.13080] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) importantly contributes to cardiovascular homeostasis by regulating blood flow and maintaining endothelial integrity. Conversely, reduced NO bioavailability is a central feature during natural ageing and in many cardiovascular disorders, including hypertension. The inorganic anions nitrate and nitrite are endogenously formed after oxidation of NO synthase (NOS)-derived NO and are also present in our daily diet. Knowledge accumulated over the past two decades has demonstrated that these anions can be recycled back to NO and other bioactive nitrogen oxides via serial reductions that involve oral commensal bacteria and various enzymatic systems. Intake of inorganic nitrate, which is predominantly found in green leafy vegetables and beets, has a variety of favourable cardiovascular effects. As hypertension is a major risk factor of morbidity and mortality worldwide, much attention has been paid to the blood pressure reducing effect of inorganic nitrate. Here, we describe how dietary nitrate, via stimulation of the nitrate-nitrite-NO pathway, affects various organ systems and discuss underlying mechanisms that may contribute to the observed blood pressure-lowering effect.
Collapse
Affiliation(s)
- M. Carlström
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - J. O. Lundberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - E. Weitzberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
169
|
Vanhatalo A, Blackwell JR, L'Heureux JE, Williams DW, Smith A, van der Giezen M, Winyard PG, Kelly J, Jones AM. Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radic Biol Med 2018; 124:21-30. [PMID: 29807159 PMCID: PMC6191927 DOI: 10.1016/j.freeradbiomed.2018.05.078] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/19/2018] [Accepted: 05/21/2018] [Indexed: 11/24/2022]
Abstract
Imbalances in the oral microbial community have been associated with reduced cardiovascular and metabolic health. A possible mechanism linking the oral microbiota to health is the nitrate (NO3-)-nitrite (NO2-)-nitric oxide (NO) pathway, which relies on oral bacteria to reduce NO3- to NO2-. NO (generated from both NO2- and L-arginine) regulates vascular endothelial function and therefore blood pressure (BP). By sequencing bacterial 16S rRNA genes we examined the relationships between the oral microbiome and physiological indices of NO bioavailability and possible changes in these variables following 10 days of NO3- (12 mmol/d) and placebo supplementation in young (18-22 yrs) and old (70-79 yrs) normotensive humans (n = 18). NO3- supplementation altered the salivary microbiome compared to placebo by increasing the relative abundance of Proteobacteria (+225%) and decreasing the relative abundance of Bacteroidetes (-46%; P < 0.05). After NO3-supplementation the relative abundances of Rothia (+127%) and Neisseria (+351%) were greater, and Prevotella (-60%) and Veillonella (-65%) were lower than in the placebo condition (all P < 0.05). NO3- supplementation increased plasma concentration of NO2- and reduced systemic blood pressure in old (70-79 yrs), but not young (18-22 yrs), participants. High abundances of Rothia and Neisseria and low abundances of Prevotella and Veillonella were correlated with greater increases in plasma [NO2-] in response to NO3- supplementation. The current findings indicate that the oral microbiome is malleable to change with increased dietary intake of inorganic NO3-, and that diet-induced changes in the oral microbial community are related to indices of NO homeostasis and vascular health in vivo.
Collapse
Affiliation(s)
- Anni Vanhatalo
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK.
| | - Jamie R Blackwell
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK
| | - Joanna E L'Heureux
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK
| | | | - Ann Smith
- Division of Population Medicine, Cardiff University, Cardiff CF14 4XY UK
| | - Mark van der Giezen
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK
| | - Paul G Winyard
- University of Exeter Medical School, University of Exeter, Exeter EX1 1TE, UK
| | - James Kelly
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK
| | - Andrew M Jones
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK
| |
Collapse
|
170
|
Effects of dietary nitrate supplementation, from beetroot juice, on blood pressure in hypertensive pregnant women: A randomised, double-blind, placebo-controlled feasibility trial. Nitric Oxide 2018; 80:37-44. [PMID: 30099096 DOI: 10.1016/j.niox.2018.08.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/11/2018] [Accepted: 08/06/2018] [Indexed: 11/22/2022]
Abstract
Chronic hypertension in pregnancy is associated with significant adverse pregnancy outcomes, increasing the risk of pre-eclampsia, fetal growth restriction and preterm birth. Dietary nitrate, abundant in green leafy vegetables and beetroot, is reduced in vivo to nitrite and subsequently nitric oxide, and has been demonstrated to lower blood pressure, improve vascular compliance and enhance blood flow in non-pregnant humans and animals. The primary aims of this study were to determine the acceptability and efficacy of dietary nitrate supplementation, in the form of beetroot juice, to lower blood pressure in hypertensive pregnant women. In this double-blind, placebo-controlled feasibility trial, 40 pregnant women received either daily nitrate supplementation (70 mL beetroot juice, n = 20) or placebo (70 mL nitrate-depleted beetroot juice, n = 20) for 8 days. Blood pressure, cardiovascular function and uteroplacental blood flow was assessed at baseline and following acute (3 h) and prolonged (8 days) supplementation. Plasma and salivary samples were collected for analysis of nitrate and nitrite concentrations and acceptability of this dietary intervention was assessed based on questionnaire feedback. Dietary nitrate significantly increased plasma and salivary nitrate/nitrite concentrations compared with placebo juice (p < 0.001), with marked variation between women. Compared with placebo, there was no overall reduction in blood pressure in the nitrate-treated group; however there was a highly significant correlation between changes in plasma nitrite concentrations and changes in diastolic blood pressure in the nitrate-treated arm only (r = -0.6481; p = 0.0042). Beetroot juice supplementation was an acceptable dietary intervention to 97% of women. This trial confirms acceptability and potential efficacy of dietary nitrate supplementation in pregnant women. Conversion of nitrate to nitrite critically involves oral bacterial nitrate reductase activities. We speculate that differences in efficacy of nitrate supplementation relate to differences in the oral microbiome, which will be investigated in future studies.
Collapse
|
171
|
Abstract
Nitric oxide (NO), generated from L-arginine and oxygen by NO synthases, is a pleiotropic signaling molecule involved in cardiovascular and metabolic regulation. More recently, an alternative pathway for the formation of this free radical has been explored. The inorganic anions nitrate (NO3-) and nitrite (NO2-), originating from dietary and endogenous sources, generate NO bioactivity in a process involving seemingly symbiotic oral bacteria and host enzymes in blood and tissues. The described cardio-metabolic effects of dietary nitrate from experimental and clinical studies include lowering of blood pressure, improved endothelial function, increased exercise performance, and reversal of metabolic syndrome, as well as antidiabetic effects. The mechanisms underlying the salutary metabolic effects of nitrate are being revealed and include interaction with mitochondrial respiration, activation of key metabolic regulatory pathways, and reduction of oxidative stress. Here we review the recent advances in the nitrate-nitrite-NO pathway, focusing on metabolic effects in health and disease.
Collapse
|
172
|
Blekkenhorst LC, Lewis JR, Prince RL, Devine A, Bondonno NP, Bondonno CP, Wood LG, Puddey IB, Ward NC, Croft KD, Woodman RJ, Beilin LJ, Hodgson JM. Nitrate-rich vegetables do not lower blood pressure in individuals with mildly elevated blood pressure: a 4-wk randomized controlled crossover trial. Am J Clin Nutr 2018; 107:894-908. [PMID: 29868911 DOI: 10.1093/ajcn/nqy061] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/12/2018] [Indexed: 11/12/2022] Open
Abstract
Background Emerging evidence suggests that increasing intakes of nitrate-rich vegetables may be an effective approach to reduce blood pressure. Objective Our primary aim was to determine whether daily consumption of nitrate-rich vegetables over 4 wk would result in lower blood pressure. Design Thirty participants with prehypertension or untreated grade 1 hypertension were recruited to a randomized controlled crossover trial with 4-wk treatment periods separated by 4-wk washout periods. Participants completed 3 treatments in random order: 1) increased intake (∼200 g/d) of nitrate-rich vegetables [high-nitrate (HN); ∼150 mg nitrate/d], 2) increased intake (∼200 g/d) of nitrate-poor vegetables [low-nitrate (LN); ∼22 mg nitrate/d], and 3) no increase in vegetables (control; ∼6 mg nitrate/d). Compliance was assessed with the use of food diaries and by measuring plasma nitrate and carotenoids. Nitrate metabolism was assessed with the use of plasma, salivary, and urinary nitrate and nitrite concentrations. The primary outcome was blood pressure assessed by using 24-h ambulatory, home, and clinic measurements. Secondary outcomes included measures of arterial stiffness. Results Plasma nitrate and nitrite concentrations increased with the HN treatment in comparison to the LN and control treatments (P < 0.001). Plasma carotenoids increased with the HN and LN treatments compared with the control (P < 0.01). HN treatment did not reduce systolic blood pressure [24-h ambulatory-HN: 127.4 ± 1.1 mm Hg; LN: 128.6 ± 1.1 mm Hg; control: 126.2 ± 1.1 mm Hg (P = 0.20); home-HN: 127.4 ± 0.7 mm Hg; LN: 128.7 ± 0.7 mm Hg; control: 128.3 ± 0.7 mm Hg (P = 0.36); clinic-HN: 128.4 ± 1.3 mm Hg; LN: 130.3 ± 1.3 mm Hg; control: 129.8 ± 1.3 mm Hg (P = 0.49)] or diastolic blood pressure compared with LN and control treatments (P > 0.05) after adjustment for pretreatment values, treatment period, and treatment order. Similarly, no differences were observed between treatments for arterial stiffness measures (P > 0.05). Conclusion Increased intake of nitrate-rich vegetables did not lower blood pressure in prehypertensive or untreated grade 1 hypertensive individuals when compared with increased intake of nitrate-poor vegetables and no increase in vegetables. This trial was registered at www.anzctr.org.au as ACTRN12615000194561.
Collapse
Affiliation(s)
- Lauren C Blekkenhorst
- Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, Western Australia, Australia
- Medical School, Queen Elizabeth Medical Center Unit, University of Western Australia, Nedlands, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Joshua R Lewis
- Medical School, Queen Elizabeth Medical Center Unit, University of Western Australia, Nedlands, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Center for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- School of Public Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Richard L Prince
- Medical School, Queen Elizabeth Medical Center Unit, University of Western Australia, Nedlands, Western Australia, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Nicola P Bondonno
- Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Lisa G Wood
- School of Biomedical Science and Pharmacy, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Ian B Puddey
- Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, Western Australia, Australia
| | - Natalie C Ward
- Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Kevin D Croft
- Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, Western Australia, Australia
| | - Richard J Woodman
- Flinders Center for Epidemiology and Biostatistics, Flinders University, Adelaide, South Australia, Australia
| | - Lawrence J Beilin
- Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
173
|
Bondonno CP, Blekkenhorst LC, Liu AH, Bondonno NP, Ward NC, Croft KD, Hodgson JM. Vegetable-derived bioactive nitrate and cardiovascular health. Mol Aspects Med 2018; 61:83-91. [DOI: 10.1016/j.mam.2017.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
|
174
|
Does dietary nitrate say NO to cardiovascular ageing? Current evidence and implications for research. Proc Nutr Soc 2018; 77:112-123. [DOI: 10.1017/s0029665118000058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CVD are characterised by a multi-factorial pathogenesis. Key pathogenetic steps in the development of CVD are the occurrence of endothelial dysfunction and formation of atherosclerotic lesions. Reduced nitric oxide (NO) bioavailability is a primary event in the initiation of the atherosclerotic cascade. NO is a free radical with multiple physiological functions including the regulation of vascular resistance, coagulation, immunity and oxidative metabolism. The synthesis of NO proceeds via two distinct pathways identified as enzymatic and non-enzymatic. The former involves the conversion of arginine into NO by the NO synthases, whilst the latter comprises a two-step reducing process converting inorganic nitrate $({\rm NO}_3^ - )$ into nitrite and subsequently NO.Inorganic ${\rm NO}_3^ - $ is present in water and food, particularly beetroot and green leafy vegetables. Several investigations have therefore used the non-enzymatic NO pathway as a target for nutritional supplementation (${\rm NO}_3^ - $ salts) or dietary interventions (high-${\rm NO}_3^ - $ foods) to increase NO bioavailability and impact on cardiovascular outcomes. Some studies have reported positive effects of dietary ${\rm NO}_3^ - $ on systolic blood pressure and endothelial function in patients with hypertension and chronic heart failure. Nevertheless, results have been inconsistent and the size of the effect appears to be declining in older individuals. Additionally, there is a paucity of studies for disorders such as diabetes, CHD and chronic kidney failure. Thus, whilst dietary ${\rm NO}_3^ - $ supplementation could represent an effective and viable strategy for the primary and secondary prevention of age-related cardiovascular and metabolic diseases, more large-scale, robust studies are awaited to confirm or refute this notion.
Collapse
|
175
|
Abstract
The human microbiome project (HMP) promoted further understanding of human oral microbes. However, research on the human oral microbiota has not made as much progress as research on the gut microbiota. Currently, the causal relationship between the oral microbiota and oral diseases remains unclear, and little is known about the link between the oral microbiota and human systemic diseases. To further understand the contribution of the oral microbiota in oral diseases and systemic diseases, a Human Oral Microbiome Database (HOMD) was established in the US. The HOMD includes 619 taxa in 13 phyla, and most of the microorganisms are from American populations. Due to individual differences in the microbiome, the HOMD does not reflect the Chinese oral microbial status. Herein, we established a new oral microbiome database—the Oral Microbiome Bank of China (OMBC, http://www.sklod.org/ombc). Currently, the OMBC includes information on 289 bacterial strains and 720 clinical samples from the Chinese population, along with lab and clinical information. The OMBC is the first curated description of a Chinese-associated microbiome; it provides tools for use in investigating the role of the oral microbiome in health and diseases, and will give the community abundant data and strain information for future oral microbial studies. A new resource for consolidating oral microbiome data will help researchers explore the relationship between these commensal communities and the health of their hosts. Numerous studies have highlighted apparent connections between alterations in the microbial communities within the human mouth and medical conditions including diabetes and cancer. A recent article from researchers led by Liao Ga at Sichuan University describes the launch of the Oral Microbiome Bank of China, an effort to study such connections by profiling specimens from individuals from across the country. The database currently houses detailed information on 289 bacterial strains and the samples from which they were obtained. The authors are now looking to analyze these data to gain insights into the structure and function of oral ecosystems, and to further expand this database as a resource for Chinese microbiome research.
Collapse
|
176
|
Blekkenhorst LC, Bondonno NP, Liu AH, Ward NC, Prince RL, Lewis JR, Devine A, Croft KD, Hodgson JM, Bondonno CP. Nitrate, the oral microbiome, and cardiovascular health: a systematic literature review of human and animal studies. Am J Clin Nutr 2018; 107:504-522. [PMID: 29635489 DOI: 10.1093/ajcn/nqx046] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022] Open
Abstract
Background Dietary nitrate is an important source of nitric oxide (NO), a molecule critical for cardiovascular health. Nitrate is sequentially reduced to NO through an enterosalivary nitrate-nitrite-NO pathway that involves the oral microbiome. This pathway is considered an important adjunct pathway to the classical l-arginine-NO synthase pathway. Objective The objective of this study was to systematically assess the evidence for dietary nitrate intake and improved cardiovascular health from both human and animal studies. Design A systematic literature search was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines by using key search terms in Medline and EMBASE databases and defined inclusion and exclusion criteria. Results Thirty-seven articles on humans and 14 articles on animals were included from 12,541 screened references. Data on the effects of dietary nitrate on blood pressure, endothelial function, ischemic reperfusion injury, arterial stiffness, platelet function, and cerebral blood flow in both human and animal models were identified. Beneficial effects of nitrate on vascular health have predominantly been observed in healthy human populations, whereas effects in populations at risk of cardiovascular disease are less clear. Few studies have investigated the long-term effects of dietary nitrate on cardiovascular disease clinical endpoints. In animal studies, there is evidence that nitrate improves blood pressure and endothelial function, particularly in animal models with reduced NO bioavailability. Nitrate dose seems to be a critical factor because there is evidence of cross-talk between the 2 pathways of NO production. Conclusions Evidence for a beneficial effect in humans at risk of cardiovascular disease is limited. Furthermore, there is a need to investigate the long-term effects of dietary nitrate on cardiovascular disease clinical endpoints. Further animal studies are required to elucidate the mechanisms behind the observed effects.
Collapse
Affiliation(s)
- Lauren C Blekkenhorst
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Nicola P Bondonno
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Alex H Liu
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Natalie C Ward
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Richard L Prince
- Medical School, Queen Elizabeth Medical Center Unit, University of Western Australia, Nedlands, Western Australia, Australia
| | - Joshua R Lewis
- Medical School, Queen Elizabeth Medical Center Unit, University of Western Australia, Nedlands, Western Australia, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kevin D Croft
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Catherine P Bondonno
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
177
|
Asgary S, Rastqar A, Keshvari M. Functional Food and Cardiovascular Disease Prevention and Treatment: A Review. J Am Coll Nutr 2018. [PMID: 29528772 DOI: 10.1080/07315724.2017.1410867] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease (CVD) is now the leading cause of death globally and is a growing health concern. Lifestyle factors, including nutrition, play an important role in the etiology and treatment of CVD. Functional foods based on their basic nutritional functions can decrease the risk of many chronic diseases and have some physiological benefits. They contain physiologically active components either from plant or animal sources, marketed with the claim of their ability to reduce heart disease risk, focusing primarily on established risk factors, which are hyperlipidemia, diabetes, metabolic syndrome, obesity/overweight, elevated lipoprotein A level, small dense low-density lipoprotein cholesterol (LDL-C), and elevated inflammatory marker levels. Functional foods are suspected to exert their cardioprotective effects mainly through blood lipid profile level and improve hypertension control, endothelial function, platelet aggregation, and antioxidant actions. Clinical and epidemiological observations indicate that vegetable and fruit fiber, nuts and seeds, sea foods, coffee, tea, and dark chocolate have cardioprotective potential in humans, as well whole-grain products containing intact grain kernels rich in fiber and trace nutrients. They are nutritionally more important because they contain phytoprotective substances that might work synergistically to reduce cardiovascular risk. This review will focus on the reciprocal interaction between functional foods and the potential link to cardiovascular health and the possible mechanisms of action.
Collapse
Affiliation(s)
- Sedigheh Asgary
- a Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Ali Rastqar
- b Department of Psychiatry and Neuroscience , Université Laval, Québec , Québec , Canada.,c Research Center of University Affiliated Québec Mental Health Institute, Québec , Québec , Canada
| | - Mahtab Keshvari
- a Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences , Isfahan , Iran
| |
Collapse
|
178
|
Abstract
For millions of years, our resident microbes have coevolved and coexisted with us in a mostly harmonious symbiotic relationship. We are not distinct entities from our microbiome, but together we form a 'superorganism' or holobiont, with the microbiome playing a significant role in our physiology and health. The mouth houses the second most diverse microbial community in the body, harbouring over 700 species of bacteria that colonise the hard surfaces of teeth and the soft tissues of the oral mucosa. Through recent advances in technology, we have started to unravel the complexities of the oral microbiome and gained new insights into its role during both health and disease. Perturbations of the oral microbiome through modern-day lifestyles can have detrimental consequences for our general and oral health. In dysbiosis, the finely-tuned equilibrium of the oral ecosystem is disrupted, allowing disease-promoting bacteria to manifest and cause conditions such as caries, gingivitis and periodontitis. For practitioners and patients alike, promoting a balanced microbiome is therefore important to effectively maintain or restore oral health. This article aims to give an update on our current knowledge of the oral microbiome in health and disease and to discuss implications for modern-day oral healthcare.
Collapse
|
179
|
Ashor AW, Lara J, Siervo M. Medium-term effects of dietary nitrate supplementation on systolic and diastolic blood pressure in adults: a systematic review and meta-analysis. J Hypertens 2018; 35:1353-1359. [PMID: 28319596 DOI: 10.1097/hjh.0000000000001305] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Dietary nitrate supplementation has been shown to lower blood pressure (BP) particularly in short-term clinical trials. Whether these effects are sustained in the long-term remains to be established. The objective was to conduct a meta-analysis of randomized controlled trials that examined whether dietary nitrate supplementation for more than 1 week has beneficial effects on SBP and DBP. METHODS Electronic databases were searched from inception until May 2016. Specific inclusion criteria were duration at least 1 week, report of effects on SBP or DBP or both and comparison of inorganic nitrate or beetroot juice supplementation with placebo control groups. Random-effects models were used to calculate the pooled BP effect sizes. RESULTS Thirteen trials met eligibility criteria. The trials included a total of 325 participants with seven to 65 participants per study. The duration of each intervention ranged from 1 to 6 weeks. Ten trials assessed BP in resting clinic conditions, whereas 24-h ambulatory and daily home monitorings were used in six and three trials, respectively. Overall, dietary nitrate was associated with a significant decline in SBP [-4.1 mmHg (95% confidence interval: -6.1, -2.2); P < 0.001] and DBP [-2.0 mmHg (95% confidence interval: -3.0, -0.9); P < 0.001]. However, the effect was only significant when measured in resting clinical settings as no significant changes in BP were observed using 24-h ambulatory and daily home BP monitorings. CONCLUSION Positive effects of medium-term dietary nitrate supplementation on BP were only observed in clinical settings, which were not corroborated by more accurate methods such as 24-h ambulatory and daily home monitorings.
Collapse
Affiliation(s)
- Ammar W Ashor
- aHuman Nutrition Research Centre, Institute of Cellular Medicine, Campus for Ageing and Vitality, Newcastle University bDepartment of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
180
|
Thomas DD, Corey C, Hickok J, Wang Y, Shiva S. Differential mitochondrial dinitrosyliron complex formation by nitrite and nitric oxide. Redox Biol 2017; 15:277-283. [PMID: 29304478 PMCID: PMC5975210 DOI: 10.1016/j.redox.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 01/09/2023] Open
Abstract
Nitrite represents an endocrine reserve of bioavailable nitric oxide (NO) that mediates a number of physiological responses including conferral of cytoprotection after ischemia/reperfusion (I/R). It has long been known that nitrite can react with non-heme iron to form dinitrosyliron complexes (DNIC). However, it remains unclear how quickly nitrite-dependent DNIC form in vivo, whether formation kinetics differ from that of NO-dependent DNIC, and whether DNIC play a role in the cytoprotective effects of nitrite. Here we demonstrate that chronic but not acute nitrite supplementation increases DNIC concentration in the liver and kidney of mice. Although DNIC have been purported to have antioxidant properties, we show that the accumulation of DNIC in vivo is not associated with nitrite-dependent cytoprotection after hepatic I/R. Further, our data in an isolated mitochondrial model of anoxia/reoxygenation show that while NO and nitrite demonstrate similar S-nitrosothiol formation kinetics, DNIC formation is significantly greater with NO and associated with mitochondrial dysfunction as well as inhibition of aconitase activity. These data are the first to directly compare mitochondrial DNIC formation by NO and nitrite. This study suggests that nitrite-dependent DNIC formation is a physiological consequence of dietary nitrite. The data presented herein implicate mitochondrial DNIC formation as a potential mechanism underlying the differential cytoprotective effects of nitrite and NO after I/R, and suggest that DNIC formation is potentially responsible for the cytotoxic effects observed at high NO concentrations. Dietary nitrite results in DNIC formation in many tissues, most notably the liver. Nitrite-dependent DNIC accumulate within the mitochondrion. NO generates greater DNIC formation in the mitochondrion than nitrite. At high concentrations of NO DNIC formation is associated with mitochondrial injury.
Collapse
Affiliation(s)
- Douglas D Thomas
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 South Wood St., Chicago IL 60612, USA.
| | - Catherine Corey
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, BST1240E, 200 Lothrop St, Pittsburgh, PA 15261, USA
| | - Jason Hickok
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 South Wood St., Chicago IL 60612, USA
| | - Yinna Wang
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, BST1240E, 200 Lothrop St, Pittsburgh, PA 15261, USA
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, BST1240E, 200 Lothrop St, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
181
|
Rosier BT, Marsh PD, Mira A. Resilience of the Oral Microbiota in Health: Mechanisms That Prevent Dysbiosis. J Dent Res 2017; 97:371-380. [PMID: 29195050 DOI: 10.1177/0022034517742139] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dental diseases are now viewed as a consequence of a deleterious shift in the balance of the normally stable resident oral microbiome. It is known that frequent carbohydrate consumption or reduced saliva flow can lead to caries, and excessive plaque accumulation increases the risk of periodontal diseases. However, when these "disease drivers" are present, while some individuals appear to be susceptible, others are more tolerant or resilient to suffering from undesirable changes in their oral microbiome. Health-maintaining mechanisms that limit the effect of disease drivers include the complex set of metabolic and functional interrelationships that develop within dental biofilms and between biofilms and the host. In contrast, "positive feedback loops" can develop within these microbial communities that disrupt resilience and provoke a large and abrupt change in function and structure of the ecosystem (a microbial "regime shift"), which promotes dysbiosis and oral disease. For instance, acidification due to carbohydrate fermentation or inflammation in response to accumulated plaque select for a cariogenic or periopathogenic microbiota, respectively, in a chain of self-reinforcing events. Conversely, in tolerant individuals, health-maintaining mechanisms, including negative feedback to the drivers, can maintain resilience and promote resistance to and recovery from disease drivers. Recently studied health-maintaining mechanisms include ammonia production, limiting a drop in pH that can lead to caries, and denitrification, which could inhibit several stages of disease-associated positive feedback loops. Omics studies comparing the microbiome of, and its interaction with, susceptible and tolerant hosts can detect markers of resilience. The neutralization or inhibition of disease drivers, together with the identification and promotion of health-promoting species and functions, for example, by pre- and probiotics, could enhance microbiome resilience and lead to new strategies to prevent disease.
Collapse
Affiliation(s)
- B T Rosier
- 1 Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - P D Marsh
- 2 Department of Oral Biology, School of Dentistry, University of Leeds, UK
| | - A Mira
- 1 Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| |
Collapse
|
182
|
Raubenheimer K, Hickey D, Leveritt M, Fassett R, Ortiz de Zevallos Munoz J, Allen JD, Briskey D, Parker TJ, Kerr G, Peake JM, Pecheniuk NM, Neubauer O. Acute Effects of Nitrate-Rich Beetroot Juice on Blood Pressure, Hemostasis and Vascular Inflammation Markers in Healthy Older Adults: A Randomized, Placebo-Controlled Crossover Study. Nutrients 2017; 9:nu9111270. [PMID: 29165355 PMCID: PMC5707742 DOI: 10.3390/nu9111270] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is associated with a vasoconstrictive, pro-coagulant, and pro-inflammatory profile of arteries and a decline in the bioavailability of the endothelium-derived molecule nitric oxide. Dietary nitrate elicits vasodilatory, anti-coagulant and anti-inflammatory effects in younger individuals, but little is known about whether these benefits are evident in older adults. We investigated the effects of 140 mL of nitrate-rich (HI-NI; containing 12.9 mmol nitrate) versus nitrate-depleted beetroot juice (LO-NI; containing ≤0.04 mmol nitrate) on blood pressure, blood coagulation, vascular inflammation markers, plasma nitrate and nitrite before, and 3 h and 6 h after ingestion in healthy older adults (five males, seven females, mean age: 64 years, age range: 57-71 years) in a randomized, placebo-controlled, crossover study. Plasma nitrate and nitrite increased 3 and 6 h after HI-NI ingestion (p < 0.05). Systolic, diastolic and mean arterial blood pressure decreased 3 h relative to baseline after HI-NI ingestion only (p < 0.05). The number of blood monocyte-platelet aggregates decreased 3 h after HI-NI intake (p < 0.05), indicating reduced platelet activation. The number of blood CD11b-expressing granulocytes decreased 3 h following HI-NI beetroot juice intake (p < 0.05), suggesting a shift toward an anti-adhesive granulocyte phenotype. Numbers of blood CD14++CD16⁺ intermediate monocyte subtypes slightly increased 6 h after HI-NI beetroot juice ingestion (p < 0.05), but the clinical implications of this response are currently unclear. These findings provide new evidence for the acute effects of nitrate-rich beetroot juice on circulating immune cells and platelets. Further long-term research is warranted to determine if these effects reduce the risk of developing hypertension and vascular inflammation with aging.
Collapse
Affiliation(s)
- Kyle Raubenheimer
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
| | - Danica Hickey
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
| | - Michael Leveritt
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, OLD 4059, Australia.
| | - Robert Fassett
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, OLD 4059, Australia.
| | | | - Jason D Allen
- Institute of Sport Exercise and Active Living, Victoria University, Melbourne, VIC 8001, Australia.
| | - David Briskey
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, OLD 4059, Australia.
| | - Tony J Parker
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
| | - Graham Kerr
- School of Exercise and Nutrition Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
| | - Jonathan M Peake
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
| | - Natalie M Pecheniuk
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
| | - Oliver Neubauer
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
| |
Collapse
|
183
|
Bhaswant M, Brown L, McAinch AJ, Mathai ML. Beetroot and Sodium Nitrate Ameliorate Cardiometabolic Changes in Diet‐Induced Obese Hypertensive Rats. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700478] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/02/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Maharshi Bhaswant
- Centre for Chronic DiseaseCollege of Health and BiomedicineVictoria University Melbourne 3021 Australia
- Department of BiotechnologyK L University Vaddeswaram Guntur 522502 India
| | - Lindsay Brown
- School of Health and Wellbeing and Institute for Agriculture and the EnvironmentUniversity of Southern Queensland Toowoomba 4350 Australia
| | - Andrew J. McAinch
- Centre for Chronic DiseaseCollege of Health and BiomedicineVictoria University Melbourne 3021 Australia
- Australian Institute for Musculoskeletal ScienceCollege of Health and BiomedicineVictoria University Melbourne 3021 Australia
| | - Michael L. Mathai
- Centre for Chronic DiseaseCollege of Health and BiomedicineVictoria University Melbourne 3021 Australia
| |
Collapse
|
184
|
Bahadoran Z, Mirmiran P, Kabir A, Azizi F, Ghasemi A. The Nitrate-Independent Blood Pressure-Lowering Effect of Beetroot Juice: A Systematic Review and Meta-Analysis. Adv Nutr 2017; 8:830-838. [PMID: 29141968 PMCID: PMC5683004 DOI: 10.3945/an.117.016717] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Beetroot is considered a complementary treatment for hypertension because of its high content of inorganic NO3 This systematic review and meta-analysis aimed to clarify several aspects of beetroot juice supplementation on systolic blood pressure (SBP) and diastolic blood pressure (DBP). We searched PubMed, Scopus, and Embase databases, and the reference lists of previous reviews. Randomized clinical trials that investigated the effects of beetroot juice on resting blood pressure in humans were recruited for quality assessment, meta-analyses, subgroup analyses, and meta-regressions; of these, 22 were conducted between 2009 and 2017 and included a total of 47 intervention (n = 650) and 43 control (n = 598) groups. Overall, SBP (-3.55 mm Hg; 95% CI: -4.55, -2.54 mm Hg) and DBP (-1.32 mm Hg; 95% CI: -1.97, -0.68 mm Hg) were significantly lower in the beetroot juice-supplemented groups than in the control groups. The mean difference of SBP was larger between beetroot juice-supplemented and control groups in the longer than in the shorter (≥14 compared with <14 d) study durations (-5.11 compared with -2.67 mm Hg) and the highest compared with the lowest (500 compared with 70 and 140 mL/d) doses of beetroot juice (-4.78 compared with -2.37 mm Hg). A positive correlation was observed between beetroot juice doses and the mean differences of blood pressures. In contrast, a smaller effect size of blood pressures was observed after supplementation with higher NO3 (milligrams per 100 mL beetroot juice). A weak effect size was observed in a meta-analysis of trials that used NO3-depleted beetroot juice as a placebo compared with other interventions (-3.09 compared with -4.51 mm Hg for SBP and -0.81 compared with -2.01 mm Hg for DBP). Our results demonstrate the blood pressure-lowering effects of beetroot juice and highlight its potential NO3-independent effects.
Collapse
Affiliation(s)
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; and
| | - Ali Kabir
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Asghar Ghasemi
- Endocrine Physiology Center, Research Institute for Endocrine Sciences
| |
Collapse
|
185
|
Abstract
PURPOSE OF REVIEW Early interventional trials reported improvements in cardiac and exercise outcomes with inorganic nitrate ingestion. The current review aims to provide a brief update of recent evidence regarding ergogenic and cardiovascular effects of dietary nitrate and practical recommendations. RECENT FINDINGS Recent evidence has been inconsistent and questions remain regarding effective dose, duration, and source of nitrate and cohorts likely to benefit. Dietary nitrate may be most relevant to those with vascular/metabolic impairments, those engaging in short-term, intense exercise, deconditioned individuals, and those with a low dietary nitrate intake. SUMMARY The evidence for cardiovascular/exercise benefit is plausible but inconsistent. However, dietary nitrate, in contrast to pharmacological nitrate, has a high benefit-risk ratio. Although nitrate supplementation has grown in popularity, it is suggested that increased green vegetables consumption may provide similar/superior benefits to nitrate supplementation in a cheaper, safer, and potentially tastier context.
Collapse
Affiliation(s)
- Conor P Kerley
- Physicians Committee for Responsible Medicine, 5100 Wisconsin Avenue, N.W. Ste. 400, Washington, District of Columbia, USA
| |
Collapse
|
186
|
Balmain BN, Sabapathy S, Jay O, Adsett J, Stewart GM, Jayasinghe R, Morris NR. Heart Failure and Thermoregulatory Control: Can Patients With Heart Failure Handle the Heat? J Card Fail 2017; 23:621-627. [DOI: 10.1016/j.cardfail.2017.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 12/28/2022]
|
187
|
Wajih N, Basu S, Jailwala A, Kim HW, Ostrowski D, Perlegas A, Bolden CA, Buechler NL, Gladwin MT, Caudell DL, Rahbar E, Alexander-Miller MA, Vachharajani V, Kim-Shapiro DB. Potential therapeutic action of nitrite in sickle cell disease. Redox Biol 2017; 12:1026-1039. [PMID: 28511346 PMCID: PMC5430577 DOI: 10.1016/j.redox.2017.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 12/26/2022] Open
Abstract
Sickle cell disease is caused by a mutant form of hemoglobin that polymerizes under hypoxic conditions, increasing rigidity, fragility, calcium influx-mediated dehydration, and adhesivity of red blood cells. Increased red cell fragility results in hemolysis, which reduces nitric oxide (NO) bioavailability, and induces platelet activation and inflammation leading to adhesion of circulating blood cells. Nitric Oxide inhibits adhesion and platelet activation. Nitrite has emerged as an attractive therapeutic agent that targets delivery of NO activity to areas of hypoxia through bioactivation by deoxygenated red blood cell hemoglobin. In this study, we demonstrate anti-platelet activity of nitrite at doses achievable through dietary interventions with comparison to similar doses with other NO donating agents. Unlike other NO donating agents, nitrite activity is shown to be potentiated in the presence of red blood cells in hypoxic conditions. We also show that nitrite reduces calcium associated loss of phospholipid asymmetry that is associated with increased red cell adhesion, and that red cell deformability is also improved. We show that nitrite inhibits red cell adhesion in a microfluidic flow-channel assay after endothelial cell activation. In further investigations, we show that leukocyte and platelet adhesion is blunted in nitrite-fed wild type mice compared to control after either lipopolysaccharide- or hemolysis-induced inflammation. Moreover, we demonstrate that nitrite treatment results in a reduction in adhesion of circulating blood cells and reduced red blood cell hemolysis in humanized transgenic sickle cell mice subjected to local hypoxia. These data suggest that nitrite is an effective anti-platelet and anti-adhesion agent that is activated by red blood cells, with enhanced potency under physiological hypoxia and in venous blood that may be useful therapeutically.
Collapse
Affiliation(s)
- Nadeem Wajih
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, United States; Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, United States
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, United States; Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, United States
| | - Anuj Jailwala
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, United States
| | - Hee Won Kim
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, United States
| | - David Ostrowski
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, United States
| | - Andreas Perlegas
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, United States
| | - Crystal A Bolden
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, United States
| | - Nancy L Buechler
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Mark T Gladwin
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, United States; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - David L Caudell
- Department of Pathology-Comparative Medicine, Section on Rheumatology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Elaheh Rahbar
- Department of Biomedical Engineering, Section on Rheumatology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Section on Rheumatology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Vidula Vachharajani
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, United States; Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States.
| | - Daniel B Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, United States; Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, United States.
| |
Collapse
|
188
|
Chimenos-Küstner E, Giovannoni ML, Schemel-Suárez M. Dysbiosis as a determinant factor of systemic and oral pathology: importance of microbiome. Med Clin (Barc) 2017; 149:305-309. [PMID: 28669517 DOI: 10.1016/j.medcli.2017.05.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 05/18/2017] [Accepted: 05/20/2017] [Indexed: 12/12/2022]
Abstract
Advances in genetic and epigenetic studies modified some concepts of health and disease that had been kept intact for decades. In this respect, in the last few years, microorganisms that have evolved with superior life forms for millions of years have taken an increased prominence. The genes of organisms and their microbiota constitute a microbiome that intervenes in health maintenance. The oral cavity is inhabited by a variety of microorganisms, their control aids in stabilising oral and systemic disease. The objective of this article is to update some concepts related to oral microbiome and its correlation with general and oral health.
Collapse
Affiliation(s)
- Eduardo Chimenos-Küstner
- Estomatología, Docencia Titular de Medicina Bucal, Departamento de Odontoestomatología, Facultad de Medicina y Ciencias de la Salud, Universidad de Barcelona, Barcelona, España.
| | - María Laura Giovannoni
- Odontología, Dociencia Asociada de Ergonomía, Departamento de Odontoestomatología, Facultad de Medicina y Ciencias de la Salud, Universidad de Barcelona, Barcelona, España
| | - Mayra Schemel-Suárez
- Odontología, Máster en Medicina Bucal, Departamento de Odontoestomatología, Facultad de Medicina y Ciencias de la Salud, Universidad de Barcelona, Barcelona, España
| |
Collapse
|
189
|
Daiber A, Steven S, Weber A, Shuvaev VV, Muzykantov VR, Laher I, Li H, Lamas S, Münzel T. Targeting vascular (endothelial) dysfunction. Br J Pharmacol 2017; 174:1591-1619. [PMID: 27187006 PMCID: PMC5446575 DOI: 10.1111/bph.13517] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases are major contributors to global deaths and disability-adjusted life years, with hypertension a significant risk factor for all causes of death. The endothelium that lines the inner wall of the vasculature regulates essential haemostatic functions, such as vascular tone, circulation of blood cells, inflammation and platelet activity. Endothelial dysfunction is an early predictor of atherosclerosis and future cardiovascular events. We review the prognostic value of obtaining measurements of endothelial function, the clinical techniques for its determination, the mechanisms leading to endothelial dysfunction and the therapeutic treatment of endothelial dysfunction. Since vascular oxidative stress and inflammation are major determinants of endothelial function, we have also addressed current antioxidant and anti-inflammatory therapies. In the light of recent data that dispute the prognostic value of endothelial function in healthy human cohorts, we also discuss alternative diagnostic parameters such as vascular stiffness index and intima/media thickness ratio. We also suggest that assessing vascular function, including that of smooth muscle and even perivascular adipose tissue, may be an appropriate parameter for clinical investigations. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Andreas Daiber
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine‐MainMainzGermany
| | - Sebastian Steven
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- Center of Thrombosis and HemostasisMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Alina Weber
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Vladimir V. Shuvaev
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Huige Li
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine‐MainMainzGermany
- Department of PharmacologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Santiago Lamas
- Department of Cell Biology and ImmunologyCentro de Biología Molecular "Severo Ochoa" (CSIC‐UAM)MadridSpain
| | - Thomas Münzel
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine‐MainMainzGermany
| |
Collapse
|
190
|
Health benefit of vegetable/fruit juice-based diet: Role of microbiome. Sci Rep 2017; 7:2167. [PMID: 28526852 PMCID: PMC5438379 DOI: 10.1038/s41598-017-02200-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/06/2017] [Indexed: 01/23/2023] Open
Abstract
The gut microbiota is an important contributor to human health. Vegetable/fruit juices provide polyphenols, oligosaccharides, fiber and nitrate (beet juice), which may induce a prebiotic-like effect. Juice-based diets are becoming popular. However, there is a lack of scientific evidence of their health benefits. It was our hypothesis that changes in the intestinal microbiota induced by a juice-based diet play an important role in their health benefits. Twenty healthy adults consumed only vegetable/fruit juices for 3 days followed by 14 days of customary diet. On day 4 we observed a significant decrease in weight and body mass index (p = 2.0E−05), which was maintained until day 17 (p = 3.0E−04). On day 4 the proportion of the phylum Firmicutes and Proteobacteria in stool was significantly decreased and Bacteroidetes and Cyanobacteria was increased compared to baseline and was partially reversed on day 17. On day 4 plasma and urine nitric oxide was increased by 244 ± 89% and 450 ± 360%, respectively, and urinary lipid peroxidation marker malondialdehyde was decreased by 32 ± 21% compared to baseline. General well-being score was increased at the end of the study. In summary a 3-day juice-based diet altered the intestinal microbiota associated with weight loss, increase in the vasodilator NO, and decrease in lipid oxidation.
Collapse
|
191
|
Le Roux-Mallouf T, Vibert F, Doutreleau S, Verges S. Effect of acute nitrate and citrulline supplementation on muscle microvascular response to ischemia-reperfusion in healthy humans. Appl Physiol Nutr Metab 2017; 42:901-908. [PMID: 28460182 DOI: 10.1139/apnm-2017-0081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nitric oxide (NO) is implicated in vasomotor control mechanisms altering the diameter of the vessels under various physiological and pathological conditions. There are 2 main NO production pathways, 1 NO synthase (NOS) independent (nitrate-nitrite-NO) and the other is NOS dependent (citrulline-arginine-NO). The objective of the study was to evaluate the effect of acute nitrate and citrulline supplementation on post-ischemic vascular response in healthy subjects. Fourteen subjects performed 2-leg vascular occlusion tests, 3 days apart. They were randomly assigned to consume a drink containing 1200 mg (19.4 mmol) of nitrate and 6 g of citrulline (N+C) or a placebo (Pl). Changes in total hemoglobin (Hbtot) and oxyhemoglobin (HbO2) concentrations were recorded by near-infrared spectroscopy on the thigh and calf muscles. No differences between N+C and Pl were observed during the ischemic period. Hbtot increased to a larger extent during the reperfusion period for the thigh (e.g., area under the curve, 821 ± 324 vs. 627 ± 381 mmol·s-1, p = 0.003) and the calf (515 ± 285 vs. 400 ± 275 mmol·s-1, p = 0.029) in the N+C versus Pl conditions. Similar results were found regarding HbO2 for the thigh (e.g., area under the curve, 842 ± 502 vs. 770 ± 491 mmol·s-1, p = 0.077) and the calf (968 ± 536 vs. 865 ± 275 mmol·s-1, p = 0.075). The larger postocclusive Hbtot and HbO2 responses observed after N+C intake suggests a greater post-ischemic vasodilation, which may be due to increased NO availability, via the activation of the 2 main NO production pathways.
Collapse
Affiliation(s)
- Thibault Le Roux-Mallouf
- U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France.,U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France
| | - Florence Vibert
- U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France.,U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France
| | - Stéphane Doutreleau
- U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France.,U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France
| | - Samuel Verges
- U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France.,U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France
| |
Collapse
|
192
|
Ahmed KA, Nichols AL, Honavar J, Dransfield MT, Matalon S, Patel RP. Measuring nitrate reductase activity from human and rodent tongues. Nitric Oxide 2017; 66:62-70. [PMID: 28390999 DOI: 10.1016/j.niox.2017.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022]
Abstract
Reduction of salivary nitrate to nitrite by oral microbes expressing nitrate-reductase has emerged as a crucial pathway in systemic NO homeostasis in humans and other mammals. Selective depletion of oral microbes prevents dietary nitrate-dependent lowering of blood pressure, inhibition of platelet aggregation and ischemic injury. To date, most studies interrogate enterosalivary nitrate reduction by following changes in saliva or plasma nitrite and NO-signaling (functional) end points. Little is known about whether, and if so how, nitrate-reductase enzymatic activity per se (i.e. independent of nitrate levels) is a variable and may account for any individual to individual variation. Here, we describe a minimally invasive protocol that allows for NR activity determination from human, rat and mouse tongue scrapes/swabs. We validate this method using selective application of antiseptic agents to the distal tongue surface which decreased NR activity by >80% and show that bacterial number is a significant variable in measured NR activities between males and females. Also, we show that NR activity is >80% lower in smokers (humans) and after bromine gas exposure (mice), suggesting that exposure to inhaled reactive substances inhibit NR activity identifying a potentially new mechanism by which environmental toxicants promote dysfunction in NO-bioavailability. The described method will facilitate studies testing whether NR specific activity is a variable in different pathophysiologic settings, and in turn how this activity modulates enterosalivary nitrate-reduction.
Collapse
Affiliation(s)
- Khandaker A Ahmed
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, United States
| | - Alexandria L Nichols
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, United States
| | - Jaideep Honavar
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, United States
| | - Mark T Dransfield
- Department of Medicine, Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, United States
| | - Sadis Matalon
- Anesthesiology and Pulmonary Injury Repair Center, University of Alabama at Birmingham, United States
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, United States.
| |
Collapse
|
193
|
Koch CD, Gladwin MT, Freeman BA, Lundberg JO, Weitzberg E, Morris A. Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radic Biol Med 2017; 105:48-67. [PMID: 27989792 PMCID: PMC5401802 DOI: 10.1016/j.freeradbiomed.2016.12.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Recent insights into the bioactivation and signaling actions of inorganic, dietary nitrate and nitrite now suggest a critical role for the microbiome in the development of cardiac and pulmonary vascular diseases. Once thought to be the inert, end-products of endothelial-derived nitric oxide (NO) heme-oxidation, nitrate and nitrite are now considered major sources of exogenous NO that exhibit enhanced vasoactive signaling activity under conditions of hypoxia and stress. The bioavailability of nitrate and nitrite depend on the enzymatic reduction of nitrate to nitrite by a unique set of bacterial nitrate reductase enzymes possessed by specific bacterial populations in the mammalian mouth and gut. The pathogenesis of pulmonary hypertension (PH), obesity, hypertension and CVD are linked to defects in NO signaling, suggesting a role for commensal oral bacteria to shape the development of PH through the formation of nitrite, NO and other bioactive nitrogen oxides. Oral supplementation with inorganic nitrate or nitrate-containing foods exert pleiotropic, beneficial vascular effects in the setting of inflammation, endothelial dysfunction, ischemia-reperfusion injury and in pre-clinical models of PH, while traditional high-nitrate dietary patterns are associated with beneficial outcomes in hypertension, obesity and CVD. These observations highlight the potential of the microbiome in the development of novel nitrate- and nitrite-based therapeutics for PH, CVD and their risk factors.
Collapse
Affiliation(s)
- Carl D Koch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA.
| | - Mark T Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA
| | - Bruce A Freeman
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| |
Collapse
|
194
|
Abstract
CVD remain the leading cause of death globally. Effective dietary strategies for their reduction are of high priority. Increasing evidence suggests that phytochemicals, particularly dietary flavonoids and nitrates, are key modulators of CVD risk reduction through impact on multiple risk factors. The aim of this review is to explore the evidence for the impact of flavonoid- and nitrate-rich foods and supplements on CVD risk, with specific reference to their importance as mediators of vascular health and platelet function. There is accumulating evidence to support benefits of dietary flavonoids on cardiovascular health. Dose-dependent recovery of endothelial function and lowering of blood pressure have been reported for the flavanol (-)-epicatechin, found in cocoa, apples and tea, through production and availability of endothelial nitric oxide (NO). Furthermore, flavonoids, including quercetin and its metabolites, reduce in vitro and ex vivo platelet function via inhibition of phosphorylation-dependent cellular signalling pathways, although further in vivo studies are required to substantiate these mechanistic effects. Hypotensive effects of dietary nitrates have been consistently reported in healthy subjects in acute and chronic settings, although there is less evidence for these effects in patient groups. Proposed mechanisms of actions include endothelial-independent NO availability, which is dependent on the entro-salivary circulation and microbial conversion of dietary nitrate to nitrite in the mouth. In conclusion, flavonoid- and nitrate-rich foods show promising effects on vascular function, yet further randomly controlled studies are required to confirm these findings and to determine effective doses.
Collapse
Affiliation(s)
- Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition,Department of Food and Nutritional Sciences,Reading RG6 6AP,UK
| | - Alex Stainer
- Institute for Cardiovascular and Metabolic Research (ICMR),University of Reading,Whiteknights,Reading RG6 6AP,UK
| | - Ditte A Hobbs
- Hugh Sinclair Unit of Human Nutrition,Department of Food and Nutritional Sciences,Reading RG6 6AP,UK
| |
Collapse
|
195
|
Dulce RA, Kulandavelu S, Schulman IH, Fritsch J, Hare JM. Nitric Oxide Regulation of Cardiovascular Physiology and Pathophysiology. Nitric Oxide 2017. [DOI: 10.1016/b978-0-12-804273-1.00024-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
196
|
Montenegro MF, Sundqvist ML, Larsen FJ, Zhuge Z, Carlström M, Weitzberg E, Lundberg JO. Blood Pressure–Lowering Effect of Orally Ingested Nitrite Is Abolished by a Proton Pump Inhibitor. Hypertension 2017; 69:23-31. [DOI: 10.1161/hypertensionaha.116.08081] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/19/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022]
Abstract
Inorganic nitrate and nitrite from dietary and endogenous sources are metabolized to NO and other bioactive nitrogen oxides that affect blood pressure. The mechanisms for nitrite bioactivation are unclear, but recent studies in rodents suggest that gastric acidity may influence the systemic effects of this anion. In a randomized, double-blind, placebo-controlled crossover study, we tested the effects of a proton pump inhibitor on the acute cardiovascular effects of nitrite. Fifteen healthy nonsmoking, normotensive subjects, aged 19 to 39 years, were pretreated with placebo or esomeprazole (3×40 mg) before ingesting sodium nitrite (0.3 mg kg
−1
), followed by blood pressure monitoring. Nitrite reduced systolic blood pressure by a maximum of 6±1.3 mm Hg when taken after placebo, whereas pretreatment with esomeprazole blunted this effect. Peak plasma nitrite, nitrate, and nitroso species levels after nitrite ingestion were similar in both interventions. In 8 healthy volunteers, we then infused increasing doses of sodium nitrite (1, 10, and 30 nmol kg
−1
min
−1
) intravenously. Interestingly, although plasma nitrite peaked at similar levels as with orally ingested nitrite (≈1.8 µmol/L), no changes in blood pressure were observed. In rodents, esomeprazole did not affect the blood pressure response to the NO donor, DEA NONOate, or vascular relaxation to nitroprusside and acetylcholine, demonstrating an intact downstream NO-signaling pathway. We conclude that the acute blood pressure–lowering effect of nitrite requires an acidic gastric environment. Future studies will reveal if the cardiovascular complications associated with the use of proton pump inhibitors are linked to interference with the nitrate–nitrite–NO pathway.
Collapse
Affiliation(s)
- Marcelo F. Montenegro
- From the Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.F.M., M.S., Z.Z., M.C., E.W., J.O.L.); and Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden (F.J.L.)
| | - Michaela L. Sundqvist
- From the Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.F.M., M.S., Z.Z., M.C., E.W., J.O.L.); and Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden (F.J.L.)
| | - Filip J. Larsen
- From the Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.F.M., M.S., Z.Z., M.C., E.W., J.O.L.); and Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden (F.J.L.)
| | - Zhengbing Zhuge
- From the Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.F.M., M.S., Z.Z., M.C., E.W., J.O.L.); and Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden (F.J.L.)
| | - Mattias Carlström
- From the Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.F.M., M.S., Z.Z., M.C., E.W., J.O.L.); and Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden (F.J.L.)
| | - Eddie Weitzberg
- From the Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.F.M., M.S., Z.Z., M.C., E.W., J.O.L.); and Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden (F.J.L.)
| | - Jon O. Lundberg
- From the Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.F.M., M.S., Z.Z., M.C., E.W., J.O.L.); and Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden (F.J.L.)
| |
Collapse
|
197
|
Rathod KS, Jones DA, Van-Eijl TJA, Tsang H, Warren H, Hamshere SM, Kapil V, Jain AK, Deaner A, Poulter N, Caulfield MJ, Mathur A, Ahluwalia A. Randomised, double-blind, placebo-controlled study investigating the effects of inorganic nitrate on vascular function, platelet reactivity and restenosis in stable angina: protocol of the NITRATE-OCT study. BMJ Open 2016; 6:e012728. [PMID: 27998900 PMCID: PMC5223652 DOI: 10.1136/bmjopen-2016-012728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION The mainstay treatment for reducing the symptoms of angina and long-term risk of heart attacks in patients with heart disease is stent implantation in the diseased coronary artery. While this procedure has revolutionised treatment, the incidence of secondary events remains a concern. These repeat events are thought to be due, in part, to continued enhanced platelet reactivity, endothelial dysfunction and ultimately restenosis of the stented artery. In this study, we will investigate whether a once a day inorganic nitrate administration might favourably modulate platelet reactivity and endothelial function leading to a decrease in restenosis. METHODS AND DESIGN NITRATE-OCT is a double-blind, randomised, single-centre, placebo-controlled phase II trial that will enrol 246 patients with stable angina due to have elective percutaneous coronary intervention procedure with stent implantation. Patients will be randomised to receive 6 months of a once a day dose of either nitrate-rich beetroot juice or nitrate-deplete beetroot juice (placebo) starting up to 1 week before their procedure. The primary outcome is reduction of in-stent late loss assessed by quantitative coronary angiography and optical coherence tomography at 6 months. The study is powered to detect a 0.22±0.55 mm reduction in late loss in the treatment group compared with the placebo group. Secondary end points include change from baseline assessment of endothelial function measured using flow-mediated dilation at 6 months, target vessel revascularisation (TVR), restenosis rate (diameter>50%) and in-segment late loss at 6 months, markers of inflammation and platelet reactivity and major adverse cardiac events (ie, myocardial infarction, death, cerebrovascular accident, TVR) at 12 and 24 months. ETHICS AND DISSEMINATION The study was approved by the Local Ethics Committee (15/LO/0555). Trial results will be published according to the CONSORT statement and will be presented at conferences and reported in peer-reviewed journals. TRIAL REGISTRATION NUMBERS NCT02529189 and ISRCTN17373946, Pre-results.
Collapse
Affiliation(s)
- Krishnaraj S Rathod
- Barts NIHR Cardiovascular Biomedical Research Unit, Centre of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University, London, UK
- Department of Cardiology, Barts Heart Centre,2 St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Daniel A Jones
- Barts NIHR Cardiovascular Biomedical Research Unit, Centre of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University, London, UK
- Department of Cardiology, Barts Heart Centre,2 St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - T J A Van-Eijl
- Department of Cardiology, Barts Heart Centre,2 St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Hilda Tsang
- Imperial Clinical Trials Unit, Imperial College, London, UK
| | - Helen Warren
- Barts NIHR Cardiovascular Biomedical Research Unit, Centre of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University, London, UK
| | - Stephen M Hamshere
- Department of Cardiology, Barts Heart Centre,2 St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Vikas Kapil
- Barts NIHR Cardiovascular Biomedical Research Unit, Centre of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University, London, UK
| | - Ajay K Jain
- Department of Cardiology, Barts Heart Centre,2 St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- King George Hospital, Barking and Havering NHS Trust, London, UK
| | - Andrew Deaner
- Department of Cardiology, Barts Heart Centre,2 St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- King George Hospital, Barking and Havering NHS Trust, London, UK
| | - Neil Poulter
- Imperial Clinical Trials Unit, Imperial College, London, UK
| | - Mark J Caulfield
- Barts NIHR Cardiovascular Biomedical Research Unit, Centre of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University, London, UK
| | - Anthony Mathur
- Barts NIHR Cardiovascular Biomedical Research Unit, Centre of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University, London, UK
- Department of Cardiology, Barts Heart Centre,2 St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Amrita Ahluwalia
- Barts NIHR Cardiovascular Biomedical Research Unit, Centre of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University, London, UK
| |
Collapse
|
198
|
Ashor AW, Chowdhury S, Oggioni C, Qadir O, Brandt K, Ishaq A, Mathers JC, Saretzki G, Siervo M. Inorganic Nitrate Supplementation in Young and Old Obese Adults Does Not Affect Acute Glucose and Insulin Responses but Lowers Oxidative Stress. J Nutr 2016; 146:2224-2232. [PMID: 27733522 DOI: 10.3945/jn.116.237529] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/08/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Aging and obesity are associated with raised oxidative stress and a reduction of nitric oxide (NO) bioavailability, with subsequent decline in insulin sensitivity and endothelial function. Inorganic nitrate is converted into NO via a 2-step reduction process and may be an effective nutritional intervention to modify vascular and metabolic functions. OBJECTIVES This study tested whether inorganic nitrate supplementation improved glucose disposal and attenuated the acute effects of hyperglycemia on oxidative stress, inflammation, and vascular function in young and old obese participants. METHODS Ten young (aged 18-44 y) and 10 old (aged 55-70 y) obese participants consumed 75 g glucose followed by either potassium nitrate (7 mg/kg body weight) or potassium chloride (placebo) in a randomized, double-blind crossover design. Resting blood pressure (BP), endothelial function, and blood biomarkers were measured for 3 h postintervention. Biomarkers included plasma nitrate/nitrite (NOx), glucose, insulin, cyclic GMP, interleukin 6, 3-nitrotyrosine, E- and P-selectins, intercellular adhesion molecule 3 (ICAM-3), and thrombomodulin, as well as superoxide in freshly isolated peripheral blood mononuclear cells (PBMCs). RESULTS Inorganic nitrate supplementation did not affect plasma glucose (P = 0.18) or insulin (P = 0.26) responses. The increase in plasma NOx concentrations 3 h after the administration of inorganic nitrate was significantly higher in young than in old participants (234% increase compared with 149% increase, respectively, P < 0.001). Plasma 3-nitrotyrosine concentrations declined significantly after inorganic nitrate supplementation compared with placebo (3 h postdose, 46% decrease compared with 27% increase, respectively, P = 0.04), and a similar nonsignificant trend was observed for superoxide concentrations (3 h postdose, 16% decrease compared with 23% increase, respectively, P = 0.06). Plasma cyclic GMP, ICAM-3, and thrombomodulin concentrations differed between young and old participants (P < 0.01). Inorganic nitrate supplementation did not improve BP or endothelial function. CONCLUSIONS Oral supplementation with inorganic nitrate did not improve glucose and insulin responses but reduced oxidative stress in old individuals during acute hyperglycemia. This trial was registered at www.controlled-trials.com as ISRCTN42776917.
Collapse
Affiliation(s)
- Ammar W Ashor
- Human Nutrition Research Centre, Institute of Cellular Medicine.,Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom; and.,College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | | | - Clio Oggioni
- Human Nutrition Research Centre, Institute of Cellular Medicine
| | - Othman Qadir
- Human Nutrition Research Centre, School of Agriculture, Food and Rural Development
| | - Kirsten Brandt
- Human Nutrition Research Centre, School of Agriculture, Food and Rural Development.,Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Abbas Ishaq
- Institute for Cell and Molecular Biosciences.,Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine.,Research Councils UK Centre for Ageing and Vitality, and.,Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Gabriele Saretzki
- Institute for Cell and Molecular Biosciences.,Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Mario Siervo
- Human Nutrition Research Centre, Institute of Cellular Medicine, .,Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| |
Collapse
|
199
|
Usinger EL, Larson EM, Niebuhr SE, Fedler CA, Prusa KJ, Dickson JS, Tarté R, Sebranek JG. Can supplemental nitrate in cured meats be used as a means of increasing residual and dietary nitrate and subsequent potential for physiological nitric oxide without affecting product properties? Meat Sci 2016; 121:324-332. [DOI: 10.1016/j.meatsci.2016.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/12/2016] [Accepted: 06/17/2016] [Indexed: 02/05/2023]
|
200
|
A single dose of a beetroot-based nutritional gel improves endothelial function in the elderly with cardiovascular risk factors. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|